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Abstract. We consider several classes of knotted objects, namely usual,
virtual and welded pure braids and string links, and two equivalence relations

on those objects, induced by either self-crossing changes or self-virtualizations.

We provide a number of results which point out the differences between these
various notions. The proofs are mainly based on the techniques of Gauss

diagram formulae.

1. Introduction.

In this note, we study several variations of the notions of pure braids and string

links. Recall that string links are pure tangles without closed components, which form a

monoid that contains the pure braid group as the group of units. As usual in knot theory,

these objects can be regarded as diagrams up to Reidemeister moves. When allowing

virtual crossings in such diagrams, modulo a suitably extended set of Reidemeister moves,

one defines the notions of virtual pure braids and virtual string links. Another related

class of object is that of welded knotted objects. Welded knots are a natural quotient

of virtual knots, by the so-called Overcrossings Commute relation, which is one of the

two forbidden moves in virtual knot theory. What makes this Overcrossings Commute

relation natural is that the virtual knot group, and hence any virtual knot invariant

derived from it, factors through it. These welded knotted objects first appeared in a work

of Fenn–Rimanyi–Rourke in the more algebraic context of braids [11]. The study of these

three classes (usual, virtual and welded) of knotted objects is currently the subject of

an ongoing project of Bar-Natan and Dancso [5], [4], [3], which aims at relating certain

algebraic structures to the finite type theories for these objects.

Works of Habegger and Lin [15] show that, in the usual case, any string link is

link-homotopic to a pure braid, and that string links are completely classified up to link-

homotopy by their action on the reduced free group RFn. Here, the link-homotopy is

the equivalence relation on knotted object generated by self-crossing changes, and the

reduced free group is the smallest quotient of the free group Fn where each generator

commutes with all of its conjugates.

In [2], the authors gave welded analogues of these results, recalled in Theorems

4.1 and 4.2 below. There, it appears that the right analogue of link-homotopy in the
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virtual/welded setting is the notion of sv-equivalence, which is the equivalence relation

on virtual knotted objects generated by self-virtualization, i.e. replacement of a classical

self crossing by a virtual one.

This note contains a series of results which analyse further the various quotients

of usual, virtual and welded pure braids and string links up to link-homotopy and sv-

equivalence, and the relations between them. The summary of our results, stated and

proved in Section 4, is given in Figure 1 below. Although all notation and definitions

needed for this diagram will be given in Section 2, let us outline here that

• Pn and SLn stand for the (usual) sets of pure braids and string links on n strands,

and the prefix v and w refer to their virtual and welded counterpart, respectively;

• the superscripts sv and sc refer respectively to the equivalence relations generated

by self-virtualization and self-crossing change.
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Figure 1. Connections between usual/virtual/welded pure braids and string links.

All statements hold for n ≥ 2 except for the “(�)”s, which become isomorphisms for n = 2.
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2. Definitions.

Before we define below the main objects of this note, let us fix a few notation that

will be used throughout.

We set n to be a non negative integer, and we denote by {1, . . . , n} the set of

integers between 1 and n. Denote by I the unit closed interval. We fix n distinct points

{pi}i∈{1,...,n} in I. We will also use the following algebraic notation. Let Fn be the free

group on n generators x1, . . . , xn. We denote by RFn the quotient group of Fn by the

normal closure of the subgroup generated by elements of the form [xi, g
−1xig], where

i ∈ {1, . . . , n} and g ∈ Fn; this quotient is called the reduced free group on n generators.

Let G be either Fn or RFn with its chosen system of generators; we define

• AutC(G) :=
{
f ∈ Aut(G)

∣∣ ∀i ∈ {1, . . . , n},∃g ∈ G, f(xi) = g−1xig
}

, the group of

basis-conjugating automorphisms of G;

• Aut0C(G) :=
{
f ∈ AutC(G)

∣∣ f(x1 · · ·xn) = x1 · · ·xn
}

.

2.1. Usual, virtual and welded knotted objects.

In this section, we introduce the main objects of this note.

Definition 2.1. An n-component virtual string link diagram is an immersion L

of n oriented intervals
⊔n
i=1 Ii in I × I, called strands, such that:

• each strand Ii has boundary ∂Ii = {pi}× {0, 1} and is oriented from {pi}× {0} to

{pi} × {1} (i ∈ {1, . . . , n});

• the singular set of L is a finite set of transverse double points;

• a decoration is added at each double point, and the decorated double point is called

either a classical crossing or a virtual crossing, as indicated in Figure 2.

