Structure and equivalence of a class of tube domains with solvable groups of automorphisms

By Satoru Shimizu

(Received Oct. 6, 2015)

Abstract

In the study of the holomorphic equivalence problem for tube domains, it is fundamental to investigate tube domains with polynomial infinitesimal automorphisms. To apply Lie group theory to the holomorphic equivalence problem for such tube domains T_{Ω}, investigating certain solvable subalgebras of $\mathfrak{g}\left(T_{\Omega}\right)$ plays an important role, where $\mathfrak{g}\left(T_{\Omega}\right)$ is the Lie algebra of all complete polynomial vector fields on T_{Ω}. Related to this theme, we discuss in this paper the structure and equivalence of a class of tube domains with solvable groups of automorphisms. Besides, we give a concrete example of a tube domain whose automorphism group is solvable and contains nonaffine automorphisms.

Introduction.

A tube domain T_{Ω} with polynomial infinitesimal automorphisms is a tube domain on which every complete holomorphic vector field is a polynomial vector field. We denote by $\mathfrak{g}\left(T_{\Omega}\right)$ the Lie algebra of all complete holomorphic vector fields on T_{Ω}. In the study of the holomorphic equivalence problem for tube domains, it is fundamental to investigate such tube domains. A Siegel domain of the first kind is a typical example of a tube domain with polynomial infinitesimal automorphisms, and then the structure of $\mathfrak{g}\left(T_{\Omega}\right)$ is clarified well. For example, it is known that $\mathfrak{g}\left(T_{\Omega}\right)$ has the direct sum decomposition as a graded Lie algebra, and so on. Furthermore, by using them, an affirmative answer to the holomorphic equivalence problem for Siegel domains of the first kind is given. But these results rely heavily on the peculiar own properties of Siegel domains of the first kind, and it is difficult to apply a similar argument or method directly to arbitrary tube domain T_{Ω} with polynomial infinitesimal automorphisms. In fact, even the direct sum decomposition of $\mathfrak{g}\left(T_{\Omega}\right)$ is not clear for such a case. Consequently, a new point of view is needed in order to deal with tube domains with polynomial infinitesimal automorphisms that are not necessarily Siegel domains of the first kind. The Prolongation Theorem given in [6] about complete polynomial vector fields on a tube domain assures the result that $\mathfrak{g}\left(T_{\Omega}\right)$ has some natural direct sum decomposition, and others, for aribitrary T_{Ω}, and gives a lead to our study.

In general, a well-known theorem of H. Cartan that the holomorphic automorphism group of a complex bounded domain has the structure of a Lie group enables us to apply the conjugacy theorems in Lie theory to the theory of complex bounded domains. To

[^0]apply the conjugacy theorems to the holomorphic equivalence problem for tube domains T_{Ω} with polynomial infinitesimal automorphisms, investigating certain solvable subalgebras of $\mathfrak{g}\left(T_{\Omega}\right)$ plays an important role. A typical case is just the case where $\mathfrak{g}\left(T_{\Omega}\right)$ itself is solvable. In this paper, related to this theme, we discuss the structure and equivalence of a class of tube domains with solvable groups of automorphisms from the view point stated above.

This paper is organized as follows. In Section 1, we recall basic concepts and results on tube domains. In particular, we recall two important theorems called the Structure and Prolongation Theorems. Some consequences of the Prolongation Theorem are discussed in Section 2 together with lemmas on solvable subalgebras of $\mathfrak{g}\left(T_{\Omega}\right)$ for a tube domain T_{Ω} with polynomial infinitesimal automorphisms. In Section 3, we give a structure theorem for solvable $\mathfrak{g}\left(T_{\Omega}\right)$ as Theorem 3.1, which is a main result of this paper. More precisely speaking, let T_{Ω} be a tube domain in \mathbf{C}^{n} with polynomial infinitesimal automorphisms and suppose that the base Ω of T_{Ω} is a convex domain in \mathbf{R}^{n} containing no complete straight lines. Then we clarify the structure of $\mathfrak{g}\left(T_{\Omega}\right)$ under the assumptions that the holomorphic automorphism group $\operatorname{Aut}\left(T_{\Omega}\right)$ of T_{Ω} is a solvable Lie group and has the orbit through some point of T_{Ω} with dimension $n+1$. Besides, as an application of Theorem 3.1, we give an affirmative answer to the holomorphic equivalence problem for such tube domains. Finally, Section 4 is devoted to a concrete example of a tube domain as in Theorem 3.1. Among tube domains with polynomial infinitesimal automorphisms, tube domains T_{Ω} whose bases Ω are convex cones are characteristic in the point that they have the property that if $\operatorname{Aut}\left(T_{\Omega}\right)$ is solvable, then it necessarily consists of affine transformations. The following example, given as Theorem 4.1, is an example of Theorem 3.1 as well as an example that there is a tube domain T_{Ω} such that $\operatorname{Aut}\left(T_{\Omega}\right)$ is solvable, but contains nonaffine automorphisms when Ω is not a convex cone.

Example. Let Ω_{0} is a convex domain in \mathbf{R}^{3} containing no complete straight lines given by

$$
\Omega_{0}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbf{R}^{3} \mid y_{2}>y_{1}^{2}+e^{y_{3}^{2}}-2\right\} .
$$

Then $T_{\Omega_{0}}$ is a tube domain in \mathbf{C}^{3} with polynomial infinitesimal automorphisms satisfying the assumptions of Theorem 3.1 that $\operatorname{Aut}\left(T_{\Omega_{0}}\right)$ is a solvable Lie group and has the orbit through the origin of \mathbf{C}^{3} in $T_{\Omega_{0}}$ with dimension 4 . Moreover, Ω_{0} is not a convex cone, and $\operatorname{Aut}\left(T_{\Omega_{0}}\right)$ is solvable, but contains nonaffine automorphisms.

1. Preliminaries and background facts.

We first recall some notation and terminology. An automorphism of a complex manifold M means a biholomorphic mapping of M onto itself. The group of all automorphisms of M is denoted by $\operatorname{Aut}(M)$. The complex manifold M is called homogeneous if $\operatorname{Aut}(M)$ acts transitively on M. We denote by $G L(n, \mathbf{R}) \ltimes \mathbf{C}^{n}$ the subgroup of $\operatorname{Aut}\left(\mathbf{C}^{n}\right)$ consisting of all transformations of the form

$$
\mathbf{C}^{n} \ni z \longmapsto A z+\beta \in \mathbf{C}^{n},
$$

where $A \in G L(n, \mathbf{R})$ and $\beta \in \mathbf{C}^{n}$. Two complex manifolds are said to be holomorphically equivalent if there is a biholomorphic mapping between them. For a Lie group G, we denote by G° the identity component of G and by Lie G the Lie algebra of G. If $E=\{\cdots\}$ is a subset of a vector space V over a field \boldsymbol{F}, the linear subspace of V spanned by E is denoted by $E_{\boldsymbol{F}}=\{\cdots\}_{\boldsymbol{F}}$. The symbol $\delta_{i j}$ denotes the Kronecker's delta.

We now recall basic concepts and results on tube domains. A tube domain T_{Ω} in \mathbf{C}^{n} is a domain in \mathbf{C}^{n} given by $T_{\Omega}=\mathbf{R}^{n}+\sqrt{-1} \Omega$, where Ω is a domain in \mathbf{R}^{n} and is called the base of T_{Ω}. Clearly, each element $\xi \in \mathbf{R}^{n}$ gives rise to an automorphism $\sigma_{\xi} \in \operatorname{Aut}\left(T_{\Omega}\right)$ defined by

$$
\sigma_{\xi}(z)=z+\xi \quad \text { for } z \in T_{\Omega} .
$$

Write $\Sigma=\mathbf{R}^{n}$. The additive group Σ acts as a group of automorphisms on T_{Ω} by

$$
\xi \cdot z=\sigma_{\xi}(z) \quad \text { for } \xi \in \Sigma \text { and } z \in T_{\Omega} .
$$

The subgroup of $\operatorname{Aut}\left(T_{\Omega}\right)$ induced by Σ is denoted by $\Sigma_{T_{\Omega}}$. Note that if $\varphi \in G L(n, \mathbf{R}) \ltimes$ \mathbf{C}^{n}, then $\varphi\left(T_{\Omega}\right)$ is a tube domain in \mathbf{C}^{n}, and we have $\varphi \Sigma_{T_{\Omega}} \varphi^{-1}=\Sigma_{T_{\Xi}}$, where $T_{\Xi}=$ $\varphi\left(T_{\Omega}\right)$.

Consider a biholomorphic mapping $\varphi: T_{\Omega_{1}} \rightarrow T_{\Omega_{2}}$ between two tube domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ in \mathbf{C}^{n}. Then, by what we have noted above and [3, Section 1, Proposition], φ is given by an element of $G L(n, \mathbf{R}) \ltimes \mathbf{C}^{n}$ if and only if φ is equivariant with respect to the Σ-actions. Biholomorphic mappings between tube domains equivariant with respect to the Σ-actions may be considered as natural isomorphisms in the category of tube domains. In view of this observation, we say that two tube domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ in \mathbf{C}^{n} are affinely equivalent if there is a biholomorphic mapping between them given by an element of $G L(n, \mathbf{R}) \ltimes \mathbf{C}^{n}$.

If the convex hull of the base Ω of a tube domain T_{Ω} in \mathbf{C}^{n} contains no complete straight lines, then T_{Ω} is holomorphically equivalent to a bounded domain in \mathbf{C}^{n} and, by a well-known theorem of H . Cartan, the group $\operatorname{Aut}\left(T_{\Omega}\right)$ of all automorphisms of T_{Ω} forms a Lie group with respect to the compact-open topology. The Lie algebra $\mathfrak{g}\left(T_{\Omega}\right)$ of the Lie group $\operatorname{Aut}\left(T_{\Omega}\right)$ can be identified canonically with the finite-dimensional real Lie algebra consisting of all complete holomorphic vector fields on T_{Ω}.

Let $z_{j}=x_{j}+\sqrt{-1} y_{j}, j=1, \ldots, n$, be the complex coordinate functions of \mathbf{C}^{n}, where $x_{j}, y_{j} \in \mathbf{R}, j=1, \ldots, n$. For $z=\left(z_{1}, \ldots, z_{n}\right)$, we write $\operatorname{Re} z=\left(x_{1}, \ldots, x_{n}\right)$ and $\operatorname{Im} z=\left(y_{1}, \ldots, y_{n}\right)$. For $j=1, \ldots, n$, we write $\partial_{j}=\partial / \partial z_{j}$. Let D be a domain in \mathbf{C}^{n}. Then every holomorphic vector field Z on D can be written in the form

$$
Z=\sum_{j=1}^{n} f_{j}(z) \partial_{j},
$$

where $f_{1}(z), \ldots, f_{n}(z)$ are holomorphic functions on D. The vector field Z is called a polynomial vector field if $f_{1}(z), \ldots, f_{n}(z)$ are polynomials in z_{1}, \ldots, z_{n}. The maximum value of the degrees of the polynomials $f_{1}(z), \ldots, f_{n}(z)$ is called the degree of Z. The following result is fundamental in our study.

