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Extension theorem for rough paths via fractional calculus
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Abstract. On the basis of fractional calculus, we introduce an integral

of weakly controlled paths, which is a generalization of integrals in the context

of rough path analysis. As an application, we provide an alternative proof of
Lyons’ extension theorem for geometric Hölder rough paths together with an

explicit expression of the extension map.

1. Introduction.

Recently, several different approaches have been proposed for the study of the theory

of rough paths. One of those approaches is based on fractional calculus and was intro-

duced by Hu and Nualart [5] and further investigated by Besalú and Nualart [1] and

the author [6]. This approach is beneficial in that the integrals along rough paths are

described explicitly by ordinary Lebesgue integrals, in contrast to the rough integration

of Lyons [7] as the limit of a type of Riemann sums. Accordingly, one can expect some

applications of this approach, such as more concise proofs of fundamental results in the

theory of rough paths.

In this paper, we first describe integrals along Hölder rough paths for more general

integrands than those studied in the author’s previous work [6]. In [6], the author in-

troduced an integral along β-Hölder rough paths for any roughness β ∈ (0, 1] by using

fractional derivative operators, and proved that the integral coincides with the first level

path of the rough integral along geometric β-Hölder rough paths. We show in this paper

that the definition of integral introduced in [6] can be modified so that it is suitable for

weakly controlled paths. Here, the concept of weakly controlled paths is a generalization

of the usual integrands in the context of rough path analysis, which was introduced by

Gubinelli [4] to produce a more general framework of rough integration and differential

equations driven by rough paths. This generalization of the author’s previous work [6]

has an application to Lyons’ extension theorem (also called the first fundamental re-

sult in the theory of rough paths) as follows. Let X = (1, X1, . . . , XN ) be a β-Hölder

rough path, that is, a multiplicative functional of degree N with finite β-Hölder esti-

mates (see (2.2) and (2.3)). Here, N is the unique integer such that N ≤ 1/β < N + 1.

Lyons’ extension theorem states that for any integer k ≥ N + 1, the rough path X

extends to the unique multiplicative functional of degree k that possesses β-Hölder es-

timates (see [7, Theorem 2.2.1] for the exact statement of the claim). This extension

map has been constructed by a discrete approximation similar to the Riemann sums [7].
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By using the integration introduced in this paper, we give an expression of the exten-

sion map induced by geometric Hölder rough paths as ordinary Lebesgue integrals for

fractional derivative operators (Definition 3.11). This result can also be regarded as an

alternative proof of Lyons’ extension theorem for geometric Hölder rough paths. The in-

tegrals defined in Definition 3.11 were not treated in the author’s previous work [6]; the

generalization of integrands in this paper makes it possible to describe the extension map

explicitly. Gubinelli also proved Lyons’ extension theorem in his framework (cf. [4, Propo-

sition 10]), but our approach is different from his and the results are not comparable;

indeed, Gubinelli’s theory [4] is not based on fractional calculus.

The remainder of this paper is organized as follows. In Section 2, as preliminaries, we

provide a brief review of concepts of rough paths, weakly controlled paths, and fractional

integral and derivative operators. In Section 3, we define integrals of weakly controlled

paths and introduce the main theorems along with the application to Lyons’ extension

theorem. The last section is devoted to the proofs of some results of Section 3.

2. Preliminaries.

In this section, we briefly review some concepts, such as rough paths [3], [7], [8],

[9], weakly controlled paths [2], [4], and fractional integral and derivative operators [10],

[12]. Our version of Lyons’ extension theorem is also described.

2.1. Notation.

Let V and W be finite-dimensional normed spaces with norms ‖ · ‖V and ‖ · ‖W ,

respectively. We use L(V,W ) to denote the set of all linear maps from V to W . For a

topological space S, let C(S, V ) denote the space of all V -valued continuous functions

on S. For a, b ∈ R with a < b and λ ∈ (0, 1], we denote by Cλ-Höl([a, b], V ) the space of

all V -valued λ-Hölder continuous functions on the interval [a, b]. Let T denote a positive

constant. This constant will be fixed throughout this paper. The simplex {(s, t) ∈ R2 :

0 ≤ s ≤ t ≤ T} is denoted by 4, which is a closed subset of R2. Let C1(V ) and C2(V )

denote C([0, T ], V ) and C(4, V ), respectively. For f ∈ C1(C) and g ∈ C2(C), we define

gf ∈ C2(C) by

(gf)s,t := gs,tft for (s, t) ∈ 4. (2.1)

For g ∈ C2(V ) and µ > 0, we set

|||g|||µ := sup
0≤s<t≤T

‖gs,t‖V
(t− s)µ

.

Furthermore, we set Cµ2 (V ) := {g ∈ C2(V ) : |||g|||µ <∞} and Cλ1 (V ) := Cλ-Höl([0, T ], V ).

Hereafter, E and F denote the Euclidean spaces Rd and Re respectively, and | · |
denotes the Euclidean norms of E, F , and their tensor spaces. For a positive integer k,

T (k)(E) denotes
⊕k

j=0E
⊗j and we define the norm on T (k)(E) as

‖a‖T (k)(E) :=

k∑
j=0

|aj | for a = (a0, a1, . . . , ak) ∈ T (k)(E).
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The set of all X = (X0, X1, . . . , Xk) ∈ C(4, T (k)(E)) such that X0
s,t = 1 for all (s, t) ∈ 4

is denoted by C0(4, T (k)(E)).

2.2. Rough paths.

Let k be a positive integer. We say that X = (1, X1, . . . , Xk) ∈ C0(4, T (k)(E)) is a

multiplicative functional of degree k in E if

j∑
i=0

Xi
s,u ⊗X

j−i
u,t = Xj

s,t (2.2)

for each j = 1, . . . , k and s, t, u ∈ [0, T ] with s ≤ u ≤ t. Let β be a real number with

0 < β ≤ 1. We say that X = (1, X1, . . . , Xk) ∈ C0(4, T (k)(E)) has finite β-Hölder

estimates if

sup
0≤s<t≤T

|Xj
s,t|

(t− s)jβ
<∞ (2.3)

for each j = 1, . . . , k. We denote by C0,β(4, T (k)(E)) the space of all X =

(1, X1, . . . , Xk) ∈ C0(4, T (k)(E)) with finite β-Hölder estimates and define the distance

on C0,β(4, T (k)(E)) as

dβ,k(X, X̃) := max
1≤j≤k

|||Xj − X̃j |||jβ for X, X̃ ∈ C0,β(4, T (k)(E)).

Let x ∈ C11(E). We set

Xj
s,t =

∫
s<u1<···<uj<t

dxu1
⊗ · · · ⊗ dxuj

(2.4)

for each j = 1, . . . , k and (s, t) ∈ 4. Then we see that X = (1, X1, . . . , Xk) is a

multiplicative functional of degree k in E with finite 1-Hölder estimates and we call

this the step-k signature of x. Let N denote the integer determined by the relation

N ≤ 1/β < N + 1. A multiplicative functional of degree N in E with finite β-Hölder

estimates is called a β-Hölder rough path in E. A step-N signature is called a smooth

rough path and the elements in the closure of the set of all smooth rough paths with

respect to the distance dβ,N are called geometric β-Hölder rough paths. The spaces of

all β-Hölder rough paths, smooth rough paths, and geometric β-Hölder rough paths in

E are denoted by Ωβ(E), SΩβ(E), and GΩβ(E), respectively. Let us now introduce our

version of Lyons’ extension theorem.

