Lifting puzzles and congruences of Ikeda and Ikeda-Miyawaki lifts

By Neil Dummigan

(Received Aug. 13, 2015)

Abstract

We show how many of the congruences between Ikeda lifts and non-Ikeda lifts, proved by Katsurada, can be reduced to congruences involving only forms of genus 1 and 2, using various liftings predicted by Arthur's multiplicity conjecture. Similarly, we show that conjectured congruences between Ikeda-Miyawaki lifts and non-lifts can often be reduced to congruences involving only forms of genus 1,2 and 3 .

1. Introduction.

For $k, g \geq 2$ even, let $f \in S_{2 k-g}(\operatorname{SL}(2, \mathbb{Z}))$ be a normalised Hecke eigenform. Duke and Imamoglu conjectured the existence of a cuspidal Hecke eigenform $F \in S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$ (a Siegel modular form of genus g) such that its standard L-function

$$
L(s, F, \mathrm{St})=\zeta(s) \prod_{i=1}^{g} L(f, s+(k-i))
$$

The existence of this F was proved by Ikeda [14], who gave its Fourier expansion, and we call it the Ikeda lift. In the case $g=2$ it was already known, as the Saito-Kurokawa lift. Katsurada [16] proved that if $k \geq 2 g+4$ and $q>2 k$ is a prime number such that, for some divisor $\mathfrak{q} \mid q$ in a sufficiently large number field,

$$
\operatorname{ord}_{\mathfrak{q}}\left(L_{\mathrm{alg}}(f, k) \prod_{i=1}^{(g / 2)-1} L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})\right)>0
$$

then, under certain weak conditions, there is a congruence $\bmod \mathfrak{q}$ of Hecke eigenvalues, between F and some Hecke eigenform, in the same space $S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$, that is not an Ikeda lift. Here the L-values have been normalised by dividing them by particular choices of Deligne periods. This generalises his earlier work on congruences for Saito-Kurokawa lifts (for which only the factor $L(f, k)$ appears), and similarly it uses a pullback formula for an Eisenstein series of genus $2 g$ to which a certain differential operator has been applied. The L-values arise as factors in a formula for the Petersson norm of F, which had been proved by Kohnen and Skoruppa for Saito-Kurokawa lifts, and for $g>2$ was conjectured by Ikeda and proved by Katsurada and Kawamura. For $g=2$, congruences were proved independently by Brown [5], who used them to construct elements in Selmer

[^0]groups supporting the Bloch-Kato conjecture applied to the critical value $L(f, k)$, which for $g=2$ is immediately to the right of the central point.

As g increases, the value $s=k$ migrates further and further to the right in the critical range $1 \leq s \leq 2 k-g$. (Of course, we must adjust k if we want to keep the weight $2 k-g$ the same to look at a fixed f.) Prime divisors of the algebraic parts of these critical values appear as the moduli of congruences conjectured by Harder [11], [26], which support the Bloch-Kato conjecture for these critical values. These congruences of Hecke eigenvalues involve vector-valued Siegel modular forms of genus 2, and may be viewed as being congruences of Hecke eigenvalues between cuspidal automorphic representations of $\mathrm{GSp}_{2}(\mathbb{A})$ and representations induced from the Levi subgroup $\mathrm{GL}_{1} \times \mathrm{GL}_{2}$ of the Siegel parabolic subgroup [3, Section 7]. The Hecke eigenvalues of these induced representations involve those of f. Faber and van der Geer [10] computed many Hecke eigenvalues of vector-valued Siegel modular forms of genus 2, providing numerical evidence for many instances of Harder's conjecture. The original example, with $41 \mid L_{\text {alg }}(f, 14)$, for f of weight 22, has been proved by Chenevier and Lannes [6].

Prime divisors of $L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})$ also appear as moduli of conjectural congruences of Hecke eigenvalues involving only genus 2 forms, in general vector-valued, in fact this applies to $L_{\mathrm{alg}}(r, f, \mathrm{St})$ for all odd r from 3 to $2 k-g-1$. The congruences are between cusp forms and Klingen-Eisenstein series, and again may be viewed as being between cuspidal and induced automorphic representations of $\operatorname{GSp}_{2}(\mathbb{A})$, this time for the Klingen parabolic subgroup [3, Section 6]. The first example, for $q=71$ and f of weight 20 , was proved by Kurokawa [20], and Mizumoto proved a more general result [22]. Their work involved scalar-valued forms of genus 2, and the rightmost critical value of $L(s, f, \mathrm{St})$. One deals with critical values further to the left by increasing the "vector part" j of the weight. Satoh proved a congruence $\bmod 343$ in a $j=2$ case [24], and further instances, for other j, were proved in $[\mathbf{9}]$.

Poor, Ryan and Yuen [23] computed the Euler factors at 2 of the standard L functions of the seven cuspidal Hecke eigenforms in $S_{16}\left(\operatorname{Sp}_{4}(\mathbb{Z})\right)$ (genus 4). Two of these forms are Ikeda lifts, while another two are lifts of pairs of genus 1 forms, of a type conjectured by Miyawaki and proved by Ikeda. The remaining three were more mysterious, but the Euler 2-factors of their standard L-functions factored in such a way as to suggest that they were lifts of some previously unknown kind. A. Mellit suggested to T. Ibukiyama that one of them should be lifted from a vector-valued Siegel modular form of genus 2 , whose spinor L-function would appear in the standard L-function of the lift. Ibukiyama [12] then made two conjectures on scalar-valued genus 4 lifts of genus 2 vector-valued forms, in whose standard L-functions the spinor and standard L functions of the lifted form, respectively, would appear. For the "standard" lift, a genus 1 form is also involved. He checked that these conjectures produce precisely the Euler 2-factors computed by Poor, Ryan and Yuen, and generalised the conjectures to predict scalar-valued lifts, to higher genus, of genus 1 and (vector-valued) genus 2 forms.

Reconsidering Katsurada's congruences between Ikeda lifts and non-Ikeda lifts, the occurrence of the same L-values in conjectural congruences involving only genus 1 and genus 2 forms, and the apparent existence of scalar-valued, higher genus lifts of such forms, suggest the question of whether these things are related. Could the non-Ikeda lifts in Katsurada's congruences actually be lifts of the type proposed by Ibukiyama? For
$L(f, k)$, Ibukiyama's "standard lift" indeed explains Katsurada's congruence as a "lift" of Harder's. If $4 \mid g$ then for $L((g / 2)+1, f, \mathrm{St})$ (the factor for $i=g / 4$), Ibukiyama's "spinor lift" likewise explains Katsurada's congruence as a lift of a congruence of KurokawaMizumoto type. In fact, generalising the spinor lift to lift the genus 1 form as well as a genus 2 form, we may similarly account for congruences involving $L(2 i+1, f, \mathrm{St})$, for $g / 4 \leq i \leq(g / 2)-1$, i.e. for about half the values of i.

We consider also congruences between Ikeda-Miyawaki lifts and non-IkedaMiyawaki lifts, conjectured by Ibukiyama, Katsurada, Poor and Yuen [13]. They could be proved in the same manner as those between Ikeda lifts and non-Ikeda-lifts, if one knew a conjecture of Ikeda on the Petersson norm of an Ikeda-Miyawaki lift. The moduli are large prime divisors of $L_{\mathrm{alg}}\left(f \otimes \operatorname{Sym}^{2} h, 2 k+2 n\right) \prod_{i=1}^{n-1} L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})$, where f and h are genus 1 forms of weights $2 k$ and $k+n+1$ respectively, and the Ikeda-Miyawaki lift is of genus $2 n+1$, weight $k+n+1$. Again, it appears that in many cases the non-IkedaMiyawaki lift should in fact be some other kind of lift. For $L_{\mathrm{alg}}\left(f \otimes \operatorname{Sym}^{2} h, 2 k+2 n\right)$ we "lift" a genus 3 generalisation of Harder's conjecture, worked out by Harder himself in collaboration with the authors of [4], in which it is Conjecture 10.8. Their computations of genus 3 Hecke eigenvalues, together with L-value approximations by Mellit (subsequently confirmed by exact computations in [13]), provided numerical support for their conjecture in seventeen cases. For $L_{\text {alg }}(2 i+1, f, \mathrm{St})$, with $\lceil n / 2\rceil \leq i \leq n-1$, we again lift congruences of Kurokawa-Mizumoto type.

We may now appear to have a proliferation of unsupported conjectures on the existence of various lifts. But we show how they all fit into Arthur's endoscopic classification of the discrete spectrum of $\operatorname{Sp}_{g}(\mathbb{Q}) \backslash \mathrm{Sp}_{g}(\mathbb{A})$, and would be consequences of his conjectural multiplicity formula. Actually, for certain groups including Sp_{g}, Arthur has proved a version of his multiplicity formula [$\mathbf{1}$, Theorem 1.5.2]. But its equivalence to the version applied here is dependent on an as-yet unproved equivalence between two ways of defining and parametrising an L-packet at ∞, as explained following [7, Conjecture 3.23] ${ }^{1}$.

After preliminaries on Arthur's endoscopic classification and multiplicity formula, in Sections 3 and 4, we apply them in Section 5 to obtain all the various lifts (including those of Ikeda and Ikeda-Miyawaki), conditional on the as yet unproved multiplicity formula. The compatibility of the Ikeda lift with Arthur's conjecture was already mentioned in [14, Section 14], and Ibukiyama looked at the Arthur parameters of his proposed lifts in [12, Section 3.4], without checking the multiplicity formula. In Section 6 we look at the congruences between Ikeda lifts and non-Ikeda lifts proved by Katsurada, and those between Ikeda-Miyawaki lifts and non-Ikeda-Miyawaki lifts conjectured in [13]. Finally, in Section 7 we describe in more detail how some of these congruences can be accounted for in the manner indicated above.

The Hecke algebra for Siegel modular forms of genus g is generated by Hecke operators for each prime p, traditionally denoted $T(p)$ and $T_{i}\left(p^{2}\right)$ for $1 \leq i \leq g$. Strictly speaking, our approach only accounts for congruences between Hecke eigenvalues for the $T_{i}\left(p^{2}\right)$, not the $T(p)$. This is because we produce Arthur parameters for $G=\mathrm{Sp}_{g}$ (with $\hat{G}=\operatorname{SO}(g+1, g))$ rather than for $G=\mathrm{GSp}_{g}$ (with $\left.\hat{G}=\operatorname{Spin}(g+1, g)\right)$. The Siegel

[^1]modular forms we consider are all eigenforms for the $T(p)$ as well as the $T_{i}\left(p^{2}\right)$, but we cannot deduce from this the congruence of the $T(p)$ Hecke eigenvalues.