Structure Theorem ([3, Section 2, Theorem]). To each tube domain T_{Ω} in \mathbf{C}^{n} whose base Ω has the convex hull containing no complete straight lines, there is associated a tube domain $T_{\tilde{\Omega}}$ which is affinely equivalent to T_{Ω} such that $\mathfrak{g}\left(T_{\tilde{\Omega}}\right)$ has the direct sum decomposition

$$
\mathfrak{g}\left(T_{\tilde{\Omega}}\right)=\mathfrak{p}+\mathfrak{e}
$$

for which

$$
\begin{aligned}
\mathfrak{p} & =\left\{X \in \mathfrak{g}\left(T_{\tilde{\Omega}}\right) \mid X \text { is a polynomial vector field }\right\}, \\
\mathfrak{e} & =\sum_{i=1}^{r}\left\{e^{z_{i}}\left(\partial_{i}+\sum_{j=r+1}^{n} \sqrt{-1} a_{i}^{j} \partial_{j}\right), e^{-z_{i}}\left(\partial_{i}-\sum_{j=r+1}^{n} \sqrt{-1} a_{i}^{j} \partial_{j}\right)\right\}_{\mathbf{R}}
\end{aligned}
$$

where r is an integer between 0 and n and $a_{i}^{j}, i=1, \ldots, r, j=r+1, \ldots, n$, are real constants.

The integer r is called the exponential rank of the tube domain T_{Ω}, and is denoted by $e\left(T_{\Omega}\right)$. This is well-defined, because it is readily verified that if two tube domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are affinely equivalent, then we have $e\left(T_{\Omega_{1}}\right)=e\left(T_{\Omega_{2}}\right)$. When a tube domain T_{Ω} satisfies $e\left(T_{\Omega}\right)=0$, we call T_{Ω} a tube domain with polynomial infinitesimal automorphisms.

Our main theme in this paper is a study of tube domains with polynomial infinitesimal automorphisms. This is motivated by the holomorphic equivalence problem for tube domains, which we will explain below.

In terms of the notion of the affine equivalence of tube domains, the holomorphic equivalence problem for tube domains may be formulated as the problem of studying the relationship between the holomorphic equivalence of tube domains and the affine equivalence of tube domains. It is clear that if two tube domains in \mathbf{C}^{n} are affinely equivalent, then they are holomorphically equivalent. What we have to ask is whether the converse assertion holds or not:

Problem. If two tube domains $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ in \mathbf{C}^{n} are holomorphically equivalent, then are they affinely equivalent?

When Ω_{1} and Ω_{2} are convex cones in \mathbf{R}^{n}, an affirmative answer is given (see Matsushima [1]). On the other hand, when Ω_{1} and Ω_{2} are arbitrary domains in \mathbf{R}^{n} whose convex hulls contain no complete straight lines, there is a simple counter example. In fact, consider the upper half plane

$$
T_{(0, \infty)}=\{x+\sqrt{-1} y \in \mathbf{C} \mid x \in \mathbf{R}, y>0\}
$$

and the strip

$$
T_{(0, \pi)}=\{x+\sqrt{-1} y \in \mathbf{C} \mid x \in \mathbf{R}, 0<y<\pi\}
$$

in the complex plane. Then the tube domains $T_{(0, \infty)}$ and $T_{(0, \pi)}$ in \mathbf{C} are holomorphically
equivalent, but not affinely equivalent. We can clarify what causes a phenomenon like this by making use of the Structure Theorem stated above.

Let $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ be tube domains in \mathbf{C}^{n} whose bases Ω_{1} and Ω_{2} have the convex hulls containing no complete straight lines. Since the exponential rank of a tube domain is an affine invariant, it is natural to reformulate the holomorphic equivalence problem for tube domains as follows:
$\operatorname{Problem}(*)$. If $e\left(T_{\Omega_{1}}\right)=e\left(T_{\Omega_{2}}\right)$ and if $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are holomorphically equivalent, then are $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ affinely equivalent?

The counter example shown above corresponds to the case where $e\left(T_{\Omega_{1}}\right) \neq e\left(T_{\Omega_{2}}\right)$, because $e\left(T_{(0, \infty)}\right)=0$ and $e\left(T_{(0, \pi)}\right)=1$. On the other hand, when Ω_{1} and Ω_{2} are bounded domains in \mathbf{R}^{n}, it is shown ([4]) that if $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are holomorphically equivalent, then we have $e\left(T_{\Omega_{1}}\right)=e\left(T_{\Omega_{2}}\right)$, and $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are affinely equivalent.

Specifying Problem (*), we consider the following problem which has fundamental importance:
$\operatorname{Problem}(* *)$. If $e\left(T_{\Omega_{1}}\right)=e\left(T_{\Omega_{2}}\right)=0$ and if $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are holomorphically equivalent, then are $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ affinely equivalent?

When Ω_{1} and Ω_{2} are convex cones in \mathbf{R}^{n}, we have $e\left(T_{\Omega_{1}}\right)=e\left(T_{\Omega_{2}}\right)=0$ (see [1]), and an affirmative answer to $\operatorname{Problem}(* *)$ is given, as stated above. For an attempt to solve Problem ($* *$) in the case where $T_{\Omega_{1}}$ and $T_{\Omega_{2}}$ are arbitrary tube domains with polynomial infinitesimal automorphisms, we need a further study of the structure of $\mathfrak{g}\left(T_{\Omega}\right)$. The Prolongation Theorem stated below enables us to make a more detailed analysis of the structure of $\mathfrak{g}\left(T_{\Omega}\right)$.

Before stating the Prolongation Theorem, we recall some facts on the affine automorphism group of a tube domain. Let T_{Ω} be a tube domain in \mathbf{C}^{n} whose base Ω has the convex hull containing no complete straight lines. The group Aff $\left(T_{\Omega}\right)$ of all complex affine transformations of \mathbf{C}^{n} leaving T_{Ω} invariant may be viewed as a subgroup of $\operatorname{Aut}\left(T_{\Omega}\right)$, and is called the affine automorphism group of T_{Ω}. Note that $\operatorname{Aff}\left(T_{\Omega}\right)$ is a closed subgroup of the Lie group $\operatorname{Aut}\left(T_{\Omega}\right)$ and that $\Sigma_{T_{\Omega}}$ is a subgroup of $\operatorname{Aff}\left(T_{\Omega}\right)$. The subalgebra $\mathfrak{a}\left(T_{\Omega}\right)$ of $\mathfrak{g}\left(T_{\Omega}\right)$ corresponding to $\operatorname{Aff}\left(T_{\Omega}\right)$ is given by

$$
\mathfrak{a}\left(T_{\Omega}\right)=\left\{X \in \mathfrak{g}\left(T_{\Omega}\right) \mid X \text { is a polynomial vector field of degree at most one }\right\}
$$

and the subalgebra $\mathfrak{s}\left(T_{\Omega}\right)$ of $\mathfrak{g}\left(T_{\Omega}\right)$ corresponding to $\Sigma_{T_{\Omega}}$ is given by

$$
\mathfrak{s}\left(T_{\Omega}\right)=\left\{\partial_{1}, \ldots, \partial_{n}\right\}_{\mathbf{R}} .
$$

Now, the group $\operatorname{Aff}(\Omega)$ of all affine transformations of \mathbf{R}^{n} leaving Ω invariant has the structure of a Lie group in a natural manner. Let y_{1}, \ldots, y_{n} be the coordinate functions of \mathbf{R}^{n}. We call a vector field Y on Ω an affine vector field if Y has the form

$$
Y=\sum_{j=1}^{n} h_{j}(y) \frac{\partial}{\partial y_{j}},
$$

where $h_{1}(y), \ldots, h_{n}(y)$ are polynomials in y_{1}, \ldots, y_{n} of degree at most one. Then the Lie algebra $\mathfrak{a}(\Omega)$ of $\operatorname{Aff}(\Omega)$ can be identified canonically with the Lie algebra of all complete affine vector fields on Ω. By [4, Section 1, Lemma 3], there exists a Lie algebra isomorphism ι_{*} of $\mathfrak{a}(\Omega)$ into $\mathfrak{a}\left(T_{\Omega}\right)$ such that $\mathfrak{a}\left(T_{\Omega}\right)$ is decomposed as the direct sum

$$
\begin{equation*}
\mathfrak{a}\left(T_{\Omega}\right)=\mathfrak{s}\left(T_{\Omega}\right)+\iota_{*}(\mathfrak{a}(\Omega)) \tag{1.1}
\end{equation*}
$$

of $\mathfrak{s}\left(T_{\Omega}\right)$ and $\iota_{*}(\mathfrak{a}(\Omega))$. In fact, $\iota_{*}: \mathfrak{a}(\Omega) \rightarrow \mathfrak{a}\left(T_{\Omega}\right)$ is given by

$$
\begin{equation*}
\iota_{*}: \mathfrak{a}(\Omega) \ni \sum_{j=1}^{n}\left(\sum_{i=1}^{n} a_{j i} y_{i}+b_{j}\right) \frac{\partial}{\partial y_{j}} \longmapsto \sum_{j=1}^{n}\left(\sum_{i=1}^{n} a_{j i} z_{i}+\sqrt{-1} b_{j}\right) \partial_{j} \in \mathfrak{a}\left(T_{\Omega}\right) \tag{1.2}
\end{equation*}
$$

where $a_{j i}, b_{j}, j, i=1, \ldots, n$, are real constants. As a consequence, note that $\mathfrak{s}\left(T_{\Omega}\right)$ is an abelian ideal in $\mathfrak{a}\left(T_{\Omega}\right)$.

To state the Prolongation Theorem, let T_{Ω} be a tube domain in \mathbf{C}^{n} whose base Ω is a convex domain in \mathbf{R}^{n} containing no complete straight lines. For a polynomial vector field Z on T_{Ω} of degree 2 , we write

$$
Z=\sum_{k=0}^{2}\left(X^{(k)}+\sqrt{-1} Y^{(k)}\right)
$$

where $X^{(k)}, Y^{(k)}$ are polynomial vector fields whose components with respect to $\partial_{1}, \ldots, \partial_{n}$ are homogeneous polynomials in z_{1}, \ldots, z_{n} with real coefficients of degree k, and set

$$
\begin{aligned}
Z_{[b]} & =X^{(2)}+\sqrt{-1} Y^{(1)} \\
Z_{[a]} & =X^{(1)}+\sqrt{-1} Y^{(0)}, \\
Z_{[s]} & =X^{(0)} .
\end{aligned}
$$

Note that $Z=Z_{[s]}+Z_{[a]}+Z_{[b]}+\sqrt{-1} Y^{(2)}$. The following theorem gives a criterion on the completeness of Z.

Prolongation Theorem ([6, Section 2], [5]). Let Z be a polynomial vector field on T_{Ω} of degree 2. Then Z is complete on T_{Ω} if and only if one has $Y^{(2)}=0$, and the vector fields $\left[\partial_{i}, Z\right], i=1, \ldots, n$, and $Z_{[a]}$ are all complete on T_{Ω}. Consequently, if Z is complete on T_{Ω}, then $Z_{[b]}$ is complete on T_{Ω}. Also, if $Z=Z_{[b]}$ and if the vector fields $\left[\partial_{i}, Z\right], i=1, \ldots, n$, are all complete on T_{Ω}, then Z is complete on T_{Ω}.

2. Tube domains with polynomial infinitesimal automorphisms.

When we are discussing tube domains T_{Ω} with polynomial infinitesimal automorphisms, it is one of the key points that a polynomial gives the Taylor expansion around the origin of the function it represents. The purpose of this section is to give some fundamental results on $\mathfrak{g}\left(T_{\Omega}\right)$ obtained by combining the Prolongation Theorem with this fact.