Theorem 2.1 (cf. [7, Theorem 2.2.1]). Let X = (1, X1, . . . , XN ) ∈ Ωβ(E). For

any integer k ≥ N + 1, there exists a unique extension of the rough path X to a multi-

plicative functional of degree k in E with finite β-Hölder estimates.

In [7, Theorem 2.2.1], rough paths X of finite p-variation with p := 1/β are treated

and the exact claim includes quantitative estimates for the extension ofX by using control

functions ω. For Theorem 2.1 and the alternative proof of the theorem for geometric β-

Hölder rough paths X ∈ GΩβ(E) given in Section 3, we consider only a particular case
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where ω is given by ω(s, t) = C(t − s) for some constant C for simplicity and are not

concerned with uniform estimates for the continuity of the extension map.

2.3. Weakly controlled paths.

Let β be a real number with 0 < β ≤ 1, k a positive integer, and X ∈
C0,β(4, T (k)(E)). We say that a k-tuple Y = (Y (0), Y (1), . . . , Y (k−1)) is a path weakly

controlled by X with values in F if Y satisfies the following two properties:

(1) for each l = 0, . . . , k − 1, Y (l) ∈ Cβ1 (L(E⊗l, F ));

(2) for each l = 0, . . . , k − 1, Rk−1−ll (X,Y ) ∈ C(k−l)β2 (L(E⊗l, F )), where

Rk−1−ll (X,Y )s,t := Y
(l)
t −

k−1−l∑
i=0

Y (l+i)
s Xi

s,t for (s, t) ∈ 4. (2.5)

It is sometimes referred to as a weakly controlled path for X ∈ C0,β(4, T (k)(E)). The

space of all paths weakly controlled by X ∈ C0,β(4, T (k)(E)) with values in F is denoted

by Qβ,kX (F ), which is a normed space under the norm Y 7→
∑k−1
l=0 |Y

(l)
0 |+‖Y ‖X,β,k. Here,

‖Y ‖X,β,k is defined by

‖Y ‖X,β,k :=

k−1∑
l=0

|||Rk−1−ll (X,Y )|||(k−l)β for Y ∈ Qβ,kX (F ). (2.6)

Although the highest level path Xk is not necessary for our definition of paths weakly

controlled by X ∈ C0,β(4, T (k)(E)), we need it in applications. The multiplicative

property (2.2) is not assumed for X ∈ C0,β(4, T (k)(E)) in the definition of paths weakly

controlled by X. In the following examples, however, such properties play an essential

role in confirming property (2) in the definition above.

Example 2.2. Let X ∈ GΩβ(E). For ξ ∈ E, we define X1,ξ ∈ Cβ1 (E) as

X1,ξ
t := ξ +X1

0,t for t ∈ [0, T ].

Let ϕ be an L(E,F )-valued (N − 1)-times continuously Fréchet differentiable function

on E whose (N − 1)th derivative ∇N−1ϕ is Lipschitz continuous on E. For each l =

0, . . . , N − 1, we set Y (l) ∈ Cβ1 (L(E⊗l, L(E,F ))) as

Y
(l)
t := ∇lϕ(X1,ξ

t ) for t ∈ [0, T ]. (2.7)

We note that, for each j = 1, . . . , N and (s, t) ∈ 4, the symmetric part of Xj
s,t is equal

to (X1
s,t)
⊗j/j!. By using this property of X ∈ GΩβ(E), the symmetry of the derivatives

of ϕ, and Taylor’s theorem, we can show that, for each l = 0, . . . , N − 1 and (s, t) ∈ 4,

|RN−1−ll (X,Y )s,t| ≤ ‖∇N−1ϕ‖Lip(|||X1|||N−lβ /(N − l)!)(t− s)(N−l)β ,

where



Lyons’ extension theorem via fractional calculus 897

‖∇N−1ϕ‖Lip := sup
x,y∈E, x 6=y

|∇N−1ϕ(x)−∇N−1ϕ(y)|
|x− y|

.

Thus, Y = (Y (0), Y (1), . . . , Y (N−1)) belongs to Qβ,NX (L(E,F )). In addition, if 1/3 < β ≤
1, then Y belongs to Qβ,NX (L(E,F )) for every X ∈ Ωβ(E).

Example 2.3 (cf. [4, Proposition 4]). Let 1/3 < β ≤ 1/2, X ∈ C0,β(4, T (2)(E)),

and Y = (Y (0), Y (1)) ∈ Qβ,2X (F ). Let ψ be an L(E,F )-valued continuously Fréchet

differentiable function on F whose derivative ∇ψ is Lipschitz continuous and bounded

on F . We set Z(0) ∈ Cβ1 (L(E,F )) and Z(1) ∈ Cβ1 (L(E,L(E,F ))) as

Z
(0)
t := ψ(Y

(0)
t ) and Z

(1)
t := ∇ψ(Y

(0)
t )Y

(1)
t for t ∈ [0, T ]. (2.8)

Then, Z = (Z(0), Z(1)) belongs to Qβ,2X (L(E,F )).

Example 2.4. Let X be a multiplicative functional of degree k in E with finite

β-Hölder estimates. For each l = 0, . . . , k − 1, we set Y (l) ∈ Cβ1 (L(E⊗l, L(E,E⊗(k+1))))

as

(Y
(l)
t (η))(ξ) := (Xk−l

0,t ⊗ η)⊗ ξ for t ∈ [0, T ], (2.9)

where η ∈ E⊗l and ξ ∈ E. From (2.2), for each l = 0, . . . , k − 1 and (s, t) ∈ 4,

Rk−1−ll (X,Y )s,t = Xk−l
0,t −

k−1−l∑
i=0

Xk−l−i
0,s ⊗Xi

s,t = Xk−l
s,t . (2.10)

Then, from (2.3), Y = (Y (0), Y (1), . . . , Y (k−1)) belongs to Qβ,kX (L(E,E⊗(k+1))).

The weakly controlled path in Example 2.4 is used in the proof of Lyons’ extension

theorem (Theorem 3.14).