2. Symplectic and special orthogonal groups.

Let $G=\operatorname{Sp}_{g}=\left\{h \in M_{2 g}:{ }^{t} h J h=J\right\}$, where

$$
J_{i, 2 g+1-i}= \begin{cases}1 & \text { if } 1 \leq i \leq g \\ -1 & \text { if } g+1 \leq i \leq 2 g\end{cases}
$$

and all other entries are 0 . It has a maximal torus T comprising elements of the form $\operatorname{diag}\left(t_{1}, \ldots, t_{g}, t_{g}^{-1}, \ldots, t_{1}^{-1}\right)$, which is mapped to t_{i} by characters e_{i}, for $1 \leq i \leq g$, which span the character group $X^{*}(T)$. The cocharacter group $X_{*}(T)$ is spanned by $\left\{f_{1}, \ldots, f_{g}\right\}$, where $f_{1}: t \mapsto \operatorname{diag}\left(t, 1, \ldots, 1, t^{-1}\right)$, etc. so $\left\langle e_{i}, f_{j}\right\rangle=\delta_{i j}$. We can order the roots so that the positive roots are $\Phi_{G}^{+}=\left\{e_{i}-e_{j}: i<j\right\} \cup\left\{2 e_{i}: 1 \leq i \leq g\right\} \cup\left\{e_{i}+e_{j}\right.$: $i<j\}$, and the simple roots $\Delta_{G}=\left\{e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{g-1}-e_{g}, 2 e_{g}\right\}$. The simple coroots (in order) are $\left\{f_{1}-f_{2}, \ldots, f_{g-1}-f_{g}, f_{g}\right\}$.

Let $\hat{G}=\mathrm{SO}(g+1, g)=\left\{h \in M_{2 g+1}:{ }^{t} h \tilde{J} h=\tilde{J}, \operatorname{det}(h)=1\right\}$, with

$$
\tilde{J}_{i, 2 g+2-i}= \begin{cases}1 & \text { if } i \neq g+1 \\ 2 & \text { if } i=g+1\end{cases}
$$

and all other entries 0 . It has a maximal torus \hat{T} comprising elements of the form $\operatorname{diag}\left(t_{1}, \ldots, t_{g}, 1, t_{g}^{-1}, \ldots, t_{1}^{-1}\right)$, which is mapped to t_{i} by characters \tilde{e}_{i}, for $1 \leq i \leq g$, which span $X^{*}(\hat{T})$. The cocharacter group $X_{*}(\hat{T})$ is spanned by $\left\{\tilde{f}_{1}, \ldots, \tilde{f}_{g}\right\}$, where $\tilde{f}_{1}: t \mapsto \operatorname{diag}\left(t, 1, \ldots, 1, t^{-1}\right)$, etc. so $\left\langle\tilde{e}_{i}, \tilde{f}_{j}\right\rangle=\delta_{i j}$. We can order the roots so that $\Phi_{\hat{G}}^{+}=\left\{\tilde{e}_{i}-\tilde{e}_{j}: i<j\right\} \cup\left\{\tilde{e}_{i}: 1 \leq i \leq g\right\} \cup\left\{\tilde{e}_{i}+\tilde{e}_{j}: i<j\right\}$, and $\Delta_{\hat{G}}=\left\{\tilde{e}_{1}-\tilde{e}_{2}, \tilde{e}_{2}-\right.$ $\left.\tilde{e}_{3}, \ldots, \tilde{e}_{g-1}-\tilde{e}_{g}, \tilde{e}_{g}\right\}$. The simple coroots (in order) are $\left\{\tilde{f}_{1}-\tilde{f}_{2}, \ldots, \tilde{f}_{g-1}-\tilde{f}_{g}, 2 \tilde{f}_{g}\right\}$. Note that for any root β with coroot $\check{\beta}$, we have $\langle\beta, \check{\beta}\rangle=2$.

We see then that the root systems of G and \hat{G} are dual to each other, so \hat{G} is, as the notation indicates, the Langlands dual of G. The isomorphisms $X^{*}(\hat{T}) \simeq X_{*}(T)$ and $X^{*}(T) \simeq X_{*}(\hat{T})$ are such that $\tilde{e}_{i} \leftrightarrow f_{i}$ and $e_{i} \leftrightarrow \tilde{f}_{i}$, respectively.

Let \mathfrak{H}_{g} be the Siegel upper half space of g by g complex symmetric matrices with positive-definite imaginary part. For $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \operatorname{Sp}_{g}(\mathbb{Z})$ and $Z \in \mathfrak{H}_{g}$, let $M\langle Z\rangle:=$ $(A Z+B)(C Z+D)^{-1}$ and $J(M, Z):=C Z+D$. Let V be the space of a representation ρ of $\mathrm{GL}(g, \mathbb{C})$. A holomorphic function $f: \mathfrak{H}_{g} \rightarrow V$ is said to belong to the space $M_{\rho}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$ of Siegel modular forms of genus g and weight ρ if

$$
f(M\langle Z\rangle)=\rho(J(M, Z)) f(Z) \quad \forall M \in \mathrm{Sp}_{g}(\mathbb{Z}), Z \in \mathfrak{H}_{g}
$$

and, in the case $g=1$, if it is holomorphic at the cusps. If $g>1$, the Siegel operator Φ on $M_{\rho}\left(\mathrm{Sp}_{g}(\mathbb{Z})\right)$ is defined by

$$
\Phi f(z)=\lim _{t \rightarrow \infty} f\left(\left[\begin{array}{ll}
z & 0 \\
0 & i t
\end{array}\right]\right) \quad \text { for } z \in \mathfrak{H}_{g-1}, t \in \mathbb{R}
$$

The kernel of Φ, denoted $S_{\rho}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$, is the space of Siegel cusp forms of genus g and weight ρ. When $\rho=\operatorname{det}^{k}$, the forms are scalar valued, of weight k, and $S_{\rho}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$ is denoted $S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$.

3. Arthur's endoscopic classification.

Let $G=\mathrm{Sp}_{g}$ as above, so $\hat{G}=\mathrm{SO}(g+1, g)$. Let $\mathrm{St}: \hat{G} \rightarrow \mathrm{SL}(2 g+1)$ be the standard inclusion homomorphism. Let $\mathcal{X}(\hat{G})$ be the set of $\left(c_{v}\right)$, indexed by places v of \mathbb{Q}, such that for finite p, c_{p} is a semisimple conjugacy class in $\hat{G}(\mathbb{C})$, and c_{∞} is a semisimple conjugacy class in $\operatorname{Lie}(\hat{G}(\mathbb{C}))$. Let $\Pi(G)$ be the set of irreducible representations π of $G(\mathbb{A})$ such that π_{∞} is unitary and each π_{p}, for finite primes p, is smooth and unramified, i.e. has a non-zero $G\left(\mathbb{Z}_{p}\right)$-fixed vector. Let $\Pi_{\text {disc }}(G)$ be the subset of those occurring discretely in $L^{2}(G(\mathbb{Q}) \backslash G(\mathbb{A}))$. Given $\pi \in \Pi_{\text {disc }}(G)$, let $c(\pi)=\left(c_{v}(\pi)\right)$, where for finite p, $c_{p}(\pi)$ is the Satake parameter of π_{p}, and $c_{\infty}(\pi)$ is the infinitesimal character of π_{∞}. We may do something similar with G replaced by $\operatorname{PGL}(m)$ and \hat{G} by $\widehat{\mathrm{PGL}(m)}=\mathrm{SL}(m)$, or with G replaced by $\mathrm{SO}(g+1, g)$ and \hat{G} by $\mathrm{Sp}_{g}, \mathrm{St}: \mathrm{Sp}_{g} \rightarrow \mathrm{SL}(2 g)$, or with G and \hat{G} both replaced by $\mathrm{SO}(g, g)$, $\mathrm{St}: \mathrm{SO}(g, g) \rightarrow \mathrm{SL}(2 g)$.

As an example, if π_{f} is the cuspidal automorphic representation of $\operatorname{PGL}(2)(\mathbb{A})$ associated with a normalised, cuspidal Hecke eigenform $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ of weight k for $\operatorname{SL}(2, \mathbb{Z})$, then $c_{p}\left(\pi_{f}\right)=\operatorname{diag}\left(\alpha_{p}, \alpha_{p}^{-1}\right)$, where $a_{p}=p^{(k-1) / 2}\left(\alpha_{p}+\alpha_{p}^{-1}\right)$, and $c_{\infty}\left(\pi_{f}\right)=$ $\operatorname{diag}((k-1) / 2,-(k-1) / 2)$. We have $L(f, s+(k-1) / 2)=\prod_{p} \operatorname{det}\left(I-c_{p}\left(\pi_{f}\right) p^{-s}\right)^{-1}$. In this example we may also think of $\mathrm{PGL}(2)$ as $\mathrm{SO}(2,1)$, and $\mathrm{SL}(2)$ as $\widehat{\mathrm{SO}(2,1)}=\mathrm{Sp}_{1}$. If instead we consider the cuspidal automorphic representation $\pi_{f}^{\text {st }}$ of $\operatorname{Sp}_{1}(\mathbb{A})=\operatorname{SL}_{2}(\mathbb{A})$ associated with f then $c_{p}\left(\pi_{f}^{\mathrm{st}}\right)=\operatorname{diag}\left(\alpha_{p}^{2}, 1, \alpha_{p}^{-2}\right) \in \mathrm{SO}(2,1)(\mathbb{C})$, and $\prod_{p} \operatorname{det}(I-$ $\left.\operatorname{St}\left(c_{p}\left(\pi_{f}^{\mathrm{st}}\right)\right) p^{-s}\right)^{-1}$ is the standard L-function $L(s, f, \mathrm{St})=L\left(s+(k-1), \operatorname{Sym}^{2} f\right)$, while $c_{\infty}\left(\pi_{f}^{\mathrm{st}}\right)=\operatorname{diag}(k-1,0,1-k)$, which can be thought of as $(k-1) e_{1}$.

By Arthur's symplectic-orthogonal alternative [7, Theorem* 3.9], given any $\pi \in$ $\Pi_{\text {cusp }}(\operatorname{PGL}(m))$ (the subset of cuspidal representations in $\Pi_{\text {disc }}(\operatorname{PGL}(m))$), there is a

$$
G^{\pi}= \begin{cases}\mathrm{Sp}_{(m-1) / 2} & \text { if } m \text { is odd; } \\ \mathrm{SO}(m / 2, m / 2) \text { or } \mathrm{SO}((m / 2)+1, m / 2) & \text { if } m \text { is even }\end{cases}
$$

and $\pi^{\prime} \in \pi_{\text {disc }}\left(G^{\pi}\right)$ such that $c(\pi)=\operatorname{St}\left(c\left(\pi^{\prime}\right)\right)$.
Following [7, Section 3.11] (where more generally G is a classical semisimple group over $\mathbb{Z})$, let $\Psi_{\text {glob }}(G)$ be the set of quadruples $\left(k,\left(n_{i}\right),\left(d_{i}\right),\left(\pi_{i}\right)\right)$, where $1 \leq k \leq$ $2 g+1, k$ an integer, $n_{i} \geq 1$ are integers with $\sum_{i=1}^{k} n_{i}=2 g+1, d_{i} \mid n_{i}$ and each $\pi_{i} \in \Pi_{\text {cusp }}\left(\operatorname{PGL}\left(n_{i} / d_{i}\right)\right)$ is a self-dual, cuspidal, automorphic representation of $\operatorname{PGL}\left(n_{i} / d_{i}\right)(\mathbb{A})$. There are two conditions:

1. if $\left(n_{i}, d_{i}\right)=\left(n_{j}, d_{j}\right)$ with $i \neq j$, then $\pi_{i} \neq \pi_{j}$;
2. d_{i} is odd if $\widehat{G^{\pi_{i}}}$ is orthogonal, while d_{i} is even if $\widehat{G^{\pi_{i}}}$ is symplectic.

