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Abstract. We provide a comprehensive analysis of sharp bilinear esti-

mates of Ozawa–Tsutsumi type for solutions u of the free Schrödinger equation,

which give sharp control on |u|2 in classical Sobolev spaces. In particular, we
generalise their estimates in such a way that provides a unification with some

sharp bilinear estimates proved by Carneiro and Planchon–Vega, via entirely

different methods, by seeing them all as special cases of a one-parameter fam-
ily of sharp estimates. The extremal functions are solutions of the Maxwell–

Boltzmann functional equation and hence Gaussian. For u2 we argue that the

natural analogous results involve certain dispersive Sobolev norms; in partic-
ular, despite the validity of the classical Ozawa–Tsutsumi estimates for both

|u|2 and u2 in the classical Sobolev spaces, we show that Gaussians are not

extremisers in the latter case for spatial dimensions strictly greater than two.

1. Introduction.

For d ≥ 2, consider the free Schrödinger equation

i∂tu+ ∆u = 0, u(0) = u0 (1.1)

on R1+d with initial data u0 ∈ L2(Rd). In [15], Ozawa and Tsutsumi showed that any

two solutions u and v of (1.1) with initial data u0 and v0, respectively, satisfy the global

space-time bilinear estimate

‖(−∆)(2−d)/4(uv)‖2L2 ≤ OT (d)‖u0‖2L2‖v0‖2L2 , (1.2)

where

OT (d) =
2−dπ(2−d)/2

Γ(d/2)
.

They also showed that the constant OT (d) is optimal by observing that if u0(x) =

v0(x) = exp(−|x|2) then (1.2) is an equality; i.e. (u0, v0) is an extremising pair of initial

data.

The case of one spatial dimension is rather special and in this case (1.2) is true as

an identity
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‖(−∆)1/4(uv)‖2L2 = OT (1)‖u0‖2L2‖v0‖2L2 (1.3)

for any (u0, v0) ∈ L2(R)× L2(R). This identity was established in [15], gives control on

the so-called null gauge form ∂(uv) for the Schrödinger equation in one spatial dimension,

and was used as a tool in the proof of local well-posedness of some nonlinear Schrödinger

equations with nonlinearities involving ∂(|u|2)u.

In the case where u0 is equal to v0, one may view the estimate (1.2) as a replacement,

in the case where the initial data is in L2(Rd), for the Sobolev–Strichartz estimate

‖|u|2‖2L2 = ‖u‖4L4 ≤ Cd‖u0‖4Ḣ(d−2)/4

which requires rather more regularity on the initial data as the dimension gets large.

Here, Ḣs denotes the homogeneous Sobolev space with norm

‖f‖Ḣs = ‖(−∆)s/2f‖L2 .

This “trade-off” of derivatives on the initial data on the right-hand side for derivatives on

the square of the solution on the left-hand side was studied by Klainerman and Machedon

[13] for solutions of the homogeneous wave equation; see [9] for a systematic study of

such phenomena in the context of the wave equation, allowing also so-called hyperbolic

derivatives on the left-hand side corresponding to the space-time Fourier multiplier ||τ |−
|ξ||.

Recently there has been considerable interest in obtaining optimal constants and

the existence/shape of extremising initial data associated with space-time estimates for

solutions of (1.1) and dispersive equations more widely. For example, it is known that if

u solves (1.1) in one spatial dimension then

‖u‖L6(R1+1) ≤
1

121/12
‖u0‖L2 (1.4)

and in two spatial dimensions

‖u‖L4(R1+2) ≤
1

21/2
‖u0‖L2 . (1.5)

In each case (1.4) and (1.5), the constant is optimal since there is equality when u0(x) =

exp(−|x|2). These sharp estimates were proved by Foschi [8] and also Hundertmark

and Zharnitsky [10]; we also note that (1.5) follows from (1.2) in the case d = 2 by

choosing u0 = v0, which means we have a number of proofs of this sharp estimate (see

also the proofs in [2] and [3], where the emphasis is on underlying heat-flow monotonicity

phenomena).

If u0 is an extremiser for either (1.4) or (1.5) then, up to the action of certain trans-

formations, u0 must be an isotropic centred Gaussian. This complete characterisation

of the set of extremising initial data (which can be found in [8] or [10]; see also [12] for

an alternative proof for d = 2) was used in [7] to establish some impressive results on

sharp Strichartz norms for solutions of the mass-critical nonlinear Schrödinger equation

in spatial dimensions one and two.

