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Abstract. We give criteria for the existence of smooth bifurcation
branches of fixed boundary CMC surfaces in R

3, and we discuss stabil-
ity/instability issues for the surfaces in bifurcating branches. To illustrate
the theory, we discuss an explicit example obtained from a bifurcating branch
of fixed boundary unduloids in R

3.

1. Introduction.

Plateau was already aware of bifurcation phenomena in the geometry of surfaces of

constant mean curvature (CMC) [16]. In his renowned experimental investigation of the

Delaunay surfaces, he observed how surfaces belonging to one family could be created

experimentally until a “limit of stability” was reached, whence a spontaneous transfor-

mation into surfaces from an adjacent family would take place. Numerous investigation

of bifurcation in CMC surfaces have followed, the vast majority of which, in our opinion,

rely on empirical or heuristic arguments to justify that bifurcation has taken place. More

rigorous bifurcation results for CMC hypersurfaces in Riemannian manifolds have been

given in terms of Morse index, or abstract equivariant bifurcation results, see for instance

[3], [11], [12], [14] and the references therein. On the one hand, all of these results use

rather weak assumptions to guarantee the existence of a bifurcating branch. On the

other hand, these types of results do not provide information about the cardinality of

the bifurcation branch which may only consist of a sequence of bifurcating surfaces. In

particular, they do not guarantee the existence of what is observed; a smooth bifurcating

branch.

Our first goal here is to develop a mathematically rigorous approach to the existence

of smooth bifurcating families of CMC surfaces. The main ingredients of our theory

are stability/instability criteria proved by the first author in [8], see Section 2.3, for

smooth perturbations of fixed boundary CMC surfaces. The other primary ingredient

involves an abstract bifurcation theory of Crandall and Rabinowitz [4], [5] which can

be applied, under appropriate conditions, to produce a smooth family of fixed boundary

CMC surfaces via an implicit function theorem when the kernel of the Jacobi operator L

(see (2)) is non-trivial. We use this to obtain two results on the existence of bifurcations:
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Let Σ be a two-dimensional oriented compact connected smooth manifold with

smooth boundary ∂Σ, and consider a one-parameter family Xt : Σ → R
3 of CMC

immersions. We assume that {Xt} depend smoothly on t ∈ (−ε, ε), and that each Xt is

of the form Xt = X + ϕ(t)ν for some smooth function ϕ(t) : Σ→ R, with X = X0 (i.e.,

ϕ(0) = 0) and X
∣∣
∂Σ

= Xt|∂Σ (i.e., ϕ(t)
∣∣
∂Σ

= 0). Here ν denotes a smooth unit normal

vector field along X. Assuming that Xt has the form X + ϕ(t)ν is reasonable, because,

for an immersion X : Σ→ R
3, for any immersion Y : Σ→ R

3 having the same boundary

values as X in a sufficiently small neighborhood of X in the C2+α topology, there exists

a diffeomorphism f : Σ → Σ and a C2+α function ϕ : Σ → R with ϕ|∂Σ = 0 such that

Y ◦ f = X + ϕν holds. We denote the mean curvature of Xt and the volume of Xt, by

H(t), V (t), respectively (The definition of an immersion will be given in Section 2.1.).

We denote by Lt, L̃t the symmetric operators associated with the second variation of the

area for Xt (see (2) and (5)). Moreover, we denote by E the kernel of L0. The eigenval-

ues of the eigenvalue problem (3) associated with the Jacobi operator L are denoted by

λn, and the eigenvalues of the eigenvalue problem (6) associated with the operator L̃ are

denoted by λ̃n.

The first result on the existence of bifurcations furnishes a smooth bifurcating family

of CMC surfaces with fixed boundaries, whose mean curvatures coincide with the mean

curvatures of the original family, that is the bifurcation parameter is the mean curvature:

Theorem 1.1. Assume:

(i) H ′(0) �= 0.

(ii) E =
{
ae : a ∈ R

}
, for some e ∈ C2+α

0 (Σ) \ {0}.
Then,

∫
Σ

e dΣ = 0, and there exists a differentiable map (−ε0, ε0) � t �→ λ(t) ∈ R, with

0 < ε0 ≤ ε, such that λ(0) = 0, λ(t) is a simple eigenvalue of Lt, and there is no other

eigenvalue of Lt near 0.

Assume further that λ′(0) �= 0 holds. Then there is an analytic bifurcation branch of

fixed boundary CMC immersions issuing at X. More precisely, let E⊥ be the orthogonal

complement of E in C2+α
0 with respect to the L2 inner product. Then, there exist an

open interval Î ⊂ R, with 0 ∈ Î, and C1 functions ζ : Î → E⊥ and t : Î → R, such that

t(0) = 0, ζ(0) = 0, and Y (s) := X + (ϕ(t(s)) + se + sζ(s))ν is a CMC immersion with

mean curvature Ĥ(s) := H
(
t(s)

)
.

Moreover, every CMC immersion with the same boundary values as X and suffi-

ciently C2+α-close to X is equal, up to parameterization, to some element of the families

{Xt : t ∈ I} and {Y (s) : s ∈ Î}, where I is an open interval satisfying 0 ∈ I ⊂ (−ε0, ε0).

Furthermore, the surfaces {Xt : t ∈ I} and {Y (s) : s ∈ Î} are pairwise distinct except

for X0 = Y (0).

There are some previous works on the existence of bifurcation from critical cylinders

with specific boundary conditions with mean curvature as bifurcation parameter ([13],

[17]). They also use the bifurcation theory of Crandall and Rabinowitz [4].

Our second result on the existence of bifurcations provides a smooth bifurcating

branch of CMC surfaces, having the same boundaries whose volumes coincide with the

volumes of surfaces in the original family, that is the bifurcation parameter is the volume.
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The proof is much more involved than the proof of Theorem 1.1. This second result is

inspired by unpublished material of Patnaik from the reference [15] (see Remark 4.4).

Theorem 1.2. Assume:

(i) H ′(0) �= 0.

(ii) E =
{
ae : a ∈ R

}
, for some e ∈ C2+α

0 (Σ) \ {0}.

Then,
∫
Σ

e dΣ = 0, and there exist j ≥ 2 and k ≥ 1 such that λj = λ̃k = 0. Moreover,

there exists a differentiable function (−ε0, ε0) � t �→ λ̃(t) ∈ R, 0 < ε0 ≤ ε, with λ̃(0) = 0,

such that λ̃(t) is a simple eigenvalue of L̃t, which is the unique eigenvalue of L̃t near 0.

Assume further that V ′(0) �= 0 and λ̃′(0) �= 0 hold. Then, there is a smooth bifurcat-

ing branch of CMC immersions, issuing from X that is described as follows. Let E⊥ be

the orthogonal complement of E in C2+α
0 (Σ) with respect to the L2 inner product. Then,

there exists an open interval Î ⊂ R, with 0 ∈ Î, and C1 mappings η : Î → C2+α
0 (Σ) and

τ : Î → R, such that τ(0) = 0, η(0) = 0, and Y (s) := X+(ϕ(τ(s))+se+sη(s))ν is a CMC

immersion with volume V̂ (s) := V (τ(s)). η(s) can be written as η(s) = c(s)ϕ′(0) + ξ(s),

where c : Î → R and

ξ : Î −→
{

u ∈ C2+α
0 (Σ) :

∫
Σ

u dΣ = 0

}
∩ E⊥

are C1 mappings such that c(0) = 0, ξ(0) = 0.

Moreover, every CMC immersion with the same boundary values as X and suffi-

ciently C2+α-close to X is equal, up to parameterization, to some element of the families

{Xt : t ∈ I} and {Y (s) : s ∈ Î}, where I is an open interval satisfying 0 ∈ I ⊂ (−ε0, ε0).

Furthermore, the surfaces {Xt : t ∈ I} and {Y (s) : s ∈ Î} are pairwise distinct except

for X0 = Y (0).

Recall that stable CMC surfaces occur as local minima for the area functional subject

to a constraint on the enclosed three dimensional volume. If a family of such surfaces,

all having the same boundary, is given, bifurcation commonly takes place at a surface

where stability is lost (for the definition of stability, see Definition 2.2). It is then an

interesting question as to whether or not the property of being stable is transferred to

the bifurcating branch. Closely related to this is the phenomena of symmetry breaking.

In nature, the most stable equilibria are typically those possessing the greatest possible

degree of symmetry compatible with the boundary configuration. When bifurcation

takes place with a loss of stability, it is common for the bifurcating branch to possess

less symmetry than the surfaces of the original family.

Koiso’s stability/instability criteria are applied to the bifurcating branches obtained

from the Crandall and Rabinowitz theory, obtaining conditions for pitchfork or trans-

critical bifurcation:

Corollary 1.3. Assume the hypotheses of Theorem 1.2 and assume additionally

that λ2 = 0 holds (equivalently, λ̃1 = 0 holds). Denote by {Y (s)}s∈Î the bifurcating

branch of fixed boundary CMC surfaces given in Theorem 1.2. Assume also that H ′(0) >
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0, V ′(0) > 0 and λ̃′
1(0) > 0 hold. Then, there exist positive constants t0 ∈ (0, ε), s0 ∈ Î

such that the following statements hold.

(I) Xt is stable for all t ∈ [0, t0] and unstable for all t ∈ [−t0, 0).

(II) If V̂ ′(0) �= 0, then we have transcritical bifurcation for the branch Y (s) (see the

right hand picture in Figure 1). More precisely,

– if V̂ ′(0) > 0, then Y (s) is stable for s ∈ [−s0, 0] and unstable for s ∈ (0, s0];

– if V̂ ′(0) < 0, then Y (s) is stable for s ∈ [0, s0] and unstable for s ∈ [−s0, 0).

(III) Assume that V̂ ′(0) = 0. Assume also that V̂ is twice differentiable at s = 0. If

V̂ ′′(0) < 0 holds, then Y (s) is stable for all s ∈ [−s0, s0] (supercritical pitchfork

bifurcation. See the left-hand picture in Figure 1). If V̂ ′′(0) > 0, then Y (s) is

unstable for all s ∈ [−s0, 0)
⋃
(0, s0] (subcritical pitchfork bifurcation. See the center

picture in Figure 1).

Similar conclusions hold in the case when H ′(0) < 0 and V ′(0) < 0, by reversing the

parameterization of Xt, t �→ −t.

This result is derived from a more general result Theorem 6.2, where weaker as-

sumptions on H ′(0)V ′(0), V̂ ′ are posed.

As to the bifurcation branch given in Theorem 1.1, we obtain conditions on the

eigenvalues of the Jacobi operator for pitchfork or transcritical bifurcation (Theorem 6.4).