An element $\psi \in \Psi_{\text {glob }}(G)$ is called a global Arthur parameter. We write

$$
\underline{\psi}=\pi_{1}\left[d_{1}\right] \oplus \pi_{2}\left[d_{2}\right] \oplus \cdots \oplus \pi_{k}\left[d_{k}\right],
$$

where there is an equivalence relation, such that for the equivalence class $\underline{\psi}$ of ψ the order of the summands is unimportant. If π_{i} is the trivial representation we just write [$\left.d_{i}\right]$ for $\pi_{i}\left[d_{i}\right]$, and we just write π_{i} for $\pi_{i}[1]$.

To a global Arthur parameter $\psi \in \Psi_{\text {glob }}(G)$, we associate a homomorphism

$$
\rho_{\psi}: \prod_{i=1}^{k}\left(\mathrm{SL}\left(n_{i} / d_{i}\right) \times \mathrm{SL}(2)\right) \rightarrow \mathrm{SL}_{2 g+1}
$$

well-defined up to conjugation in $\mathrm{SL}_{2 g+1}(\mathbb{C})$, namely $\bigoplus_{i=1}^{k}\left(\mathbb{C}^{n_{i} / d_{i}} \otimes \operatorname{Sym}^{d_{i}-1}\left(\mathbb{C}^{2}\right)\right)$. Hence we get a map

$$
\rho_{\psi}: \prod_{i=1}^{k}\left(\mathcal{X}\left(\mathrm{SL}\left(n_{i} / d_{i}\right)\right) \times \mathcal{X}(\mathrm{SL}(2))\right) \rightarrow \mathcal{X}\left(\mathrm{SL}_{2 g+1}\right)
$$

Let $e=c(1) \in \mathcal{X}(\mathrm{SL}(2))$, where $1 \in \Pi_{\text {disc }}(\mathrm{PGL}(2))$ is the trivial representation. Then $e_{p}=\operatorname{diag}\left(p^{1 / 2}, p^{-1 / 2}\right)$ and $e_{\infty}=(1 / 2,-1 / 2)$.

Theorem 3.1. (Arthur's Endoscopic Classification [7, Theorem* 3.12], [1, Theorem 1.5.2]). Given $\pi \in \Pi_{\text {disc }}(G)$, there is $\psi(\pi) \in \Psi_{\text {glob }}(G)$ (the global Arthur parameter of π) such that

$$
\operatorname{St}(c(\pi))=\rho_{\psi(\pi)}\left(\prod_{i=1}^{k} c\left(\pi_{i}\right) \times e\right)
$$

As an example, if π_{f} is the cuspidal automorphic representation of $\operatorname{PGL}(2)(\mathbb{A})$ associated with a normalised, cuspidal Hecke eigenform $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ of weight $2 k-2$ for $\mathrm{SL}(2, \mathbb{Z})$, with k even, if F, a cusp form of weight k for $\mathrm{Sp}_{2}(\mathbb{Z})$, is the Saito-Kurokawa lift of f, and if π_{F} is the associated cuspidal automorphic representation of $\mathrm{Sp}_{2}(\mathbb{A})$, then $\psi\left(\pi_{F}\right)=\pi_{f}[2] \oplus[1]$, with $c_{\infty}\left(\pi_{F}\right)=\operatorname{diag}(k-1, k-2,0,2-$ $k, 1-k), c_{p}\left(\pi_{F}\right)=\operatorname{diag}\left(\alpha_{p} p^{1 / 2}, \alpha_{p} p^{-1 / 2}, 1, \alpha_{p}^{-1} p^{1 / 2}, \alpha_{p}^{-1} p^{-1 / 2}\right)$ and standard L-function $L(s, F, \operatorname{St})=\prod_{p}\left(\operatorname{det}\left(I-\operatorname{St}\left(c_{p}\left(\pi_{F}\right)\right) p^{-s}\right)\right)^{-1}=\zeta(s) L(f, s+(k-1)) L(f, s+(k-2))$.

At this point we should say a little more about the relation between Siegel modular forms and automorphic representations. Asgari and Schmidt [2] describe how to get a cuspidal automorphic representation π_{F}^{\prime} of $\mathrm{PGSp}_{g}(\mathbb{A})$, holomorphic discrete series at ∞, from a Hecke eigenform F in $S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$, with $k \geq g+1$, and something similar works for vector-valued forms [25, Section 5.2]. From this π_{F}^{\prime} one can get a cuspidal automorphic representation π_{F} of $\operatorname{Sp}_{g}(\mathbb{A})$, whose Satake parameters are obtained from those of π_{F}^{\prime} by applying the 2 -to- 1 covering map from $\operatorname{Spin}(g+1, g)$ to $\mathrm{SO}(g+1, g)$. Conversely, given $\pi \in \Pi_{\text {disc }}\left(\mathrm{Sp}_{g}\right)$ with $c_{\infty}(\pi)=\operatorname{diag}(k-1, \ldots, k-g, 0, g-k, \ldots, 1-k)$ and π_{∞} holomorphic discrete series, it comes from some $\pi^{\prime} \in \Pi_{\text {disc }}\left(\operatorname{PGSp}_{g}(\mathbb{A})\right)$ (by [7, Proposition 4.7]), which is actually in $\Pi_{\text {cusp }}\left(\operatorname{PGSp}_{g}(\mathbb{A})\right)$ (by [25, Remark 5.2.3]). This is then of the form π_{F}^{\prime} for some Hecke eigenform (for the $T(p)$ as well as the $\left.T_{i}\left(p^{2}\right)\right) F \in S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right.$), as explained
in [25, Section 5.2].

4. Arthur's multiplicity formula.

Closely related to ρ_{ψ} above is

$$
r_{\psi}: \prod_{i=1}^{k}\left(\widehat{G^{\pi_{i}}} \times \mathrm{SL}(2)\right) \rightarrow \widehat{G}=\mathrm{SO}(g+1, g)
$$

Then St $\circ r_{\psi}$ is a direct sum $\oplus_{i=1}^{k} V_{i}$, where V_{i} is an irreducible n_{i}-dimensional representation of $\widehat{G^{\pi_{i}}} \times \operatorname{SL}(2)$. Following [7, Section 3.20], let C_{ψ} be the centraliser of $\operatorname{im}\left(r_{\psi}\right)$ in \hat{G}. This is an elementary abelian 2-group generated by $Z(\hat{G})$ and elements s_{i} for those i such that n_{i} is even, where $\operatorname{St}\left(s_{i}\right)$ acts as -1 on V_{i}, and as +1 on V_{j} for all $j \neq i$.

Arthur [1] defined a character $\epsilon_{\psi}: C_{\psi} \rightarrow\{ \pm 1\}$, where ϵ_{ψ} is trivial on $Z(\hat{G})$ and

$$
\epsilon_{\psi}\left(s_{i}\right)=\prod_{j \neq i} \epsilon\left(\pi_{i} \times \pi_{j}\right)^{\min \left(d_{i}, d_{j}\right)}
$$

$\epsilon\left(\pi_{i} \times \pi_{j}\right)= \pm 1$ being the global epsilon factor appearing in the functional equation of $L\left(s, \pi_{i} \times \pi_{j}\right)$, which in our case, where $\pi_{i} \times \pi_{j}$ will be unramified at all finite primes, is just the local factor $\epsilon_{\infty}\left(\pi_{i} \times \pi_{j}\right)$.

Given $\pi \in \Pi(G)$ such that $c(\pi)=\psi \in \Psi_{\text {alg }}$ (a certain subset of $\Psi_{\text {glob }}(G)$, see $[\mathbf{7}$, Definition 3.15]), we can ask whether π actually occurs in $\Pi_{\text {disc }}(G)$. Arthur's multiplicity conjecture answers this question. The answer depends on comparing ϵ_{ψ} with another character which depends on how all the π_{p} and π_{∞} sit in their L-packets. Since all the π_{p} are unramified, their L-packets are trivial, i.e. they are uniquely determined up to isomorphism by their $c_{p}(\pi)$. Therefore we only need consider π_{∞}, which we want to be the holomorphic discrete series representation within its L-packet. There is an associated Shelstad parameter $\chi_{\text {hol }}: C_{\psi_{\infty}} \rightarrow \mathbb{C}^{\times}$, where $C_{\psi_{\infty}}$ is a certain group which can be viewed as a 2-torsion subgroup of \hat{T}, such that $C_{\psi} \subseteq C_{\psi_{\infty}}$, and the requirement of Arthur's multiplicity formula is that $\left.\chi_{\text {hol }}\right|_{C_{\psi}}=\epsilon_{\psi}$. By [7, Lemma 9.3], $\chi_{\text {hol }}$ is the restriction of either $\sum_{\text {odd } i=1}^{g} \tilde{e}_{i}$ or $\sum_{\text {even } i=1}^{g} \tilde{e}_{i} \in X^{*}(\hat{T})$, and the restrictions to C_{ψ} are the same [7, Lemma 9.5], so we act as if $\chi_{\text {hol }}=\sum_{\text {odd } i=1}^{g} \tilde{e}_{i}$. Note that although C_{ψ} and $C_{\psi_{\infty}}$ are only well-defined up to conjugacy, there is a natural way of viewing one inside the other, compatible with the above view of $C_{\psi_{\infty}}$ inside $\hat{T}[2]$, and the explicit realisation in $\hat{T}[2]$ of the various $s_{i} \in C_{\psi}$ in the proofs in the next section.

5. Application to various lifts.

All the propositions in this section are conditional upon Arthur's multiplicity conjecture.

5.1. Ikeda lifts.

For $k, g \geq 2$ even, and $f \in S_{2 k-g}(\mathrm{SL}(2, \mathbb{Z}))$ a Hecke eigenform, let π_{f} be the associated cuspidal, automorphic representation of $\operatorname{PGL}(2)(\mathbb{A})$, and consider $\pi_{f}[g] \oplus[1] \in \Psi_{\text {alg }}$.