2.4. Fractional integrals and derivatives.

Let a and b be real numbers with a < b. For p ∈ [1,∞), Lp(a, b) denotes the real

Lp-space on the interval [a, b] with respect to the Lebesgue measure. Let f ∈ L1(a, b)

and α ∈ (0,∞). The left- and right-sided Riemann–Liouville fractional integrals of f of

order α are defined for almost all t ∈ (a, b) by

Iαa+f(t) :=
1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds

and

Iαb−f(t) :=
(−1)−α

Γ(α)

∫ b

t

(s− t)α−1f(s) ds,

respectively, where (−1)−α := e−iπα and Γ(α) denotes the gamma function, namely

Γ(α) :=
∫∞
0
rα−1e−r dr. We use Iαa+

(b−)

(Lp) to denote the image of Lp(a, b) by the opera-
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tor Iαa+
(b−)

. Here, we note a simple criterion for functions to belong to Iαa+
(b−)

(Lp). This crite-

rion is used frequently in Section 4 without being explicitly noted: if f ∈ Cλ-Höl([a, b],R)

with 0 < λ ≤ 1, then f ∈ Iαa+(Lp) ∩ Iαb−(Lp) for any 1 ≤ p < ∞ and 0 < α < λ. Let

f ∈ Iαa+
(b−)

(L1) with 0 < α < 1. The left- and right-sided Weyl–Marchaud fractional

derivatives of f of order α are defined for almost all t ∈ (a, b) by

Dα
a+f(t) :=

1

Γ(1− α)

(
f(t)

(t− a)α
+ α

∫ t

a

f(t)− f(s)

(t− s)α+1
ds

)
(2.11)

and

Dα
b−f(t) :=

(−1)α

Γ(1− α)

(
f(t)

(b− t)α
+ α

∫ b

t

f(t)− f(s)

(s− t)α+1
ds

)
, (2.12)

respectively. The integrals above are well-defined for almost all t ∈ (a, b).

The following three formulas are important in this paper. The first is the composition

formula:

Dα
a+
(b−)

(Dβ
a+
(b−)

f) = Dα+β
a+
(b−)

f (2.13)

for f ∈ Iα+βa+
(b−)

(L1), 0 < α < 1, and 0 < β < 1, with α + β < 1. The second is the basic

integration by parts formula of order α:

(−1)α
∫ b

a

Dα
a+f(t)g(t) dt =

∫ b

a

f(t)Dα
b−g(t) dt (2.14)

for f ∈ Iαa+(Lp), g ∈ Iαb−(Lq), 0 < α < 1, 1 ≤ p <∞, and 1 ≤ q <∞, with 1/p+ 1/q ≤
1 + α. The third is also regarded as an integration by parts formula of oreder α. Let

f ∈ Cλ-Höl([a, b],R) and g ∈ Cµ-Höl([a, b],R) with λ+µ > 1. Then, the Riemann–Stieltjes

integral
∫ b
a
f(t) dg(t) exists [11] and is expressed as follows: for each α ∈ (1− µ, λ),∫ b

a

f(t) dg(t) = (−1)α
∫ b

a

Dα
a+fa+(t)D1−α

b− gb−(t) dt+ f(a)(g(b)− g(a)) (2.15)

= (−1)α
∫ b

a

Dα
a+f(t)D1−α

b− gb−(t) dt, (2.16)

where fa+(t) := f(t) − f(a) and gb−(t) := g(t) − g(b). For proofs of (2.15) and (2.16),

see [12, Theorem 4.2.1 and Proposition 2.2].

3. Main theorems.

In the remainder of this paper, we will assume the following: (a, b) is an element of

4 with a < b, β is a real number with 0 < β ≤ 1, N is the unique integer such that N ≤
1/β < N + 1, k is a positive integer, and γ is a real number with 0 < γ < min{1/k, β}.
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3.1. Some fractional operators and their properties.

In this subsection, we introduce some variants of the fractional derivatives and inte-

gral operators for later use. Let µ > 0 and Ψ ∈ Cµ2 (V ). For α ∈ (0,min{µ, 1}), we define

Dαa+Ψ and Dαb−Ψ as Dαa+Ψ(a) := 0,

Dαa+Ψ(u) :=
1

Γ(1− α)

(
Ψa,u

(u− a)α
+ α

∫ u

a

Ψv,u

(u− v)α+1
dv

)
for u ∈ (a, T ]

and Dαb−Ψ(b) := 0,

Dαb−Ψ(r) :=
(−1)1+α

Γ(1− α)

(
Ψr,b

(b− r)α
+ α

∫ b

r

Ψr,v

(v − r)α+1
dv

)
for r ∈ [0, b).

It is straightforward to show that, for each u ∈ [a, T ] and r ∈ [0, b],

‖Dαa+Ψ(u)‖V ≤
1

Γ(1− α)

µ

µ− α
|||Ψ|||µ(u− a)µ−α (3.1)

and

‖Dαb−Ψ(r)‖V ≤
1

Γ(1− α)

µ

µ− α
|||Ψ|||µ(b− r)µ−α. (3.2)

If Ψ ∈ Cλ2 (V ) is of the form Ψs,t = ψ(t) − ψ(s) for some ψ ∈ Cλ1 (V ) with 0 < λ ≤ 1,

then the identities Dαa+Ψ = Dα
a+ψa+ and Dαb−Ψ = Dα

b−ψb− hold, by definition, for any

α ∈ (0, λ). Using these operators, we further introduce the following.

Definition 3.1. For X = (1, X1, . . . , Xk) ∈ C0,β(4, T (k)(E)) and j = 1, . . . , k,

we define a function R(j,γ)
b− X on [0, b] as follows: for each r ∈ [0, b],

R(1,γ)
b− X(r) := Dγb−X

1(r)

and

R(j,γ)
b− X(r) := Djγb−X

j(r)−
j−1∑
i=1

D(j−i)γ
b− (Xj−i ⊗R(i,γ)

b− X)(r)

for j = 2, . . . , k, inductively.

We note that R(j,γ)
b− X is well-defined by the assumption that 0 < γ < min{1/k, β}.

With regard to the second term of R(j,γ)
b− X(r),

D(j−i)γ
b− (Xj−i ⊗R(i,γ)

b− X)(r) =
(−1)1+(j−i)γ(j − i)γ

Γ(1− (j − i)γ)

∫ b

r

Xj−i
r,v ⊗R

(i,γ)
b− X(v)

(v − r)(j−i)γ+1
dv (3.3)

holds for each i = 1, . . . , j − 1 from (2.1) and R(i,γ)
b− X(b) = 0. Furthermore, for each

j = 1, . . . , k, there exists a constant Cj,β,γ such that, for each r ∈ [0, b],



900 Y. Ito

|R(j,γ)
b− X(r)| ≤ Cj,β,γ

(
1 + max

1≤i≤j−1
|||Xi|||iβ

)j−1
max
1≤i≤j

|||Xi|||iβ(b− r)j(β−γ). (3.4)

We will prove (3.4) in Section 4.

Definition 3.2. Let X = (1, X1, . . . , Xk) ∈ C0,β(4, T (k)(E)), j = 1, . . . , k, µ a

real number with µ > 1−jγ, and Ψ a function in Cµ2 (L(E⊗(j−1), L(E,F ))). An F -valued

function Ij,γX (Ψ) on 4 is defined as

Ij,γX (Ψ)s,t := (−1)1−jγ
∫ t

s

D1−jγ
s+ Ψ(u)R(j,γ)

t− X(u) du for (s, t) ∈ 4. (3.5)

From (3.1) and (3.4), for each (s, t) ∈ 4,

|Ij,γX (Ψ)s,t| ≤ Cj,β,γ,µ|||Ψ|||µ
(

1 + max
1≤i≤j−1

|||Xi|||iβ
)j−1

max
1≤i≤j

|||Xi|||iβ(t− s)µ+jβ . (3.6)

It is also straightforward to show that Ij,γX (Ψ) belongs to C2(F ). Thus, Ij,γX (Ψ) belongs

to Cµ+jβ2 (F ). Furthermore, from (3.5) and (3.6), we obtain the following proposition.