In order to illustrate our stability/instability criteria for bifurcating branches of

CMC surfaces, in Section 7, we work out an explicit example obtained by considering

a family of fixed boundary unduloids in R
3 that are perturbation of a critical cylinder,

and that are symmetric with respect to a horizontal plane (i.e., orthogonal to the axis

of symmetry). In this case, one obtains a bifurcating branch of CMC surfaces, that

consists again of unduloids, but which are not symmetric with respect to the horizontal

plane. This gives an example of subcritical pitchfork bifurcation, with a partial break of

symmetry.

Here we further give a remark on the symmetry of CMC surfaces in the bifurcation

branch given in Theorems 1.1, 1.2. Denote by “dot” the differentiation with respect to

t. In Theorem 1.1, the variation vector field of Xt at t = 0 is (ϕ̇(0))ν, and the variation

vector field of Y (s) is given by (t′(0)ϕ̇(0) + e)ν, and
∫
Σ

e dΣ = 0. In Theorem 1.2, the

same formulas hold by exchanging t for τ . For the example given in Section 7, the original

CMC surfaces Xt (and so also (ϕ̇(0))ν) are axially symmetric and they have a reflectional

symmetry with respect to a plane Π orthogonal to the axis, while for the surfaces Y (s) in

the bifurcation branch this reflectional symmetry is broken. In fact, for these examples,

t′(0) = 0 and eν does not have the reflectional symmetry with respect to Π.

For the sake of clarity and brevity, we have limited ourselves in this paper to the

study of two dimensional constant mean curvature surfaces satisfying Dirichlet boundary

conditions in the three dimensional Euclidean space. However, the tools we employ are

functional analytic in nature and with some modifications the results could be extended

to a plethora of more general situations; higher dimensions, more general boundary con-

ditions, more general ambient spaces, other functionals besides area, e.g. anisotropic
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surface energy with volume constraint (cf. Arroyo–Koiso–Palmer[1]). We hope to inves-

tigate some of these applications in the future.

This paper is organized as follows. Section 2 gives preliminary results on the nonex-

istence of bifurcation and stability/instability criteria. In Section 3 and in Section 4,

Theorem 1.1 and Theorem 1.2 are proved respectively. Some results about estimates

for the eigenvalues of the Jacobi operators of CMC surfaces in the bifurcation branches

obtained from Theorems 1.1 and 1.2 are given in Section 5, and they are used in Section

6. In Section 6, two sets of criteria are given for the stability/instability of bifurcating

branches of CMC surfaces. The first of these, Theorem 6.2 applies to the type of bifur-

cation given by Theorem 1.2, while the second Theorem 6.4, applies to the bifurcations

provided by Theorem 1.1. In particular, we deduce from Theorem 6.2 that, from a sta-

ble CMC surface with nullity one, only three types of bifurcations can occur (see also

Corollary 1.3): a supercritical pitchfork bifurcation, a subcritical pitchfork bifurcation,

and a transcritical bifurcation. Also Corollary 1.3 is proved in Section 6. An explicit

example that gives a bifurcation from the critical cylinder is described in Section 7. For

the reader’s convenience, the Crandall–Rabinowitz theory is summarized in Appendix A.

Finally details of the proofs of some of the statements in Section 7 are given in Appendix

B.

2. Perturbation of fixed boundary CMC immersions. Stability/instabil-

ity criteria.

2.1. Preliminaries.

Let Σ be a two-dimensional, oriented, compact, connected smooth manifold with

smooth boundary ∂Σ, and assume that X : Σ → R
3 is a smooth immersion having

constant mean curvature equal to H0. Denote by ν : Σ→ S2 ⊂ R
3 the Gauss map of X.

Define the volume of X as the volume of the cone over X which is explicitly given by

(1/3)
∫
Σ
〈X, ν〉 dΣ, where 〈 , 〉 stands for the canonical inner product in R

3, and dΣ is the

area element of the induced metric on Σ. Recall that the mean curvature of an immersion

X : Σ → R
3 is constant if and only if X is a critical point of the area functional for all

volume-preserving variations of X that fix the boundary values.

In order to satisfy appropriate Fredholm assumptions required in our theory, we will

consider variations of X of class C2+α. For a volume-preserving, boundary preserving

variation Xt of X, the second variation of the area functional A is given by (cf. [2]):

δ2A = −
∫
Σ

ϕL[ϕ] dΣ =: I(ϕ), ϕ :=

〈
∂Xt

∂t

∣∣∣∣
t=0

, ν

〉
, (1)

where L is the self-adjoint operator associated with δ2A (Jacobi operator) which is defined

as follows:

L[ϕ] = 2 δH = Δϕ + ‖dν‖2ϕ, (2)

where δH is the first variation of the mean curvature, and Δ is the Laplacian 1 on Σ

1For the Euclidean metric ds2 =
∑

i,j δijdu
iduj , Δϕ = ϕu1u1 + ϕu2u2 .
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with the metric induced by X. Define:

E := Ker(L) =
{
e ∈ C2+α

0 (Σ) : L[e] = 0
}
;

we will consider on C2+α
0 (Σ) the L2-inner product 〈ψ1, ψ2〉L2 =

∫
Σ

ψ1ψ2 dΣ, and we will

denote by E⊥ the orthogonal space of E. Observe that, by standard elliptic theory, every

e ∈ Ker(L) is smooth.

Using an implicit function theorem, it is easy to see that (see [8, Theorem 1.1]),

when E = {0}, X admits smooth deformations of the form Xt = X + φ(t) · ν, for some

smooth 1-parameter family (−ε, ε) � t �→ φ(t) ∈ C2+α
0 (Σ), with φ(0) = 0, such that the

mean curvature of Xt is constant and equal to H0+ t for all t. Moreover, given any CMC

immersion Y : Σ → R
3, with Y

∣∣
∂Σ

= X
∣∣
∂Σ

, sufficiently close to X, Y must be equal to

some Xt, up to parameterization. We will say that two immersions X : Σ → R
3 and

X ′ : Σ→ R
3 are equal up to parameterization if there exists a diffeomorphism F : Σ→ Σ

such that X ′ = X ◦ F . We will call two CMC immersions different if they are not equal

up to parameterization.

A similar, though weaker, result on the existence of CMC perturbations of X was

obtained by the first author under the assumption that dim(E) = 1.

Theorem 2.1 (Existence and uniqueness of CMC deformation [8, Theorem 1.2]).

Let X : Σ → R
3 be an immersion with constant mean curvature H0, and assume the

following :

(i) dimE = 1;

(ii)
∫
Σ

e dΣ �= 0 for some (hence, for all) e ∈ E \ {0}.
Fix e0 ∈ E \ {0}. Then, there exists ε > 0, and a map of class C1:

(ξ, η) : (−ε, ε) −→ E⊥ × R

such that, (ξ(0), η(0)) = (0, H0), and, for all t ∈ (−ε, ε), the map Xt := X+
(
te+ξ(t)

)
ν :

Σ → R
3 is a C2+α-immersion having constant mean curvature equal to η(t), and with

Xt

∣∣
∂Σ

= X
∣∣
∂Σ

.

Moreover, if Y : Σ → R
3 is a CMC immersion with Y

∣∣
∂Σ

= X
∣∣
∂Σ

which is suffi-

ciently C2+α-close to X, then Y must be equal to some Xt, up to parameterization.

In this paper, we will be interested in determining CMC immersions that bifurcate

from a given one-parameter family (Xt)t∈(−ε,ε) and satisfy a fixed boundary condition.

The uniqueness statements in [8, Theorem 1.1] and in Theorem 2.1 imply that when

either E = {0} or dim(E) = 1 and
∫
Σ

e dΣ �= 0 for some e ∈ E \ {0}, then no bifurcation

from the family (Xt)t∈(−ε,ε) can occur at t = 0.

Consider the eigenvalue problem:2

2We denote by H1
0 (Σ) the completion of C∞

0 (Σ) with respect to the norm defined by the inner product

(u, v)H1 =

∫
Σ
∇u∇v dΣ,

where ∇u∇v denotes the inner product of the gradient of u and that of v with respect to the Riemannian
metric of Σ induced by X.
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L[ϕ] = −λϕ, ϕ|∂Σ = 0, ϕ ∈ H1
0 (Σ). (3)

Denote by λn, n ≥ 1, the n-th eigenvalues of (3).

Theorem 2.1 applies, in particular, when λ1 = 0, in which case E is the λ1-eigenspace

of L. In this case, it is well-known that the multiplicity of λ1 is one, and that any λ1-

eigenfunction does not change sign. In particular, assumption (ii) in Theorem 2.1 is

satisfied. Therefore, bifurcation may occur for the family (Xt)t only in the case where

λk = 0 for some k ≥ 2.

2.2. Stability under volume preserving variations.

Since a CMC immersion is a critical point of the area functional for volume-

preserving variations that fix the boundary, the following definition is a natural one.

Definition 2.2. A CMC immersion X : Σ→ R
3 is said to be stable if the second

variation of the area functional is nonnegative for all volume-preserving variations that

fix the boundary. X is said to be unstable if it is not stable.

Assume that X : Σ→ R
3 is CMC. Consider the quadratic form (1) on C2+α

0 (Σ). It

is not hard to show that it admits a continuous extension to the Hilbert space H1
0 (Σ).

We will consider the closed subspace:

F0 :=

{
ϕ ∈ H1

0 (Σ) :

∫
Σ

ϕ dΣ = 0

}
. (4)

Then:

Fact 2.3 ([2]). A CMC immersion X is stable if and only if the quadratic form I

defined in (1) is positive semi-definite on the space F0.

The restriction of the quadratic form (1) to F0∩H2(Σ) is represented by a self-adjoint

operator L̃:

L̃[ϕ] := L[ϕ]−
(∫

Σ

dΣ

)−1 ∫
Σ

L[ϕ]dΣ. (5)

The operator L̃ is a compact (finite-rank) perturbation of L; observe that

ϕ �−→ |Σ|−1

∫
Σ

(Lϕ) dΣ

is a rank one operator. Thus, L̃ admits an unbounded sequence of eigenvalues, λ̃1 ≤
λ̃2 ≤ λ̃3 ≤ . . ., each of which has finite multiplicity, with corresponding eigenfunctions:

L̃[ϕ] = −λ̃ϕ, ϕ ∈ F0 \ {0}, (6)

that form an orthonormal basis of F0. By elliptic regularity, every eigenfunction of L̃ is

of class C2.

Note that the equation in (6) is equivalent to
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∫
Σ

(L[ϕ] + λ̃ϕ)u dΣ = 0, ∀u ∈ F0, (7)

i.e.,

L[ϕ] + λ̃ϕ = const.

From Fact 2.3, we have the following:

Lemma 2.4. X is stable if and only if λ̃1 ≥ 0. �

The computation of the eigenvalues λ̃k is rather difficult, and in many situations

Lemma 2.4 is not used to establish the stability or instability of a CMC immersion.