2.1. General observations on an isotropy subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$.

Let T_{Ω} be a tube domain in \mathbf{C}^{n} whose base Ω has the convex hull containing no complete straight lines. We may assume without loss of generality that T_{Ω} contains the origin of \mathbf{C}^{n}. Every element Z of $\mathfrak{g}\left(T_{\Omega}\right)$ has the Taylor expansion around the origin given as

$$
Z=\sum_{k=0}^{\infty} Z^{((k))},
$$

where $Z^{((k))}$ is a polynomial vector field whose components with respect to $\partial_{1}, \ldots, \partial_{n}$ are homogeneous polynomials in z_{1}, \ldots, z_{n} of degree k. We write

$$
Z^{((1))}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} c_{j i}(Z) z_{i}\right) \partial_{j},
$$

where $c_{j i}(Z), j, i=1, \ldots, n$, are complex constants. Let \mathfrak{k} denote the isotropy subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$ at the origin. Then \mathfrak{k} consists of those elements Z of $\mathfrak{g}\left(T_{\Omega}\right)$ which satisfy $Z^{((0))}=$ 0 . An application of H. Cartan's uniqueness theorem [2, Chapter 5, Proposition 1] yields the following result.

Lemma 2.1. If Z is an element of \mathfrak{k} and if $Z^{((1))}=0$, then $Z=0$.
This result implies that the linear representation of \mathfrak{k} given by

$$
\mathfrak{k} \ni Z \longmapsto\left(c_{j i}(Z)\right) \in \mathfrak{g l}(n, \mathbf{C})
$$

is faithful, where $\mathfrak{g l}(n, \mathbf{C})$ denotes the set of complex n by n matrices viewed as the Lie algebra of $G L(n, \mathbf{C})$. We recall here that T_{Ω} has the Bergman metric $d s_{T_{\Omega}}^{2}$. Using the invariance of $d s_{T_{\Omega}}^{2}$ under the action of $\Sigma_{T_{\Omega}}$, after a suitable real linear change of coordinates we may assume that the holomorphic vector fields $\partial_{1}, \ldots, \partial_{n}$ form an orthonormal basis at the origin with respect to $d s_{T_{\Omega}}^{2}$. Then the matrix $\left(c_{j i}(Z)\right)$ is a skew-Hermitian matrix for every element Z of \mathfrak{k}. Indeed, this follows from the fact that every automorphism of T_{Ω} is an isometry with respect to $d s_{T_{\Omega}}^{2}$.

2.2. Consequences of the prolongation theorem.

Let T_{Ω} be a tube domain in \mathbf{C}^{n} whose base Ω is a convex domain in \mathbf{R}^{n} containing no complete straight lines, and suppose further that $e\left(T_{\Omega}\right)=0$, or $\mathfrak{g}\left(T_{\Omega}\right)$ consists of all polynomial vector fields which are complete on T_{Ω}. Then every element Z of $\mathfrak{g}\left(T_{\Omega}\right)$ can be written in the form

$$
\begin{equation*}
Z=\sum_{k=0}^{\infty} Z^{(k)}, \tag{2.1}
\end{equation*}
$$

where $Z^{(k)}$ is a polynomial vector field whose components with respect to $\partial_{1}, \ldots, \partial_{n}$ are homogeneous polynomials in z_{1}, \ldots, z_{n} of degree k. Note that, in (2.1), only finitely many $Z^{(k)}$'s are not equal to zero. We may assume without loss of generality that T_{Ω} contains the origin, and that $\partial_{1}, \ldots, \partial_{n}$ form an orthonormal basis at the origin with
respect to the Bergman metric $d s_{T_{\Omega}}^{2}$. Then (2.1) gives the Taylor expansion of Z around the origin. For $k=0,1,2, \ldots$, we write

$$
Z^{(k)}=X^{(k)}+\sqrt{-1} Y^{(k)}
$$

where $X^{(k)}, Y^{(k)}$ are polynomial vector fields whose components are homogeneous polynomials with real coefficients of degree k. We define real vector subspaces $\mathfrak{q}, \mathfrak{s}, \mathfrak{a}_{*}, \mathfrak{b}$ of $\mathfrak{g}\left(T_{\Omega}\right)$ by

$$
\begin{aligned}
\mathfrak{q} & =\left\{Z \in \mathfrak{g}\left(T_{\Omega}\right) \mid Z=\sum_{k=0}^{2} Z^{(k)}=\sum_{k=0}^{2}\left(X^{(k)}+\sqrt{-1} Y^{(k)}\right)\right\}, \\
\mathfrak{s} & =\left\{\partial_{1}, \ldots, \partial_{n}\right\}_{\mathbf{R}}, \\
\mathfrak{a}_{*} & =\left\{Z \in \mathfrak{g}\left(T_{\Omega}\right) \mid Z=X^{(1)}+\sqrt{-1} Y^{(0)}\right\}, \\
\mathfrak{b} & =\left\{Z \in \mathfrak{g}\left(T_{\Omega}\right) \mid Z=X^{(2)}+\sqrt{-1} Y^{(1)}\right\} .
\end{aligned}
$$

The Prolongation Theorem shows that \mathfrak{q} has the direct sum decomposition

$$
\mathfrak{q}=\mathfrak{s}+\mathfrak{a}_{*}+\mathfrak{b}
$$

Note that \mathfrak{b} is contained in the isotropy subalgebra \mathfrak{k} of $\mathfrak{g}\left(T_{\Omega}\right)$ at the origin. The following result on \mathfrak{b} is useful for a further study of the structure of $\mathfrak{g}\left(T_{\Omega}\right)$.

Lemma 2.2. Let $Z=X^{(2)}+\sqrt{-1} Y^{(1)}$ be an element of \mathfrak{b} and write

$$
Y^{(1)}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} b_{j i}(Z) z_{i}\right) \partial_{j}
$$

where $b_{j i}(Z), j, i=1, \ldots, n$, are real constants. Then the following hold.
i) $X^{(2)}=0$ if and only if $Y^{(1)}=0$.
ii) The real n by n matrix $\left(b_{j i}(Z)\right)$ is symmetric for every element Z of \mathfrak{b}.

Proof. To prove i), suppose that $X^{(2)}=0$. Then, for every $i=1, \ldots, n$, we have

$$
\left[\partial_{i}, Z\right]=\sqrt{-1} \sum_{j=1}^{n} b_{j i}(Z) \partial_{j} .
$$

On the other hand, since $\partial_{i}, Z \in \mathfrak{g}\left(T_{\Omega}\right)$ and since $\mathfrak{g}\left(T_{\Omega}\right)$ forms a Lie algebra, it follows that $\left[\partial_{i}, Z\right] \in \mathfrak{g}\left(T_{\Omega}\right)$. Therefore we see by $\left[\mathbf{3}\right.$, Section 3, Lemma 5] that $b_{j i}(Z)=0$ for all $j=1, \ldots, n$. This implies that $Y^{(1)}=0$, and the "only if" part of i) is proved. The "if" part of i) is an immediate consequence of Lemma 2.1, because we have $Z \in \mathfrak{k}$ and $Z^{((1))}=\sqrt{-1} Y^{(1)}$.

To prove ii), let $Z=X^{(2)}+\sqrt{-1} Y^{(1)}$ be any element of \mathfrak{b}. Then we have $c_{j i}(Z)=$ $\sqrt{-1} b_{j i}(Z)$ for all $j, i=1, \ldots, n$, or $\left(c_{j i}(Z)\right)=\sqrt{-1}\left(b_{j i}(Z)\right)$ as n by n matrices. Since
$\left(c_{j i}(Z)\right)$ is a skew-Hermitian matrix and $\left(b_{j i}(Z)\right)$ is a real matrix, it follows that $\left(b_{j i}(Z)\right)$ is a symmetric matrix, which proves ii).

As a consequence of ii) of Lemma 2.2, it should be observed that, when \mathfrak{b} is an abelian subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$, the matrices $\left(b_{j i}(Z)\right), Z \in \mathfrak{b}$, are simultaneously diagonalizable by a suitable orthogonal change of coordinates.

2.3. Lemmas on solvable subalgebras of $\mathfrak{g}\left(T_{\Omega}\right)$.

As is shown in Matsushima [1], in the study of tube domains T_{Ω} with polynomial infinitesimal automorphisms, investigating solvable subalgebras of $\mathfrak{g}\left(T_{\Omega}\right)$ plays an important role. In this subsection, we give a lemma useful in the investigation of solvable subalgebras of $\mathfrak{g}\left(T_{\Omega}\right)$ containing $\mathfrak{s}\left(T_{\Omega}\right)$.

Let T_{Ω} and $\mathfrak{q}=\mathfrak{s}+\mathfrak{a}_{*}+\mathfrak{b}$ be as in the preceding subsection. Let Z be an element of \mathfrak{q}. Then, with the notation of Section 1, we have

$$
\begin{equation*}
Z=Z_{[s]}+Z_{[a]}+Z_{[b]} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{aligned}
Z_{[s]} & =X^{(0)} \in \mathfrak{s}, \\
Z_{[a]} & =X^{(1)}+\sqrt{-1} Y^{(0)} \in \mathfrak{a}_{*}, \\
Z_{[b]} & =X^{(2)}+\sqrt{-1} Y^{(1)} \in \mathfrak{b} .
\end{aligned}
$$

We write

$$
X^{(2)}=\sum_{j=1}^{n} f_{j} \partial_{j} \quad \text { and } \quad Y^{(1)}=\sum_{j=1}^{n} g_{j} \partial_{j}
$$

where f_{j} and g_{j} are homogeneous polynomials in z_{1}, \ldots, z_{n} with real coefficients of degrees 2 and 1 , respectively.

Lemma 2.3. Let \mathfrak{t} be a solvable subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$ containing \mathfrak{s}. If $Z \in \mathfrak{q} \cap \mathfrak{t}$ and if the polynomials $g_{j}, j=1, \ldots, n$, depend on only the variables z_{1}, \ldots, z_{m}, then the polynomials $f_{j}, j=1, \ldots, n$, depend on only the variables z_{1}, \ldots, z_{m}.