Proposition 3.3. In the setting of Definition 3.2, the map Ψ 7→ Ij,γX (Ψ) is

bounded linear from Cµ2 (L(E⊗(j−1), L(E,F ))) to Cµ+jβ2 (F ); in particular, it is Lipschitz

continuous.

Let X, X̃ ∈ C0,β(4, T (k)(E)). For each j = 1, . . . , k, there exists a constant Cj,β,γ
such that, for each r ∈ [0, b],

|R(j,γ)
b− X(r)−R(j,γ)

b− X̃(r)|

≤ Cj,β,γ
(

1 + max
1≤i≤j−1

|||Xi|||iβ + max
1≤i≤j−1

|||X̃i|||iβ
)j−1

max
1≤i≤j

|||Xi − X̃i|||iβ(b− r)j(β−γ).

(3.7)

We will prove (3.7) in Section 4. From (3.1) and (3.7),

|||Ij,γX (Ψ)− Ij,γ
X̃

(Ψ)|||µ+jβ

≤ Cj,β,γ,µ|||Ψ|||µ
(

1 + max
1≤i≤j−1

|||Xi|||iβ + max
1≤i≤j−1

|||X̃i|||iβ
)j−1

max
1≤i≤j

|||Xi − X̃i|||iβ .

(3.8)

This yields the following proposition.

Proposition 3.4. In the setting of Definition 3.2, the map (1, X1, . . . , Xj) 7→
Ij,γX (Ψ) is locally Lipschitz continuous from C0,β(4, T (j)(E)) to Cµ+jβ2 (F ).

3.2. Integration of weakly controlled paths via fractional calculus.

Throughout this subsection, γ will be a real number with (1−β)/N < γ < β. Before

defining integrals of weakly controlled paths, we introduce several function spaces that
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are required for the discussion in this subsection. We set

Mβ(E,F ) := {(X,Y ) : X ∈ C0,β(4, T (N)(E)), Y ∈ Qβ,NX (F )}

equipped with a distance

mβ((X,Y ), (X̃, Ỹ )) := dβ,N (X, X̃) +

N∑
j=1

|Y (j−1)
0 − Ỹ (j−1)

0 |+ dX,X̃,β(Y, Ỹ ) (3.9)

for (X,Y ), (X̃, Ỹ ) ∈Mβ(E,F ). Here,

dX,X̃,β(Y, Ỹ ) :=

N∑
j=1

|||RN−jj−1 (X,Y )−RN−jj−1 (X̃, Ỹ )|||(N−j+1)β . (3.10)

We define the subset Sβ(E,F ) of Mβ(E,F ) by Sβ(E,F ) := {(X,Y ) : X ∈ SΩβ(E), Y ∈
Q1,N
X (F )} and let Sβ(E,F ) denote the closure of Sβ(E,F ) with respect to the dis-

tance mβ . In Example 2.2, if ϕ is sufficiently smooth and all derivatives are bounded on

E, then the pair (X,Y ) belongs to Sβ(E,L(E,F )). In Example 2.3, if ψ is sufficiently

smooth and all derivatives are bounded on F and the pair (X,Y ) is in Sβ(E,F ), then

the pair (X,Z) belongs to Sβ(E,L(E,F )). These can be proved by straightforward cal-

culation. The following is our definition of the integral of weakly controlled paths along

rough paths.

Definition 3.5. For (X,Y ) ∈Mβ(E,L(E,F )), an F -valued function Iγ(X,Y ) on

4 is defined by

Iγ(X,Y )s,t :=

N∑
n=1

Y (n−1)
s Xn

s,t +

N∑
n=1

In,γX (RN−nn−1 (X,Y ))s,t for (s, t) ∈ 4.

We note that the inequality 1−nγ < (N −n+1)β follows from the assumption that

(1−β)/N < γ < β. Therefore, In,γX (RN−nn−1 (X,Y ))s,t is well-defined and so is Iγ(X,Y )s,t.

The following theorem justifies treating Iγ(X,Y ) as the integral of Y along X.

Theorem 3.6. Let (X,Y ) ∈ Sβ(E,L(E,F )). Then, for each (s, t) ∈ 4,

Iγ(X,Y )s,t coincides with the Riemann–Stieltjes integral
∫ t
s
Y

(0)
u dX1

0,u.

We will prove Theorem 3.6 in Section 4. The integral Iγ(·, ·) can be regarded as a

continuous map.

Theorem 3.7. The map (X,Y ) 7→ Iγ(X,Y ) is locally Lipschitz continuous from

Mβ(E,L(E,F )) to Cβ2 (F ).

Proof. From Proposition 3.3, Iγ(X,Y ) belongs to Cβ2 (F ). Set (s, t) ∈ 4 with

s < t. For (X,Y ), (X̃, Ỹ ) ∈Mβ(E,L(E,F )),
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|Iγ(X,Y )s,t − Iγ(X̃, Ỹ )s,t| ≤
N∑
n=1

{
|Y (n−1)
s − Ỹ (n−1)

s ||Xn
s,t|+ |Ỹ (n−1)

s ||Xn
s,t − X̃n

s,t|

+ |In,γX (RN−nn−1 (X,Y )−RN−nn−1 (X̃, Ỹ ))s,t|

+ |In,γX (RN−nn−1 (X̃, Ỹ ))s,t − In,γX̃
(RN−nn−1 (X̃, Ỹ ))s,t|

}
.

(3.11)

By the definition of weakly controlled paths, we have

|Y (n−1)
s − Ỹ (n−1)

s |

≤ |Y (n−1)
0 − Ỹ (n−1)

0 |+ |RN−nn−1 (X,Y )0,s −RN−nn−1 (X̃, Ỹ )0,s|

+

N−n∑
i=1

|Y (n−1+i)
0 Xi

0,s − Ỹ
(n−1+i)
0 X̃i

0,s|

≤ |Y (n−1)
0 − Ỹ (n−1)

0 |+ |||RN−nn−1 (X,Y )−RN−nn−1 (X̃, Ỹ )|||(N−n+1)βT
(N−n+1)β

+

N−n∑
i=1

{
|Y (n−1+i)

0 − Ỹ (n−1+i)
0 ||Xi

0,s|+ |Ỹ
(n−1+i)
0 ||Xi

0,s − X̃i
0,s|
}

≤
(

1 + T (N−n+1)β +

N−n∑
i=1

(
|||Xi|||iβ + |Ỹ (n−1+i)

0 |
)
T iβ
)
mβ((X,Y ), (X̃, Ỹ )) (3.12)

for each n = 1, . . . , N . Then, from (3.6), (3.8), (3.9), (3.10), (3.11), and (3.12), we obtain

the statement of this theorem immediately. �

Corollary 3.8. Let X ∈ C0,β(4, T (N)(E)). Then, the map Y 7→ Iγ(X,Y ) is

locally Lipschitz continuous from Qβ,NX (L(E,F )) to Cβ2 (F ).