2.3. Two stability criteria.

We recall two stability criteria for CMC surfaces, proved in [8], that use only the

eigenvalues of the problem (3) and some information on the corresponding eigenfunctions

and solutions of an associated inhomogeneous elliptic partial differential equation. The

first one is based on 1-parameter families of deformations. For a one-parameter family

{Xt : Σ → R
3} of CMC immersions, denote by H(t) and V (t), the mean curvature and

the volume of Xt, respectively. Also denote by Δt, νt the Laplacian, the Gauss map of Xt,

respectively, and let Lt be the Jacobi operator for Xt, given by Lt[ϕ] := Δtϕ+ ‖dνt‖2ϕ.

Theorem 2.5 (First stability criterion [8, Corollary 1.1]). Let X be a CMC im-

mersion.

(I) If λ1 ≥ 0, then X is stable.

(II) Assume λ1 < 0 ≤ λ2. If there is a deformation Xt of X such that H ′(0) =

constant �= 0, then the following statements hold.

(i) If H ′(0)V ′(0) ≥ 0, then X is stable.

(ii) If H ′(0)V ′(0) < 0, then X is unstable.

If there is no such deformation, then X is unstable.

(III) If λ2 < 0, then X is unstable.

Let us now recall a second stability criterion for CMC immersions, which uses eigen-

functions of the operator L in H1
0 (Σ).

Theorem 2.6 (Second stability criterion [8, Theorem 1.3]). Let X : Σ→ R
3 be a

CMC immersion.

(I) If λ1 ≥ 0, then X is stable.

(II) If λ1 < 0 < λ2, then there exists a uniquely determined function u ∈ C2+α
0 (Σ)

(smooth, in fact) which satisfies Lu = 1, and the following statements hold.

(II-1) If
∫
Σ

u dΣ ≥ 0, then X is stable.

(II-2) If
∫
Σ

u dΣ < 0, then X is unstable.
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(III) If λ1 < 0 = λ2, then the following statements hold :

(III-A) If there exists a λ2-eigenfunction e which satisfies
∫
Σ

e dΣ �= 0, then X is

unstable.

(III-B) If
∫
Σ

e dΣ = 0 for any λ2-eigenfunction e , then there exists a uniquely deter-

mined function u ∈ E⊥ which satisfies Lu = 1, and the following statements

hold :

(III-B1) If
∫
Σ

u dΣ ≥ 0, then X is stable.

(III-B2) If
∫
Σ

u dΣ < 0, then X is unstable.

(IV) If λ2 < 0, then X is unstable.

It is worth observing that Theorem 2.6 and Theorem 2.5 are equivalent statements,

see [8] for details.

3. Proof of Theorem 1.1.

First, let us observe that:

0 �= 2H ′(0) = L[ϕ′(0)].

Hence,

2H ′(0)
∫
Σ

e dΣ =

∫
Σ

eL[ϕ′(0)] dΣ =

∫
Σ

ϕ′(0)L[e] dΣ = 0.

Therefore, ∫
Σ

e dΣ = 0

holds. Now we will apply Lemma A.3; set

Y := C2+α
0 (Σ), Z := Cα(Σ), W = E⊥

and let ι : Y → Z be the inclusion map. Define a mapping L : Y → Z by

L[u] = Δu + ‖dν‖2u.

Now

R(L) := Image of L = {Lu : u ∈ Y } ⊂ Z,

and by the Fredholm Alternative

v ∈ R(L)⇐⇒ v = Lu for some u ∈ Y ⇐⇒
∫
Σ

ve dΣ = 0 ⇐⇒ v ∈ E⊥.

Hence,
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R(L) = E⊥,

therefore

codim
(
R(L)

)
= 1,

and

ιe = e /∈ R(L).

Hence 0 is an ι-simple eigenvalue of L in the sense of [5] (see Definition A.2 below).

Therefore, by Lemma A.3, there exists a differentiable map (−ε0, ε0) � t �→ λ(t), with

λ(0) = 0, such that λ(t) is an ι-simple eigenvalue of Lt, and there are no other eigenvalues

of Lt near 0. The first part of Theorem 1.1 has been proved.

Denote by Lt the corresponding Jacobi operator for Xt, in particular, L = L0. Using

the eigenvalues λ(t), we can write:

Lt(e(t)) = −λ(t)e(t), for some e(t) ∈ C2+α
0 (Σ) \ {0}. (8)

The bifurcation result is obtained as an application of Theorem A.1. There exists a

neighborhood U of 0 in C2+α(Σ), such that X +uν is an immersion for any u ∈ U . Also,

we note that, in a neighborhood of X, all immersions Y : Σ→ R
3 satisfying Y |∂Σ = X|∂Σ

are represented as Y = X + uν, u ∈ C2+α
0 (Σ). For u ∈ U , we denote by Hu the mean

curvature of X + uν. In our case,

Hϕ(t) = H(t), ∀t ∈ I.

Also, we denote by Au, Vu the area and the volume of X + uν, respectively. We define

a mapping F : I × C2+α
0 (Σ)→ Cα

0 (Σ)
∗ as follows.3

F (t, ψ) = Dψ(Aϕ(t)+ψ + 2H(t)Vϕ(t)+ψ).

F is a twice continuously Fréchet differentiable mapping. If we denote the Gauss map of

X + uν by νu, and by dΣu the area element of Σ induced by of X + uν, then

F (t, ψ)u = −2
∫
Σ

(Hϕ(t)+ψ −H(t))u〈ν, νϕ(t)+ψ〉 dΣϕ(t)+ψ.

Therefore,

F (t, 0) = 0, ∀t ∈ I

holds. Moreover, Hϕ(t)+ψ is identically equal to the constant H(t) if F (t, ψ) = 0.

Conversely assume Hu = constant(=: c) and |c − H0| is sufficiently small. Then,

c = H(tc) for some tc ∈ I. Set ψ = u − ϕ(tc). Then, Hϕ(tc)+ψ is constant H(tc), and

F (tc, ψ) = 0. Therefore, in a neighborhood of X, any CMC immersion with the same

boundary values of X is obtained as a solution of F (t, ψ) = 0.

3Cα
0 (Σ)∗ denotes the dual space of Cα

0 (Σ).
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Now, the map DψF (0, 0) : C2+α
0 (Σ) −→ C2+α

0 (Σ)∗, is given by:

DψF (0, 0)(v)(u) = −
∫
Σ

uL[v] dΣ = −
∫
Σ

vL[u] dΣ, (9)

where

L[u] = Δu + ‖dν‖2u,

hence, we have

Ker(DψF (0, 0)) = E,

so by assumption,

dim(Ker(DψF (0, 0))) = 1.

On the other hand, Φ ∈ Image(DψF (0, 0)) ⊂ C2+α
0 (Σ)∗ if and only if there exists some

u ∈ C2+α
0 (Σ) such that

Φ(v) = −
∫
Σ

vL[u] dΣ, ∀v ∈ C2+α
0 (Σ).

Therefore, we have a one to one correspondence between Image(DψF (0, 0)) and {L[u] :

u ∈ C2+α
0 (Σ)} = E⊥. This means that

codim
(
Image(DψF (0, 0))

)
= 1

holds.

Now, in order to apply Theorem A.1, we will show that DtψF (0, 0)e /∈ R(DψF (0, 0))

holds. We compute

DψF (t, 0)(v)(u) = −
∫
Σ

u〈ν, νϕ(t)〉Lt[v〈ν, νϕ(t)〉] dΣϕ(t),

where

Lt[ω] = Δϕ(t)ω + ‖dνϕ(t)‖2ω.

Hence,

DtψF (0, 0)(v)(u) = −
∫
Σ

u

(
∂

∂t

∣∣∣∣
t=0

Lt[v〈ν, νϕ(t)〉]− 2H(0)ϕ′(0)L[v]
)

dΣ.

Therefore,

DtψF (0, 0)(e)(u) = −
∫
Σ

u

(
∂

∂t

∣∣∣∣
t=0

Lt[e〈ν, νϕ(t)〉]
)

dΣ. (10)

Recall
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Lt[e(t)] = −λ(t)e(t), ∃e(t) ∈ C2+α
0 (Σ) \ {0}, λ′(0) �= 0. (11)

We may assume that ∫
Σ

(e(t))2 dΣϕ(t) = 1

holds. Then,

λ(t) = −
∫
Σ

e(t)Lt[e(t)] dΣϕ(t) = DψF (t, 0)(v(t))(v(t)), (12)

where

v(t) :=
e(t)

〈ν, νϕ(t)〉 .

Assume now that DtψF (0, 0)e ∈ R(DψF (0, 0)) holds. Then, for some w ∈ C2+α
0 (Σ):

DψF (0, 0)w = DtψF (0, 0)e (13)

holds. By using (9), (12), (13), and v(0) = e, we obtain

0 �= λ′(0) =
d

dt

∣∣∣∣
t=0

DψF (t, 0)(v(t))(v(t))

= DtψF (0, 0)(v(0))(v(0))

+DψF (0, 0)(v′(0))(v(0)) + DψF (0, 0)(v(0))(v′(0))

= DtψF (0, 0)(e)(e)

= −
∫
Σ

eL[w] dΣ = −
∫
Σ

wL[e] dΣ = 0, (14)

which is a contradiction. Hence, DtψF (0, 0)e /∈ R(DψF (0, 0)) holds, and all of the

assumptions in Theorem A.1 hold. Consequently, we obtain the existence of unique

CMC immersions Y (s) := X + (ϕ(t(s)) + se + sζ(s))ν with mean curvature H(t(s)),

(s ∈ Î).

Set

ψ0 :=
∂ϕ(t)

∂t

∣∣∣∣
t=0

.

The variation vector field of Xt at X0 is ψ0ν, and the variation vector field of Y (s) at

X0 is (t′(0)ψ0 + e)ν. Since L[ψ0] = constant �= 0 and L[e] = 0, ψ0 and e are linearly

independent. Therefore, surfaces {Xt ; t ∈ I} and {Y (s) ; s ∈ Î} are all different except

for X0 = Y (0). The proof of Theorem 1.1 is completed.
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4. Proof of Theorem 1.2.

We will employ Theorem A.1 and Lemma A.6. First let us assume that V ′(0) �= 0

holds.

Set V0 := V (0), b := V ′(0) =
∫
Σ

ϕ′(0) dΣ �= 0. From now on, we denote by A(ϕ)

and V (ϕ) the area and the volume of X + ϕν, respectively.

Set

� := DϕV (0) : C2+α
0 (Σ) −→ R.

Then,

�(ψ) = DϕV (0)ψ =

∫
Σ

ψ dΣ, ψ ∈ C2+α
0 (Σ). (15)

Set ψ0 := b−1ϕ′(0). Then there holds,

�(ψ0) = 1. (16)

Also, set

B := C2+α
0 (Σ), B0 :=

{
h ∈ B : �(h) = 0

}
.

Then

B0 =

{
h ∈ B :

∫
Σ

h dΣ = 0

}
.

For any ϕ ∈ B, ϕ can be represented uniquely as

ϕ = �(ϕ)ψ0 + h, h ∈ B0.