A classical crossing where the two preimages belong to the same component is called a

self-crossing.

Up to isotopy, the set of virtual string link diagrams is naturally endowed with a

monoidal structure by the stacking product, and with unit element the trivial diagram⋃n
i=1 pi × I.

: positive
33

++

: negative

virtual classical

Figure 2. Virtual and classical crossings.
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RI : ↔ ↔ RII : ↔

RIIIa : ↔ RIIIb : ↔

classical Reidemeister moves

vRI : ↔ vRII : ↔ vRIII : ↔

virtual Reidemeister moves

mRIIIa : ↔ mRIIIb : ↔

mixed Reidemeister moves

Figure 3. Generalized Reidemeister moves on diagrams. Here, all lines are pieces of

strands which may belong to the same strand or not, and can have any orientation.

Two virtual string link diagrams are equivalent if they are related by a finite sequence

of generalized Reidemeister moves, represented in Figure 3. As is well known, virtual and

mixed Reidemeister moves imply the more general detour move, which replaces an arc

going through only virtual crossings by any other such arc, fixing the boundary [18].

We denote by vSLn the quotient of n-component virtual string link diagrams up to

isotopy and generalized Reidemeister moves, which is a monoid with composition induced

by the stacking product. We call its elements n-component virtual string links.

Remark 2.2. In the literature, 1-component (virtual) string links were previously

studied under the name of (virtual) long knots. We shall sometimes make use of this

terminology.

Definition 2.3. An n-component virtual string link diagram is monotone if it

intersects I × {t} at n points for all t ∈ I, where double points are counted with multi-



Usual, virtual and welded knotted objects up to homotopy 1083

plicity.

We denote by vPn the monoid of monotone elements of vSLn, up to monotone

transformations. This monoid is in fact the group of virtual pure braids studied in [6].

Remark 2.4. One could also consider vPn to be the set of diagrams admitting a

monotone representative (up to non-monotone transformations). The question of whether

these two definitions agree is equivalent to that of the embedding of vPn into vSLn; see

Question 5.1.

As explained in the introduction, there is a natural quotient of virtual knot theory,

where one of the forbidden moves is allowed:

Definition 2.5. We define the Overcrossings Commute (OC) move as

OC : ←→ .

We denote by wSLn := vSLn
/
OC the quotient of vSLn up to OC moves, which inherits

a monoid structure from the stacking product. We call its elements n-component welded

string links.

We denote by wPn the submonoid of wSLn of monotone elements up to monotone

transformations. This monoid is in fact the welded pure braid group studied, for instance,

in [5]. Thus, we will freely call welded pure braids the elements of wPn.

Remark 2.6. Unlike in the virtual case, the welded pure braid group is known

to be isomorphic to the subset of wSLn admitting a monotone representative, see [2,

Remark 3.7].

Warnings 2.7.

• The following Undercrossings Commute (UC) move

UC : ←→× ,

was forbidden in the virtual context and is still forbidden in the welded context.

• Virtual and welded notions do not coincide, even for n = 1, where we get respec-

tively the notion of virtual and welded long knots (see [5], and also Section 4, for

a summary of results).

Let us now turn to the classical versions of these objects.

Definition 2.8. An n-component string link is an embedding L =
⊔n
i=1 Ii of n

disjoint copies of the oriented interval I in the standard cube I3 such that Ii runs from
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(pi, 1/2, 0) to (pi, 1/2, 1) for all i ∈ {1, . . . , n}. We denote by SLn the set of n-component

classical string link up to isotopy. It is naturally endowed with a monoidal structure by

the stacking product, with unit
⋃n
i=1{(pi, 1/2)} × I. Borrowing the terminology of [5],

[4], we shall call such string links usual in order to distinguish them from the virtual and

welded ones.

Any usual string link can be generically projected in I2 onto a virtual string link

diagram with classical crossings only. Hence SLn can be described as the set of virtual

string link diagrams with no virtual crossing, modulo the classical Reidemeister moves

only. Actually, classical string links embed in their virtual or welded counterparts. This

is shown strictly as in the knot case [14, Theorem 1.B] ; in particular, this uses the fact

that the group system is a complete invariant, and more specifically the fact that string

link complements are Haken manifolds.