Proof. Apply (3.6) and (2.6) to (3.11) and (3.12) with X = X̃. �

From Theorems 3.6 and 3.7, we see that, for each s, t, u ∈ [0, T ] with s ≤ u ≤ t, the

identity

Iγ(X,Y )s,u + Iγ(X,Y )u,t = Iγ(X,Y )s,t (3.13)

holds for (X,Y ) ∈ Sβ(E,L(E,F )). Using this identity, we obtain the following proposi-

tion.

Proposition 3.9. Let (X,Y ) ∈ Sβ(E,L(E,F )). Then, for each (s, t) ∈ 4,

Iγ(X,Y )s,t = lim
|P|→0

m−1∑
i=0

N∑
n=1

Y
(n−1)
ti Xn

ti,ti+1
,

where the limit is taken over all finite partitions P = {t0, t1, . . . , tm} of the interval [s, t]
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such that s = t0 ≤ t1 ≤ · · · ≤ tm = t and |P| := max0≤i≤m−1|ti+1 − ti|.

Proof. From (3.13) and Definition 3.5, for any partition P = {t0, t1, . . . , tm},

Iγ(X,Y )s,t =

m−1∑
i=0

Iγ(X,Y )ti,ti+1

=

m−1∑
i=0

{ N∑
n=1

Y
(n−1)
ti Xn

ti,ti+1
+

N∑
n=1

In,γX (RN−nn−1 (X,Y ))ti,ti+1

}
.

It then suffices to show that, for each n = 1, . . . , N ,

lim
|P|→0

m−1∑
i=0

|In,γX (RN−nn−1 (X,Y ))ti,ti+1 | = 0. (3.14)

From (3.6), we have

|In,γX (RN−nn−1 (X,Y ))ti,ti+1 | ≤Cn,β,γ |||RN−nn−1 (X,Y )|||(N−n+1)β

×
(

1 + max
1≤j≤n−1

|||Xj |||jβ
)n−1

max
1≤j≤n

|||Xj |||jβ(ti+1− ti)(N+1)β .

Thus, from the relation (N + 1)β > 1,

m−1∑
i=0

|In,γX (RN−nn−1 (X,Y ))ti,ti+1
| ≤ C

m−1∑
i=0

(ti+1 − ti)(N+1)β ≤ C|P|(N+1)β−1(t− s)→ 0

as |P| → 0. Here, C is a positive constant that does not depend on P. Therefore, (3.14)

holds. Thus we obtain the claim of the proposition. �

Remark 3.10. Let us make a few comments about our integration.

1. Take X ∈ GΩβ(E) and Y ∈ Qβ,NX (L(E,F )) as in Example 2.2. Then, Iγ(X,Y ) is

the same as the integral introduced in the author’s previous work [6, Definition 2.3].

Thus we see from [6, Theorem 2.6] that Iγ(X,Y ) coincides with the first level path

of the rough integral along X ∈ GΩβ(E).

2. The relation to the integration of weakly controlled paths introduced by Gu-

binelli [4] is stated as follows. Let 1/3 < β ≤ 1/2. Based on Proposition 3.9

and [4, Corollaries 2 and 3], we see that Iγ(X,Y ) coincides with the integral

introduced in [4, Corollary 3] on 4 if Iγ(X,Y ) satisfies (3.13). Therefore, for

(X,Y ) ∈ Sβ(E,L(E,F )), Iγ(X,Y ) is consistent with the integral introduced

in [4, Corollary 3] on 4. However, it is unknown whether (3.13) is true for ev-

ery X ∈ Ωβ(E) and Y ∈ Qβ,2X (L(E,F )).

3. If N = 1, then Iγ(X,Y )a,b coincides with the Riemann–Stieltjes integral∫ b
a
Y

(0)
t dX1

0,t for X ∈ Ωβ(E) and Y ∈ Qβ,1X (L(E,F )). This follows from (2.15)

with f = Y (0), g = X1
0,·, and α = 1− γ. In particular, Iγ(X,Y )a,b is independent
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of the choice of γ. If N ≥ 2, then this value is independent of the choice of γ for

(X,Y ) ∈ Sβ(E,L(E,F )) from Proposition 3.9. However, it is unknown whether

such a property holds for every X ∈ Ωβ(E) and Y ∈ Qβ,NX (L(E,F )).

3.3. Lyons’ extension theorem.

Throughout this subsection, we assume the following: j is an integer with j ≥ N

and γj is a real number with (1− β)/j < γj < min{1/j, β}. To construct the extension

map we first define the following functional.

Definition 3.11. For X = (1, X1, . . . , Xj) ∈ C0,β(4, T (j)(E)), an E⊗(j+1)-valued

function X̂j+1 on 4 is defined by

X̂j+1
s,t :=

j∑
n=1

(−1)1−nγj
∫ t

s

D1−nγj
s+ Xj+1−n(u)⊗R(n,γj)

t− X(u) du for (s, t) ∈ 4.

We note that the inequalities 0 < 1−nγj < (j+ 1−n)β follow from the assumption

that (1− β)/j < γj < min{1/j, β}. Thus, X̂j+1 is well-defined and

|||X̂j+1|||(j+1)β

≤Cj,β,γj
(

max
1≤i≤j

|||Xi|||iβ
)2
((

1 + max
1≤i≤j−1

|||Xi|||iβ
)j
− 1

)(
max

1≤i≤j−1
|||Xi|||iβ

)−1
from (2.3), (3.1), (3.5), and (3.6). Furthermore, from Propositions 3.3 and 3.4, we obtain

the following proposition.

Proposition 3.12. For X = (1, X1, . . . , Xj) ∈ C0,β(4, T (j)(E)), the map X 7→
X̂j+1 is locally Lipschitz continuous from C0,β(4, T (j)(E)) to C(j+1)β

2 (E⊗(j+1)).

The following is a key proposition for the proof of Theorem 3.14 below.

Proposition 3.13. Let X = (1, X1, . . . , Xj) be a step-j signature in E. Then,

(1, X1, . . . , Xj , X̂j+1) is the step-(j + 1) signature, that is, for each (s, t) ∈ 4, X̂j+1
s,t

coincides with the Riemann–Stieltjes integral
∫ t
s
Xj
s,u ⊗ dX1

0,u.

We will prove Proposition 3.13 in Section 4. From Propositions 3.12 and 3.13, for

geometric β-Hölder rough paths X ∈ GΩβ(E), we can see that the definition of X̂j+1 is

independent of the choice of γj . The following is our version of Lyons’ extension theorem

for X ∈ GΩβ(E).