Proof. Let i be any index with $m+1 \leq i \leq n$. Then we have $\left[\partial_{i}, Z_{[s]}\right] \in[\mathfrak{s}, \mathfrak{s}]=$ $\{0\}$. Also, since $\partial_{i} g_{j}=0$ for all $j=1, \ldots, n$ by assumption, it follows that

$$
\begin{aligned}
{\left[\partial_{i}, Z_{[b]}\right] } & =\left[\partial_{i}, X^{(2)}\right]+\sqrt{-1}\left[\partial_{i}, Y^{(1)}\right] \\
& =\sum_{j=1}^{n} \partial_{i} f_{j} \partial_{j}+\sqrt{-1} \sum_{j=1}^{n} \partial_{i} g_{j} \partial_{j} \\
& =\sum_{j=1}^{n} \partial_{i} f_{j} \partial_{j} .
\end{aligned}
$$

Therefore we see from (2.2) that

$$
\begin{equation*}
\left[\partial_{i}, Z\right]=\left[\partial_{i}, Z_{[a]}\right]+\sum_{j=1}^{n} \partial_{i} f_{j} \partial_{j} \tag{2.3}
\end{equation*}
$$

Note that we have

$$
\begin{equation*}
\left[\partial_{i}, Z\right] \in[\mathfrak{t}, \mathfrak{t}] \subset \mathfrak{t}, \quad\left[\partial_{i}, Z_{[a]}\right] \in \mathfrak{s} \subset \mathfrak{t} . \tag{2.4}
\end{equation*}
$$

Write $W=\sum_{j=1}^{n} \partial_{i} f_{j} \partial_{j}$. As a consequence of (2.4), W belongs to t.
We show that the endomorphism $a d W$ of $\mathfrak{g}\left(T_{\Omega}\right)$ is zero. It is sufficient to show that the endomorphism $a d W$ is nilpotent and semisimple. We put

$$
\widetilde{a d \mathfrak{t}}=\left\{\widetilde{a d T}: \mathfrak{g}\left(T_{\Omega}\right)^{\mathbf{C}} \rightarrow \mathfrak{g}\left(T_{\Omega}\right)^{\mathbf{C}} \mid T \in \mathfrak{t}\right\},
$$

where $\mathfrak{g}\left(T_{\Omega}\right)^{\mathbf{C}}$ denotes the complexification of $\mathfrak{g}\left(T_{\Omega}\right)$ and $\widetilde{a d T}$ denotes the complex linear extension of $\operatorname{adT}: \mathfrak{g}\left(T_{\Omega}\right) \rightarrow \mathfrak{g}\left(T_{\Omega}\right)$ to $\mathfrak{g}\left(T_{\Omega}\right)^{\mathbf{C}}$. Since \mathfrak{t} is solvable, Lie's theorem shows that, after a suitable choice of basis of $\mathfrak{g}\left(T_{\Omega}\right)^{\mathbf{C}}$, every endomorphism belonging to $\widetilde{a d \mathfrak{t}}$ is represented by an upper triangular matrix. As a consequence, $\widetilde{a d\left[\partial_{i}, Z\right]}=\left[\widetilde{a d \partial_{i}}, \widetilde{a d Z}\right]$ is a nilpotent endomorphism of $\mathfrak{g}\left(T_{\Omega}\right)^{\mathbf{C}}$. On the other hand, $a d \widetilde{\left[\partial_{i}, Z_{[a]}\right]}$ is a nilpotent endomorphism of $\mathfrak{g}\left(T_{\Omega}\right)^{\mathbf{C}}$ in view of the fact that $\operatorname{ad} X$, and hence $\frac{a d X}{a d}$ is a nilpotent endomorphism for every element X of \mathfrak{s}. Therefore we conclude by (2.3) and what Lie's theorem has shown that

$$
\widetilde{a d W}=a \widetilde{\left.a d \partial_{i}, Z\right]}-a d \widetilde{\left[\partial_{i}, Z_{[a]}\right]},
$$

and hence $a d W$ is nilpotent. It remains to show that the endomorphism $a d W$ is semisimple. To see this, note that the components of W with respect to $\partial_{1}, \ldots, \partial_{n}$ are homogeneous polynomials of degree 1 . Therefore the value of W at the origin is equal to zero. This implies that $W \in \mathfrak{k}$. Since \mathfrak{k} is a compact subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$, we see that the endomorphism $a d W$ is semisimple, and our assertion is shown.

The result of the preceding paragraph implies that $\left[\partial_{i}, W\right]=0$ for all $i=1, \ldots, n$. Therefore we have $W \in \mathfrak{s}$. Since the components of W with respect to $\partial_{1}, \ldots, \partial_{n}$ must be homogeneous polynomials of degree 1 , it follows that

$$
0=W=\sum_{j=1}^{n} \partial_{i} f_{j} \partial_{j}
$$

or $\partial_{i} f_{j}=0$ for all $j=1, \ldots, n$. Since this holds for every $i=m+1, \ldots, n$, we conclude that the polynomials $f_{j}, j=1, \ldots, n$, depend on only the variables z_{1}, \ldots, z_{m}, and the lemma is proved.

In the next section, we need the following lemma.
Lemma 2.4. Let \mathfrak{t} be a solvable subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$ containing \mathfrak{s}. If $Z=Z_{[b]} \in \mathfrak{b} \cap \mathfrak{t}$ and if $Y^{(1)}$ has the form $Y^{(1)}=b_{1} z_{i} \partial_{1}+\cdots+b_{n} z_{i} \partial_{n}$, where b_{1}, \ldots, b_{n} are real constants, then $X^{(2)}$ has the form $X^{(2)}=a_{1} z_{i}^{2} \partial_{1}+\cdots+a_{n} z_{i}^{2} \partial_{n}$, where a_{1}, \ldots, a_{n} are real constants.

Moreover, the constant a_{i} is equal to 0 .
Proof. The fact that $X^{(2)}$ has the form $X^{(2)}=a_{1} z_{i}^{2} \partial_{1}+\cdots+a_{n} z_{i}^{2} \partial_{n}$ is an immediate consequence of Lemma 2.3. We show that $a_{i}=0$. Suppose contrarily that $a_{i} \neq 0$. For convenience, we denote by the notation "..." a vector field of the form $h_{1} \partial_{1}+\cdots+h_{i-1} \partial_{i-1}+h_{i+1} \partial_{i+1}+\cdots+h_{n} \partial_{n}$, where $h_{1}, \ldots, h_{i-1}, h_{i+1}, \ldots, h_{n}$ are functions. Then $a_{i}^{-1} Z$ is written as $a_{i}^{-1} Z=\left(z_{i}^{2}+\sqrt{-1} \lambda z_{i}\right) \partial_{i}+\cdots$, where λ is a real constant. Applying if necessary a change of coordinates given by the translation that replaces z_{i} by $z_{i}-(\sqrt{-1} / 2) \lambda$, we have $a_{i}^{-1} Z-\left(\lambda^{2} / 4\right) \partial_{i}=z_{i}^{2} \partial_{i}+\cdots$, which is an element of \mathfrak{t} and denoted by W. Since \mathfrak{t} contains the element $(1 / 2)\left[\partial_{i}, W\right]=z_{i} \partial_{i}+\cdots$, it follows that

$$
\begin{equation*}
\mathfrak{t} \supset\left\{\partial_{i}, z_{i} \partial_{i}+\cdots, z_{i}^{2} \partial_{i}+\cdots\right\}_{\mathbf{R}} \tag{2.5}
\end{equation*}
$$

Now, we denote by $\mathfrak{D}^{m} \mathfrak{t}$ the m-th derived algebra of the Lie algebra \mathfrak{t}. Then we see from (2.5) that $\mathfrak{D}^{m} \mathfrak{t}$ contains a nonzero vector subspace $\left\{\partial_{i}, z_{i} \partial_{i}+\cdots, z_{i}^{2} \partial_{i}+\cdots\right\}_{\mathbf{R}}$ for every $m=0,1,2, \ldots$. This contradicts the assumption that \mathfrak{t} is solvable, and our assertion is proved.

3. A class of tube domains with solvable groups of automorphisms.

Among tube domains with polynomial infinitesimal automorphisms, tube domains T_{Ω} whose bases Ω are convex cones are characteristic in the point that they have the property that if $\operatorname{Aut}\left(T_{\Omega}\right)$ is solvable, then $\operatorname{Aut}\left(T_{\Omega}\right)$ necessarily consists of affine transformations. On the other hand, when Ω is an arbitrary convex domain in \mathbf{R}^{n} containing no complete straight lines, there is a tube domain T_{Ω} in \mathbf{C}^{n} such that $\operatorname{Aut}\left(T_{\Omega}\right)$ is solvable, but contains nonaffine automorphisms, as is shown in the next section. More generally, we have the following structure theorem on a class of tube domains with solvable groups of automorphisms.

THEOREM 3.1. Let T_{Ω} be a tube domain in \mathbf{C}^{n} whose base Ω is a convex domain in \mathbf{R}^{n} containing no complete straight lines and let $n \geq 2$. Assume that:
i) T_{Ω} is a tube domain with polynomial infinitesimal automorphisms;
ii) $\operatorname{Aut}\left(T_{\Omega}\right)$ is a solvable Lie group;
iii) T_{Ω} contains the origin o of \mathbf{C}^{n} and the orbit $G\left(T_{\Omega}\right) \cdot$ o of $G\left(T_{\Omega}\right)$ through o has dimension $n+1$, where $G\left(T_{\Omega}\right)$ denotes the identity component of $\operatorname{Aut}\left(T_{\Omega}\right)$.

Then, in the notation of Subsection $2.2, \mathfrak{g}\left(T_{\Omega}\right)$ coincides with \mathfrak{q}. Moreover, according to the cases of a) $\mathfrak{b} \neq\{0\}$ and $\mathfrak{b}) \mathfrak{b}=\{0\}$, the following hold.
a) One has $n \geq 3$ and, after a real linear change of coordinates in $\mathbf{C}^{n}, \mathfrak{a}_{*}, \mathfrak{b}$ and the nilradical \mathfrak{n} of $\mathfrak{g}\left(T_{\Omega}\right)$ are given by

$$
\begin{aligned}
\mathfrak{a}_{*} & =\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}+\mathfrak{k} \cap \mathfrak{a}_{*} \quad(\text { direct sum }), \\
\mathfrak{b} & =\left\{\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}\right\}_{\mathbf{R}}, \\
\mathfrak{n} & =\mathfrak{s}+\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}} .
\end{aligned}
$$

Also, any n-dimensional abelian ideal in \mathfrak{n} is conjugate to \mathfrak{s} by an inner automorphism of $\mathfrak{g}\left(T_{\Omega}\right)$.
b) The nilradical \mathfrak{n} of $\mathfrak{g}\left(T_{\Omega}\right)$ contains \mathfrak{s} and has dimension less than or equal to $n+1$. Also, any n-dimensional abelian ideal in \mathfrak{n} coincides with \mathfrak{s}.

Proof. The condition iii) implies that, after a real linear change of coordinates in \mathbf{C}^{n}, we may assume that

$$
\begin{equation*}
T_{o}\left(G\left(T_{\Omega}\right) \cdot o\right)=\left\{\partial_{1}, \ldots, \partial_{n}\right\}_{\mathbf{R}}+\left\{\sqrt{-1} \partial_{1}\right\}_{\mathbf{R}} \tag{3.1}
\end{equation*}
$$

where $T_{o}\left(G\left(T_{\Omega}\right) \cdot o\right)$ denotes the tangent space to $G\left(T_{\Omega}\right) \cdot o$ at o.
Consider first the case where $\mathfrak{b} \neq\{0\}$. Take a nonzero element $Z=X^{(2)}+\sqrt{-1} Y^{(1)}$ of \mathfrak{b}. Since the value of the vector field $\left[\partial_{i}, Z\right]$ at o is in $T_{o}\left(G\left(T_{\Omega}\right) \cdot o\right)$ for every $i=1, \ldots, n$, it follows from (3.1) that $Y^{(1)}$ has the form $Y^{(1)}=\left(c_{1} z_{1}+\cdots+c_{n} z_{n}\right) \partial_{1}$, where c_{1}, \ldots, c_{n} are real constants.