We also denote by Pn the (usual) pure braid group on n strands, which can likewise

be seen as the set of monotone virtual string links with no virtual crossing. Recall from

[11] that this map is known to be a well-defined embedding of Pn in vPn and in wPn.

Remark 2.9. Unlike the class of usual knotted objects, which is intrinsically topo-

logical, virtual and welded objects are diagrammatical in nature. However, both theories

enjoy nice topological interpretations.

It is now well known and understood [8], [19] that virtual knot theory can be realized

topologically as the theory of knots in thickened surfaces modulo handle stabilization.

Note that the Overcrossings Commute relation is not satisfied in this topological setting.

A topological realization of welded theory is given by considering a certain class of

surfaces embedded in 4-space. In particular, welded string links map surjectively onto

the monoid of ribbon tubes studied in [2]. This had first been pointed out by Satoh for

the case of welded knots [25], but some key ideas already appeared in early works of

Yajima [26].

2.2. Self-local moves and homotopy relations.

In this note, we consider two types of equivalence relations on the above

usual/virtual/welded objects, both generated by self-local moves.

Two virtual string link diagrams are related by a self-virtualization if one can be

obtained from the other by turning a classical self-crossing into a virtual one.

Definition 2.10. The sv-equivalence is the equivalence relation on virtual knotted

objects generated by self-virtualizations.

We denote respectively by vSLsv
n and wSLsv

n the quotient of vSLn and wSLn under

sv-equivalence, which are monoids with composition induced by the stacking product.

We also denote by vP sv
n ⊂ vSLsv

n and wP sv
n ⊂ wSLsv

n the respective subsets of elements

having a monotone representative.

There is also a natural notion of crossing change, which is a local move that switches

a positive classical crossing to a negative one, and vice-versa. If we further require that

the two strands involved belong to the same component, we define a self-crossing change.
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The classical notion of link-homotopy is the equivalence relation on usual (string)

links generated by self-crossing changes. It was introduced for links by Milnor in [21],

and later used by Habegger and Lin for string links [15], in order to “study (string) links

modulo knot theory”, and focus on the interactions between distinct components. More

precisely, link-homotopy on usual string links allows not only to unknot each component

individually, but also simultaneously, since every usual string link is link-homotopic to a

pure braid.

Thanks to the local nature of crossing changes, the notion of link-homotopy can be

extended to the whole monoids vSLn and wSLn.

Definition 2.11. The sc-equivalence is the equivalence relation on virtual knotted

objects generated by self-crossing changes.

We denote the quotient of vSLn under sc-equivalence by vSLsc
n . In addition, we

denote by vP sc
n the image of vPn in vSLsc

n . We shall use similar notation in the usual

and welded cases.

Remark 2.12. Note that, in the one-component case, virtual knotted object up

to sc-equivalence coincide with the notion of flat virtual knotted objects introduced in

[18].

Since a crossing change can be realized by a sequence of two (de)virtualization moves,

the sc-equivalence is clearly sharper than the sv-equivalence. It is also a priori a more

natural extension of the classical situation. However, as already noted in [2], it appears

not to be the relevant notion for the study of welded string links “modulo knot theory”;

this is recalled in further details in Section 4.1.

3. Gauss diagram formulae for virtual and welded string links.

In this section, we recall the main tools for proving the results of this paper, namely

Gauss diagram formulae [12], [14], [24].

3.1. Gauss diagrams.

We first roughly review the notion of Gauss diagrams.

Definition 3.1. A Gauss diagram G is a set of signed and oriented (thin) arrows

between points of n ordered and oriented vertical (thick) strands, up to isotopy of the

underlying strands. Endpoints of arrows are called ends and are divided in two parts,

heads and tails, defined by the orientation of the arrow (which goes by convention from

the tail to the head). An arrow having both ends on the same strand is called a self-

arrow. Any Gauss diagram obtained by the deletion of several (possibly none) arrows of

G is called a subdiagram of G.

Examples of Gauss diagrams can be found in Figures 4 to 8, 10 and 11 in the next

section. As these figures also illustrate, Gauss diagrams serve as a combinatorial tool for

faithfully encoding virtual/welded knotted objects. Indeed, it is well known that for any

virtual string link diagram L, there is a unique associated Gauss diagram GL, where the
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set of classical crossings in L is in one-to-one correspondence with the set of arrows in

GL, and that this correspondence induces a bijection between vSLn and the set of Gauss

diagrams up to the natural analogues of classical Reidemeister moves1 of Figure 3. See

[12], [14] for the usual link case.