Proposition 5.1. \quad There exists $\pi \in \Pi_{\text {disc }}\left(\operatorname{Sp}_{g}\right)$ such that $\psi(\pi)=\pi_{f}[g] \oplus[1]$.
Proof. Since $n_{1}=2 g$ is even, but $n_{2}=1$ is odd, C_{ψ} is generated by $Z(\hat{G})$ and $s_{1}=: s_{f}$. We have $\epsilon_{\psi}\left(s_{f}\right)=\epsilon_{\infty}\left(\pi_{f} \times 1\right)^{1}=\epsilon_{\infty}\left(\pi_{f}\right)$. Note that $c_{\infty}\left(\pi_{f}\right)=$ $\operatorname{diag}((2 k-g-1) / 2,(1-g-2 k) / 2)$. The associated motive (twisted to have weight 0) would have Hodge type $\{(p, q),(q, p)\}$, with $p=(1-g-2 k) / 2$ and $q=(2 k-g-1) / 2$. Putting this in the formula i^{q-p+1} in the table in [8, Section 5.3], we recover the wellknown $\epsilon_{\infty}\left(\pi_{f}\right)=i^{2 k-g}=(-1)^{k-(g / 2)}=(-1)^{g / 2}$. Of course we would have to make a half-integral twist to really have a motive, with integral Hodge weights, but since we are only interested in the difference $q-p$, we can ignore this.

On the other hand $\chi_{\text {hol }}=\tilde{e}_{1}+\cdots+\tilde{e}_{g-1}$ (odd subscripts), which has $g / 2$ terms, and $s_{f}=\operatorname{diag}(\underbrace{-1, \ldots,-1}_{g \text { times }}, 1, \underbrace{-1, \ldots,-1}_{g \text { times }})$, so $\chi_{\text {hol }}\left(s_{f}\right)=(-1)^{g / 2}$. Since this is the same as $\epsilon_{\psi}\left(s_{f}\right), \pi$ exists.

Note that $c_{\infty}(\pi)=\operatorname{diag}(k-1, k-2, \ldots, k-g, 0, g-k, \ldots, 2-k, 1-k)$ matches $c_{\infty}\left(\pi_{F}\right)$, where π_{F} is the automorphic representation of $\mathrm{Sp}_{g}(\mathbb{A})$ associated with a cuspidal Hecke eigenform $F \in S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right.$), and since π_{∞} is holomorphic discrete series, π is of the form π_{F}. From $\psi\left(\pi_{F}\right)$ we can read off the standard L-function $L(s, F, \mathrm{St})=$ $\zeta(s) \prod_{i=1}^{g} L(f, s+(k-i))$, and we recognise F as the Ikeda lift of $f[\mathbf{1 4}]$.

5.2. Standard lifts.

Let k, g, f be as in the previous section, and let F be a cuspidal Hecke eigenform for $\mathrm{Sp}_{2}(\mathbb{Z})$, of weight $\operatorname{det}^{\kappa} \otimes \operatorname{Sym}^{j}\left(\mathbb{C}^{2}\right)$, with $(\kappa, j)=(k-g+2, g-2)$ (so we must impose $k>g-2)$. To F we associate an automorphic representation $\pi_{F}^{\text {st }}$ of $\operatorname{Sp}_{2}(\mathbb{A})$, with $c_{\infty}\left(\pi_{F}\right)=\operatorname{diag}(j+\kappa-1, \kappa-2,0,2-\kappa, 1-j-\kappa)=\operatorname{diag}(k-1, k-g, 0, g-k, 1-k)$. To $\operatorname{get} \operatorname{diag}(k-1, k-2, \ldots, k-g, 0, g-k, \ldots, 2-k, 1-k)$ (seen in the previous section) from $\operatorname{diag}(k-1, k-g, 0, g-k, 1-k)$, we need to fill in the gaps using $(g-2)$ copies of $c_{\infty}\left(\pi_{f}\right)=\operatorname{diag}((2 k-g-1) / 2,(1-g-2 k) / 2)$, shifted to left and right. So we consider $\psi=\pi_{F}^{\text {st }} \oplus \pi_{f}[g-2] \in \Psi_{\text {alg }}$. Note that we have abused notation somewhat; $\pi_{F}^{\text {st }}$ is a representation of $\mathrm{Sp}_{2}(\mathbb{A})$, but we are using the same notation for its lift to $\operatorname{PGL}(5)(\mathbb{A})$, via $\mathrm{St}: \mathrm{SO}(3,2) \rightarrow \mathrm{SL}(5)$. We must insist that we are in a situation where this lift is cuspidal, so we must exclude the case where $g=2$ and F is a Saito-Kurokawa lift. (Similar remarks apply in subsequent sections.) In fact, we may as well exclude the case $g=2$, in which F is already scalar-valued, and π below would be just the same as $\pi_{F}^{\text {st }}$.

Proposition 5.2. There exists $\pi \in \Pi_{\text {disc }}\left(\operatorname{Sp}_{g}\right)$ such that $\psi(\pi)=\pi_{F}^{\mathrm{st}} \oplus \pi_{f}[g-2]$.
Proof. Since $n_{1}=5$ is odd, but $n_{2}=2(g-2)$ is even, C_{ψ} is generated by $Z(\hat{G})$ and $s_{2}=: s_{f}$. We have $\epsilon_{\psi}\left(s_{f}\right)=\epsilon_{\infty}\left(\pi_{f} \times \pi_{F}^{\text {st }}\right)^{1}=\epsilon_{\infty}\left(\pi_{f} \times \pi_{F}^{\text {st }}\right)$. Since $c_{\infty}\left(\pi_{f}\right)=$ $\operatorname{diag}((2 k-g-1) / 2,(1-g-2 k) / 2)$ and $c_{\infty}\left(\pi_{F}\right)=\operatorname{diag}(k-1, k-g, 0, g-k, 1-k)$, the associated motive (twisted to have weight 0) would have Hodge type a union of $\{(-q, q),(q,-q)\}$, where $2 q$ runs through $\{2 k-g-1+2(k-1)=4 k-g-3,4 k-3 g-$ $1,2 k-g-1, g-1, g-1\}$. Putting this in the formula $i^{q-p+1}=i^{2 q+1}$, we find that

$$
\epsilon_{\infty}\left(\pi_{f} \times \pi_{F}^{\mathrm{st}}\right)=i^{4 k-g-2+4 k-3 g+2 k-g+g+g}=i^{g+2}=(-1)^{(g / 2)+1} .
$$

On the other hand $s_{f}=\operatorname{diag}(1, \underbrace{-1, \ldots,-1}_{g-2 \text { times }}, 1,1,1 \underbrace{-1, \ldots,-1}_{g-2 \text { times }}, 1)$. In the left half, $(g / 2)-1$ of the -1 s are in odd position, so $\chi_{\text {hol }}\left(s_{f}\right)=(-1)^{(g / 2)+1}$. Since this is the same as $\epsilon_{\psi}\left(s_{f}\right), \pi$ exists.

As already noted, $c_{\infty}(\pi)=\operatorname{diag}(k-1, k-2, \ldots, k-g, 0, g-k, \ldots, 2-k, 1-k)$, so as in the previous section $\pi=\pi_{G}$ for some cuspidal Hecke eigenform $G \in S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$. This time $L(s, G, \mathrm{St})=L(s, F, \mathrm{St}) \prod_{i=1}^{g-2} L(f, s+(k-g+i))$. The existence of such a G is precisely [12, Conjecture 3.2].

5.3. Spinor lifts.

Now $k, g \geq 2$ even, $f \in S_{2 k-g}(\operatorname{SL}(2, \mathbb{Z}))$, and F is a cuspidal Hecke eigenform for $\operatorname{Sp}_{2}(\mathbb{Z})$, of weight $\operatorname{det}^{\kappa} \otimes \operatorname{Sym}^{j}\left(\mathbb{C}^{2}\right)$, with $(\kappa, j)=(r+1,2 k-g-1-r)$ (so we impose $k>(g / 2)+r+1)$, for some fixed odd r with $(g / 2)+1 \leq r<g$. To F we associate an automorphic representation $\pi_{F}^{\text {spin }}$ of $\operatorname{PGSp}_{2}(\mathbb{A}) \simeq \operatorname{SO}(3,2)(\mathbb{A})$, with

$$
\begin{aligned}
c_{\infty}\left(\pi_{F}^{\mathrm{spin}}\right) & =\operatorname{diag}\left(\frac{j+2 \kappa-3}{2}, \frac{j+1}{2},-\frac{j+1}{2},-\frac{j+2 \kappa-3}{2}\right) \\
& =\operatorname{diag}\left(\frac{2 k-g+r-2}{2}, \frac{2 k-g-r}{2},-\frac{2 k-g-r}{2},-\frac{2 k-g+r-2}{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& c_{\infty}\left(\pi_{F}^{\mathrm{spin}}[g+1-r]\right) \\
& \quad=\operatorname{diag}(k-1, \ldots, k+r-g-1, k-r, \ldots, k-g, g-k, \ldots, r-k, 1+g-r-k, \ldots, 1-k),
\end{aligned}
$$

where the dots denote unbroken sequences of consecutive integers. To fill in the gaps we use $\pi_{f}[2 r-g-2]$, then to put 0 in the middle we use [1]. Thus

$$
\begin{aligned}
& c_{\infty}\left(\pi_{F}^{\text {spin }}[g+1-r] \oplus \pi_{f}[2 r-g-2] \oplus[1]\right) \\
& \quad=\operatorname{diag}(k-1, k-2, \ldots, k-g, 0, g-k, \ldots, 2-k, 1-k) .
\end{aligned}
$$

Note that since $r>2$ and $j>0$, there are no entries in $c_{\infty}\left(\pi_{F}^{\text {spin }}\right)$ differing by 1 , so in the Arthur parameter of $\pi_{F}^{\text {spin }}$, all $d_{i}=1$. The possibility that $\pi_{F}^{\text {spin }}$ is endoscopic is ruled out, since there are no holomorphic Yoshida lifts at level 1. Hence the lift of $\pi_{F}^{\text {spin }}$ to $\operatorname{PGL}(4)(\mathbb{A})$, which is what is really meant above by $\pi_{F}^{\text {spin }}$, must be cuspidal, as desired.

Proposition 5.3. If $4 \mid g$, there exists $\pi \in \Pi_{\text {disc }}\left(\mathrm{Sp}_{g}\right)$ such that $\psi(\pi)=\pi_{F}^{\text {spin }}[g+$ $1-r] \oplus \pi_{f}[2 r-g-2] \oplus[1]$.