We show that $c_{1} \neq 0$. Suppose the contrary. Note that c_{2}, \ldots, c_{n} are not all 0 . Indeed, otherwise, by i) of Lemma $2.2, Z$ must be 0 . By a permutation of the coordinates z_{2}, \ldots, z_{n}, we may assume that $c_{2} \neq 0$. Applying if necessary a change of coordinates

$$
\begin{aligned}
& \mathbf{C}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{C}^{n}, \\
&\left\{\begin{array}{l}
w_{1}=z_{1}, \\
w_{2}=c_{2} z_{2}+\cdots+c_{n} z_{n}, \\
w_{i}=z_{i}, \quad i=3, \ldots, n,
\end{array}\right.
\end{aligned}
$$

we see that $Y^{(1)}$ has the form $Y^{(1)}=w_{2}\left(\partial / \partial w_{1}\right)$. For simplicity, write z_{1}, \ldots, z_{n} as w_{1}, \ldots, w_{n} again. Then it follows from Lemma 2.4 that $X^{(2)}$ has the form

$$
X^{(2)}=a_{1} z_{2}^{2} \partial_{1}+a_{3} z_{2}^{2} \partial_{3}+\cdots+a_{n} z_{2}^{2} \partial_{n},
$$

where $a_{1}, a_{3}, \ldots, a_{n}$ are real constants. Therefore we have

$$
\begin{equation*}
Z=\left(a_{1} z_{2}^{2}+\sqrt{-1} z_{2}\right) \partial_{1}+a_{3} z_{2}^{2} \partial_{3}+\cdots+a_{n} z_{2}^{2} \partial_{n} \tag{3.2}
\end{equation*}
$$

We recall here the general result ([3, Section 3, Lemma 6]) that if T_{Ω} is a tube domain in \mathbf{C}^{n} whose base Ω has the convex hull containing no complete straight lines and if a complete holomorphic vector field X on T_{Ω} is of the form

$$
X=\sum_{j=k+1}^{n} f_{j}\left(z_{1}, \ldots, z_{k}\right) \partial_{j}
$$

then $f_{j}\left(z_{1}, \ldots, z_{k}\right), j=k+1, \ldots, n$, are real constants. Combining (3.2) with this result, we obtain $Z=0$, which is a contradiction and our assertion is shown.

Replacing Z by $c_{1}^{-1} Z$, we may assume that $Y^{(1)}=\left(z_{1}+c_{2} z_{2}+\cdots+c_{n} z_{n}\right) \partial_{1}$. Applying if necessary a change of coordinates

$$
\mathbf{C}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{C}^{n}
$$

$$
\left\{\begin{array}{l}
w_{1}=z_{1}+c_{2} z_{2}+\cdots+c_{n} z_{n} \\
w_{i}=z_{i}, \quad i=2, \ldots, n
\end{array}\right.
$$

we see that $Y^{(1)}$ has the form $Y^{(1)}=w_{1}\left(\partial / \partial w_{1}\right)$. For simplicity, write z_{1}, \ldots, z_{n} as w_{1}, \ldots, w_{n} again. Then it follows from Lemma 2.4 that $X^{(2)}$ has the form

$$
X^{(2)}=a_{2} z_{1}^{2} \partial_{2}+\cdots+a_{n} z_{1}^{2} \partial_{n}
$$

where a_{2}, \ldots, a_{n} are real constants. Therefore we have

$$
Z=\sqrt{-1} z_{1} \partial_{1}+a_{2} z_{1}^{2} \partial_{2}+\cdots+a_{n} z_{1}^{2} \partial_{n}=\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2}\left(a_{2} \partial_{2}+\cdots+a_{n} \partial_{n}\right)
$$

Note that a_{2}, \ldots, a_{n} are not all 0 . Indeed, otherwise, by i) of Lemma $2.2, Z$ must be 0 . Hence, by a suitable real linear change of the coordinates z_{2}, \ldots, z_{n}, Z has the form $Z=\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}$.

We show that $\mathfrak{b}=\left\{\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}\right\}_{\mathbf{R}}$. Note that T_{Ω} contains the origin o. Since \mathfrak{b} is contained in a compact subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$ given as the isotropy subalgebra of $\mathfrak{g}\left(T_{\Omega}\right)$ at o and since $\mathfrak{g}\left(T_{\Omega}\right)$ is solvable, we see that \mathfrak{b} is abelian. Take any element $W=$ $U^{(2)}+\sqrt{-1} V^{(1)}$ of \mathfrak{b}. Since the value of the vector field $\left[\partial_{i}, W\right]$ at o is in $T_{o}\left(G\left(T_{\Omega}\right) \cdot o\right)$ for every $i=1, \ldots, n$, it follows from (3.1) that $V^{(1)}$ has the form $V^{(1)}=\left(c_{1} z_{1}+\cdots+c_{n} z_{n}\right) \partial_{1}$, where c_{1}, \ldots, c_{n} are real constants. The fact that $[Z, W]=0$ implies that

$$
\left[Z, U^{(2)}\right]+\left(c_{2} z_{2}+\cdots+c_{n} z_{n}\right) \partial_{1}+\sqrt{-1} c_{2} z_{1}^{2} \partial_{1}-2 \sqrt{-1} z_{1}\left(c_{1} z_{1}+\cdots+c_{n} z_{n}\right) \partial_{2}=0
$$

Here the coefficient functions of the vector field $\left[Z, U^{(2)}\right]$ are polynomials of degree greater than or equal to 2 . Therefore we have $c_{2}=\cdots=c_{n}=0$, which shows that $V^{(1)}=c_{1} z_{1} \partial_{1}$. From this, we see that $W-c_{1} Z=U^{(2)}-c_{1} z_{1}^{2} \partial_{2}$. By i) of Lemma 2.2, we obtain $W-c_{1} Z=0$, or $W=c_{1} Z$. We thus conclude that $\mathfrak{b}=\left\{\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}\right\}_{\mathbf{R}}$.

We show that $\mathfrak{a}_{*}=\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}+\mathfrak{k} \cap \mathfrak{a}_{*}$ (direct sum). Since

$$
\left[\partial_{1}, \sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}\right]=\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}
$$

is an element of $\mathfrak{g}\left(T_{\Omega}\right)$, we see that $\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2} \in \mathfrak{a}_{*}$. We note here that $n \geq 3$. Indeed, if $n=2$, then Ω is given by $\Omega=\left\{\left(y_{1}, y_{2}\right) \in \mathbf{R}^{2} \mid y_{2}>y_{1}^{2}+c\right\}$ for some constant $c \in \mathbf{R}$, because the vector field $\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}$ is complete on T_{Ω} and Ω is a convex domain in \mathbf{R}^{2} containing no complete straight lines. Therefore T_{Ω} must be homogeneous, which contradicts the condition iii). Now, take any element $Z=X^{(1)}+\sqrt{-1} Y^{(0)}$ of \mathfrak{a}_{*}. Since the value of the vector field Z at o is in $T_{o}\left(G\left(T_{\Omega}\right) \cdot o\right)$, it follows from (3.1) that $Y^{(0)}$ has the form $Y^{(0)}=\lambda \partial_{1}$, where λ is a real constant. Put $W=Z-\lambda\left(\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right)$. Then W takes the value 0 at the origin o, becuase $Y^{(0)}=\lambda \partial_{1}$. Therefore we have $W \in \mathfrak{k} \cap \mathfrak{a}_{*}$ and $Z=\lambda\left(\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right)+W$. This concludes that \mathfrak{a}_{*} is the direct sum of $\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\boldsymbol{R}}$ and $\mathfrak{k} \cap \mathfrak{a}_{*}$.

We show that $\mathfrak{n} \cap \mathfrak{q}=\mathfrak{s}+\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}$. For brevity, write $Z_{0}=\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}$ and $W_{0}=\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}$. Then $\operatorname{ad} W_{0}=\left[\operatorname{ad} \partial_{1}, a d Z_{0}\right]$ is nilpotent in view of Lie's theorem. Also, it is obvious that $a d \partial_{i}$ is nilpotent for every $i=1, \ldots, n$. Therefore $\mathfrak{n} \cap \mathfrak{q}$ contains $\mathfrak{s}+\left\{W_{0}\right\}_{\mathbf{R}}$. Let Z be any element of \mathfrak{q} such that $\operatorname{ad} Z$ is nilpotent. We can
write $Z=\lambda Z_{0}+\mu W_{0}+U+T$, where λ, μ are real contants and $U \in \mathfrak{k} \cap \mathfrak{a}_{*}, T \in \mathfrak{s}$. Then $a d\left(\lambda Z_{0}+U\right)$ is semisimple, because $\lambda Z_{0}+U$ belongs to the isotropy subalgebra \mathfrak{k}. On the other hand, $a d Z, a d \mu W_{0}, a d T$ are all nilpotent. Since $a d\left(\lambda Z_{0}+U\right)=$ $a d Z-a d \mu W_{0}-a d T$, we see that $a d\left(\lambda Z_{0}+U\right)$ is nilpotent and semisimple, and hence $a d\left(\lambda Z_{0}+U\right)=0$. As a consequence, we have

$$
0=\left(\operatorname{ad}\left(\lambda Z_{0}+U\right)\right) \partial_{i}=\left[\lambda Z_{0}+U, \partial_{i}\right] \quad \text { for every } i=1, \ldots, n,
$$

which implies that $\lambda Z_{0}+U=0$. This concludes that $\mathfrak{n} \cap \mathfrak{q}=\mathfrak{s}+\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}$.
We show that $\mathfrak{g}\left(T_{\Omega}\right)=\mathfrak{q}$. Suppose that $\mathfrak{g}\left(T_{\Omega}\right) \neq \mathfrak{q}$, or that there exists a nonzero element Z of $\mathfrak{g}\left(T_{\Omega}\right)$ of degree greater than or equal to 3 . Then we can choose suitable nonnegative integers ν_{1}, \ldots, ν_{n} with some $\nu_{i}>0$ such that $\left(a d \partial_{1}\right)^{\nu_{1}} \cdots\left(a d \partial_{n}\right)^{\nu_{n}} Z$ is an element of $\mathfrak{g}\left(T_{\Omega}\right)$ of degree just 2 , which we denote by W. In view of Lie's theorem, $a d W$ is nilpotent, so that $W \in \mathfrak{n} \cap \mathfrak{q}$. But, as is shown above, we must have $\mathfrak{n} \cap \mathfrak{q}=$ $\mathfrak{s}+\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}$. This is a contradiction, because the degree of W is 2 . We thus conclude that $\mathfrak{g}\left(T_{\Omega}\right)=\mathfrak{q}$.

Since $\mathfrak{g}\left(T_{\Omega}\right)=\mathfrak{q}$, we have $\mathfrak{n}=\mathfrak{s}+\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}$. We show that any n dimensional abelian ideal \mathfrak{s}_{0} in \mathfrak{n} is conjugate to \mathfrak{s} by an inner automorphism of $\mathfrak{g}\left(T_{\Omega}\right)$. Write $Z_{0}=\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}$ and $W_{0}=\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}$ as above. If $\mathfrak{s}_{0}=\mathfrak{s}$, then our assertion is obvious. Suppose that $\mathfrak{s}_{0} \neq \mathfrak{s}$. Then we see that \mathfrak{s}_{0} has the form $\mathfrak{s}_{0}=\left\{\lambda W_{0}+\mu \partial_{1}, \partial_{2}, \cdots, \partial_{n}\right\}_{\mathbf{R}}$, where λ, μ are real constants and $\lambda \neq 0$. Now, we have the relations

$$
\left(a d Z_{0}\right) W_{0}=\partial_{1},\left(\operatorname{ad} Z_{0}\right) \partial_{1}=-W_{0},\left(a d Z_{0}\right) \partial_{i}=0, i=2, \ldots, n
$$

From these, it follows that, when $\alpha, \beta \in \mathbf{R}$,

$$
\begin{aligned}
& A d\left(\operatorname{Exp} t Z_{0}\right)\left(\alpha W_{0}+\beta \partial_{1}\right)=(\alpha \cos t-\beta \sin t) W_{0}+(\alpha \sin t+\beta \cos t) \partial_{1} \\
& A d\left(\operatorname{Exp} t Z_{0}\right) \partial_{i}=\partial_{i}, \quad i=2, \ldots, n
\end{aligned}
$$

for all $t \in \mathbf{R}$, where $A d: G\left(T_{\Omega}\right) \rightarrow \operatorname{Int}\left(\mathfrak{g}\left(T_{\Omega}\right)\right)$ is the adjoint representation of the Lie $\operatorname{group} G\left(T_{\Omega}\right)$. If $\mu \neq 0$, then, for $t_{0} \in \mathbf{R}$ with $\tan t_{0}=\lambda / \mu$, we have

$$
A d\left(\operatorname{Exp} t_{0} Z_{0}\right)\left(\lambda W_{0}+\mu \partial_{1}\right)=\gamma \partial_{1} \quad \text { for some real constant } \gamma,
$$

and therefore $\operatorname{Ad}\left(\operatorname{Exp} t_{0} Z_{0}\right) \mathfrak{s}_{0}=\mathfrak{s}$. On the other hand, if $\mu=0$, then, for $t_{0}=\pi / 2$, we have

$$
A d\left(\operatorname{Exp} t_{0} Z_{0}\right)\left(\lambda W_{0}\right)=\lambda \partial_{1}
$$

and therefore $\operatorname{Ad}\left(\operatorname{Exp} t_{0} Z_{0}\right) \mathfrak{s}_{0}=\mathfrak{s}$. These show that \mathfrak{s}_{0} is conjugate to \mathfrak{s} by an inner automorphism of $\mathfrak{g}\left(T_{\Omega}\right)$, as desired.