Likewise, welded diagrams are faithfully encoded by equivalence classes of Gauss

diagram up to the following Tails Commute (TC) move, which is the Gauss diagram

analogue of Overcrossings Commute:

TC : ε

η

←→ η

ε

,

where the signs ε and η are arbitrary.

Finally, the next observation allows to study the two homotopy relations introduced

in Section 2.2. At the level of Gauss diagrams, the sc-equivalence is generated by the local

move which switches both the orientation and the sign of a self-arrow; the sv-equivalence,

on the other hand, is simply generated by the removal of a self-arrow.

3.2. Gauss diagrams formulae.

We now review Gauss diagrams formulae. First, let us define an arrow diagram to

be an unsigned Gauss diagram i.e. an arrow diagram on n strands of n intervals with

unsigned arrows (see [23]).

Given a Gauss diagram G, there is an associated formal linear combination of arrow

diagrams

i(G) :=
∑
G′⊆G

σ(G′)AG′ ,

where the sum runs over all subdiagrams of G, σ(G′) denotes the product of the signs

in the subdiagram G′ and AG′ is the arrow diagram obtained from G′ by forgetting the

signs.

The Z-module An generated by arrow diagrams on n strands comes equipped with

a natural scalar product (−,−), defined by (A,A′) = δA,A′ for any two arrow diagrams

A and A′, where δ denotes the Kronecker delta symbol. So given any formal linear

combination F of arrow diagrams in An, one can define a map on the set of Gauss

diagrams on n strands 〈F ;−〉 by setting

〈F ;G〉 :=
(
F, i(G)

)
for any Gauss diagram G. Roughly speaking, this map counts with signs subdiagrams of

G.

We can define in this way a map on the set of virtual diagrams by setting 〈F ;L〉 :=

〈F ;GL〉, for any virtual string link diagram L with associated Gauss diagram GL. We

1Note that there are no Gauss diagram analogues of the mixed and virtual Reidemeister moves, since
virtual crossings are simply not materialized in Gauss diagrams.
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say that F is the defining linear combination of the map 〈F ;−〉. Now, such a map does

not, in general, factor through the generalized Reidemeister moves. We recall below

a simple criterion, due to Mortier [22], which gives a sufficient condition for getting a

virtual string link invariant in this way. To state this criterion, we need a few more

definitions.

A degenerate arrow diagram is an arrow diagram where two arrow ends are allowed

to coincide. We denote by Dn the abelian group freely generated by degenerate arrow

diagrams on n strands, modulo the relations:

= + ; = + .

In each term of the above relations, the three vertical lines are portions of the n vertical

strands of a degenerate arrow diagram, which may belong to the same component or not.

Two arrow ends are called adjacent if they are met consecutively when running along

some strand. An internal edge of an arrow diagram is a portion of a strand cobounded

by two distinct adjacent arrow ends. We define a linear map d : An → Dn by sending

any arrow diagram A on n strands to

d(A) :=
∑

internal edges e of A

(−1)↑e .η(e).Ae,

where Ae ∈ Dn denote the degenerate arrow diagram obtained by shrinking e to a point,

↑e∈ {0, 1, 2} is the number of arrow heads bounding e, and η(e) ∈ {±1} is given by

η(e) =

{
−1 if the two arrows cobounding e do not cross in A,

+1 otherwise,

with the convention that two arrows do not cross in an arrow diagram if, when running

along the n strands I1 to In, in order and following the orientations, we meet the two

ends of one of these arrows consecutively.

Theorem 3.2. Let F ∈ An be a linear combination of arrow diagrams on n

strands:

1. if F does not contain any arrow with adjacent ends, then 〈F ;−〉 is invariant under

move RI ;

2. if F does not contain two arrows with adjacent heads and adjacent tails, then 〈F ;−〉
is invariant under move RII ;

3. if 〈F ;−〉 is invariant under move RII and if d(F ) is zero in Dn, then 〈F ;−〉 is

invariant under moves RIII ;

4. if F does not contain any pair of adjacent arrow tails, then 〈F ;−〉 is invariant

under OC ;
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5. if, for each diagram of F which has a self-arrow ~a, the diagram obtained by reversing

the orientation of ~a also appears in F with opposite sign, then 〈F ;−〉 is invariant

under self-crossing change;

6. if F does not contain any self-arrow, then 〈F ;−〉 is invariant under self-

virtualization.