Proof. This time $n_{1}=4(g+1-r)$ and $n_{2}=2(2 r-g-2)$ are even, while $n_{3}=$ 1 is odd, so we must consider $s_{1}=: s_{F}$ and $s_{2}=: s_{f}$. Since $\widehat{G^{\pi_{f}}}$ and $\widehat{G^{\pi_{F}^{\text {sin }}}}$ are both symplectic, it follows from a theorem of Arthur (see [7, Section 3.20]) that $\epsilon\left(\pi_{f} \times \pi_{F}^{\text {spin }}\right.$) $=1$. Hence $\epsilon_{\psi}\left(s_{f}\right)=\epsilon_{\infty}\left(\pi_{f} \times 1\right)^{1}=\epsilon_{\infty}\left(\pi_{f}\right)=(-1)^{g / 2}$ as before, and likewise $\epsilon_{\psi}\left(s_{F}\right)$ $=\epsilon_{\infty}\left(\pi_{F}^{\mathrm{spin}}\right)=i^{(2 k-g-r+1)+(2 k-g+r-1)}=(-1)^{g / 2}$.

$$
s_{f}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{g+1-r}, \underbrace{-1, \ldots,-1}_{2 r-g-2}, \underbrace{1, \ldots, 1}_{2 g+3-2 r}, \underbrace{-1, \ldots,-1}_{2 r-g-2}, \underbrace{1, \ldots, 1}_{g+1-r}) \text {, }
$$

and on the left side the number of -1 s in odd position is $r-(g / 2)-1$, so $\chi_{\mathrm{hol}}\left(s_{f}\right)=$ $(-1)^{r-(g / 2)-1}=(-1)^{g / 2}$, since r is odd.

$$
s_{F}=\operatorname{diag}(\underbrace{-1, \ldots,-1}_{g+1-r}, \underbrace{1, \ldots, 1}_{2 r-g-2}, \underbrace{-1, \ldots,-1}_{g+1-r}, 1, \underbrace{-1, \ldots,-1}_{g+1-r}, \underbrace{1, \ldots, 1}_{2 r-g-2}, \underbrace{-1, \ldots,-1}_{g+1-r}),
$$

and on the left side the number of -1 s in odd position is $g+1-r$, which is even, so $\chi_{\mathrm{hol}}\left(s_{F}\right)=1$. Thus, though $\chi_{\mathrm{hol}}\left(s_{f}\right)=\epsilon_{\psi}\left(s_{f}\right)$, for $\chi_{\mathrm{hol}}\left(s_{F}\right)=\epsilon_{\psi}\left(s_{F}\right)$ we need the condition $4 \mid g$.

As already noted, $c_{\infty}(\pi)=\operatorname{diag}(k-1, k-2, \ldots, k-g, 0, g-k, \ldots, 2-k, 1-k)$, so as before, $\pi=\pi_{G}$ for some cuspidal Hecke eigenform $G \in S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$. This time $L(s, G, \mathrm{St})=\zeta(s) \prod_{i=1}^{g+1-r} L(s-i+(g-r+2) / 2, F$, spin $) \prod_{i=1}^{2 r-g-2} L(f, s+(k-r+i))$, where the spinor L-function is in its automorphic normalisation, centred at $s=1 / 2$. In the special case $r=(g / 2)+1$ (in which case f does not actually appear), the existence of such a G is precisely [12, Conjecture 3.1].

5.4. Ikeda-Miyawaki lifts.

Consider Hecke eigenforms $f \in S_{2 k}(\mathrm{SL}(2, \mathbb{Z})), h \in S_{k+n+1}(\mathrm{SL}(2, \mathbb{Z}))$, where $k+n+1$ is even. Let π_{f} be the associated cuspidal, automorphic representation of $\operatorname{PGL}(2)(\mathbb{A})$, and $\pi_{h}^{\text {st }}$ the cuspidal automorphic representation of $\operatorname{Sp}_{1}(\mathbb{A})=\mathrm{SL}_{2}(\mathbb{A})$ associated with h. Recall that $c_{p}\left(\pi_{h}^{\mathrm{st}}\right)=\operatorname{diag}\left(\alpha_{p}^{2}, 1, \alpha_{p}^{-2}\right) \in \mathrm{SO}(2,1)(\mathbb{C})\left(\right.$ where $\left.a_{p}(h)=p^{(k+n) / 2}\left(\alpha_{p}+\alpha_{p}^{-1}\right)\right)$, and $c_{\infty}\left(\pi_{h}^{\mathrm{st}}\right)=\operatorname{diag}(k+n, 0,-k-n)$. Since $c_{\infty}\left(\pi_{f}\right)=\operatorname{diag}((2 k-1) / 2,(1-2 k) / 2)$, we see that $c_{\infty}\left(\pi_{h}^{\text {st }} \oplus \pi_{f}[2 n]\right)=\operatorname{diag}(k+n, \ldots, k-n, 0, n-k, \ldots,-n-k)$, where the dots denote unbroken sequences of consecutive integers. This is of the form $\operatorname{diag}(\kappa-1, \kappa-2, \ldots, \kappa-g, 0, g-\kappa, \ldots, 2-\kappa, 1-\kappa)$, where $\kappa=k+n+1$ and $g=$ $2 n+1$.

Proposition 5.4. There exists $\pi \in \Pi_{\text {disc }}\left(\mathrm{Sp}_{2 n+1}\right)$ such that $\psi(\pi)=\pi_{h}^{\text {st }} \oplus \pi_{f}[2 n]$.
Proof. Since $n_{1}=3$ is odd, while $n_{2}=4 n$ is even, we consider $s_{2}=: s_{f}$. First, $\epsilon_{\psi}\left(s_{f}\right)=\epsilon_{\infty}\left(\pi_{h}^{\text {st }} \times \pi_{f}\right)$. The associated motive (twisted to have weight 0) would have Hodge type a union of $\{(-q, q),(q,-q)\}$, where $2 q$ runs through $\{2 k-1+2(k+n)=$ $4 k+2 n-1,2 k-1,2 n+1\}$. Putting this in the formula $i^{q-p+1}=i^{2 q+1}$, we find that

$$
\epsilon_{\infty}\left(\pi_{f}\right)=i^{4 k+2 n+2 k+2 n+2}=i^{2 k+2}=(-1)^{k+1}
$$

Now $s_{f}=\operatorname{diag}(1, \underbrace{-1, \ldots,-1}_{2 n}, 1, \underbrace{-1, \ldots,-1}_{2 n}, 1)$, and in the left half, n of the -1 s are in odd position, so $\chi_{\mathrm{hol}}\left(s_{f}\right)=(-1)^{n}$, which is the same as $(-1)^{k+1}$, since $n+k+1$ is even.

As already noted, $c_{\infty}(\pi)=\operatorname{diag}(k+n, \ldots, k-n, 0, n-k, \ldots,-n-k)$, so $\pi=$ π_{G} for some cuspidal Hecke eigenform $G \in S_{k+n+1}\left(\operatorname{Sp}_{2 n+1}(\mathbb{Z})\right)$. Also $L(s, G, \mathrm{St})=$
$L(s, h, \mathrm{St}) \prod_{i=1}^{2 n} L(f, s+(k-n-1+i))$, and we recognise G as a lift whose existence was conjectured by Miyawaki and proved by Ikeda [21], [15].

5.5. Lifts from genus 3 and 1.

Let f be as in the previous section, with $k+n+1$ still even. Let F be a vectorvalued cuspidal Hecke eigenform of genus 3 such that if $\pi_{F}^{\text {st }}$ is the associated automorphic representation of $\operatorname{Sp}_{3}(\mathbb{A})$ then $c_{\infty}\left(\pi_{F}^{\text {st }}\right)=\operatorname{diag}(k+n, k+n-1, k-n, 0, n-k,-n-k+$ $1,-n-k)$. In the language of $[4$, Sections 4.1, 7$],(a, b, c)=(k+n-3, k+n-3, k-n-1)$. To fill in the gaps of length $2 n-2$, we consider $\psi=\pi_{F}^{\text {st }} \oplus \pi_{f}[2 n-2]$. We may as well exclude the case $n=1$, in which F is already scalar-valued and π below would be just the same as $\pi_{F}^{\text {st }}$.

Proposition 5.5. \quad There exists $\pi \in \Pi_{\text {disc }}\left(\mathrm{Sp}_{2 n+1}\right)$ such that $\psi(\pi)=\pi_{F}^{\text {st }} \oplus \pi_{f}[2 n-2]$.
Proof. Since $n_{1}=7$ is odd, while $n_{2}=4 n-4$ is even, we consider $s_{2}=: s_{f}$.

$$
\begin{gathered}
\epsilon_{\psi}\left(s_{f}\right)=\epsilon_{\infty}\left(\pi_{F}^{\text {st }} \times \pi_{f}\right)=i^{(4 k+2 n)+(4 k+2 n-2)+(4 k-2 n)+2 k+2 n+(2 n+2)+2 n}=i^{2 k}=(-1)^{k} . \\
s_{f}=\operatorname{diag}(1,1, \underbrace{-1, \ldots,-1}_{2 n-2}, 1,0,1, \underbrace{-1, \ldots,-1}_{2 n-2}, 1,1),
\end{gathered}
$$

with $n-1$ of -1 s in the left half in odd position, so $\chi_{\mathrm{hol}}\left(s_{F}\right)=(-1)^{n-1}$, which is the same as $(-1)^{k}$, since $k+n+1$ is even.

As before, $\pi=\pi_{G}$ for some cuspidal Hecke eigenform $G \in S_{k+n+1}\left(\operatorname{Sp}_{2 n+1}(\mathbb{Z})\right)$. We read off $L(s, G, \mathrm{St})=L(s, F, \mathrm{St}) \prod_{i=1}^{2 n-2} L(f, s+k-n+i)$.

5.6. Lifts from genus 1,2 and 1.

As in Section 5.4, consider Hecke eigenforms $f \in S_{2 k}(\operatorname{SL}(2, \mathbb{Z})), h \in$ $S_{k+n+1}(\mathrm{SL}(2, \mathbb{Z}))$, where $k+n+1$ is even. Let π_{f} be the associated cuspidal, automorphic representation of $\operatorname{PGL}(2)(\mathbb{A})$, and $\pi_{h}^{\text {st }}$ the cuspidal automorphic representation of $\mathrm{Sp}_{1}(\mathbb{A})=\mathrm{SL}_{2}(\mathbb{A})$ associated with h. Let F be a cuspidal Hecke eigenform for $\mathrm{Sp}_{2}(\mathbb{Z})$, of weight $\operatorname{det}^{\kappa} \otimes \operatorname{Sym}^{j}\left(\mathbb{C}^{2}\right)$, with $(\kappa, j)=(r+1,2 k-1-r)$, for some fixed odd r with $n+1 \leq r \leq 2 n-1$. To F we associate an automorphic representation $\pi_{F}^{\text {spin }}$ of $\operatorname{PGSp}_{2}(\mathbb{A}) \simeq \operatorname{SO}(3,2)(\mathbb{A})$, with

$$
\begin{aligned}
c_{\infty}\left(\pi_{F}^{\text {spin }}\right) & =\operatorname{diag}\left(\frac{j+2 \kappa-3}{2}, \frac{j+1}{2},-\frac{j+1}{2},-\frac{j+2 \kappa-3}{2}\right) \\
& =\operatorname{diag}\left(\frac{2 k+r-2}{2}, \frac{2 k-r}{2},-\frac{2 k-r}{2},-\frac{2 k+r-2}{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& c_{\infty}\left(\pi_{F}^{\text {sin }}[2 n+1-r]\right) \\
& =\operatorname{diag}(k+n-1, \ldots, k+r-n-1, k+n-r, \ldots, k-n, \\
& \quad n-k, \ldots, r-n-k, 1+n-r-k, \ldots, 1-k-n),
\end{aligned}
$$

where the dots denote unbroken sequences of consecutive integers. To fill in the gaps we use $\pi_{f}[2 r-2 n-2]$, and we also add $c_{\infty}\left(\pi_{h}^{\mathrm{st}}\right)=\operatorname{diag}(k+n, 0,-n-k)$. Thus

$$
\begin{aligned}
& c_{\infty}\left(\pi_{h}^{\mathrm{st}} \oplus \pi_{F}^{\mathrm{spin}}[2 n+1-r] \oplus \pi_{f}[2 r-2 n-2]\right) \\
& \quad=\operatorname{diag}(k+n, k+n-1, \ldots, k-n, 0, n-k, \ldots, 1-n-k,-n-k)
\end{aligned}
$$

Proposition 5.6. There exists $\pi \in \Pi_{\text {disc }}\left(\mathrm{Sp}_{2 n+1}\right)$ such that $\psi(\pi)=\pi_{h}^{\text {st }} \oplus \pi_{F}^{\text {spin }}[2 n+$ $1-r] \oplus \pi_{f}[2 r-2 n-2]$.