Consider next the case where $\mathfrak{b}=\{0\}$. We show that $\mathfrak{g}\left(T_{\Omega}\right)=\mathfrak{q}=\mathfrak{s}+\mathfrak{a}_{*}$. Suppose that $\mathfrak{g}\left(T_{\Omega}\right) \neq \mathfrak{q}$, or that there exists a nonzero element Z of $\mathfrak{g}\left(T_{\Omega}\right)$ of degree greater than or equal to 3 . Then we can choose suitable nonnegative integers ν_{1}, \ldots, ν_{n} such that $\left(a d \partial_{1}\right)^{\nu_{1}} \cdots\left(\operatorname{ad} \partial_{n}\right)^{\nu_{n}} Z$ is an element of $\mathfrak{g}\left(T_{\Omega}\right)$ of degree just 2. By the Prolongation Theorem, this yields that $\mathfrak{b} \neq\{0\}$, which is a contradiction. We thus conclude that
$\mathfrak{g}\left(T_{\Omega}\right)=\mathfrak{q}=\mathfrak{s}+\mathfrak{a}_{*}$.
We show that \mathfrak{n} contains \mathfrak{s} and has dimension less than or equal to $n+1$. The fact that $\mathfrak{n} \supset \mathfrak{s}$ follows by a similar way to the case where $\mathfrak{b} \neq\{0\}$. Assume that $\mathfrak{n} \neq \mathfrak{s}$. Since $\mathfrak{g}\left(T_{\Omega}\right)=\mathfrak{s}+\mathfrak{a}_{*}$ and $\mathfrak{n} \supset \mathfrak{s}$, there exists a nonzero element $Z=X^{(1)}+\sqrt{-1} Y^{(0)}$ of \mathfrak{a}_{*} such that $a d Z$ is nilpotent. Since the value of the vector field Z at o is in $T_{o}\left(G\left(T_{\Omega}\right) \cdot o\right)$, it follows from (3.1) that $Y^{(0)}$ has the form $Y^{(0)}=\lambda \partial_{1}$, where λ is a real constant. Here we have $\lambda \neq 0$. Indeed, otherwise, Z belongs to \mathfrak{k}. From this, we see that $\operatorname{ad} Z$ is nilpotent and semisimple, and hence $a d Z=0$. This implies that $Z=0$, which is a contradiction. Now, let W be any element of $\mathfrak{g}\left(T_{\Omega}\right)$ such that $\operatorname{ad} W$ is nilpotent. Write $W=U^{(1)}+\sqrt{-1} V^{(0)}+T$, where $U^{(1)}+\sqrt{-1} V^{(0)} \in \mathfrak{a}_{*}$ and $T \in \mathfrak{s}$. It follows again from (3.1) that $V^{(0)}$ has the form $V^{(0)}=\mu \partial_{1}$, where μ is a real constant. Therefore we have $W-(\mu / \lambda) Z=U^{(1)}-(\mu / \lambda) X^{(1)}+T$, or

$$
\begin{equation*}
U^{(1)}-\frac{\mu}{\lambda} X^{(1)}=W-\frac{\mu}{\lambda} Z-T \tag{3.3}
\end{equation*}
$$

Since $W,(\mu / \lambda) Z, T \in \mathfrak{g}\left(T_{\Omega}\right)$, this shows that $U^{(1)}-(\mu / \lambda) X^{(1)}$ is an element of $\mathfrak{g}\left(T_{\Omega}\right)$ which takes the value 0 at the origin o, so that $U^{(1)}-(\mu / \lambda) X^{(1)}$ belongs to \mathfrak{k}. On the other hand, since $a d\left(U^{(1)}-(\mu / \lambda) X^{(1)}\right)=a d W-a d(\mu / \lambda) Z-a d T$ by (3.3) and since $a d W, \operatorname{ad}((\mu / \lambda) Z), a d T$ are all nilpotent, $a d\left(U^{(1)}-(\mu / \lambda) X^{(1)}\right)$ is nilpotent. From these, we see that $\operatorname{ad}\left(U^{(1)}-(\mu / \lambda) X^{(1)}\right)$ is semisimple and nilpotent, and hence $\operatorname{ad}\left(U^{(1)}-\right.$ $\left.(\mu / \lambda) X^{(1)}\right)=0$, which implies that $U^{(1)}-(\mu / \lambda) X^{(1)}=0$. By (3.3), we have $W=$ $(\mu / \lambda) Z+T$, and $\mathfrak{n}=\mathfrak{s}+\{Z\}_{\mathbf{R}}$ is shown. We thus conclude that \mathfrak{n} has dimension less than or equal to $n+1$.

We show that any n-dimensional abelian ideal \mathfrak{s}_{0} in \mathfrak{n} coincides with \mathfrak{s}. Suppose that $\mathfrak{s}_{0} \neq \mathfrak{s}$. Then, since $\mathfrak{s}_{0} \subset \mathfrak{n} \subset \mathfrak{g}\left(T_{\Omega}\right)=\mathfrak{s}+\mathfrak{a}_{*}=\mathfrak{a}\left(T_{\Omega}\right)$ and since \mathfrak{n} contains \mathfrak{s}, we can apply [$\mathbf{6}$, Lemma 4.2] to \mathfrak{s}_{0} by noting the proof of it. Therefore there exists a nonzero complete polynomial vector field on T_{Ω} of degree 2. By the Prolongation Theorem, this yields that $\mathfrak{b} \neq\{0\}$, which is a contradiction. We thus conclude that $\mathfrak{s}_{0}=\mathfrak{s}$, and the proof of the theorem is completed.

Remark 3.2. Theorem 3.1 asserts that, under the assumption of the theorem, any n-dimensional abelian ideal in the nilradical \mathfrak{n} of $\mathfrak{g}\left(T_{\Omega}\right)$ is conjugate to \mathfrak{s} by an inner automorphism of $\mathfrak{g}\left(T_{\Omega}\right)$. The result like this plays a key role on the study of the holomorphic equivalence probelem for tube domains.

Using Theorem 3.1, we can give an answer to the holomorphic equivalence problem for a class of tube domains with solvable groups of automorphisms.

Theorem 3.3. Let T_{Ω} and $T_{\Omega^{\prime}}$ be two tube domains in \mathbf{C}^{n} whose bases Ω and Ω^{\prime} are convex domains in \mathbf{R}^{n} containing no complete straight lines and let $n \geq 2$. Assume that:
i) T_{Ω} and $T_{\Omega^{\prime}}$ are tube domains with polynomial infinitesimal automorphisms;
ii) $\operatorname{Aut}\left(T_{\Omega}\right)$ is a solvable Lie group;
iii) There exists a point z_{0} of T_{Ω} such that the orbit of $G\left(T_{\Omega}\right)$ through z_{0} has dimension $n+1$.

Under these assumptions, if T_{Ω} and $T_{\Omega^{\prime}}$ are holomorphically equivalent, then they are affinely equivalent.

Proof. Let $\varphi: T_{\Omega} \rightarrow T_{\Omega^{\prime}}$ be a biholomorphic mapping between T_{Ω} and $T_{\Omega^{\prime}}$. Since $\varphi \operatorname{Aut}\left(T_{\Omega}\right) \varphi^{-1}=\operatorname{Aut}\left(T_{\Omega^{\prime}}\right)$ and $\varphi G\left(T_{\Omega}\right) \varphi^{-1}=G\left(T_{\Omega^{\prime}}\right)$, we see from the assumption that $\operatorname{Aut}\left(T_{\Omega^{\prime}}\right)$ is solvable and the orbit of $G\left(T_{\Omega^{\prime}}\right)$ through $\varphi\left(z_{0}\right)$ has dimension $n+1$. Note that, replacing if necessary T_{Ω} and $T_{\Omega^{\prime}}$ by $T_{\Omega}-z_{0}$ and $T_{\Omega^{\prime}}-\varphi\left(z_{0}\right)$, respectively, we may assume that z_{0} and $\varphi\left(z_{0}\right)$ are the origin.

Now, let $\Phi: \operatorname{Aut}\left(T_{\Omega}\right) \rightarrow \operatorname{Aut}\left(T_{\Omega^{\prime}}\right)$ be a Lie group isomorphism between $\operatorname{Aut}\left(T_{\Omega}\right)$ and $\operatorname{Aut}\left(T_{\Omega^{\prime}}\right)$ given by $\Phi(f)=\varphi \circ f \circ \varphi^{-1}$ for $f \in \operatorname{Aut}\left(T_{\Omega}\right)$. We denote by Φ_{*} the differential of Φ, which is regarded as a Lie algebra isomorphism between $\mathfrak{g}\left(T_{\Omega}\right)$ and $\mathfrak{g}\left(T_{\Omega^{\prime}}\right)$. Let \mathfrak{n} and \mathfrak{n}^{\prime} be the nilradicals of $\mathfrak{g}\left(T_{\Omega}\right)$ and $\mathfrak{g}\left(T_{\Omega^{\prime}}\right)$, respectively. Then we have $\Phi_{*}(\mathfrak{n})=\mathfrak{n}^{\prime}$. Since $\mathfrak{s}\left(T_{\Omega}\right)$ is an n-dimensional abelian ideal in \mathfrak{n}, we see that $\Phi_{*}\left(\mathfrak{s}\left(T_{\Omega}\right)\right)$ is an n-dimensional abelian ideal in \mathfrak{n}^{\prime}. By Theorem 3.1 and the remark after it, there exists an inner automorphism τ_{*} of $\mathfrak{g}\left(T_{\Omega^{\prime}}\right)$ such that $\tau_{*}\left(\Phi_{*}\left(\mathfrak{s}\left(T_{\Omega}\right)\right)\right)=\mathfrak{s}\left(T_{\Omega^{\prime}}\right)$. Here τ_{*} is the differential of a Lie group automorphism τ of $G\left(T_{\Omega^{\prime}}\right)$ given by $\tau(h)=g \circ h \circ g^{-1}$ for $h \in G\left(T_{\Omega^{\prime}}\right)$, where g is some element of $G\left(T_{\Omega^{\prime}}\right)$. Therefore we have $(g \circ \varphi) \Sigma_{T_{\Omega}}(g \circ \varphi)^{-1}=\Sigma_{T_{\Omega^{\prime}}}$. It follows from [3, Section 1, Proposition] that $g \circ \varphi$ is given by an element of $G L(n, \mathbf{R}) \ltimes \mathbf{C}^{n}$. This shows that T_{Ω} and $T_{\Omega^{\prime}}$ are affinely equivalent, and our theorem is proved.