In fact, if we set h := ϕ− �(ϕ)ψ0, then �(h) =
∫
Σ

ϕ dΣ− (∫
Σ

ϕ dΣ
)
�(ψ0) = 0.

Now, define a mapping P : B → R×B0 as follows.

P (ϕ) := (P1(ϕ), P2(ϕ)) := (V (ϕ), h) = (V (ϕ), ϕ− �(ϕ)ψ0). (17)

Then, P (0) = (V0, 0), and P is nonsingular at 0. In fact, since

DϕP (ϕ)w =

(∫
Σ

w〈ν, νϕ〉 dΣϕ, w − �(w)ψ0

)
, (18)

DϕP (0)w = (�(w), w − �(w)ψ0).

DϕP (0)w = 0 if and only if w = 0. Hence, P is invertible in a neighborhood of 0. Set

Q := P−1. Then for a neighborhood U of 0 in B0 and a neighborhood J of 0 in R,

Q = P−1 : J × U −→ B.

Set Ã = A ◦Q, Ṽ = V ◦Q. Then,
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Ã, Ṽ : J × U −→ R, 0 ∈ U ⊂ B0, 0 ∈ J ⊂ R.

Set

P (ϕ(t)) =: (V (ϕ(t)), ϕ0(t)).

Then,

ϕ0(t) = ϕ(t)− �(ϕ(t))ψ0 = ϕ(t)− b−1ϕ′(0)
∫
Σ

ϕ(t) dΣ. (19)

Hence,

ϕ0(0) = 0, ϕ′
0(0) = 0. (20)

Denote by B∗
0 the dual space of B0. Define a mapping F : J ×U0 → B∗

0 as below, where

U0 is a neighborhood of 0 in B0:

F (t, h) := DhÃ(V (ϕ(t)), ϕ0(t) + h).

Note that, in a neighborhood Ω of X in C2+α(Σ,R3), any immersion Y : Σ → R
3

satisfying Y |∂Σ = X|∂Σ and having volume ω is represented as

Y = X + Q(ω, h)ν, ∃h ∈ B0.

Lemma 4.1. In a neighborhood Ω of X, Y ∈ Ω is CMC with volume ω if and only

if Y = X + Q(V (ϕ(t)), ϕ0(t) + h)ν, (V (ϕ(t)) = ω, ∃h ∈ B0), and F (t, h) = 0. This is

equivalent to Y = X + ϕν, (ϕ ∈ P−1(F−1(0) + (0, ϕ0(t))) ⊂ B).

In order to prove Lemma 4.1, we need some preparation.

Set g(t, h) := Q(V (ϕ(t)), ϕ0(t) + h). Then, F (t, h) = DhA(g(t, h)). Note that

g(0, 0) = Q(V0, ϕ0(0)) = ϕ(0) = 0.

We have

F (t, h)k

= lim
σ→0

A(g(t, h + σk))−A(g(t, h))

σ

= −2
∫
Σ

H(g(t, h))
∂g(t, h + σk)

∂σ

∣∣∣∣
σ=0

〈ν, νg(t,h)〉 dΣg(t,h)

= −2
∫
Σ

H(g(t, h))(DhQ(V (ϕ(t)), ϕ0(t) + h)k)〈ν, νg(t,h)〉 dΣg(t,h). (21)

Since PQ is the identity of J × U , (0 ∈ J ⊂ R, 0 ∈ U ⊂ B0),

PQ(V (ϕ(t)), ϕ0(t) + h) = (V (ϕ(t)), ϕ0(t) + h), 0 ∈ U ⊂ B0, t ∈ J ⊂ R. (22)

Differentiating (22) with respect h, we get
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DϕP (g(t, h))(DhQ(V (ϕ(t)), ϕ0(t) + h)u) = (0, u), ∀u ∈ B0. (23)

Set

ũ := DhQ(V (ϕ(t)), ϕ0(t) + h)u.

By using (18), we obtain

DϕP (g(t, h))ũ =

(∫
Σ

ũ〈ν, νg(t,h)〉 dΣg(t,h), ũ−
(∫

Σ

ũ dΣ

)
ψ0

)
. (24)

Hence, for any u ∈ B0,∫
Σ

ũ〈ν, νg(t,h)〉 dΣg(t,h) = 0, ũ−
(∫

Σ

ũ dΣ

)
ψ0 = u. (25)

Therefore, in the special case where (t, h) = (0, 0), we have, for any u ∈ B0,∫
Σ

DhQ(V0, 0)u dΣ = 0, DhQ(V0, 0)u = u. (26)

Next, we differentiate (22) with respect t, obtaining

DϕP (g(t, h))(DtQ(V (ϕ(t)), ϕ0(t) + h)τ) = (V (ϕ′(t))τ, ϕ′
0(t)τ) ∈ B0 × R, ∀τ ∈ R,

(27)

where V ′(ϕ(t)) = (d/dt)V (ϕ(t)). Hence, using (18), we have, for every τ ∈ R∫
Σ

τ̂〈ν, νg(t,h)〉 dΣg(t,h) = V ′(ϕ(t))τ, τ̂ −
(∫

Σ

τ̂ dΣ

)
ψ0 = ϕ′

0(t)τ, (28)

τ̂ := DtQ(V (ϕ(t)), ϕ0(t) + h)τ.

Therefore, in the special case where (t, h) = (0, 0), by (20) and (28), we have, for any

τ ∈ R,

DtQ(V0, 0)τ = bτψ0. (29)

Since Q is nonsingular,

D(t,h)Q(V (ϕ(t)), ϕ0(t) + h) : B0 × R→ B

is an isomorphism. Note

D(t,h)Q(V (ϕ(t)), ϕ0(t) + h)(τ, u)

= DtQ(V (ϕ(t)), ϕ0(t) + h)(τ) + DhQ(V (ϕ(t)), ϕ0(t) + h)(u).

Hence, for any w ∈ B, there exists a unique (τ, u) ∈ R×B0 such that

DtQ(V (ϕ(t)), ϕ0(t) + h)(τ) + DhQ(V (ϕ(t)), ϕ0(t) + h)(u) =
w

〈ν, νg(t,h)〉 . (30)
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If
∫
Σ

w dΣg(t,h) = 0, we have, for (τ, u) in (30),

0 =

∫
Σ

w dΣg(t,h)

=

∫
Σ

τ̂〈ν, νg(t,h)〉 dΣg(t,h) +

∫
Σ

ũ〈ν, νg(t,h)〉 dΣg(t,h)

= V ′(ϕ(t))τ,

here we used the first equalities of (25) and (28). Since V ′(ϕ(t))|t=0 = b �= 0, V ′(ϕ(t)) �= 0

when |t| is small. Hence τ = 0. Therefore, we have obtained the following result.

Lemma 4.2. Let w ∈ B. The integral
∫
Σ

w dΣg(t,h) vanishes if and only if there

exists some w0 ∈ B0 such that

w = (DhQ(V (ϕ(t)), ϕ0(t) + h)w0)〈ν, νg(t,h)〉 (31)

holds. Moreover, w0 is uniquely determined by w. Conversely, if w ∈ B0, then w which

is defined by (31) satisfies
∫
Σ

w dΣg(t,h) = 0.

Proof of Lemma 4.1. The mean curvature H(g(t, h)) of

Y = X + Q
(
V (ϕ(t)), ϕ0(t) + h

)
ν

is constant if and only if ∫
Σ

H(g(t, h))w dΣg(t,h) = 0

holds for all w ∈ B which satisfies
∫
Σ

w dΣg(t,h) = 0. Hence, from (21) and Lemma 4.2,

we obtain the lemma. �

Now, we will apply Theorem A.1 and Lemma A.6 to Y := B0, Z := B∗
0 , F : J×U0 →

B∗
0 .

By Lemma 4.1, F (t, 0) = 0 holds for all t ∈ J . Next we will show that

dim
(
N(DhF (0, 0))

)
= 1. Since V (g(t, h + σk)) = V (ϕ(t)) is independent of σ,∫
Σ

(DhQ(V (ϕ(t)), ϕ0(t) + h)k)〈ν, νg(t,h)〉 dΣg(t,h)

=
dV (g(t, h + σk))

dσ

∣∣∣∣
σ=0

= 0.

Hence, from (21), and since H(g(t, 0)) ≡ constant on Σ, we have

F (t, h)k =− 2

∫
Σ

(
H(g(t, h))−H(g(t, 0))

)
× (DhQ(V (ϕ(t)), ϕ0(t) + h)k)〈ν, νg(t,h)〉 dΣg(t,h).

Therefore, for any u, v ∈ B0,
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DhF (t, 0)(v)(u)

= −2
∫
Σ

(
lim
σ→0

H(g(t, σv))−H(g(t, 0))

σ

)
× (DhQ(V (ϕ(t)), ϕ0(t))u)〈ν, νg(t,0)〉 dΣg(t,0)

= −
∫
Σ

Lϕ(t)[(DhQ(V (ϕ(t)), ϕ0(t))v)〈ν, νϕ(t)〉]
× (DhQ(V (ϕ(t)), ϕ0(t))u)〈ν, νϕ(t)〉dΣϕ(t), (32)

here we used g(t, 0) = ϕ(t). Hence,

DhF (0, 0)(v)(u) = −
∫
Σ

L[DhQ(V0, 0)v](DhQ(V0, 0)u) dΣ

= −
∫
Σ

uL[v] dΣ, (33)

here we used (26). Therefore, v ∈ N(DhF (0, 0)) ⊂ B0 if and only if

−
∫
Σ

uL[v] dΣ = 0

for all u ∈ B0, which means that L[v] ≡ constant on Σ. Now we need the following

lemma.

Lemma 4.3. In the notation above, the following statements hold.

(i) If v ∈ B satisfies L[v] ≡ constant on Σ, then v can be represented as v = αe +

βϕ′(0), (α, β ∈ R). Moreover, if v ∈ B0, then v = αe, (α ∈ R).

(ii) v = αe + βϕ′(0), (α, β ∈ R), satisfies v ∈ B and L[v] ≡ constant on Σ.

Proof. Note that L[ϕ′(0)] = 2H ′(0) =: γ �= 0.

(i) If L[v] ≡ constant = c, then L[v− (c/γ)ϕ′(0)] = 0. Therefore, v− (c/γ)ϕ′(0) = αe,

(∃α ∈ R). The second statement is obvious.

(ii) L[αe + βϕ′(0)] = αL[e] + βL[ϕ′(0)] = βγ. �

If v ∈ B0 satisfies L[v] ≡ constant, by Lemma 4.3, v = αe + βϕ′(0), (α, β ∈ R).

Since ∫
Σ

e dΣ = 0,

∫
Σ

ϕ′(0) dΣ = V ′(0) �= 0,

we have v = αe. Therefore,

N(DhF (0, 0)) = {ae : a ∈ R},

which implies that dim
(
N(DhF (0, 0))

)
= 1.