Proof. This time $n_{2}=4(2 n+1-r)$ and $n_{3}=2(2 r-2 n-2)$ are even, while $n_{1}=3$ is odd, so we must consider $s_{2}=: s_{F}$ and $s_{3}=: s_{f}$. Since $\widehat{G^{\pi_{f}}}$ and $\widehat{G^{\pi_{F}^{\text {spin }}}}$ are both symplectic, it follows from a theorem of Arthur (see [7, Section 3.20]) that $\epsilon\left(\pi_{f} \times \pi_{F}^{\text {spin }}\right)=1$. Hence

$$
\epsilon_{\psi}\left(s_{f}\right)=\epsilon_{\infty}\left(\pi_{f} \times \pi_{h}^{\mathrm{st}}\right)^{1}=i^{2 k+(2 n+2)+(4 k+2 n)}=(-1)^{k+1}
$$

and likewise

$$
\begin{aligned}
\epsilon_{\psi}\left(s_{F}\right) & =\epsilon_{\infty}\left(\pi_{F}^{\text {spin }} \times \pi_{h}^{\text {st }}\right) \\
& =i^{(2 k+r-1)+(2 k-r+1)+(2 n+r+1)+(2 n-r+3)+(4 k+2 n+r-1)+(4 k+2 n-r+1)}=1 . \\
s_{f} & =\operatorname{diag}(\underbrace{1, \ldots, 1}_{2 n+1-r}, \underbrace{-1, \ldots,-1}_{2 r-2 n-2} \underbrace{1, \ldots, 1}_{4 n+3-2 r}, \underbrace{-1, \ldots,-1}_{2 r-2 n-2}, \underbrace{1, \ldots, 1}_{2 n+1-r},
\end{aligned}
$$

and on the left side the number of -1 s in odd position is $r-n-1$, so $\chi_{\mathrm{hol}}\left(s_{f}\right)=$ $(-1)^{r-n-1}=(-1)^{n}$, since r is odd. This is the same as $(-1)^{k+1}$, since $n+k+1$ is even.

$$
s_{F}=\operatorname{diag}(\underbrace{-1, \ldots,-1}_{2 n+1-r}, \underbrace{1, \ldots, 1}_{2 r-2 n-2}, \underbrace{-1, \ldots,-1}_{2 n+1-r}, 1, \underbrace{-1, \ldots,-1}_{2 n+1-r}, \underbrace{1, \ldots, 1}_{2 r-2 n-2}, \underbrace{-1, \ldots,-1}_{2 n+1-r}),
$$

and on the left side the number of -1 s in odd position is $2 n+1-r$, which is even, so $\chi_{\text {hol }}\left(s_{F}\right)=1$.

We have $\pi=\pi_{G}$ for some cuspidal Hecke eigenform $G \in S_{k+n+1}\left(\mathrm{Sp}_{2 n+1}(\mathbb{Z})\right)$, and we get $L(s, G, \mathrm{St})$

$$
=L(s, h, \mathrm{St}) \prod_{i=1}^{2 n+1-r} L\left(s+\frac{2 n-r}{2}+1-i, F, \mathrm{spin}\right) \prod_{j=1}^{2 r-2 n-2} L(f, s+k+n-r+j)
$$

Note that in the case $r=n+1, f$ does not appear.

6. Congruences between lifts and "non-lifts".

6.1. Congruences between Ikeda lifts and non-Ikeda lifts.

The following is Theorem 4.7 of [16]. The proof makes use of the proof by Katsurada and Kawamura [18] of a conjecture of Ikeda on the Petersson norm of his lift. The normalised L-values $L_{\mathrm{alg}}(f, k)$ and $L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})$ are obtained from $L(f, k)$ and $L(2 i+$
$1, f, \mathrm{St})$ by dividing by suitably normalised Deligne periods, as explained in [3, Section 4]. For $L_{\mathrm{alg}}(f, k)$, the Deligne period is as constructed in [16, Section 4], using parabolic cohomology with integral coefficients. (Since $q>2 k$, we may ignore various factorials of small numbers.) For $L_{\text {alg }}(2 i+1, f, \mathrm{St})$ it is essentially a product $\Omega^{+} \Omega^{-}$of normalised Deligne periods for $L(f, s)$ [$\mathbf{9}$, Lemma 5.1], but given the condition (2) below, this is as good as the $\langle f, f\rangle$ used by Katsurada (see condition (3) in [16, Theorem 4.7]).

Theorem 6.1. For $k, g \geq 2$ even, and $f \in S_{2 k-g}(\operatorname{SL}(2, \mathbb{Z}))$ a Hecke eigenform, let $F \in S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$ be the Ikeda lift, as in Section 5.1 above. Suppose that $k \geq 2 g+4$ and that $q>2 k$ is a prime number such that, for some divisor $\mathfrak{q} \mid q$ in a sufficiently large number field,

$$
\operatorname{ord}_{\mathfrak{q}}\left(L_{\mathrm{alg}}(f, k) \prod_{i=1}^{(g / 2)-1} L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})\right)>0
$$

Suppose further that

1. for some even integer t with $k+2 \leq t \leq 2 k-2 g-2$, and some fundamental discriminant D with $(-1)^{g / 2} D>0$,

$$
\operatorname{ord}_{\mathfrak{q}}\left(\frac{\zeta(t+g-k)}{\pi^{t+g-k}}\left(\prod_{i=1}^{g} L_{\mathrm{alg}}(f, t+i-1)\right) L_{\mathrm{alg}}\left(f,(k-2 g) / 2, \chi_{D}\right) D\right)=0,
$$

where χ_{D} is the associated quadratic character, and the Dirichlet L-value is normalised as in [16];
2. there is not a congruence mod \mathfrak{q} of Hecke eigenvalues between f and another Hecke eigenform in $S_{2 k-g}(\mathrm{SL}(2, \mathbb{Z}))$;
3. if $g>2, q \nmid \prod_{p \leq(2 k-g) / 12, p \text { prime }}\left(1+p+p^{2}+\cdots+p^{g-1}\right)$.

Then there exists a Hecke eigenform $G \in S_{k}\left(\operatorname{Sp}_{g}(\mathbb{Z})\right)$, not the Ikeda lift of any Hecke eigenform $h \in S_{2 k-g}(\mathrm{SL}(2, \mathbb{Z}))$, such that for any prime p, corresponding Hecke eigenvalues for F and G, for all the Hecke operators $T(p)$ and $T_{i}\left(p^{2}\right)(1 \leq i \leq g)$, are congruent $\bmod \mathfrak{q}$.

Ikeda proved only that F is a Hecke eigenform for the $T_{i}\left(p^{2}\right)$ (defined in $[\mathbf{1 6}$, Section 2]), which generate a Hecke algebra associated with the pair $\left(\operatorname{Sp}_{g}\left(\mathbb{Q}_{p}\right), \operatorname{Sp}_{g}\left(\mathbb{Z}_{p}\right)\right)$, but Katsurada [16, Proposition 4.1] extended this to $T(p)$, which with the $T_{i}\left(p^{2}\right)$ generates a Hecke algebra associated with $\left(\operatorname{GSp}_{g}\left(\mathbb{Q}_{p}\right), \mathrm{GSp}_{g}\left(\mathbb{Z}_{p}\right)\right.$). (See also the final paragraph of Section 3 above.) If we ignore the $T(p)$ then the congruence in the theorem is equivalent to a congruence (for all p) of Satake parameters

$$
c_{p}\left(\pi_{F}\right) \equiv c_{p}\left(\pi_{G}\right) \quad(\bmod \mathfrak{q})
$$

(or strictly speaking $p^{k g-g(g+1) / 2} c_{p}\left(\pi_{F}\right) \equiv p^{k g-g(g+1) / 2} c_{p}\left(\pi_{G}\right)(\bmod \mathfrak{q})$), with

$$
c_{p}\left(\pi_{F}\right)=\operatorname{diag}\left(\alpha_{1, F}, \ldots, \alpha_{g, F}, 1, \alpha_{g, F}^{-1}, \ldots, \alpha_{1, F}^{-1}\right) \in \hat{T}(\mathbb{C})
$$

and likewise for G. We should interpret the congruence as being between $c_{p}\left(\pi_{F}\right)$ and some element in the orbit of $c_{p}\left(\pi_{G}\right)$ under the action of a Weyl group that can permute the indices $1, \ldots, g$ and switch pairs $\alpha_{i, F}$ and $\alpha_{i, F}^{-1}$, in fact $c_{p}\left(\pi_{F}\right)$ really should be thought of as a conjugacy class in $\hat{G}(\mathbb{C})$, represented by the above element of $\hat{T}(\mathbb{C})$. To include $T(p)$ as well, we would need to consider also $\alpha_{0, F}$ with $\alpha_{0, F}^{2} \prod_{i=1}^{g} \alpha_{i, F}=1$, for each p.

6.2. Congruences between Ikeda-Miyawaki lifts and non-IkedaMiyawaki lifts.

The following is taken from Conjecture B and Problem B' of [13], which are inspired by a conjecture of Ikeda on the Petersson norm of the Ikeda-Miyawaki lift. The normalised L-values $L_{\text {alg }}(2 i+1, f, \mathrm{St})$ are as above. The meaning of $L_{\mathrm{alg}}\left(f \otimes \operatorname{Sym}^{2} h, 2 k+2 n\right)$ in [13] is left a little vague. In theory we take it as in [3, Section 4]. Ibukiyama, Katsurada, Poor and Yuen use a practical substitute when they prove an instance of the congruence in [13, Section 5].

Conjecture 6.2. For Hecke eigenforms $f \in S_{2 k}(\mathrm{SL}(2, \mathbb{Z})), h \in S_{k+n+1}(\mathrm{SL}(2, \mathbb{Z}))$, where $k+n+1$ is even, let $F \in S_{k+n+1}\left(\operatorname{Sp}_{2 n+1}(\mathbb{Z})\right)$ be the Ikeda-Miyawaki lift, as in Section 5.4. Suppose that $q>2 k+2 n-2$ is a prime number such that, for some divisor $\mathfrak{q} \mid q$ in a sufficiently large number field,

$$
\operatorname{ord}_{\mathfrak{q}}\left(L_{\mathrm{alg}}\left(f \otimes \operatorname{Sym}^{2} h, 2 k+2 n\right) \prod_{i=1}^{n-1} L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})\right)>0
$$

Then there exists a Hecke eigenform $G \in S_{k+n+1}\left(\operatorname{Sp}_{2 n+1}(\mathbb{Z})\right)$, not the IkedaMiyawaki lift of any Hecke eigenforms $f^{\prime} \in S_{2 k}(\mathrm{SL}(2, \mathbb{Z}))$, $h^{\prime} \in S_{k+n+1}(\mathrm{SL}(2, \mathbb{Z}))$, such that for any prime p, corresponding Hecke eigenvalues for F and G, for all the Hecke operators $T(p)$ and $T_{i}\left(p^{2}\right)(1 \leq i \leq g)$, are congruent $\bmod \mathfrak{q}$.