4. An example of a tube domain whose automorphism group is solvable and contains nonaffine automorphisms.

In this section, we give a concrete example of a tube domain in Theorem 3.1, which is an example of a tube domain whose automorphism group is solvable and contains nonaffine automorphisms as well. In what follows, we use the same notation as in Theorem 3.1.

Theorem 4.1. Let Ω_{0} is a convex domain in \mathbf{R}^{3} containing no complete straight lines given by

$$
\Omega_{0}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbf{R}^{3} \mid y_{2}>y_{1}^{2}+e^{y_{3}^{2}}-2\right\} .
$$

Then $T_{\Omega_{0}}$ is a tube domain with polynomial infinitesimal automorphisms, and $\mathfrak{g}\left(T_{\Omega_{0}}\right)$ is given by

$$
\begin{aligned}
\mathfrak{g}\left(T_{\Omega_{0}}\right) & =\mathfrak{s}+\mathfrak{a}_{*}+\mathfrak{b} \\
\mathfrak{a}_{*} & =\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}, \\
\mathfrak{b} & =\left\{\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}\right\}_{\mathbf{R}} .
\end{aligned}
$$

To prove Theorem 4.1, it suffices to prove the following:

1) Every element of $\mathfrak{g}\left(T_{\Omega_{0}}\right)$ is a polynomial vector field;
2) $\mathfrak{a}_{*}=\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}}$;
3) $\mathfrak{b}=\left\{\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}\right\}_{\mathbf{R}}$;
4) $\mathfrak{g}\left(T_{\Omega_{0}}\right)=\mathfrak{q}$.

We prove 1). For this, we need a lemma. Before stating the lemma, we fix notation. Let r be an integer between 0 and n. Let $\pi^{\prime}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{r}$ be the projection given by $\pi^{\prime}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, z_{r}\right)$. For $k=\left(k_{1}, \ldots, k_{r}\right) \in \mathbf{Z}^{r}$, we define a tube domain $D\left(k_{1}, \ldots, k_{r}\right)$ in \mathbf{C}^{r} by

$$
D\left(k_{1}, \ldots, k_{r}\right)=T_{\left(k_{1} \pi,\left(k_{1}+1\right) \pi\right)} \times \cdots \times T_{\left(k_{r} \pi,\left(k_{r}+1\right) \pi\right)}
$$

The following lemma gives a useful criterion for a given tube domain to be a tube domain with polynomial infinitesimal automorphisms.

Lemma 4.2. Let $T_{\tilde{\Omega}}$ be a tube domain in \mathbf{C}^{n} whose base $\tilde{\Omega}$ has the convex hull containing no complete straight lines. Assume that $\mathfrak{g}\left(T_{\tilde{\Omega}}\right)$ contains a subspace \mathfrak{e} given by

$$
\mathfrak{e}=\sum_{i=1}^{r}\left\{e^{z_{i}}\left(\partial_{i}+\sum_{j=r+1}^{n} \sqrt{-1} a_{i}^{j} \partial_{j}\right), e^{-z_{i}}\left(\partial_{i}-\sum_{j=r+1}^{n} \sqrt{-1} a_{i}^{j} \partial_{j}\right)\right\}_{\mathbf{R}}
$$

where r is an integer between 0 and n and $a_{i}^{j}, i=1, \ldots, r, j=r+1, \ldots, n$, are real constants. If $T_{\tilde{\Omega}^{\prime}}$ is the tube domain in \mathbf{C}^{r} given as the image of the domain $T_{\tilde{\Omega}}$ under the projection π^{\prime}, then $T_{\tilde{\Omega}^{\prime}}=D\left(k_{1}, \ldots, k_{r}\right)$ for some $\left(k_{1}, \ldots, k_{r}\right) \in \mathbf{Z}^{r}$. As a consequence, one has

$$
\tilde{\Omega} \subset\left(k_{1} \pi,\left(k_{1}+1\right) \pi\right) \times \cdots \times\left(k_{r} \pi,\left(k_{r}+1\right) \pi\right) \times \mathbf{R}^{n-r} .
$$

Proof. By [3, Section 3, Lemma 4], the holomorphic vector fields $e^{z_{1}} \partial_{1}, \ldots, e^{z_{r}} \partial_{r}$ are complete on $T_{\tilde{\Omega}^{\prime}}$. Therefore it follows from [4, Section 2, Lemma 3] that $T_{\tilde{\Omega}^{\prime}}=$ $D\left(k_{1}, \ldots, k_{r}\right)$ for some $\left(k_{1}, \ldots, k_{r}\right) \in \mathbf{Z}^{r}$.

We turn to the proof of 1). By the Structure Theorem in Section 1, there exists a tube domain $T_{\tilde{\Omega}_{0}}$ which is affinely equivalent to $T_{\Omega_{0}}$ such that $\mathfrak{g}\left(T_{\tilde{\Omega}_{0}}\right)$ has the direct sum decomposition

$$
\mathfrak{g}\left(T_{\tilde{\Omega}_{0}}\right)=\mathfrak{p}+\mathfrak{e}
$$

for which

$$
\begin{aligned}
\mathfrak{p} & =\left\{X \in \mathfrak{g}\left(T_{\tilde{\Omega}_{0}}\right) \mid X \text { is a polynomial vector field }\right\}, \\
\mathfrak{e} & =\sum_{i=1}^{r}\left\{e^{z_{i}}\left(\partial_{i}+\sum_{j=r+1}^{3} \sqrt{-1} a_{i}^{j} \partial_{j}\right), e^{-z_{i}}\left(\partial_{i}-\sum_{j=r+1}^{3} \sqrt{-1} a_{i}^{j} \partial_{j}\right)\right\}_{\mathbf{R}}
\end{aligned}
$$

where r is an integer between 0 and 3 and $a_{i}^{j}, i=1, \ldots, r, j=r+1, \ldots, 3$, are real constants. Suppose here that $\mathfrak{e} \neq\{0\}$, or $r \geq 1$. An application of Lemma 4.2 to $T_{\tilde{\Omega}_{0}}$, \mathfrak{e} yields that

$$
\tilde{\Omega}_{0} \subset\left(k_{1} \pi,\left(k_{1}+1\right) \pi\right) \times \cdots \times\left(k_{r} \pi,\left(k_{r}+1\right) \pi\right) \times \mathbf{R}^{3-r} .
$$

Since $\tilde{\Omega}_{0}$ is affinely equivalent to Ω_{0}, it follows that this can not occur. Therefore we obtain $\mathfrak{e}=\{0\}$, and hence $\mathfrak{g}\left(T_{\tilde{\Omega}_{0}}\right)=\mathfrak{p}$, which implies that every element of $\mathfrak{g}\left(T_{\Omega_{0}}\right)$ is a polynomial vector field.

We prove 2). The defining function ρ of the boundary of Ω_{0} is given by $\rho\left(y_{1}, y_{2}, y_{3}\right)=$ $y_{1}^{2}-y_{2}+e^{y_{3}^{2}}-2$. Let Y be an affine vector field on Ω_{0} and write

$$
\begin{aligned}
Y= & \left(a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}+a_{0}\right) \frac{\partial}{\partial y_{1}}+\left(b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3}+b_{0}\right) \frac{\partial}{\partial y_{2}} \\
& +\left(c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}+c_{0}\right) \frac{\partial}{\partial y_{3}},
\end{aligned}
$$

where $a_{i}, b_{i}, c_{i}, i=0,1,2,3$, are real constants. In view of (1.1) and (1.2), to prove 2), it is sufficient to show that

$$
\begin{equation*}
(Y \rho)\left(y_{1}, y_{2}, y_{3}\right)=0 \text { for all }\left(y_{1}, y_{2}, y_{3}\right) \in \mathbf{R}^{3} \text { with } y_{2}=y_{1}^{2}+e^{y_{3}^{2}} \tag{4.1}
\end{equation*}
$$

if and only if $b_{1}=2 a_{0}$, and the other coefficients are all 0 , that is, Y has the form

$$
Y=\lambda \frac{\partial}{\partial y_{1}}+2 \lambda y_{1} \frac{\partial}{\partial y_{2}},
$$

where λ is a real constant. The "if" part is immediate. We show the "only if" part. (4.1) is written as

$$
\begin{align*}
0= & 2 a_{1} y_{1}^{2}+2 a_{2} y_{1}^{3}+2 a_{2} y_{1} e^{y_{3}^{2}}+2 a_{3} y_{1} y_{3}+2 a_{0} y_{1} \\
& -b_{1} y_{1}-b_{2} y_{1}^{2}-b_{2} e^{y_{3}^{2}}-b_{3} y_{3}-b_{0} \\
& +2 c_{1} y_{1} y_{3} e^{y_{3}^{2}}+2 c_{2} y_{1}^{2} y_{3} e^{y_{3}^{2}}+2 c_{2} y_{3} e^{2 y_{3}^{2}}+2 c_{3} y_{3}^{2} e^{y_{3}^{2}}+2 c_{0} y_{3} e^{y_{3}^{2}} . \tag{4.2}
\end{align*}
$$

By letting $y_{3}=0$ in (4.2), it follows that

$$
\begin{equation*}
a_{2}=0, b_{2}=2 a_{1} . \tag{4.3}
\end{equation*}
$$

On the other hand, putting $y_{1}=0$ in (4.2), we have

$$
\begin{equation*}
0=-b_{2} e^{y_{3}^{2}}-b_{3} y_{3}-b_{0}+2 c_{2} y_{3} e^{2 y_{3}^{2}}+2 c_{3} y_{3}^{2} e^{y_{3}^{2}}+2 c_{0} y_{3} e^{y_{3}^{2}} \tag{4.4}
\end{equation*}
$$

By substituting $y_{3}=0$ into (4.4), we see that

$$
\begin{equation*}
0=-b_{2}-b_{0} \tag{4.5}
\end{equation*}
$$

Also, by differentiating the both sides of (4.4) with respect to y_{3} and substituting $y_{3}=0$ into it, we see that

$$
\begin{equation*}
0=-b_{3}+2 c_{2}+2 c_{0} \tag{4.6}
\end{equation*}
$$

Moreover, by differentiating the both sides of (4.4) twice with respect to y_{3}, it follows
that

$$
\begin{align*}
0= & b_{2} e^{y_{3}^{2}}\left(\alpha y_{3}^{2}+(\text { terms of degree } \leq 1)\right) \\
& +c_{2} e^{2 y_{3}^{2}}\left(\beta y_{3}^{3}+(\text { terms of degree } \leq 2)\right)+c_{3} e^{y_{3}^{2}}\left(\gamma y_{3}^{4}+(\text { terms of degree } \leq 3)\right) \\
& +c_{0} e^{y_{3}^{2}}\left(\delta y_{3}^{3}+(\text { terms of degree } \leq 2)\right) \tag{4.7}
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta$ are some nonzero constants and (terms of degree $\leq k$) denotes a polynomial in y_{3} of degree less than or equal to k. Multiplying the both sides of (4.7) by $e^{-y_{3}^{2}}$, we obtain

$$
\begin{align*}
0= & b_{2}\left(\alpha y_{3}^{2}+(\text { terms of degree } \leq 1)\right) \\
& +c_{2} e^{y_{3}^{2}}\left(\beta y_{3}^{3}+(\text { terms of degree } \leq 2)\right)+c_{3}\left(\gamma y_{3}^{4}+(\text { terms of degree } \leq 3)\right) \\
& +c_{0}\left(\delta y_{3}^{3}+(\text { terms of degree } \leq 2)\right) \tag{4.8}
\end{align*}
$$

Since $e^{y_{3}^{2}}$ is not a polynomial in y_{3}, this shows that $c_{2}=0$. As a result, we have $c_{3}=0$. Indeed, the right hand side of (4.8) is a polynomial in y_{3} and the coefficient of y_{3}^{4} is $c_{3} \gamma$. A similar argument shows that $c_{0}=b_{2}=0$. Combining these with (4.3), (4.5) and (4.6), we have $a_{1}=b_{0}=b_{3}=0$ as well. To sum up so far, we obtain

$$
\begin{equation*}
a_{1}=a_{2}=0, b_{2}=b_{3}=b_{0}=0, c_{2}=c_{3}=c_{0}=0 \tag{4.9}
\end{equation*}
$$

Now, substituting (4.9) into (4.2) yields that

$$
\begin{equation*}
0=2 a_{3} y_{1} y_{3}+2 a_{0} y_{1}-b_{1} y_{1}+2 c_{1} y_{1} y_{3} e^{y_{3}^{2}} \tag{4.10}
\end{equation*}
$$

Letting $y_{3}=0$ in (4.10), we see that

$$
\begin{equation*}
b_{1}=2 a_{0} \tag{4.11}
\end{equation*}
$$

By substituting (4.11) into (4.10), it follows that

$$
\begin{equation*}
a_{3}=c_{1}=0 \tag{4.12}
\end{equation*}
$$

(4.9), (4.11), and (4.12) show the "only if" part, and the proof of 2) is completed.