Theorem 3.14. Let X = (1, X1, . . . , XN ) ∈ GΩβ(E). For any integer k ≥ N + 1,

there exists an extension of the rough path X to a multiplicative functional of degree k

in E with finite β-Hölder estimates.

Proof. We take an arbitrary γN such that (1− β)/N < γN < min{1/N, β} = β

and define X̂N+1 as in Definition 3.11. We set X̂(N+1) := (1, X1, . . . , XN , X̂N+1).

From Proposition 3.12, X̂(N+1) belongs to C0,β(4, T (N+1)(E)). By the definition of
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X ∈ GΩβ(E), there exists a sequence of smooth rough paths X(m) which converges

to X with respect to the distance dβ,N . Hence, from Propositions 3.12 and 3.13,

limm→∞ dβ,N+1(X(m)(N+1), X̂(N+1)) = 0, where X(m)(N+1) is the step-(N + 1) signa-

ture of X(m)10,· ∈ C11(E). Thus, X̂(N+1) is a multiplicative functional of degree (N+1) in

E. This implies the statement of the theorem for k = N +1. By repeating this argument

with γN+1, . . . , γk−1, the desired statement is proven for any k ≥ N + 1. �

We remark that [7, Theorem 2.2.1] implies the uniqueness of extensions even for

X ∈ Ωβ(E). In particular, for X ∈ GΩβ(E), the extension by Theorem 3.14 coincides

with those introduced by Lyons [7, Theorem 2.2.1] and by Gubinelli [4, Proposition 10].

However, it is unknown for non-geometric Hölder rough paths X ∈ Ωβ(E) whether X̂(k)

defined as in Theorem 3.14 is a multiplicative functional of degree k in E. Also, one

would expect that X̂k should possess a uniform estimate as in [7, Theorem 2.2.1] and

[4, Proposition 10], but it is doubtful whether X̂k could provide sharper estimates than

those provided in the previous studies; there is room for argument on this point.

4. Some proofs.

In this section, we prove (3.4), (3.7), Theorem 3.6, and Proposition 3.13. Let us

recall the following assumptions: (a, b) is an element of 4 with a < b, β is a real number

with 0 < β ≤ 1, k is a positive integer, and γ is a real number with 0 < γ < min{1/k, β}.

4.1. Proof of (3.4) and (3.7).

In this subsection, we prove (3.4) and (3.7). Let X, X̃ ∈ C0,β(4, T (k)(E)). For each

j = 1, . . . , k, we set Kj := max1≤i≤j |||Xi|||iβ and K̃j := max1≤i≤j |||X̃i|||iβ .

Lemma 4.1. Under the above notation and assumptions, for each j = 2, . . . , k and

r ∈ [0, b],

|R(j,γ)
b− X(r)−R(j,γ)

b− X̃(r)| ≤ C(1 + C(Kj−1 + K̃j−1))j−1 max
1≤i≤j

|||Xi−X̃i|||iβ(b− r)j(β−γ),

(4.1)

where C = (β/(β − γ))Γ(1 − γ)−1. If X̃ = (1, 0, . . . , 0), then, for each j = 2, . . . , k and

r ∈ [0, b],

|R(j,γ)
b− X(r)| ≤ C(1 + CKj−1)j−1Kj(b− r)j(β−γ). (4.2)

Proof of (3.4) and (3.7). From (4.1) and (4.2), and the relation C ≤ β/(β−γ),

we obtain (3.4) and (3.7) with Cj,β,γ = (β/(β − γ))j . �

Proof of Lemma 4.1. We prove (4.1) by induction on j. We set r ∈ [0, b] with

0 ≤ r < b since R(j,γ)
b− X(b) = R(j,γ)

b− X̃(b) = 0 holds from the definition. From (3.3),

|R(2,γ)
b− X(r)−R(2,γ)

b− X̃(r)| ≤ |D2γ
b−X

2(r)−D2γ
b−X̃

2(r)|

+
γ

Γ(1− γ)

∫ b

r

|X1
r,v − X̃1

r,v||R
(1,γ)
b− X(v)|

(v − r)γ+1
dv
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+
γ

Γ(1− γ)

∫ b

r

|X̃1
r,v||R

(1,γ)
b− X(v)−R(1,γ)

b− X̃(v)|
(v − r)γ+1

dv

=: A1 +A2 +A3.

From (3.2), we have

A1 ≤
1

Γ(1− 2γ)

2β

2β − 2γ
|||X2 − X̃2|||2β(b− r)2(β−γ) ≤ C|||X2 − X̃2|||2β(b− r)2(β−γ)

and

A2 ≤
γ

Γ(1− γ)

∫ b

r

(v − r)β−γ−1 dv|||X1 − X̃1|||β
1

Γ(1− γ)

β

β − γ
|||X1|||β(b− r)β−γ

=
γ

Γ(1− γ)

(b− r)β−γ

β − γ
|||X1 − X̃1|||βC|||X1|||β(b− r)β−γ

≤ C2|||X1|||β |||X1 − X̃1|||β(b− r)2(β−γ).

In a similar way, we get

A3 ≤ C2|||X̃1|||β |||X1 − X̃1|||β(b− r)2(β−γ).

By combining these estimates, we obtain

A1 +A2 +A3 ≤ C(1 + C(|||X1|||β + |||X̃1|||β)) max
1≤l≤2

|||X l − X̃ l|||lβ(b− r)2(β−γ).

Hence, (4.1) holds for j = 2. Suppose that (4.1) holds for each j = 2, . . . , J with J ≤ k−1.

By using the induction hypothesis and calculations similar to those shown above, we have

|R(J+1,γ)
b− X(r)−R(J+1,γ)

b− X̃(r)|

= |D(J+1)γ
b− XJ+1(r)−D(J+1)γ

b− X̃J+1(r)|

+

J∑
i=1

{
(J+1− i)γ

Γ(1−(J+1− i)γ)

∫ b

r

|XJ+1−i
r,v −X̃J+1−i

r,v ||R(i,γ)
b− X(v)|

(v−r)(J+1−i)γ+1
dv

+
(J+1− i)γ

Γ(1−(J+1− i)γ)

∫ b

r

|X̃J+1−i
r,v ||R(i,γ)

b− X(v)−R(i,γ)
b− X̃(v)|

(v−r)(J+1−i)γ+1
dv

}
≤C|||XJ+1−X̃J+1|||(J+1)β(b−r)(J+1)(β−γ)

+

J∑
i=1

{
C|||XJ+1−i−X̃J+1−i|||(J+1−i)β(b−r)(J+1−i)(β−γ)

×C(1+CKi−1)i−1Ki(b−r)i(β−γ)

+C|||X̃J+1−i|||(J+1−i)β(b−r)(J+1−i)(β−γ)

×C(1+C(Ki−1 +K̃i−1))i−1 max
1≤l≤i

|||X l−X̃ l|||lβ(b−r)i(β−γ)
}

(from the induction hypothesis)
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≤C max
1≤l≤J+1

|||X l−X̃ l|||lβ(b−r)(J+1)(β−γ)

×
(

1+C

J∑
i=1

(
Ki+ |||X̃J+1−i|||(J+1−i)β

)
(1+C(Ki−1 +K̃i−1))i−1

)

≤C max
1≤l≤J+1

|||X l−X̃ l|||lβ(b−r)(J+1)(β−γ)
(

1+C(KJ +K̃J)

J∑
i=1

(1+C(KJ +K̃J))i−1
)

=C(1+C(KJ +K̃J))J max
1≤l≤J+1

|||X l−X̃ l|||lβ(b−r)(J+1)(β−γ),

as desired. Therefore, (4.1) holds for j = J + 1. �

4.2. Proofs of Theorem 3.6 and Proposition 3.13.

Using Proposition 4.2 stated below, we prove Theorem 3.6 and Proposition 3.13.