The only difficult part of the statement is the invariance under RIII and it is due to

A. Mortier. It can be found in [22] where it is stated as an equivalence in the context

of virtual knots. However, the arguments adapt verbatim to the case of virtual string

links. Actually, Mortier pointed out the fact that each point in Theorem 3.2 is also

an equivalence in the string link case (this fact can be proved using a suitable Polyak

algebra).

Example 3.3. As an example, let us consider the two invariants v2,1 and v2,2,

defined in [14] by

v2,1 =

〈
,−
〉

and v2,2 =

〈
,−
〉
.

They are easily seen to be invariants of virtual 1-string links. Indeed, for, say, the latter

one, we have

d

( )
= − + − = 0 ∈ D1.

The invariant v2,1 is moreover a welded 1-string links invariant, while v2,2 is not, since

the defining diagram of the latter contains two adjacent arrow tails. As a matter of fact,

the virtual string link K of Figure 5 is trivial in wSL1, but we have v2,2(K) = −1.

In the rest of the paper, we leave it as an exercise to the reader to check using

Theorem 3.2 that each invariant defined via an arrow diagram formula has the desired

invariance properties.

4. Results on usual, virtual and welded braid-like objects.

In this section, we recall some comparative results on usual, virtual and welded

knotted objects, and we provide further results comparing various notions of homotopy

for these objects. They are roughly summarized in Figure 1.

4.1. Some analogies between the usual and welded theories.

Let us start by recalling a couple of results from [2], on the sv-equivalence for welded

string links. On one hand, we have the following

Theorem 4.1 ([2]). Every welded string link is monotone up to self-virtualization.

It follows in particular that wSLsv
n is a group. Theorem 4.1 is a welded analogue of a

result of Habegger and Lin [15], which states that any usual string link is link-homotopic

to a pure braid.
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On the other hand, we have a classification result, analogous to [15, Theorem 1.7]

in the usual case.

Theorem 4.2 ([2]). The groups wSLsv
n , wP sv

n and AutC(RFn) are all isomorphic.

Note, moreover, that this classification of welded string links up to sv-equivalence is

achieved by a virtual extension of Milnor invariants.

The next theorem illustrates the fact, suggested by the above results, that the sv-

equivalence can indeed be seen as a natural extension of the usual link-homotopy to the

welded case.

Theorem 4.3. Let L1, L2 ∈ SLn, and let ιw : SLn → wSLn be the natural map

induced by the inclusion at the level of diagrams. If ιw(L1) and ιw(L2) are sv-equivalent,

then L1 and L2 are sc-equivalent.

In other words, the notion of self-virtualization restricted to welded string links with only

classical crossings coincides with the usual self-crossing change.

Proof. Recall that Aut0C(RFn) is the set of automorphisms in AutC(RFn) which

leave the product x1x2 · · ·xn invariant. Theorem 1.7 of [15] states that SLsc
n
∼=

Aut0C(RFn) and it is easily checked at the diagram level that this isomorphism is com-

patible, through the map ιw, with the one of Theorem 4.2. Therefore if L1, L2 ∈ SLn
are sv-equivalent, then they represent the same automorphism in AutC(RFn) which is

actually in Aut0C(RFn) since it corresponds to some usual string links. According to

Theorem 1.7 of [15], this implies that L1 and L2 are sc-equivalent. �

We will see below that the sc-equivalence, on the other hand, does not allow such

generalizations, and hence appears not to be the right notion to be considered in this

context.

4.2. sc-equivalence for virtual and welded string links.

In this section, we compare virtual and welded pure braids and string links up to

sc-equivalence.

In the case n = 1, the situation is rather simple and well-known.

Obviously, we have vP sc
1
∼= wP sc

1
∼= {1}, since the virtual and welded braid groups

on one strand themselves are trivial. In the string link case, however, virtual and welded

objects differ:

Lemma 4.4. Self-crossing change is an unknotting operation for welded 1-string

links, but isn’t for virtual 1-string links. In other words, we have wSLsc
1
∼= {1}, whereas

vSLsc
1 � {1}.