Next, we will show that codim
(
R(DhF (0, 0))

)
= 1. Φ ∈ R(DhF (0, 0)) ⊂ B∗

0 if and

only if there exists some v ∈ B0 such that
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Φ(u) = −
∫
Σ

uL[v] dΣ, ∀u ∈ B0.

Therefore, by the second statement of Lemma 4.3 (i), we have a one to one correspondence

between R(DhF (0, 0)) and E⊥ ∩B0. This means that

codim
(
R(DhF (0, 0))

)
= 1.

Now we prove the first part of Theorem 1.2. For u ∈ B0, set

ū := (DhQ(V (ϕ(t)), ϕ0(t))u)〈ν, νϕ(t)〉.

Set Tt := DhF (t, 0) : B0 → B∗
0 . Then, from (32),

(Tt(v))(u) = −
∫
Σ

ūLϕ(t)[v̄] dΣϕ(t), u, v ∈ B0. (34)

Also define a linear mapping Kt : B0 → B∗
0 as follows.

(Kt(v))(u) :=

∫
Σ

v̄ū dΣϕ(t), u, v ∈ B0. (35)

We will show that K0e /∈ R(T0). Suppose K0e ∈ R(T0). Then, there exists some

w ∈ B0 such that K0e = T0w. By the second equality of (26) and (33),∫
Σ

eu dΣ = −
∫
Σ

uL[w] dΣ, ∀u ∈ B0.

This is equivalent to

e + L[w] = c, ∃c ∈ R.

Hence,

0 > −
∫
Σ

e2 dΣ = c

∫
Σ

e dΣ−
∫
Σ

e2 dΣ =

∫
Σ

e(c− e) dΣ

=

∫
Σ

eL[w] dΣ =

∫
Σ

wL[e] dΣ = 0,

which is a contradiction. This implies that K0e /∈ R(T0). Therefore, 0 is a K0-simple

eigenvalue of T0 in the sense of [5] (see Definition A.2 below).

Therefore, by Lemma A.6, there exists a C1-map (−ε0, ε0) � t �→ λ̃(t) ∈ R such that

λ̃(0) = 0, λ̃(t) is a Kt-simple eigenvalue of Tt, and there is no other eigenvalue of Tt near

0. Note here that we have not used the assumption V ′(0) �= 0. This concludes the proof

of the first part of Theorem 1.2.

We now complete the proof of Theorem 1.2. Using the eigenvalue function λ̃(t), we

have:
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Tt(e(t)) = λ̃(t)Kte(t), ∃e(t) ∈ B0 \ {0}, (36)

that is

−
∫
Σ

ūLϕ(t)[e(t)] dΣϕ(t) = λ̃(t)

∫
Σ

e(t)ū dΣϕ(t), ∀u ∈ B0. (37)

By (37) and Lemma 4.2, (36) is equivalent to

Lϕ(t)[e(t)] = −λ̃(t)e(t) + c(t), (38)

where c(t) is a constant which depends on t.

In order to obtain the existence of the bifurcation, we will apply Theorem A.1. In

order to do this, we need to prove DthF (0, 0)e /∈ R(DhF (0, 0)). We normalize e(t) so

that ∫
Σ

e(t)
2

dΣϕ(t) = 1 (39)

holds. Assume that DthF (0, 0)e ∈ R(DhF (0, 0)). Then, there exists some v ∈ B0 such

that

DthF (0, 0)e = DhF (0, 0)(v). (40)

Note that, by the first equality in (25),∫
Σ

e(t) dΣϕ(t) = 0 (41)

holds. From (32), (38), (39), and (41), we have

(DhF (t, 0)(e(t)))(e(t)) = −
∫
Σ

e(t)Lϕ(t)[e(t)] dΣϕ(t) = λ̃(t). (42)

Hence,

0 �= λ̃′(0)

= DthF (0, 0)(e)(e) + (DhF (0, 0)(e′(0)))(e) + (DhF (0, 0)(e))(e′(0))

= DthF (0, 0)(e)(e) = DhF (0, 0)(v)(e)

= −
∫
Σ

eL[v] dΣ = −
∫
Σ

vL[e] dΣ = 0,

which is a contradiction.

Therefore, DthF (0, 0)e /∈ R(DhF (0, 0)), hence all of the assumptions in Theorem

A.1 hold. Consequently, there exists an open interval Î containing 0 and C1 functions

ξ : Î → E⊥ ∩ B0 and τ : Î → R, such that τ(0) = 0, ξ(0) = 0, and F (τ(s), y(s)) = 0 for

y(s) := se + sξ(s), (∀s ∈ Î). That is,

Y (s) := X + Q
(
V (ϕ(τ(s))), ϕ0(τ(s)) + se + sξ(s)

)
ν
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is an immersion with constant mean curvature with volume V̂ (s) := V (ϕ(τ(s))). By

using (20), the second equality of (26), and (29), we obtain the following information

about the variation vector field of Y (s):

∂Q(V (ϕ(τ(s))), ϕ0(τ(s)) + se + sξ(s))

∂s

∣∣∣∣
s=0

= DtQ(V0, 0)τ
′(0) + DhQ(V0, 0)(ϕ

′
0(0)τ

′(0) + e) = bτ ′(0)ψ0 + e.

Here,

bτ ′(0)ψ0 = bτ ′(0)b−1ϕ′(0) =
d

ds

∣∣∣∣
s=0

ϕ(τ(s)).

Hence, Y (s) can be represented as Y (s) = X + (ϕ(τ(s)) + se + sη(s))ν, for some η(s) ∈
C2+α

0 (Σ).

Now since

Q(V (ϕ(τ(s))), ϕ0(τ(s)) + se + sξ(s)) = ϕ(τ(s)) + se + sη(s),

by using (17), we obtain

ϕ(τ(s)) + se + sη(s)− ψ0

∫
Σ

(ϕ(τ(s)) + se + sη(s)) dΣ = ϕ0(τ(s)) + se + sξ(s). (43)

From (19), we have

ϕ0(τ(s)) = ϕ(τ(s))− ψ0

∫
Σ

ϕ(τ(s)) dΣ. (44)

Substituting (44) to (43), we obtain

η(s) = ψ0

∫
Σ

η(s) dΣ+ ξ(s) = ϕ′(0)
(∫

Σ

ϕ′(0) dΣ

)−1 ∫
Σ

η(s) dΣ+ ξ(s). (45)

By the same arguments in the proof of Theorem 1.1, the surfaces {Xt ; t ∈ I} and

{Y (s) ; s ∈ Î} are all different except for X0 = Y (0). We have proved Theorem 1.2.

Remark 4.4. Some of the ideas in this Section are inspired from the work of

Patnaik in [15]. The map P defined in (17) is a modification of a similar function

employed in [15].

5. Eigenvalue estimates.

By applying a general result on bifurcation by Crandall–Rabinowitz [5], we obtain

the following lemmas.

Lemma 5.1. Under the assumptions of Theorem 1.1, there exist an open interval

J ⊂ Î, with 0 ∈ J , and continuously differentiable functions μ : J → R and w : J →
C2+α

0 (Σ) such that
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LY (s)[w(s)] = −μ(s)w(s), ∀s ∈ J. (46)

Moreover, ∣∣st′(s)λ′(0) + μ(s)
∣∣ ≤ o(1)

(∣∣st′(s)|+ |μ(s)∣∣) as s → 0, (47)

lim
s→0

μ(s)�=0

−st′(s)λ′(0)
μ(s)

= 1, (48)

and ∥∥y′(s)− w(s)
∥∥ ≤ C min

{∣∣st′(s)|, |μ(s)∣∣} , ∀s ∈ J, (49)

hold, where y(s) := se + sζ(s), and C is some constant. From (48) we obtain, in

particular, that μ(s) and the quantity

−st′(s)λ′(0) = −sĤ ′(s)(H ′(t(s)))−1λ′(0)

have the same zeroes and, where μ(s) �= 0, the same sign.

Lemma 5.2. Under the assumptions of Theorem 1.2, there exist an open interval

J ⊂ Î with 0 ∈ J and two continuously differentiable functions μ : J → R and w : J → F0

such that

LY (s)[w(s)] = −μ(s)w(s) + c(s), ∀s ∈ J, (50)

where c(s) is a constant. Moreover,∣∣sτ ′(s)λ̃′(0) + μ(s)
∣∣ ≤ o(1)

(∣∣sτ ′(s)|+ |μ(s)∣∣) as s → 0, (51)

lim
s→0

μ(s)�=0

−sτ ′(s)λ̃′(0)
μ(s)

= 1, (52)

and ∥∥y′(s)− w(s)
∥∥ ≤ C min

{∣∣sτ ′(s)|, |μ(s)∣∣} , ∀s ∈ J, (53)

where y(s) := se + sη(s), and C is a positive constant. From (52), we obtain that μ(s)

and −sτ ′(s)λ̃′(0) = −sV̂ ′(s)(V ′(τ(s)))−1λ̃′(0) have the same zeroes and, where μ(s) �= 0,

the same sign.

Proof of Lemma 5.1. We will use Theorem A.8. In the proof of Theorem 1.1

(we use the same notation here), we proved that the assumptions in Theorem A.1 hold

for Y = C2+α
0 (Σ), Z = Cα

0 (Σ)
∗, F : I × V → Z, F (t, ψ) = Dψ(Aϕ(t)+ψ + 2H(t)Vϕ(t)+ψ).

For (t, ψ) ∈ I × V and u ∈ Cα
0 (Σ), set

û(t, ψ) = u〈ν, νϕ(t)+ψ〉. (54)

Also, define a linear mapping K(t, ψ) : Y → Z by
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(K(t, ψ)v)u =

∫
Σ

v̂(t, ψ)û(t, ψ) dΣϕ(t)+ψ . (55)

Then, the assumptions in Corollary A.7 hold. Hence, there exist an open interval J ⊂ Î

with 0 ∈ J and continuously differentiable functions μ : J → R and v : J → Y such that

DψF (t(s), y(s))v(s) = μ(s)K(t(s), y(s))v(s), ∀s ∈ J. (56)

Note that

F (t, ψ)u = −2
∫
Σ

(Hϕ(t)+ψ −Hϕ(t))u〈ν, νϕ(t)+ψ〉 dΣϕ(t)+ψ, ∀u ∈ Cα
0 (Σ) (57)

and

Hϕ(t(s))+y(s) −Hϕ(t(s)) = 0, ∀s ∈ J (58)

hold. Hence, we obtain

DψF (t(s), y(s))(v)(u) = −
∫
Σ

LY (s)

[
v̂
(
t(s), y(s)

)]
û(t(s), y(s)) dΣY (s), (59)

for v ∈ Y , u ∈ Cα
0 (Σ). From (55) and (59), (56) is equivalent to

LY (s)[w(s)] = −μ(s)w(s), w(s) := û(s)(t(s), y(s)).