Let X ∈ C0,β(4, T (k)(E)) and Y ∈ Qβ,kX (L(E,F )). For each l = 0, . . . , k − 1, m =

0, . . . , k − 1− l, and (s, t) ∈ 4, we set

Rml (X,Y )s,t := Y
(l)
t −

m∑
i=0

Y (l+i)
s Xi

s,t. (4.3)

Proposition 4.2. Let X be a step-k signature in E and Y ∈ Q1,k
X (L(E,F )). Take

γ ∈ (0, 1/k). Then, for each l = 0, . . . , k − 1, m = 0, . . . , k − 1− l, and (s, t) ∈ 4,∫ t

s

Rml (X,Y )s,u dX
1
0,u =

m+1∑
n=1

In,γX (Rm−n+1
l+n−1 (X,Y ))s,t, (4.4)

where the left-hand side is the Riemann–Stieltjes integral of Rml (X,Y )s,· along X1
0,·.

For the proof of this proposition, we need the following two lemmas.

Lemma 4.3. Let X be a multiplicative functional of degree k in E with finite β-

Hölder estimates. Then, for each j = 1, . . . , k, R(j,γ)
b− X is min{β − γ, 1 − jγ}-Hölder

continuous on the interval [0, b].

Lemma 4.4. Let X be a multiplicative functional of degree k in E with finite 1-

Hölder estimates. Take γ ∈ (0, 1/k). Then, for each j = 2, . . . , k and r ∈ (a, b),

R(j,γ)
b− X(r) = Djγ

b−(Xj
a,· −X

j
a,b)(r)−

j−1∑
i=1

D
(j−i)γ
b− (Xj−i

a,· ⊗R
(i,γ)
b− X)(r). (4.5)

The right-hand side of (4.5) is well-defined from Lemma 4.3. We omit the details of

the proofs of the lemmas since these are proved by rewriting the proofs of [6, Lemma 3.2

and Proposition 3.3] in the obvious way. In [6, Lemma 3.2 and Proposition 3.3], we

consider only the case where k is equal to N = b1/βc. It is straightforward to prove that

[6, Lemma 3.2 and Proposition 3.3] is generalized for any integer k and that Lemmas 4.3

and 4.4 follow from the generalizations with the parameters βn and γn in [6, Lemma 3.2

and Proposition 3.3] chosen as βn = min{nβ, 1} and γn = γ, respectively, for n = 1, . . . , k;
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we leave the details to the reader. Let us introduce one more notation for the proof of

Proposition 4.2. Let X be a multiplicative functional of degree k in E. For j = 1, . . . , k,

we set T (X)j ∈ C2(E⊗j) as follows: for each (s, t) ∈ 4, T (X)1s,t := X1
s,t and

T (X)js,t := Xj
s,t −

j−1∑
i=1

T (X)is,t ⊗X
j−i
s,t (4.6)

for j = 2, . . . , k, inductively. Then, for each j = 2, . . . , k and (s, t) ∈ 4, the identity

j−1∑
i=1

T (X)is,t ⊗X
j−i
s,t =

j−i∑
i=1

Xi
s,t ⊗ T (X)j−is,t (4.7)

holds. This is proved by simple calculation and induction on j. By using (4.7) and

induction on j, we can show that, for each s, u, t ∈ [0, T ] with s ≤ u ≤ t, the identity

Xj
u,t = Xj

s,t −Xj
s,u −

j−1∑
i=1

T (X)is,u ⊗ (Xj−i
s,t −Xj−i

s,u ) (4.8)

holds for j = 2, . . . , k. (4.8) is used in the proof of Proposition 4.2. Furthermore, we

remark the following identity for later use. Let f, g ∈ Cλ1 (R) with 0 < λ ≤ 1. From

(2.11), for each α ∈ (0, λ) and t ∈ (a, b),

Dα
a+(fg)(t)−Dα

a+f(t)g(t) =
α

Γ(1− α)

∫ t

a

f(s)(g(t)− g(s))

(t− s)α+1
ds. (4.9)

We now have all the tools to prove Proposition 4.2.

Proof of Proposition 4.2. Fix l with 0 ≤ l ≤ k − 1. We prove (4.4) by induc-

tion on m. Using (4.3) and (2.15), we have∫ t

s

R0
l (X,Y )s,u dX

1
0,u = I1,γX (R0

l (X,Y ))s,t.

Hence, (4.4) holds for m = 0. Suppose that (4.4) holds for m = M with 0 ≤M ≤ k−2−l.
Using (4.3), (2.4), and the induction hypothesis, we have∫ t

s

RM+1
l (X,Y )s,u dX

1
0,u =

∫ t

s

RMl (X,Y )s,u dX
1
0,u − Y (l+M+1)

s

∫ t

s

XM+1
s,u ⊗ dX1

0,u

=

M+1∑
n=1

In,γX (RM−n+1
l+n−1 (X,Y ))s,t − Y (l+M+1)

s XM+2
s,t .

For the proof of (4.4) for m = M + 1, it then suffices to show the following identity:

M+1∑
n=1

In,γX (RM−n+1
l+n−1 (X,Y )−RM+1−n+1

l+n−1 (X,Y ))s,t

= IM+2,γ
X (R0

l+M+1(X,Y ))s,t + Y (l+M+1)
s XM+2

s,t .
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By the definition of In,γX (see (3.5)), for each n = 1, . . . ,M + 1, we have

In,γX (RM−n+1
l+n−1 (X,Y )−RM+1−n+1

l+n−1 (X,Y ))s,t

= (−1)1−nγ
∫ t

s

D1−nγ
s+ (RM−n+1

l+n−1 (X,Y )−RM+1−n+1
l+n−1 (X,Y ))(u)R(n,γ)

t− X(u) du.