Proof. Let us prove the first assertion. A welded string link on one strand has a

Gauss diagram consisting of a single vertical strand and several signed self-arrows, and

a crossing change on this welded long knot corresponds to switching both the sign and

orientation of one arrow. So, for any two arrow ends that are adjacent on the vertical

strand, we may safely assume up to crossing changes that these are two arrow tails, hence

we may freely exchange their relative positions on the strand using TC. This implies that,
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o /

+
+

−
−

Figure 4. The virtual long knot K0, and its Gauss diagram.

o /

−

+

Figure 5. The virtual string link K, and its Gauss diagram.

up to crossing change and TC, any Gauss diagram of a long knot can be turned into a

diagram consisting of only arrows with adjacent endpoints. By R1, such a Gauss diagram

is clearly trivial.

We now turn to the virtual case. Consider the virtual long knot K0 shown in Figure

4, which is a string link version of the Kishino knot. As pointed out in [10], the closure

of K0 is a virtual knot which cannot be unknotted by crossing changes. This proves that

K0 is not sc-equivalent to the trivial long knot. �

Similar results in the knot case can be found in [10, Section 1]; note however that,

unlike in the usual case, the closure map from virtual/welded long knots to virtual/welded

knots is not an isomorphism [18].

Remark 4.5. As was pointed out to the authors by Anne Isabel Gaudreau, an-

swering a question raised in a preliminary version of this paper, the closure map used in

the latter part of the proof, from sc-equivalence classes of virtual long knots to virtual

knots up to self-crossing changes, has a non trivial kernel. Consider, for example, the

virtual long knot K represented in Figure 5. On one hand, we clearly have that the clo-

sure of K is trivial. On the other hand, the writhe polynomial defined in [9] detects K,

showing that it is a non trivial element in vSLsc
1 ; indeed, it is shown in [9, Theorem 4.1]

that the writhe polynomial is an invariant of flat virtual long knot, that is, an invariant

of virtual long knots up to sc-equivalence (see Remark 2.12).

Lemma 4.6. For n ≥ 1, there are distinct virtual and welded string links which are

sc-equivalent, i.e. the canonical projections vSLn // // vSLsc
n and wSLn // // wSLsc

n

are not injective.

Proof. Consider the (usual) string link T whose closure is the right-handed tre-

foil. As recalled in the introduction, the knot group is an invariant of both virtual and
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Figure 6. The virtual pure braids G and G′, and their Gauss diagrams.

welded knots, which implies that T is non trivial in both vSL1 and wSL1 (since the

knot group of the trefoil is non trivial). However, T is clearly sc-equivalent to the trivial

1-component string link. �

Recall from [13] that the canonical projection from the pure braid group to P sc
n is

not injective. The proof of Goldsmith actually applies to the virtual and welded context:

Lemma 4.7. For n > 2, there are distinct virtual and welded pure braids which are

sc-equivalent, i.e. the canonical projections vPn // // vP sc
n and wPn // // wP sc

n are

not injective.

Proof. Consider the pure braids G and G′ shown in Figure 6, which (implicitly)

appear in Figure 2 of [13]. As shown there, these two pure braids are sc-equivalent. The

result then follows by noting that usual braids embed injectively in vPn and in wPn.

Indeed, the latter inclusion follows immediately from the interpretations of Pn and wPn
in terms of automorphism groups of Fn (see the left rectangle in Figure 1), and clearly

implies the former. �

More strikingly, although any 1-component welded string link can be unknotted

using crossing changes, this cannot always be achieved simultaneously for all strands of

a welded string link with two or more components:

Lemma 4.8. For all n > 1, there are virtual and welded string links which are

not sc-equivalent to any welded pure braid, i.e. the inclusions vP sc
n
� � // vSLsc

n and

wP sc
n
� � // wSLsc

n are not surjective.

Proof. Consider the virtual 2-string link L of Figure 7 and the invariant S2 :

vSL2 → Z defined by

S2 =

〈
− − + − + ,−

〉
.

Notice that S2 is an invariant of sc-equivalence by Theorem 3.2. Note also that S2 does

detect L, since S2(L) = 1. Now assume that L is sc-equivalent to a pure braid. Since a

pure braid admits a representative whose Gauss diagram has only horizontal arrows, and

since the defining formula for S2 contains no such diagram with only horizontal arrows,
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o / +

−
o /

−

L B

Figure 7. The virtual 2-string links L and B, and their Gauss diagrams.

we would have S2(L) = 0. This proves that L is not sc-equivalent to a pure braid.

The result in the welded case follows by noting that S2 is also a welded invariant, using

Theorem 3.2. �

4.3. Comparing sc and sv-equivalences.

We now compare the sc-equivalence and the sv-equivalence for welded knotted ob-

jects.