The other statements follow from Theorem A.8 and the fact that

t′(s) = Ĥ ′(s)(H ′(t(s)))−1. �

Proof of Lemma 5.2. We will use Theorem A.8. In the proof of Theorem 1.2

(we use the same notations here), we proved that the assumptions in Theorem A.1 hold

for Y = B0, Z = B∗
0 , F : J × U0 → Z, and F (t, h) = DhÃ(V (ϕ(t)), ϕ0(t) + h).

For (t, h) ∈ J × U0 and u ∈ B0, set

ū(t, h) = (DhQ(V (ϕ(t)), ϕ0(t) + h)u)〈ν, νg(t,h)〉. (60)

Also, define a linear mapping K(t, h) : Y → Z as

(K(t, h)v)u =

∫
Σ

v̄(t, h)ū(t, h) dΣg(t,h). (61)

Then, the assumptions in Corollary A.7 hold. Hence, there exist an open interval J ′ ⊂ J

with 0 ∈ J ′ and continuously differentiable functions μ : J ′ → R and v : J ′ → Y such

that

DhF (τ(s), y(s))v(s) = μ(s)K(τ(s), y(s))v(s), ∀s ∈ J ′. (62)

By the same arguments used to prove (32), we obtain
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DhF (τ(s), y(s))(v)(u) = −
∫
Σ

Lg(τ(s),y(s))[v̄(τ(s), y(s))]ū(τ(s), y(s)) dΣY (s), (63)

for u, v ∈ B0. From (61) and (63), (62) is equivalent to

LY (s)[w(s)] = −μ(s)w(s) + c(s), w(s) := u(s)(τ(s), y(s)),

for some constant c(s). The other statements follow from Theorem A.8 and the fact that

τ ′(s) = V̂ ′(s)(V ′(τ(s)))−1. �

6. Stability of surfaces in the bifurcation branch.

In view of Theorem 2.5 and Theorem 2.6, in order to study the stability of CMC

surfaces in a bifurcation branch, we need to study only the case where λ2 = 0. We will

consider throughout the setup described in Theorems 1.1, 1.2, using the same notation.

In particular, Î will denote an interval of R containing 0, Î � s �→ Y (s) is the branch of

CMC surfaces issuing from the family t �→ Xt at t = 0, with X = X0 = Y (0), V (t) and

H(t) are respectively the volume and the mean curvature of Xt, while V̂ (s) and Ĥ(s)

are the volume and the mean curvature of Y (s).

We will give a stability criterion for surfaces in the bifurcating branch obtained

in Theorem 1.2 (Theorem 6.2), and a stability criterion for surfaces in the bifurcating

branch obtained in Theorem 1.1 (Theorem 6.4).

We first establish a result on the stability of X0 when λ2 = 0. As a corollary of

Theorem 2.5, we obtain easily the following stability result.

Proposition 6.1. Assume:

(i) H ′(0) �= 0.

(ii) E =
{
ae : a ∈ R

}
, for some e ∈ C2+α

0 (Σ) \ {0}.
If λ2 = 0, then the following statements hold.

(A) If H ′(0)V ′(0) ≥ 0, then X is stable and λ̃1 = 0.

(B) If H ′(0)V ′(0) < 0, then X is unstable and λ̃2 = 0.

Next, we study the stability in the bifurcation branch of Theorem 1.2. Denote by

λ̃n(t) the nth eigenvalue of (6) for L̃t instead of L̃.

Theorem 6.2. Assume the hypotheses of Theorem 1.2 and assume additionally

that λ2 = 0 holds. We may assume that V ′(0) > 0 holds, by changing the parameter t

to −t if necessary. Denote by {Y (s)}s∈Î the bifurcating branch of fixed boundary CMC

surfaces given in Theorem 1.2.

Then, the following statements are true.

(A) Assume H ′(0) > 0 (so X is stable by Proposition 6.1, (A), and so λ̃1 = 0).

(A-1) If V̂ ′(s) = 0 for s near 0 (i.e., if V̂ is locally constant), then Y (s) is stable

for s near 0;
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(A-2) If V̂ ′(s) �= 0 for |s| > 0 small, then, for a sufficiently small s0 > 0, on each in-

terval [−s0, 0) and (0, s0], the branch Y (s) consists of stable CMC immersions

if λ̃′
1(0)sV̂

′(s) < 0, and of unstable CMC immersions if λ̃′
1(0)sV̂

′(s) > 0. In

particular, supercritical and subcritical pitchfork bifurcations correspond to the

cases where sV̂ ′(s) does not change sign at s = 0, and transcritical bifurcation

occurs when sV̂ ′(s) changes sign at s = 0.

(B) If H ′(0) < 0 (so X is unstable by Proposition 6.1, (B)), then Y (s) is unstable for

small |s|.

Theorem 6.2 will be proved by using Theorem 1.2, Lemma 5.2, and Proposition 6.1.

Remark 6.3. Theorem 6.2 implies that, if H ′(0)V ′(0) > 0 (that is, the original

surface X is stable), then, only the following three types of bifurcations can occur: a

supercritical pitchfork bifurcation, a subcritical pitchfork bifurcation, and a transcritical

bifurcation (Figure 1). Corollary 1.3 gives criteria for these three types of bifurcations

in a simple case. There are many interesting examples which have symmetry: if, for

the surfaces Y (s) in Theorem 6.2, Y (−s) and Y (s) are congruent to each other, then if

H ′(0)V ′(0) > 0 holds, only pitchfork bifurcations can occur. In Section 7, we will give

an example for subcritical pitchfork bifurcations.

U

U

U

SS

S

U

S

V, H

U

S

S

V, HV, H

U

Figure 1. Solid lines represent stable surfaces, while dotted lines represent
unstable ones. Left: Supercritical pitchfork bifurcation. Center: Subcritical
pitchfork bifurcation. Right: Transcritical bifurcation.

Proof of Theorem 6.2. Let μ(s) be the eigenvalue of LY (s) which is obtained

in Lemma 5.2. First we will prove (A). If H ′(0)V ′(0) > 0, by Proposition 6.1, λ̃1 = 0.

Hence, for |s| sufficiently small, μ(s) is the smallest eigenvalue of the eigenvalue problem

(6) for Y (s). This follows easily from the fact that the condition λ̃2 > 0 is open in

the set of operators of the form (2) (i.e., sum of a positive isomorphism and a compact

operator). Therefore, Y (s) is stable if and only if μ(s) ≥ 0. Since V ′(0) > 0, by Lemma

5.2, μ(s) and −sV̂ ′(s)λ̃′
1(0) have the same zeroes and, where μ(s) �= 0, the same sign.

Since λ̃′
1(0) �= 0, if V̂ ′(s) = 0, then μ(s) = 0 and Y (s) is stable. The other statements

follow from the fact that μ(s) and −sV̂ ′(s)λ̃′
1(0) have the same sign when μ(s) �= 0. This

proves the statement (A).

Next, we will prove (B). If H ′(0)V ′(0) < 0, by Proposition 6.1, λ̃2 = 0. Hence,

λ̃1(Y (s)) < 0 holds for |s| sufficiently small (because the condition λ̃1 < 0 is open), and

therefore Y (s) is unstable. �
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Proof of Corollary 1.3. The proof of (I) follows readily from Lemma 2.4,

keeping in mind that λ̃1(0) = 0 by Proposition 6.1, part (A), and the assumption λ̃′
1(0) >

0.

Part (II) follows immediately from Theorem 6.2, part (A-2). Also part (III) follows

readily from Theorem 6.2, part (A-2), studying the sign of sV̂ ′(s) near s = 0. �

The following result is proved using Theorem 1.1 and Lemma 5.1. The proof is

totally analogous to that of Theorem 6.2, and it will be omitted.

Theorem 6.4. Under the assumptions of Theorem 1.1, denote by {Y (s)}s∈Î the

bifurcating branch of fixed boundary CMC surfaces given in Theorem 1.1. Let Ĥ(s) be the

mean curvature of Y (s), and μ(s) the eigenvalue for the Jacobi operator LY (s) which is

obtained in Lemma 5.1. We may assume that H ′(0) > 0 holds, by changing the parameter

t to −t if necessary.

Then, the following statements are true.

(i) If Ĥ ′(s) = 0 for s near 0 (i.e., if Ĥ is locally constant), then μ(s) = 0 for s near 0;

(ii) If Ĥ ′(s) �= 0 for |s| > 0 small, then, for a sufficiently small s0 > 0, on each interval

[−s0, 0) and (0, s0], μ(s) > 0 if λ′(0)sĤ ′(s) < 0, and μ(s) < 0 if λ′(0)sĤ ′(s) > 0.

In particular, supercritical and subcritical pitchfork bifurcations correspond to the

cases where sĤ ′(s) does not change sign at s = 0, and transcritical bifurcation

occurs when sĤ ′(s) changes sign at s = 0.

A result totally analogous to Corollary 1.3 holds for the situation described in The-

orem 6.4.

7. An explicit example: bifurcation from the critical cylinder.

In this section we work out an explicit example to illustrate our stability/instability

criteria (Theorem 6.2 Theorem 6.4) for the CMC surfaces in a bifurcating branch. Details

of the proofs are given in Appendix B. The example is constructed by considering a 1-

parameter family {Xt}t∈]−ε,ε[ of unduloids in R
3 bounded by two parallel coaxial circles

of radius 1, and lying on two parallel planes separated by a distance 2π . Figure 2 shows

the generating curves of these surfaces. X0 is the cylinder of radius 1 and height 2π. We

choose the outward-pointing unit normal ν along each surface of the family, hence the

mean curvature Ht of Xt is negative for t near 0.

Set Σ = R/2πZ× [−π, π]; recall that for a surface of revolution X : Σ→ R
3:

X(θ, z) =
(
p(z) cos θ, p(z) sin θ, z

)
, p > 0,

the mean curvature H of X is

H =
p2p′′ − p{1 + (p′)2}
2p2{1 + (p′)2}3/2 . (64)

If H is constant, then the following relation holds:
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Figure 2. Generating curves of unduloids Xt with the same boundary Γ :={
(x, y, z) ∈ R3 | x2 + y2 = 1, z = ±π}. The horizontal axis is the z-axis.

The mean curvature H and the sign of t of each surface is as follows. Dashed
spaced curve: H = −0.455, t > 0; Solid line: H = −0.5, t = 0 (this
corresponds to the cylinder X0); Dotted curve: H = −0.525, t < 0; Dashed
curve: H = −0.55, t < 0. The surfaces generated by the dashed spaced curve
and the solid line are stable, and the surfaces generated by the dotted curve
and the dashed curve are unstable.

p{1 + (p′)2}−1/2 = −Hp2 + c, (65)

where c is some constant.

The cylinder X0 is parameterized:

X0(θ, z) = (cos θ, sin θ, z), (θ, z) ∈ Σ.