We calculate the integrand as follows: for each u ∈ (s, t),

D1−nγ
s+ (RM−n+1

l+n−1 (X,Y )−RM+1−n+1
l+n−1 (X,Y ))(u)

=
1

Γ(nγ)

(
Y

(l+M+1)
s XM+1−n+1

s,u

(u− s)1−nγ
+ (1− nγ)

∫ u

s

Y
(l+M+1)
v XM+1−n+1

v,u

(u− v)(1−nγ)+1
dv

)
(from (4.3))

=
1

Γ(nγ)

Y
(l+M+1)
s XM+1−n+1

s,u

(u− s)1−nγ
+

1− nγ
Γ(nγ)

∫ u

s

Y
(l+M+1)
v (XM+1−n+1

s,u −XM+1−n+1
s,v )

(u− v)(1−nγ)+1
dv

−
M+1−n∑
i=1

1− nγ
Γ(nγ)

∫ u

s

Y
(l+M+1)
v (T (X)is,v ⊗ (XM+1−n+1−i

s,u −XM+1−n+1−i
s,v ))

(u− v)(1−nγ)+1
dv

(from (4.8))

=
1

Γ(nγ)

Y
(l+M+1)
s XM+1−n+1

s,u

(u− s)1−nγ

+D1−nγ
s+ (Y

(l+M+1)
· XM+1−n+1

s,· )(u)−D1−nγ
s+ Y

(l+M+1)
· (u)XM+1−n+1

s,u

−
M+1−n∑
i=1

{
D1−nγ
s+ (Y

(l+M+1)
· T (X)is,·X

M+1−n+1−i
s,· )(u)

−D1−nγ
s+ (Y

(l+M+1)
· T (X)is,·)(u)XM+1−n+1−i

s,u

}
(from (4.9))

= −D1−nγ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)XM+1−n+1
s,u

+D1−nγ
s+

(
Y

(l+M+1)
·

(
XM+1−n+1
s,· −

M+1−n∑
i=1

T (X)is,· ⊗XM+1−n+1−i
s,·

))
(u)

+

M+1−n∑
i=1

D1−nγ
s+ (Y

(l+M+1)
· T (X)is,·)(u)XM+1−n+1−i

s,u

= −D1−nγ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)XM+1−n+1
s,u

+D1−nγ
s+ (Y

(l+M+1)
· T (X)M+1−n+1

s,· )(u) (from (4.6))

+

M+1−n∑
i=1

D1−nγ
s+ (Y

(l+M+1)
· T (X)is,·)(u)XM+1−n+1−i

s,u .

Therefore, for each n = 1, . . . ,M + 1, we obtain

In,γX (RM−n+1
l+n−1 (X,Y )−RM+1−n+1

l+n−1 (X,Y ))s,t
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= −(−1)1−(M+2)γ

∫ t

s

D
1−(M+2)γ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)

×D(M+1−n+1)γ
t− (XM+1−n+1

s,· ⊗R(n,γ)
t− X)(u) du

(from (2.13), Lemma 4.3, and (2.14) with α = (M + 1− n+ 1)γ)

+AM+1−n+1
n

+

M+1−n∑
i=1

(−1)1−(M+2−i)γ
∫ t

s

D
1−(M+2−i)γ
s+ (Y

(l+M+1)
· T (X)is,·)(u)

×D(M+1−n+1−i)γ
t− (XM+1−n+1−i

s,· ⊗R(n,γ)
t− X)(u) du.

(from (2.13), Lemma 4.3, and (2.14) with α = (M + 1− n+ 1− i)γ) (4.10)

Here, AM+1−n+1
n is defined by

Ajn := (−1)1−nγ
∫ t

s

D1−nγ
s+ (Y

(l+M+1)
· T (X)js,·)(u)R(n,γ)

t− X(u) du

for each n = 1, . . . ,M + 1 and j = 1, . . . ,M + 1. Also, we have

AM+1
1 =

∫ t

s

Y (l+M+1)
u T (X)M+1

s,u dX1
0,u (from (2.16))

=

∫ t

s

Y (l+M+1)
u dXM+2

s,u −
M∑
i=1

∫ t

s

Y (l+M+1)
u T (X)is,u dX

M+2−i
s,u

(from (4.6) and (2.2))

= (−1)1−(M+2)γ

∫ t

s

D
1−(M+2)γ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)

×D(M+2)γ
t− (XM+2

s,· −XM+2
s,t )(u) du

+ Y (l+M+1)
s (XM+2

s,t −XM+2
s,s )

−
M∑
i=1

(−1)1−(M+2−i)γ
∫ t

s

D
1−(M+2−i)γ
s+ (Y

(l+M+1)
· T (X)is,·)(u)

×D(M+2−i)γ
t− (XM+2−i

s,· −XM+2−i
s,t )(u) du. (from (2.15) and (2.16)) (4.11)

Hence, by combining (4.10) and (4.11), we have

M+1∑
n=1

In,γX (RM−n+1
l+n−1 (X,Y )−RM+1−n+1

l+n−1 (X,Y ))s,t

= (−1)1−(M+2)γ

∫ t

s

D
1−(M+2)γ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)

×
(
D

(M+2)γ
t− (XM+2

s,· −XM+2
s,t )(u)
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−
M+1∑
n=1

D
(M+1−n+1)γ
t− (XM+1−n+1

s,· ⊗R(n,γ)
t− X)(u)

)
du

+ Y (l+M+1)
s XM+2

s,t

+

M+1∑
n=2

AM+1−n+1
n

−
M∑
i=1

(−1)1−(M+2−i)γ
∫ t

s

D
1−(M+2−i)γ
s+ (Y

(l+M+1)
· T (X)is,·)(u)

×
(
D

(M+2−i)γ
t− (XM+2−i

s,· −XM+2−i
s,t )(u)

−
M+1−i∑
n=1

D
(M+1−n+1−i)γ
t− (XM+1−n+1−i

s,· ⊗R(n,γ)
t− X)(u)

)
du

= IM+2,γ
X (R0

l+M+1(X,Y ))s,t + Y (l+M+1)
s XM+2

s,t +

M+1∑
n=2

AM+1−n+1
n −

M∑
i=1

AiM+2−i

(from (4.5))

= IM+2,γ
X (R0

l+M+1(X,Y ))s,t + Y (l+M+1)
s XM+2

s,t ,

as desired. Therefore, (4.4) holds for m = M + 1 and thus the claim of the proposition

holds by induction. �

Proof of Theorem 3.6. From (2.5) for l = 0 and k = N and Proposition 4.2

for l = 0 and m = N − 1,∫ t

s

Y (0)
u dX1

0,u =

N−1∑
i=0

{
Y (i)
s

∫ t

s

Xi
s,u ⊗ dX1

0,u

}
+

∫ t

s

RN−10 (X,Y )s,u dX
1
0,u

=

N∑
n=1

Y (n−1)
s Xn

s,t +

N∑
n=1

In,γX (RN−nn−1 (X,Y ))s,t.

This is the claim of the theorem. �

Proof of Proposition 3.13. Under the assumptions of Proposition 3.13, we can

take Y = (Y (0), Y (1), . . . , Y (k−1)) ∈ Q1,k
X (L(E,E⊗(k+1))) as in Example 2.4. Then, from

(2.10) for l = n− 1 and k = j and Proposition 4.2 for l = 0 and m = j − 1,

X̂j+1
s,t =

j∑
n=1

In,γjX (Rj−nn−1(X,Y ))s,t =

∫ t

s

Rj−10 (X,Y )s,u dX
1
0,u.

From (2.10) for l = 0 and k = j, we obtain the claim of the proposition. �
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