Remarks about congruences of Satake parameters, similar to the previous subsection, apply.

7. Accounting for some of the congruences.

7.1. Ikeda lifts and standard lifts: $L_{\text {alg }}(f, k)$.

We have $2 k-g=j+2 \kappa-2, k=j+\kappa$, if $(\kappa, j)=(k+2-g, g-2)$, in agreement with Section 5.2 above. Harder's conjecture [11], [26] may be formulated, given $\mathfrak{q} \mid q$ with $q>2 k-g$ and $\operatorname{ord}_{\mathfrak{q}}\left(L_{\mathrm{alg}}(f, k)\right)>0$, as the existence of a Hecke eigenform F for $\mathrm{Sp}_{2}(\mathbb{Z})$, of weight $\operatorname{det}^{\kappa} \otimes \operatorname{Sym}^{j}\left(\mathbb{C}^{2}\right)$, such that if $\pi_{F}^{\text {st }}$ is the associated automorphic representation of $\mathrm{Sp}_{2}(\mathbb{A})$ then for all primes p,

$$
c_{p}\left(\pi_{F}^{\mathrm{st}}\right) \equiv \operatorname{diag}\left(\alpha_{p} p^{(g-1) / 2}, \alpha_{p} p^{(1-g) / 2}, 1, \alpha_{p}^{-1} p^{(g-1) / 2}, \alpha_{p}^{-1} p^{(1-g) / 2}\right) \quad(\bmod \mathfrak{q})
$$

where $c_{p}\left(\pi_{f}\right)=\operatorname{diag}\left(\alpha_{p}, \alpha_{p}^{-1}\right)$. The $(g-1) / 2=(j+1) / 2$ is what we called s in [3]. Note that if we let $\alpha_{1, F}=\alpha_{p} p^{s}, \alpha_{2, F}=\alpha_{p} p^{-s}$ and $\alpha_{0, F}=\alpha_{p}^{-1}$ (so $\alpha_{0}^{2} \alpha_{1} \alpha_{2}=1$) then

$$
\alpha_{0, F}+\alpha_{0, F} \alpha_{1, F}+\alpha_{0, F} \alpha_{2, F}+\alpha_{0, F} \alpha_{1, F} \alpha_{2, F}=\alpha_{p}+\alpha_{p}^{-1}+p^{-s}+p^{s}
$$

which when scaled by $p^{(j+2 \kappa-3) / 2}$ gives the familiar $a_{p}(f)+p^{\kappa-2}+p^{j+\kappa-1}$ on the right hand side of Harder's conjecture (as a Hecke eigenvalue for $T(p)$ on an induced representation). For simplicity we actually ignore $T(p)$, and consider only the Hecke algebra generated by $T_{1}\left(p^{2}\right)$ and $T_{2}\left(p^{2}\right)$. This is because we are looking at an automorphic representation of $\operatorname{Sp}_{2}(\mathbb{A})$ rather than of $\operatorname{GSp}_{2}(\mathbb{A})$. In $[\mathbf{3}$, Section 7], we looked at Harder's conjecture as a congruence of Hecke eigenvalues between a cuspidal automorphic representation of $\mathrm{GSp}_{2}(\mathbb{A})$ and a representation induced from the Levi subgroup $\left(\mathrm{GL}_{1} \times \mathrm{GL}_{2}\right)(\mathbb{A})$ of the Siegel maximal parabolic (and worked it out explicitly only for $T(p)$). Here we can either restrict to $\mathrm{Sp}_{2}(\mathbb{A})$ or just consider directly Sp_{2} with the Levi subgroup $\mathrm{GL}_{1} \times \mathrm{SL}_{2}$ of its Siegel parabolic.

Now

$$
c_{p}\left(\pi_{f}[g]\right)=\operatorname{diag}\left(\alpha_{p} p^{(g-1) / 2}, \alpha_{p} p^{(g-3) / 2}, \ldots, \alpha_{p} p^{(1-g) / 2}, \alpha_{p}^{-1} p^{(g-1) / 2}, \ldots, \alpha_{p}^{-1} p^{(1-g) / 2}\right),
$$

and

$$
c_{p}\left(\pi_{f}[g-2]\right)=\operatorname{diag}\left(\alpha_{p} p^{(g-3) / 2}, \ldots, \alpha_{p} p^{(3-g) / 2}, \alpha_{p}^{-1} p^{(g-3) / 2}, \ldots, \alpha_{p}^{-1} p^{(3-g) / 2}\right)
$$

so the congruence can be read as

$$
c_{p}\left(\pi_{F}^{\mathrm{st}} \oplus \pi_{f}[g-2]\right) \equiv c_{p}\left(\pi_{f}[g] \oplus[1]\right) \quad(\bmod \mathfrak{q})
$$

Comparing with Section 5.1 and Section 5.2, we see that in the case of $\mathfrak{q} \mid L_{\text {alg }}(f, k)$, we can explain the congruence between the Ikeda lift and a non-Ikeda lift in Theorem 6.1 as a congruence between the Ikeda lift and a "standard lift" as constructed in Section 5.2. So the congruence in Theorem 6.1 is derived from that in Harder's conjecture via lifting to scalar-valued large genus forms. In the excluded case $g=2$, Harder's conjecture is replaced by its degeneration, a congruence between a Saito-Kurokawa lift and non-lift, which does not require further lifting.

7.2. Ikeda lifts and spinor lifts: $L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})$.

If $r=2 i+1$ then as i runs from 1 to $(g / 2)-1, r$ runs through odd numbers from 3 to $g-1$. We shall only be able to account for the congruence in Conjecture 6.1 if $4 \mid g$ and $(g / 2)+1 \leq r \leq g-1$. We also require $q>4 k-2 g$. Let $(\kappa, j)=(r+1,2 k-g-1-r)$, so $\kappa+j=2 k-g$ and $r=s+1$, where $s=\kappa-2$ as in [3, Section 6]. Then a conjectural congruence of Kurokawa-Mizumoto type (instances of which were proved in [9], [20], $[\mathbf{2 2}],[\mathbf{2 4}])$ may be formulated, given $\operatorname{ord}_{\mathfrak{q}}\left(L_{\text {alg }}(r, f, \mathrm{St})\right)>0$, as the existence of a Hecke eigenform F for $\mathrm{Sp}_{2}(\mathbb{Z})$, of weight $\operatorname{det}^{\kappa} \otimes \operatorname{Sym}^{j}\left(\mathbb{C}^{2}\right)$, such that if $\pi_{F}^{\text {spin }}$ is the associated automorphic representation of $\operatorname{SO}(3,2)(\mathbb{A})$ then for all primes p,

$$
c_{p}\left(\pi_{F}^{\mathrm{spin}}\right) \equiv \operatorname{diag}\left(\alpha_{p} p^{s / 2}, \alpha_{p} p^{-s / 2}, \alpha_{p}^{-1} p^{s / 2}, \alpha_{p}^{-1} p^{-s / 2}\right) \quad(\bmod \mathfrak{q})
$$

where $c_{p}\left(\pi_{f}\right)=\operatorname{diag}\left(\alpha_{p}, \alpha_{p}^{-1}\right)$. Note that the trace of the right hand side, when scaled by $p^{(j+2 \kappa-3) / 2}$, becomes the familiar $a_{p}(f)\left(1+p^{\kappa-2}\right)$. Recalling that $s=r-1$, this would imply that $c_{p}\left(\pi_{F}^{\text {spin }}[g+1-r]\right)$

$$
\equiv \operatorname{diag}\left(\alpha_{p} p^{(g-1) / 2}, \ldots, \alpha_{p} p^{(2 r-g-1) / 2}, \alpha_{p} p^{(1+g-2 r) / 2}, \ldots, \alpha_{p} p^{(1-g) / 2},\right.
$$

$$
\left.\alpha_{p}^{-1} p^{(g-1) / 2}, \ldots, \alpha_{p}^{-1} p^{(2 r-g-1) / 2}, \alpha_{p}^{-1} p^{(1+g-2 r) / 2}, \ldots, \alpha_{p}^{-1} p^{(1-g) / 2}\right)
$$

The right hand side is the "difference" between $c_{p}\left(\pi_{f}[g]\right)$ and $c_{p}\left(\pi_{f}[2 r-g-2]\right)$. Thus we can read the congruence as

$$
c_{p}\left(\pi_{F}^{\mathrm{spin}}[g+1-r] \oplus \pi_{f}[2 r-g-2] \oplus[1]\right) \equiv c_{p}\left(\pi_{f}[g] \oplus[1]\right),
$$

i.e. as a congruence between the Ikeda lift and one of the "spinor lifts" constructed in Section 5.3. In the case of $\mathfrak{q} \mid L_{\mathrm{alg}}(2 i+1, f, \mathrm{St})$, with $4 \mid g, g / 4 \leq i \leq(g / 2)-1$ and $q>4 k-2 g$, we can explain the congruence between the Ikeda lift and a non-Ikeda lift in Theorem 6.1 (at least if we ignore $T(p)$) as a congruence between the Ikeda lift and a spinor lift. Thus the congruence in Theorem 6.1 is derived from that of KurokawaMizumoto type via lifting to scalar-valued, large genus forms. Note that we have had to impose a stronger lower bound for q.