The 1-component case is again rather trivial. As seen in Lemma 4.4, the sc-

equivalence yields different quotients on vSL1 and wSL1. The sv-equivalence, on the

other hand, trivializes both: vSLsv
1
∼= wSLsv

1
∼= {1}. Indeed, virtualizing all crossings of

a welded (or virtual) long knot always yields the trivial element.

For n > 1, the situation is different:

Lemma 4.9. For all n > 1, there are virtual and welded string links which are sv-

equivalent but not sc-equivalent, i.e. the canonical projections vSLsc
n

// // vSLsv
n and

wSLsc
n

// // wSLsv
n are not injective.

Proof. Consider the welded 2-string links L and B in Figure 7. As shown in the

proof of Lemma 4.8, L is not sc-equivalent to a pure braid. However, L is equivalent, up

to self-virtualization to the pure braid B. As for Lemma 4.8, the argument applies to

both the virtual and welded context. �

This remains true when restricting to pure braid groups:

Lemma 4.10. For all n > 1, there are virtual and welded pure braids which

are sv-equivalent but not sc-equivalent, i.e. the surjective maps vP sc
n

// // vP sv
n and

wP sc
n

// // wP sv
n are not injective.

Proof. Let T and T ′ be the welded pure braids shown in Figure 8. On one hand,

we have that T and T ′ are sv-equivalent. This is shown in Figure 9 below; in this figure,

the first move is achieved by a sequence of classical Reidemeister moves, the second is

a pair of self-virtualizations, the third is a pair of detour moves, and the final move is

a planar isotopy. Note that, at the Gauss diagram level, this is merely an instance of

a more general result on commutation of arrows supported by two strands, stated in

[2, Proposition 4.11].
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Figure 8. The welded pure braids T and T ′, and their Gauss diagrams.

oo // oo // oo // oo //

Figure 9. The welded pure braids T and T ′ are sv-equivalent.

On the other hand, T and T ′ are not sc-equivalent. This can be checked using the

invariant Q2 defined by the formula

Q2 =

〈
− + − + − ,−

〉
.

By Theorem 3.2, we have that Q2 is an invariant of welded 2-string links up to sc-

equivalence, and it is straightforwardly checked that Q2(T ) = 1, while Q2(T ′) = −1.

�

Lemma 4.6 readily implies that the canonical projections vSLn → vSLsv
n and

wSLn → wSLsv
n are not injective for n ≥ 1, and the same observation holds for

vPn → vP sv
n and wPn → wP sv

n by Lemma 4.7, for n > 2. Actually, in the welded

pure braid case, this remains true for n = 2:

Lemma 4.11. We have wP2 � wP sv
2 .

Proof. One can easily prove that any automorphism in AutC(RF2) can be writ-

ten as ξη1,η2 for some η1, η2 ∈ N, where ξη1,η2(x1) = xη12 x1x
−η1
2 and ξη1,η2(x2) =

xη21 x2x
−η2
1 , and that ξη1,η2ξη3,η4 = ξη1+η3,η2+η4 . This implies that wP sv

2
∼= AutC(RF2) ∼=

Z2, while it is well-known that wP2 = F2 (see for instance [11]). �

Remark 4.12. Lemma 4.11 can also be proved using the invariant Q2 used for

Lemma 4.10. Indeed, it already follows from [2, Proposition 4.11] that wP sv
2 is abelian,

so it suffices to show that this is not the case for wP2. This is a consequence of the fact

that Q2 distinguishes the welded pure braids T and T ′ of Figure 8. More generally, since

Q2 is an invariant of sc-equivalence, we have from this observation that none of vP2,

vP sc
2 , wP2 and wP sc

2 is abelian.
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4.4. Comparing virtual and welded objects.

As pointed out in [5, Section 3.1], welded long knots are strictly weaker than virtual

long knots, in the sense that there exist non trivial virtual long knots which are trivial

up to OC. This implies that, more generally, we have

Lemma 4.13. For all n ≥ 1, there are distinct virtual string links which are equal

as welded string links, i.e. vSLn
�
// // wSLn .