Using the formula above, one easily computes the mean curvature of X0 is H0 = −1/2
and the constant c = 1/2. The Jacobi operator L along X0 is given by

Lϕ = Δ0ϕ + (4H2
0 − 2K0)ϕ = ϕθθ + ϕzz + ϕ, ϕ ∈ C2+α

0 (Σ),

where K0 = 0 is the Gaussian curvature of X0. Therefore, the function e : Σ→ R given

by e(θ, z) = sin z is a Jacobi field along X0. One can show that e spans the kernel of the

Jacobi operator (the eigenspace of the eigenvalue λ2 = 0), and that the CMC embedding

X0 is stable (Lemma B.1).

The family Xt consists of fixed boundary unduloids, having the following properties

(see Section B.2 for details on the construction of Xt).

(a) Each Xt is symmetric with respect to the horizontal plane z = 0.

(b) For t > 0:

(b1) Xt is a proper subset of one period of an unduloid going from one neck to the

next neck, and Xt contains the bulge;

(b2) −1/2 = H0 < Ht < 0, 0 < V (X0) < V (Xt);

(b3) λ2(Xt) > 0, and Xt is stable (Theorem B.2).

(c) For t < 0:
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(c1) Xt contains properly one period of an unduloid going from a bulge to the next

bulge;

(c2) Ht < H0 = −1/2, 0 < V (Xt) < V (X0);

(c3) λ2(Xt) < 0, and therefore Xt is unstable (Theorem B.2).

By applying Theorem 1.1 (or Theorem 1.2), there is a bifurcating branch Y (s) of fixed

boundary CMC surfaces issuing from Xt at t = 0. The surfaces Y (s) can be determined

explicitly (see Figure 3) as follows. Denote by Ĥ(s) and V̂ (s) respectively the mean

curvature and the volume of Y (s).

−2 2

0.2
0.4
0.6
0.8
1.0
1.2

x

1.0
1.2

z

Figure 3. Generating curves of unduloids Y (s) in the bifurcating branch.
The mean curvature H and the sign of s of each surface is as follows. Dotted
curve: H = −0.48, s > 0, Solid line: H = −0.5, s = 0, Dashed curve:
H = −0.48, s < 0. The surface generated by the solid line is stable, and the
surfaces generated by the dotted curve and the dashed curve are unstable.

(i) Y (s) is axially symmetric with respect to the z axis. This follows from Alexandrov

reflection method, using the fact that Y (s) is “close” to the cylinder X0. It follows

in particular that Y (s) is part of an unduloid.

(ii) Each Y (s) is one period of an unduloid. This follows from the fact that the bound-

ary of Y (s) consists of two coaxial circles having the same radius, that Y (s) is not

symmetric with respect to the plane {z = 0}, and that Y (s) is close to “one period

of a cylinder” (about the last statement, see the fourth paragraph of Section B.2).

(iii) The parameter s can be chosen in such a way that Y (s) is the reflection of Y (−s)

around the horizontal plane z = 0. It follows, in particular, that Ĥ ′(0) = V̂ ′(0) = 0.

(iv) Ĥ(s) > Ĥ(0) holds for s �= 0 sufficiently small (Lemma B.3). Thus, by Theorem 6.4,

λ2

(
Y (s)

)
< 0 for s �= 0, and therefore Y (s) is unstable for s �= 0 (Theorem 2.6,

part (IV)).

The same conclusion on the instability in the bifurcating branch can be obtained using

Theorem 6.2:

(v) V̂ ′′(0) > 0 (Proposition B.6). Thus, V̂ (s) > V̂ (0) for s �= 0. Hence, by Theorem 6.2,

Y (s) is unstable for s �= 0.

This means that we are in the situation described by the picture in the middle of Figure 1:

subcritical bifurcation.
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A. Crandall and Rabinowitz bifurcation criterion.

We will recall some results from Crandall and Rabinowitz [4] and [5], and we will

present a generalization that is used in the proofs of our results (Theorems 1.1 and 1.2).

Proofs follow the same lines as the proofs of the original results, and they will be omitted.

Let Y , Z be real Banach spaces, let V be an open neighborhood of 0 in Y , let

I = (a, b) be a non-empty open interval, and let F : I × V → Z be a twice continuously

Fréchet differentiable mapping. For a linear mapping T , denote by N(T ) the kernel of

T , and by R(T ) the image of T .

Theorem A.1 ([4, Theorem 1.7]). Assume that t0 ∈ I and that the following

statements hold.

(i) F (t, 0) = 0 for all t ∈ I,

(ii) dim
(
N(DyF (t0, 0))

)
= codim

(
R(DyF (t0, 0))

)
= 1,

(iii) DtyF (t0, 0)y0 /∈ R(DyF (t0, 0)), where y0 ∈ Y spans N(DyF (t0, 0)).

Let W be any complement of span{y0} in Y . Then there exists an open interval Î

containing 0 and continuously differentiable functions t : Î → R and ζ : Î → W such

that t(0) = t0, ζ(0) = 0, and if y(s) = sy0 + sζ(s), then F (t(s), y(s)) = 0. Moreover,

F−1({0}) near (t0, 0) consists precisely of the curves (t, 0), t ∈ I, and (t(s), y(s)), s ∈ Î.

Denote by B(Y, Z) the set of bounded linear maps of Y into Z.

Definition A.2 ([5, Definition 1.2]). Let T , K ∈ B(Y, Z). Then μ ∈ R is a

K-simple eigenvalue of T if

dim(N(T − μK)) = codim
(
R(T − μK)

)
= 1,

and, if N(T − μK) = span{e},

Ke /∈ R(T − μK).

Lemma A.3 ([5, Lemma 1.3]). Let T0, K ∈ B(Y, Z) and assume that r0 is a K-

simple eigenvalue of T0. Then there exists a value δ > 0 such that, whenever T ∈ B(Y, Z)

and ‖T − T0‖ < δ, there is a unique r(T ) ∈ R satisfying |r(T ) − r0| < δ for which

T − r(T )K : Y → Z is not an isomorphism. The map T �→ r(T ) is analytic and r(T )

is a K-simple eigenvalue of T . Finally, if N(T0 − r0K) = span{y0} and W is any

complement of span{y0} in Y , there is a unique vector x(T ) ∈ N
(
T − r(T )K

)
satisfying

x(T )− y0 ∈ W . The map T �→ x(T ) is also analytic.

Corollary A.4 ([5, Corollary 1.13]). Under the same assumptions of Theorem

A.1, let K ∈ B(Y, Z) and assume that 0 is a K-simple eigenvalue of DyF (t0, 0). Then,

there exist open intervals J1, J2 with t0 ∈ J1, 0 ∈ J2 and continuously differentiable

functions λ : J1 → R, μ : J2 → R, u : J1 → Y , w : J2 → Y such that

(i) DyF (t, 0)u(t) = λ(t)Ku(t), ∀t ∈ J1,
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(ii) DyF (t(s), y(s))w(s) = μ(s)Kw(s), ∀s ∈ J2.

Moreover,

λ(t0) = μ(0) = 0, u(t0) = y0 = w(0), u(t)− y0 ∈ W, w(s)− y0 ∈ W.

Remark A.5. Corollary A.4 follows from Lemma A.3. Hence, λ and μ are unique,

and u and w are unique up to constant multiple.

We need the following extensions of Lemma A.3 and Corollary A.4, where we allow

to also perturb the operator K. A proof can be obtained following the same lines of the

original results, see [5, Remark 1.11].

Lemma A.6. Let T0, K0 ∈ B(Y, Z) and let r0 be a K0-simple eigenvalue of T0.

Then there exists δ > 0 such that whenever T, K ∈ B(Y, Z), ‖K−K0‖ < δ and ‖T−T0‖ <

δ, there is a unique r(T, K) ∈ R satisfying |r(T, K)− r0| < δ for which T − r(T, K)K :

Y → Z is not an isomorphism. The map (T, K) �→ r(T, K) is smooth, and r(T, K)

is a K-simple eigenvalue of T . Finally, if N(T0 − r0K0) = span{y0} and W is any

complement of span{y0} in Y , there is a unique x(T, K) ∈ N
(
T − r(T, K)K

)
satisfying

x(T, K)− y0 ∈ W . The map (T, K) �→ x(T, K) is smooth.

Corollary A.7. Under the same assumptions of Theorem A.1, let K(t, y) ∈
B(Y, Z) be differentiable with respect to (t, y) ∈ I × V , and assume that 0 is a K(t0, 0)-

simple eigenvalue of DyF (t0, 0). Then, there exist open intervals J1, J2 with t0 ∈ J1,

0 ∈ J2 and continuously differentiable functions λ : J1 → R, μ : J2 → R, u : J1 → Y ,

w : J2 → Y such that

(i) DyF (t, 0)u(t) = λ(t)K(t, 0)u(t), ∀t ∈ J1,

(ii) DyF (t(s), y(s))w(s) = μ(s)K(t(s), y(s))w(s), ∀s ∈ J2.

Moreover,

λ(t0) = μ(0) = 0, u(t0) = y0 = w(0), u(t)− y0 ∈ W, w(s)− y0 ∈ W.

Here, λ and μ are unique, and u and w are unique up to constant multiple.

Similarly, we have the following extension of [5, Theorem 1.16].

Theorem A.8. Under the same assumptions of Theorem A.1, let λ, μ be the

functions provided by Corollary A.7. Then, λ′(t0) �= 0, and near s = 0 the functions

μ(s) and −st′(s)λ′(t0) have the same zeroes, and, whenever μ(s) �= 0, the same sign.

More precisely, ∣∣st′(s)λ′(t0) + μ(s)
∣∣ ≤ o(1)

(∣∣st′(s)|+ |μ(s)∣∣) as s → 0,

lim
s→0

μ(s)�=0

−st′(s)λ′(t0)
μ(s)

= 1.

Moreover, there is a constant C such that
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∥∥y′(s)− w(s)
∥∥ ≤ C min

{∣∣st′(s)∣∣, ∣∣μ(s)∣∣}
near s = 0.

B. Detailed proofs from Section 7.

We present here some details about the proofs of the material in Section 7; we use

the same notations.

B.1. Stability of a cylinder and unduloids.

Lemma B.1. For X0, we have the followings.

(i) λ2 = 0.

(ii) e(θ, z) = sin z spans the kernel of the Jacobi operator.

(iii) X0 is stable and λ̃1 = 0.

Proof. In order to prove the stability of X0, it is sufficient to prove stability only

for axially symmetric variations. This follows easily using Schwarz symmetrization.

If Xε is an axially symmetric variation of X0 fixing the boundary, then Xε is repre-

sented as a variation Cε of the generating curve

C0(s) = (1, z), −π ≤ z ≤ π

of X0. Set

Cε = C0 + εψν̃ +O(ε2),

where

ν̃ = (1, 0).