7.3. Ikeda-Miyawaki lifts: $L_{\text {alg }}\left(f \otimes \operatorname{Sym}^{2} h, 2 k+2 n\right)$.

Recall that we consider Hecke eigenforms $f \in S_{2 k}(\operatorname{SL}(2, \mathbb{Z})), h \in S_{k+n+1}(\operatorname{SL}(2, \mathbb{Z}))$, where $k+n+1$ is even. Let $a_{p}(f)=p^{(2 k-1) / 2}\left(\alpha_{p}+\alpha_{p}^{-1}\right)$ and $b_{p}(h)=p^{(k+n) / 2}\left(\beta_{p}+\beta_{p}^{-1}\right)$. Let $(a, b, c)=(k+n-3, k+n-3, k-n-1)$, as in Section 5.5 above. Then $b+c+4=2 k$, $a+4=k+n+1$ (the weights of f and h), $a+b+6=2 k+2 n$ and $s:=(b-c+1) / 2=$ $(2 n-1) / 2$. Comparing with [3, Section 8, Case 2], the conjecture there (see also [4, Conjecture 10.8]), given $\operatorname{ord}_{\mathfrak{q}}\left(L_{\text {alg }}\left(f \otimes \operatorname{Sym}^{2} h, 2 k+2 n\right)>0\right.$ with $q>a+b+2 c+8=4 k$, can be formulated (ignoring $T(p)$) as the existence of a cuspidal Hecke eigenform F for $\mathrm{Sp}_{3}(\mathbb{Z})$, vector-valued of type (a, b, c), such that

$$
c_{p}\left(\pi_{F}^{\text {st }}\right) \equiv \operatorname{diag}\left(\alpha_{p} p^{s}, \alpha_{p}^{-1} p^{s}, \beta_{p}^{2}, 1, \beta_{p}^{-2}, \alpha_{p} p^{-s}, \alpha_{p}^{-1} p^{-s}\right) \quad(\bmod \mathfrak{q})
$$

To get the diagonal entries, apply the cocharacters $f_{1}, f_{2}, f_{3}, 0,-f_{3},-f_{2},-f_{1}$ to $\chi_{p}+s \tilde{\alpha}=$ $-\log _{p}\left(\alpha_{p}\right)\left(e_{1}-e_{2}\right)-\log _{p}\left(\beta_{p}\right)+s\left(e_{1}+e_{2}\right)$ in [3, Section 8], omitting e_{0} since we are really dealing with $G=\mathrm{Sp}_{3}, M \simeq \mathrm{GL}_{2} \times \mathrm{SL}_{2}$.

Since $c_{p}\left(\pi_{h}^{\text {st }}\right)=\operatorname{diag}\left(\beta_{p}^{2}, 1, \beta_{p}^{-2}\right)$, and since $s=(2 n-1) / 2$, we can read this as

$$
c_{p}\left(\pi_{F}^{\mathrm{st}} \oplus \pi_{f}[2 n-2]\right) \equiv c_{p}\left(\pi_{h}^{\mathrm{st}} \oplus \pi_{f}[2 n]\right) \quad(\bmod \mathfrak{q})
$$

i.e. as a congruence between the Ikeda-Miyawaki lift and one of the lifts constructed in Section 5.5. Thus the congruence in Conjecture 6.2, between the Ikeda-Miyawaki lift and a non-Ikeda-Miyawaki lift, can be derived from the conjectured genus 3 Eisenstein congruence, via lifting to scalar-valued, large genus forms. Again, we have had to impose a stronger lower bound for q. In the excluded case $n=1$, the Eisenstein congruence degenerates to a congruence between an Ikeda-Miyawaki lift and a non-Ikeda-Miyawaki lift, without any further lifting.

7.4. Ikeda-Miyawaki lifts: $L_{\text {alg }}(2 i+1, f, S t)$.

If $r=2 i+1$ then as i runs from 1 to $n-1, r$ runs through odd numbers from 3 to $2 n-1$. We shall only be able to account for the congruence in Theorem 6.2 if $n+1 \leq r \leq 2 n-1$. We also require $q>4 k$. Let $(\kappa, j)=(r+1,2 k-1-r)$, so $\kappa+j=2 k$ and $r=s+1$, where $s=\kappa-2$ as in [3, Section 6]. Then a conjecture of Kurokawa-

Mizumoto type, given $\operatorname{ord}_{\mathfrak{q}}\left(L_{\text {alg }}(r, f, \mathrm{St})\right)>0$, predicts the existence of a Hecke eigenform F for $\mathrm{Sp}_{2}(\mathbb{Z})$, of weight $\operatorname{det}^{\kappa} \otimes \operatorname{Sym}^{j}\left(\mathbb{C}^{2}\right)$, such that if $\pi_{F}^{\text {spin }}$ is the associated automorphic representation of $\mathrm{SO}(3,2)(\mathbb{A})$ then for all primes p,

$$
c_{p}\left(\pi_{F}^{\mathrm{spin}}\right) \equiv \operatorname{diag}\left(\alpha_{p} p^{s / 2}, \alpha_{p} p^{-s / 2}, \alpha_{p}^{-1} p^{s / 2}, \alpha_{p}^{-1} p^{-s / 2}\right) \quad(\bmod \mathfrak{q})
$$

where $c_{p}\left(\pi_{f}\right)=\operatorname{diag}\left(\alpha_{p}, \alpha_{p}^{-1}\right)$. Recalling that $s=r-1$, this would imply that

$$
\begin{aligned}
& c_{p}\left(\pi_{F}^{\mathrm{spin}}[2 n+1-r]\right) \\
& \quad \equiv \operatorname{diag}\left(\alpha_{p} p^{(2 n-1) / 2}, \ldots, \alpha_{p} p^{(2 r-2 n-1) / 2}, \alpha_{p} p^{(1+2 n-2 r) / 2}, \ldots, \alpha_{p} p^{(1-2 n) / 2},\right. \\
& \left.\quad \alpha_{p}^{-1} p^{(2 n-1) / 2}, \ldots, \alpha_{p}^{-1} p^{(2 r-2 n-1) / 2}, \alpha_{p}^{-1} p^{(1+2 n-2 r) / 2}, \ldots, \alpha_{p}^{-1} p^{(1-2 n) / 2}\right) .
\end{aligned}
$$

The right hand side is the "difference" between $c_{p}\left(\pi_{f}[2 n]\right)$ and $c_{p}\left(\pi_{f}[2 r-2 n-2]\right)$. Thus we can read the congruence as

$$
c_{p}\left(\pi_{h}^{\mathrm{st}} \oplus \pi_{F}^{\mathrm{spin}}[2 n+1-r] \oplus \pi_{f}[2 r-2 n-2]\right) \equiv c_{p}\left(\pi_{h}^{\mathrm{st}} \oplus \pi_{f}[2 n]\right),
$$

i.e. as a congruence between the Ikeda-Miyawaki lift and one of the lifts constructed in Section 5.6. In the case of $\mathfrak{q} \mid L_{\text {alg }}(2 i+1, f$, St $)$, with $\lceil n / 2\rceil \leq i \leq n-1$ and $q>4 k$, we can explain the congruence between the Ikeda-Miyawaki lift and a non-Ikeda-Miyawaki lift in Conjecture 6.2 (at least if we ignore $T(p)$) as a congruence between the Ikeda-Miyawaki lift and a lift from Section 5.6. Thus the congruence in Conjecture 6.2 is derived from that of Kurokawa-Mizumoto type via lifting to scalar-valued, large genus forms. Again, we have had to impose a stronger lower bound for q.

References

[1] J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, Amer. Math. Soc. Colloquium Publications, 61, Amer. Math. Soc., Providence, RI, 2013, xviii+590 pp.
[2] M. Asgari and R. Schmidt, Siegel modular forms and representations, Manuscripta Math., 104 (2001), 173-200.
[3] J. Bergström and N. Dummigan, Eisenstein congruences for split reductive groups, Selecta Math., 22 (2016), 1073-1115.
[4] J. Bergström, C. Faber and G. van der Geer, Siegel modular forms of degree three and the cohomology of local systems, Selecta Math. (N.S.), 20 (2014), 83-124.
[5] J. Brown, Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compos. Math., 143 (2007), 290-322.
[6] G. Chenevier and C. Lannes, Formes automorphes et voisins de Kneser des réseaux de Niemeier, 388 pages, arXiv:1409.7616, 26/09/2014.
[7] G. Chenevier and D. Renard, Level one algebraic cuspforms of classical groups of small rank, Mem. Amer. Math. Soc., 237 (2015), no. 1121.
[8] P. Deligne, Valeurs de Fonctions L et Périodes d'Intégrales, AMS Proc. Symp. Pure Math., 33 (1979), part 2, 313-346.
[9] N. Dummigan, Symmetric square L-functions and Shafarevich-Tate groups, II, Int. J. Number Theory, 5 (2009), 1321-1345.
[10] C. Faber and G. van der Geer, Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I, II, C. R. Math. Acad. Sci. Paris, 338 (2004), 381-384 and 467-470.
[11] G. Harder, A congruence between a Siegel and an elliptic modular form, manuscript, 2003, reproduced in The 1-2-3 of Modular Forms (ed. K. Ranestad), 247-262, Springer-Verlag, Berlin Heidelberg, 2008.
[12] T. Ibukiyama, Lifting conjectures from vector valued Siegel modular forms of degree two, Comment. Math. Univ. St. Pauli, 61 (2012), 87-102.
[13] T. Ibukiyama, H. Katsurada, C. Poor and D. Yuen, Congruences to Ikeda-Miyawaki lifts and triple L-values of elliptic modular forms, J. Number Theory, 134 (2014), 142-180.
[14] T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. of Math. (2), 154 (2001), 641-681.
[15] T. Ikeda, Pullback of lifting of elliptic cusp forms and Miyawaki's conjecture, Duke Math. J., 131 (2006), 469-497.
[16] H. Katsurada, Congruence between Duke-Imamoglu-Ikeda lifts and non-Duke-ImamogluIkeda lifts, Comment. Math. Univ. St. Pauli, 64 (2015), 109-129.
[17] H. Katsurada, Congruence of Siegel modular forms and special values of their standard zeta functions, Math. Z., 259 (2008), 97-111.
[18] H. Katsurada and K. Kawamura, Ikeda's conjecture on the period of the Duke-Imamoglu-Ikeda lift, Proc. London Math. Soc. (3), 111 (2015), 445-483.
[19] H. Katsurada and S. Mizumoto, Congruences for Hecke eigenvalues of Siegel modular forms, Abh. Math. Semin. Univ. Hambg., 82 (2012), 129-152.
[20] N. Kurokawa, Congruences between Siegel modular forms of degree 2, Proc. Japan Acad., 55A (1979), 417-422.
[21] I. Miyawaki, Numerical examples of Siegel cusp forms of degree 3 and their zeta functions, Mem. Fac. Sci. Kyushu Univ., 46 (1992), 307-339.
[22] S. Mizumoto, Congruences for eigenvalues of Hecke operators on Siegel modular forms of degree two, Math. Ann., 275 (1986), 149-161.
[23] C. Poor, N. Ryan and D. S. Yuen, Lifting puzzles in degree four, Bull. Aust. Math. Soc., 80 (2009), 65-82.
[24] T. Satoh, On certain vector valued Siegel modular forms of degree two, Math. Ann., 274 (1986), 335-352.
[25] O. Taibi, Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, preprint, 2014, http://arxiv.org/abs/1406.4247.
[26] G. van der Geer, Siegel modular forms and their applications, in The 1-2-3 of Modular Forms (ed. K. Ranestad), 181-245, Springer-Verlag, Berlin Heidelberg, 2008.

Neil Dummigan

University of Sheffield
School of Mathematics and Statistics
Hicks Building, Hounsfield Road
Sheffield, S3 7RH, U.K.
E-mail: n.p.dummigan@shef.ac.uk

[^0]: 2010 Mathematics Subject Classification. Primary 11F46.
 Key Words and Phrases. congruences of automorphic forms, Ikeda lift, Ikeda-Miyawaki lift.

[^1]: ${ }^{1}$ A proof of this equivalence has now appeared in a preprint of Arancibia, Moeglin and Renard, so the constructions in this paper are now unconditional.