We prove 3). Note first that, by 2), the vector field $\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}$ is complete on $T_{\Omega_{0}}$. Now, set $Z=\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}$. Since $\left[\partial_{1}, Z\right]=\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}$ and $\left[\partial_{2}, Z\right]=\left[\partial_{3}, Z\right]=0$ are all complete on $T_{\Omega_{0}}$, it follows from the Prolongation Theorem that Z is complete on $T_{\Omega_{0}}$, so that $\left\{\sqrt{-1} z_{1} \partial_{1}+z_{1}^{2} \partial_{2}\right\}_{\mathbf{R}} \subset \mathfrak{b}$. Let $W=U^{(2)}+\sqrt{-1} V^{(1)}$ be any element of \mathfrak{b}. Then we have

$$
\begin{equation*}
\left[\partial_{i}, W\right] \in \mathfrak{a}_{*}=\left\{\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}\right\}_{\mathbf{R}} \quad \text { for every } i=1,2,3 \tag{4.13}
\end{equation*}
$$

Write

$$
U^{(2)}=\sum_{j=1}^{3} f_{j} \partial_{j} \quad \text { and } \quad V^{(1)}=\sum_{j=1}^{3} g_{j} \partial_{j}
$$

where f_{j} and g_{j} are homogeneous polynomials in z_{1}, z_{2}, z_{3} with real coefficients of degrees 2 and 1 , respectively. By (4.13), for $j=1,3$, we have $\partial_{i} f_{j}=0$ for every $i=1,2,3$, which implies that $f_{1}=f_{3}=0$. On the other hand, if we write $f_{2}(z)=a z_{1}^{2}+b z_{2}^{2}+c z_{3}^{2}+$ $d z_{1} z_{2}+e z_{2} z_{3}+f z_{3} z_{1}$, where a, b, c, d, e, f are real constants, then we see from (4.13) that $\partial_{2} f_{2}(z)=2 b z_{2}+d z_{1}+e z_{3}$ and $\partial_{3} f_{2}(z)=2 c z_{3}+e z_{2}+f z_{1}$ are constant multiples of z_{1}, respectively. Therefore we have $b=c=e=0$, so that $f_{2}(z)=a z_{1}^{2}+d z_{1} z_{2}+f z_{3} z_{1}$. Furthermore, since $\partial_{1} f_{2}(z)=2 a z_{1}+d z_{2}+f z_{3}$ is a constant multiple of z_{1} again by (4.13), it follows that $d=f=0$. We thus obtain

$$
\begin{equation*}
U^{(2)}=a z_{1}^{2} \partial_{2} \tag{4.14}
\end{equation*}
$$

Now, By (4.13), for $j=2,3$, we have $\partial_{i} g_{j}=0$ for every $i=1,2,3$, which implies that $g_{2}=g_{3}=0$. From this and (4.14), we see that W has the form $W=\sqrt{-1}\left(p z_{1}+\right.$ $\left.q z_{2}+r z_{3}\right) \partial_{1}+a z_{1}^{2} \partial_{2}$, where p, q, r are real constants. Since $\left[\partial_{2}, W\right]=\sqrt{-1} q \partial_{1}$ and $\left[\partial_{3}, W\right]=\sqrt{-1} r \partial_{1}$, it follows from [3, Section 3, Lemma 5] that $q=r=0$, so that $W=\sqrt{-1} p z_{1} \partial_{1}+a z_{1}^{2} \partial_{2}$. Therefore we have $W-a Z=\sqrt{-1}(p-a) z_{1} \partial_{1}$. By i) of Lemma 2.2, this shows that $0=\sqrt{-1}(p-a) z_{1} \partial_{1}=W-a Z$, or $W=a Z$. We thus conclude 3).

Finally, we prove 4). Note first that, by 2) and 3$), \mathfrak{q}$ is given by

$$
\begin{equation*}
\mathfrak{q}=\left\{\left(\sqrt{-1} \lambda z_{1}+\sqrt{-1} \mu+\alpha\right) \partial_{1}+\left(\lambda z_{1}^{2}+2 \mu z_{1}+\beta\right) \partial_{2}+\gamma \partial_{3} \mid \alpha, \beta, \gamma, \lambda, \mu \in \mathbf{R}\right\} \tag{4.15}
\end{equation*}
$$

Now, suppose that $\mathfrak{g}\left(T_{\Omega_{0}}\right) \neq \mathfrak{q}$, or that there exists a nonzero element W of $\mathfrak{g}\left(T_{\Omega_{0}}\right)$ of degree greater than or equal to 3 . Then we can choose suitable nonnegative integers ν_{1}, \ldots, ν_{n} such that $\left(a d \partial_{1}\right)^{\nu_{1}} \cdots\left(a d \partial_{n}\right)^{\nu_{n}} W$ is an element of $\mathfrak{g}\left(T_{\Omega_{0}}\right)$ of degree just 3, which we denote again by W. Write $W=\sum_{j=1}^{3} f_{j} \partial_{j}$, where $f_{j}, j=1,2,3$, are polynomials in z_{1}, z_{2}, z_{3} of degree less than or equal to 3 . For the polynomial f_{j}, we denote by $f_{j}^{(3)}$ and $f_{j}^{(2)}$ its homogeneous parts of degrees 3 and 2 , respectively. Then, using (4.15) and the fact that $\left[\partial_{i}, W\right] \in \mathfrak{q}$ for every $i=1,2,3$, we can show the following:
a) $f_{1}^{(3)}(z)=0$ and $f_{1}^{(2)}(z)=p z_{1}^{2}$, where p is a complex constant;
b) $f_{2}^{(3)}(z)=r z_{1}^{3}$ and $f_{2}^{(2)}(z)=q z_{1}^{2}$, where r is a nonzero real constant and q is a complex constant;
c) $f_{3}^{(3)}(z)=0$ and $f_{3}^{(2)}(z)=0$.

Consequently, replacing $r^{-1} W, r^{-1} p, r^{-1} q$ by W, p, q if necessary, we can write

$$
\begin{align*}
W= & \left(p z_{1}^{2}+a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3}+a_{0}\right) \partial_{1} \\
& +\left(z_{1}^{3}+q z_{1}^{2}+b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3}+b_{0}\right) \partial_{2}+\left(c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{3}+c_{0}\right) \partial_{3} \tag{4.16}
\end{align*}
$$

where $p, q, a_{i}, b_{i}, c_{i}, i=0,1,2,3$, are complex constants. Since

$$
\left[\partial_{1}, W\right]=\left(2 p z_{1}+a_{1}\right) \partial_{1}+\left(3 z_{1}^{2}+2 q z_{1}+b_{1}\right) \partial_{2}+c_{1} \partial_{3}
$$

coincides with

$$
\left(\sqrt{-1} \lambda z_{1}+\sqrt{-1} \mu+\alpha\right) \partial_{1}+\left(\lambda z_{1}^{2}+2 \mu z_{1}+\beta\right) \partial_{2}+\gamma \partial_{3} \quad \text { for } \lambda=3 \text { and } \mu=q
$$

we see that

$$
\begin{equation*}
p=\frac{3}{2} \sqrt{-1}, \quad a_{1}=\sqrt{-1} q+\alpha \tag{4.17}
\end{equation*}
$$

Set $Z=\sqrt{-1} \partial_{1}+2 z_{1} \partial_{2}$. Then, substituting (4.17) into (4.16), we have

$$
\begin{align*}
{[Z, W]=} & \left\{\left(2 a_{2}-3\right) z_{1}+(\sqrt{-1} \alpha-q)\right\} \partial_{1} \\
& +\left\{2\left(b_{2}-\alpha\right) z_{1}-2 a_{2} z_{2}-2 a_{3} z_{3}+\sqrt{-1} b_{1}-2 a_{0}\right\} \partial_{2}+\left(2 c_{2} z_{1}+\sqrt{-1} c_{1}\right) \partial_{3} \tag{4.18}
\end{align*}
$$

This shows that $[Z, W]$ is an element of

$$
\mathfrak{s}+\mathfrak{a}_{*}=\left\{(\sqrt{-1} \mu+\alpha) \partial_{1}+\left(2 \mu z_{1}+\beta\right) \partial_{2}+\gamma \partial_{3} \mid \alpha, \beta, \gamma, \mu \in \mathbf{R}\right\}
$$

and has the form (4.18). As a consequence, we must have $a_{2}=3 / 2$ and $a_{2}=0$ simultaneouly, which is a contradiction. We thus conclude 4), and the proof of the theorem is completed.

References

[1] Y. Matsushima, On tube domains, In: Symmetric Spaces, Pure and Appl. Math., 8, Dekker, New York, 1972, 255-270.
[2] R. Narasimhan, Several Complex Variables, Univ. of Chicago Press, 1971.
[3] S. Shimizu, Automorphisms of tube domains, In: Geometry and Analysis on Complex Manifolds, Festschrift for Professor S Kobayashi's 60th Birthday, (eds. T. Mabuchi, J. Noguchi and T. Ochiai), World Scientific, Singapore, New Jersey, London, Hong Kong, 1994, 198-241.
[4] S. Shimizu, Automorphisms and equivalence of tube domains with bounded base, Math. Ann., 315 (1999), 295-320.
[5] S. Shimizu, Prolongation of holomorphic vector fields on a tube domain and its applications, Adv. Stud. Pure Math., 42, 2004, Complex Analysis in Several Variables - Memorial Conference of Kiyoshi Oka's Centennial Birthday, Kyoto/Nara 2001, 289-299.
[6] S. Shimizu, Prolongation of holomorphic vector fields on a tube domain, Tohoku Math. J., 65 (2013), 495-514.

Satoru Shimizu
Mathematical Insutitute
Tohoku University
6-3, Aramaki Aza-Aoba
Aoba-ku
Sendai 980-8578, Japan
E-mail: shimizu@math.tohoku.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 32A07; Secondary 32M05, 32M25.
 Key Words and Phrases. holomorphic equivalence problem, tube domains, solvable groups.
 This work was partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science.