The second variation of the area is given by

I[ψ] = −2π
∫ l

0

ψL0[ψ]x dz, (66)

where

L0[ψ] = ψ′′ + ψ. (67)

It is clear that L0[sin z] = 0 on [−π, π] and sin z|∂[−π,π] = 0 hold. Since the problem is

one-dimensional and the number of the nodal domains of sin z is two, it follows that 0 is

the second eigenvalue of L0. Now set ψ(z) = 1 + cos z. Then, L0[ψ] = 1 on [−π, π], and

ψ|∂[−π,π] = 0. Because ∫ π

−π

ψ dz = 2π > 0,
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X0 is stable (Theorem 2.6 (III-B1)). Therefore, λ̃1 = 0 (Lemma 2.4) and the function

e(θ, z) = sin z spans the corresponding eigenspace. This also shows that λ2 = 0 and e

spans the corresponding eigenspace. �

Theorem B.2. One period U0 of an unduloid U (from neck to neck) is stable as

fixed boundary CMC surface. Moreover, any larger part of U is unstable, and any proper

subset of U0 is stable.

Proof (Sketch). Let

X(s, θ) = (x(s)eiθ, z(s)), (s, θ) ∈ Σ

be an immersion of one period U0 (from neck to neck) of an unduloid U . Denote by L the

Jacobi operator. Similarly to the case of cylinder (see the proof of Lemma B.1), in order

to prove the stability of U0, it is sufficient to prove only the stability for axially symmetric

variations. Since ϕ(s, θ) := x′(s) satisfies L[ϕ] = 0 on Σ ([9, Lemma 7.1]) and ϕ|∂Σ = 0,

ϕ is an eigenfunction belonging to zero eigenvalue. Because the number of nodal domains

of ϕ is two, and X is stable (because of its length, the proof of the stability will be given

in another paper [10, Theorem 5.1]), λ2 must be zero (Theorem 2.6). Therefore, for any

larger part, λ2 < 0 holds and it is unstable (Theorem 2.6). Because of the definition of

the stability, it is obvious that any proper subset of U0 is stable. �

B.2. Construction of the family Xt.

In this subsection, we show the existence of the one-parameter family of unduloids

Xt used in Section 7.

Note that generating curves of unduloids with H = −1/2 with a neck at the center

which are close to the cylinder are known to have the shapes as in Figure 4. The length of

the corresponding z-axis for each one period is shorter than 2π. Therefore, by rescaling

these unduloids by a factor r > 1 and taking appropriate subdomains, we obtain one-

parameter family of unduloids Xt (t < 0) containing the circles

C± :=
{
x2 + y2 = 1, z = ±π

}
and the mean curvature H(t) < −1/2. The part bounded by C+, C− includes one period

as a proper subset.

−3 −2 −1 1 2 3

0.5

1.0

1.5

2.0

1.0

Figure 4. Generating curves of unduloids with H = −1/2 with a neck at
the center.
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−3 −2 −1 1 2 3

0.5

1.0

1.5

2.0

1.0

1.5

Figure 5. Generating curves of unduloids with H = −1/2 with a bulge at
the center.

Next we consider generating curves of unduloids with a bulge at the center which

are close to the cylinder (Figure 5 shows the case where H = −1/2).
Recall that an unduloid is the rotational surface obtained generated by the trace of

a focus of an ellipse that rolls along the z-axis without slipping (cf. [6], [7]). Denote by

U(a, b) the unduloid given by an ellipse C(a, b) with the longer axis 2a and the shorter

axis 2b (a ≥ b > 0). The “height”, the length along the axis of rotation of one period

of U(a, b), is equal to the length of C(a, b). Note that C(a, a) is a circle with radius a

and U(a, a) is a cylinder with radius a. We may therefore regard a part of the cylinder

with height 2πa as one period of U(a, a). The mean curvature of U(a, b) for the outward-

pointing normal is H(a, b) = −1/(2a).
The length of C(a, b) is

L(a, b) = 4

∫ π/2

0

(a2 sin2 θ + b2 cos2 θ)1/2 dθ. (68)

Note that L(1, 1) = 2π.

Let us consider the case where a > b > 1, and b satisfies b <
√
2a− 1. Then,

L(a, b) > L(1, 1), and the radius B of the bulge and that N of the neck satisfy

B = a +
√

a2 − b2 > 1 > a−
√

a2 − b2 = N > 0.

Denote by x = γ(a,b)(z) the generating curve. If γ(a,b)(±π) > 1, then by reducing U(a, b)

we obtain an unduloid U(a′, b′) which passes the circles C±. Since L(a′, b′) > L(1, 1),

a′ > 1 must hold and this means that the mean curvature H of U(a′, b′) satisfies H =

−1/(2a′) > −1/2. If γ(a,b)(±π) < 1, then by expanding U(a, b) we obtain an unduloid

U(a′, b′) which passes C±. Since a′ > a > 1, the mean curvature H of U(a′, b′) satisfies
H = −1/(2a′) > −1/2. Therefore, we obtain one-parameter family of unduloids Xt

(t > 0) each of which passes the circles C± and the mean curvature H(t) > −1/2, and
the part bounded by C+, C− is a proper subset of one period.

B.3. On the bifurcating branch Y (s).

Using the same notations above, consider the family U(a, b) of unduloids. The family

Y (s) = U(as, bs) (s �= 0) is one period of an unduloid, with L(as, bs) = 2π, and so

as > 1 > bs
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must be satisfied. This implies that

H(as, bs) = − 1

2as
> −1

2
(69)

holds. We have obtained the following:

Lemma B.3. Ĥ(s) > Ĥ(0) = H(0) holds for s �= 0.

Let us now prove that V̂ ′′(0) > 0.

Lemma B.4. Let X(0) : Σ → R
3 be an immersed surface with Gauss map ν and

mean curvature H. Let

X(t) = X(0) +
(
tϕ + t2f +O(t3)

)
ν

be any normal variation of X(0). Then,

V ′′(0) :=
d2

dt2

∣∣∣∣
t=0

V (X(t)) = −2
∫
Σ

Hϕ2 dΣ+ 2

∫
Σ

f dΣ. (70)

Proof. Since

V ′ =
∫
Σ

〈δX, ν〉 dΣ,

we obtain

V ′′ =
∫
Σ

(δ〈δX, ν〉 − 〈δX, ν〉 · 2Hϕ) dΣ. (71)

Now

δ〈δX, ν〉 = 〈δ2X, ν〉+ 〈δX, δν〉 = 〈2fν, ν〉+ 〈ϕν, δν〉 = 2f + ϕ〈ν, δν〉 = 2f. (72)

(71) combined with (72) gives the desired result. �

Lemma B.5. Y = Y (s) is given by parametric equations:

Y (θ, z) =
(
p(s)(z) cos θ, p(s)(z) sin θ, z

)
,

where

p(s) = 1 + s sin z + s2F (s, z).

Proof. From Theorem 1.1 (or equivalently Theorem 1.2) and Lemma B.1, Y (s)

is represented as

Y (s) = X0 +
(
ϕ(t(s)) + se + sζ(s)

)
ν,

where ν(θ, z) = (cos θ, sin θ, 0) is the Gauss map of the cylinder X0, and
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e = sin z, t(0) = 0, ζ(0) = 0.

Hence,

Y ′(0) =
(
t′(0)ϕ̇(0) + sin z

)
ν. (73)

Since Y (s) is the reflection of Y (−s) with respect to the plane {z = 0}, it holds that

Y (s, z) = Y (−s,−z).

Hence we have

Ys(0, z) = −Ys(0,−z).

This means, by (73), that

t′(0)ϕ̇(0)(θ, z) + sin z = −(t′(0)ϕ̇(0)(θ,−z) + sin(−z)).

Hence,

t′(0)(ϕ̇(0)(θ, z) + ϕ̇(0)(θ,−z)) = 0 (74)

holds. Since Xt is symmetric with respect to the plane {z = 0},

ϕ̇(0)(θ, z) = ϕ̇(0)(θ,−z), ∀θ, ∀z (75)

holds. Formula (74) combined with (75) yields

t′(0)ϕ̇(0) = 0,

which gives the desired result. �

Proposition B.6. V̂ ′′(0) > 0.

Proof. Let

Y (θ, z) =
(
p(s)(z) cos θ, p(s)(z) sin θ, z

)
, p > 0

be our surfaces in the bifurcation branch. Note that Y depends on s. Equation (65)

gives

p2(s) = (−Ĥp2(s) + ĉ)2{1 + (p′(s))
2}. (76)

By Lemma B.5, p(s) can be represented as

p(s) = 1 + s sin z + s2F (s, z), (77)

and

Ĥ = Ĥ(s), ĉ = ĉ(s).
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Since Y (s) and Y (−s) are congruent, we obtain

Ĥ(s) = −1

2
+

1

2
s2Ĥss(0) +O(s4), (78)

ĉ(s) =
1

2
+

1

2
s2ĉss(0) +O(s4). (79)

For simplicity, write

F (s) = F (s, z).

Inserting (77), (78), and (79) into (76), we obtain

1+2s sinz + s2(sin2 z +2F (0))+ s3(2Fs(0)+ 2F (0) sinz)+O(s4)

= 1+2s sinz + s2{1+ sin2 z +2F (0)− Ĥss(0)+ ĉss(0)}
+ s3

[
2Fz(0)cosz +2Fs(0)+ (sinz){1+4F (0)+ cos2 z− 3Ĥss(0)+ ĉss(0)}

]
+O(s4).

Comparing the coefficients of s2 and s3 of the left and the right hand sides of the above

equality, we obtain

sin2 z + 2F (0) = 1 + sin2 z + 2F (0)− Ĥss(0) + ĉss(0),

2Fs(0) + 2F (0) sin z = 2Fz(0) cos z + 2Fs(0)

+ (sin z){1 + 4F (0) + cos2 z − 3Ĥss(0) + ĉss(0)}.

Hence,

1− Ĥss(0) + ĉss(0) = 0, (80)

2Fz(0) cos z + (sin z){1 + 2F (0) + cos2 z − 3Ĥss(0) + ĉss(0)} = 0. (81)

These equations give

2Fz(0) cos z + (sin z)(2F (0) + cos2 z − 2Ĥss(0)) = 0.

Solving this ODE with boundary condition F (0)|z=±π = 0, we obtain

F (0) =
1

4
cos 2z +

1

2
(1 + 2Ĥss(0)) cos z + Ĥss(0) +

1

4
. (82)

Since Ĥ(0) = H(0) = −1/2, by Lemma B.4,

V̂ ′′(0) =
∫
Σ

sin2 z dΣ+ 2

∫
Σ

F (0) dΣ = 2π

[∫ π

−π

(sin2 z + 2F (0)) dz

]
. (83)

Using (82) and (83), we then obtain:

V̂ ′′(0) = 4π2(1 + 2Ĥss(0)).



1554 M. Koiso, B. Palmer and P. Piccione

By Lemma B.3, Ĥss(0) ≥ 0, and we obtain V̂ ′′(0) > 0, which is what we wanted to prove.

�
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