Remark 4.14. It may be worth mentioning that knottedness of each individual

component is not the only obstruction to having vSLn isomorphic to wSLn. Actually,

the following example shows that this also can’t be valid among string links with trivial

components. Let L′ be the virtual 2-string link shown in Figure 10, which is equivalent in

wSL2 to the virtual pure braid B′ represented in the same figure. Now, let V2 : vSL2 → Z
be the invariant introduced in [20] and defined by the Gauss diagram formula

V2 =

〈
− − ,−

〉
.

We have that V2(L′) = 1, whereas V2(B′) = 0.

The invariant V2 can moreover be symmetrized into

V ∗2 =

〈
− − + − + ,−

〉
,

which, by Theorem 3.2, is invariant under self-crossing change. The same example proves

then that vSLsc
n � wSLsc

n for n ≥ 2.

By comparing the corresponding group presentations, given for instance in [5, Sec-

tion 2], it can be seen that the group vP2 is isomorphic to wP2. This remains true up to

sc-equivalence, i.e. we have vP sc
2
∼= wP sc

2 . Up to sv-equivalence, the isomorphism even

holds for string links, i.e. we have vSLsv
2
∼= wSLsv

2 , as a consequence of [2, Proposi-

tion 4.11].

However, as soon as the number of strands is greater than 3, it is a general fact that,

even up to sc or sv-equivalence, the virtual and welded quotients are actually distinct:

o / +

+

o /
+

L′ B′

Figure 10. The virtual 2-string links L′ and B′, and their Gauss diagrams.
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−

−

C C ′

Figure 11. The virtual pure braids C and C ′, and their Gauss diagrams.

Lemma 4.15. For all n > 2, there are virtual pure braids which are distinct, even

up to sc or sv-equivalence, but are equivalent as welded pure braids.

It follows that the welded projections of vPn, vP sc
n , vP sv

n , vSLn, vSLsc
n and vSLsv

n are

all non injective.

Proof. Consider the virtual pure braids C and C ′ shown in Figure 11. As obvious

from the Gauss diagram point of view, they are equivalent in wP3, but they are distinct

in vP3, vP sc
3 and vP sv

3 . Indeed, the virtual string link invariant

M2 =

〈
− − ,−

〉
,

which by Theorem 3.2 is invariant under self-crossing change and self-virtualization,

satisfies M2(C) = 1 but M2(C ′) = 0. �

5. Some open questions.

All the connections between the different notions and quotients of string links are

summarized in Figure 1. However, several questions remain open, and some are listed

below.

Question 5.1. Is the inclusion map vPn → vSLn injective?

As noted in Remark 2.4, this is equivalent to showing that the virtual pure braid group

vPn is isomorphic to its quotient under non-monotone transformations. Recall that the

analogous maps Pn → SLn and wPn → wSLn for usual and welded objects are both

injective. It is also known that Pn embeds in wSLn (see e.g. [2]), which implies that Pn
embeds in vSLn as well.

Question 5.2. Are welded pure braids the only invertibles in wSLn? Are they

in wSLsc
n ? Likewise, are virtual pure braids the only invertibles in vSLn, vSLsc

n and

vSLsv
n ?

This is a natural question in view of the usual case, where pure braids form the group of

units in SLn, as shown in [16].
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Question 5.3. Is the map vP sv
n ↪→ vSLsv

n surjective? In other words, is any

virtual string link monotone up to self-virtualization?

By Theorem 4.1, the answer is affirmative in the welded case. Also, as stated above, we

have vSLsv
2
∼= wSLsv

2
∼= Z2 by [2, Proposition 4.11], hence an affirmative answer in the

2-strand case. In the general case, however, the answer seems likely to be negative; for

example, the virtual string link depicted below is a good candidate for a counter-example,

although the techniques used in the present paper do not apply:

.

Question 5.4. Does vP sc
2 coincide with vP2? Does wP sc

2 coincide with wP2?

This question is motivated by the usual case, where P2 is known to coincide with P sc
2 .

This follows from the fact that the automorphism of RF2 associated to the generator of

P sc
2 (which is the image of the generator of P2 = Z) has no finite order.

Finally, recall from Remark 2.9 that one of the main features of welded knotted

objects is that they are realized topologically as ribbon 2-knotted objects in 4-space,

via Satoh’s Tube map. Although less central in the present note, the following question

seems worth adding.

Question 5.5. Is the Tube map, from welded string links to ribbon tubes [2],

injective?

This question is in general open, see [5], [4]. It is true when restricting to welded braids

by [7] and to string links up to self-virtualization [2], but fails in the case of welded knots

[17].

References
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