Based on the approach in [10], Carneiro proved in [5] that any two solutions u and
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v of (1.1) satisfy

‖uv‖2L2 ≤ C(d)

∫
R2d

|û0(ζ)|2|v̂0(η)|2|ζ − η|d−2 dζdη, (1.6)

where d ≥ 2 and

C(d) =
22−4dπ(2−5d)/2

Γ(d/2)
. (1.7)

It was shown in [5] that the constant in (1.6) is optimal and (u0, v0) is an extremising

pair if and only if u0(x) = v0(x) = exp(−|x|2), up to certain transformations. Since we

are dealing with explicit constants, we should clarify that we take the following Fourier

transform

f̂(ξ) =

∫
Rd
f(x) exp(−ix · ξ) dx.

A very closely related bilinear estimate

‖(−∆)(3−d)/4(uv)‖2L2 ≤ PV (d)

∫
R2d

|û0(ζ)|2|v̂0(η)|2|ζ − η|dζdη (1.8)

for solutions u and v of (1.1) and d ≥ 2 is a particular case of some far-reaching identities

proved by Planchon and Vega in [17] using an innovative and radically different approach

to those in [5], [8], [10] and [15]. Here, the constant PV (d) is given by

PV (d) =
2−3dπ(1−5d)/2

Γ((d+ 1)/2)

and can be shown to be optimal. The emphasis in [17] is not on establishing optimal

constants and identifying extremisers; in fact, the explicit constant in (1.8) and its opti-

mality, and a characterisation of the set of extremising initial data were not discussed.

Our first main result is a unification of (1.2), (1.6) and (1.8) by seeing these sharp

estimates as special cases of a one-parameter family of sharp estimates. Varying this

parameter represents to a trade-off of lowering the exponent on the kernel |ζ − η| on the

right-hand side, which may be viewed as lowering the “derivatives” on the right-hand

side, with a lowering of the order of derivatives on |u|2 on the left-hand side (very much

in the spirit of [13]). Interestingly, we show that the extremising initial data must satisfy

the so-called Maxwell–Boltzmann functional equation. This functional equation arises in

the proof of Boltzmann’s H-theorem in connection with the derivation of hydrodynamic

equations from Boltzmann’s equation and is known to admit only Gaussian solutions

under the assumption that the input functions are integrable. From this we will deduce

that the extremisers for our sharp estimates are Gaussians.

Before the statement, we introduce a little notation. First, we write

Υλ := {(f, g) : f, g : Rd → C measurable and Iλ(f, g) <∞} ,

where
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Iλ(f, g) :=

∫
R2d

|f̂(ζ)|2|ĝ(η)|2|ζ − η|4λ+d−2 dζdη .

Also, we let G denote the class of Gaussian functions on Rd given by

G := {exp(a|η|2 + b · η + c) : a, c ∈ C, b ∈ Cd and Re(a) < 0}

and Gr will denote the subclass with radial modulus; that is,

Gr := {exp(a|η|2 + ib · η + c) : a, c ∈ C, b ∈ Rd and Re(a) < 0}.

Theorem 1.1. Let d ≥ 2 and σ > (1− d)/4. Then

‖(−∆)σ(uv)‖2L2 ≤ OT (d, σ)

∫
R2d

|û0(ζ)|2|v̂0(η)|2|ζ − η|4σ+d−2 dζdη (1.9)

for solutions u and v of (1.1) with initial data (u0, v0) ∈ Υσ. Here,

OT (d, σ) = 2−3dπ(1−5d)/2 Γ(2σ + ((d− 1)/2))

Γ(2σ + d− 1)

is the optimal constant which is attained if and only if û0 ∈ G and v0 is a scalar multiple

of u0.

We follow this statement with several remarks. Firstly, we have

OT (d, σ) =


(2π)−2dOT (d) if σ = (2− d)/4

C(d) if σ = 0

PV (d) if σ = (3− d)/4,

where the expression for σ = 0 can be verified using the duplication formula,

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z)

for the Gamma function. Hence, when σ = (2− d)/4, estimate (1.9) obviously coincides

with (1.2) after an application of Plancherel’s theorem on the right-hand side. When

σ = 0, (1.9) coincides with (1.6) since once the operator (−∆)σ disappears, the complex

conjugate on v has no effect (we will soon see that for σ 6= 0, the complex conjugate plays

an important role). As billed, (1.9) therefore provides a natural unification of the sharp

estimates (1.2), (1.6) and (1.8) of Ozawa–Tsutsumi [15], Carneiro [5] and Planchon–Vega

[17], respectively.

In addition to the special cases discussed above, the case σ = (4− d)/4 is also

distinguished since it leads to the kernel |ζ − η|2 on the right-hand side of (1.9) and an

additional trick (which we learnt from [5]) permits the sharp space-time estimates given

in the forthcoming Corollary 1.2.

A new proof of the Ozawa–Tsutsumi estimate (1.2) was given in [3]. An advantage of

this new proof was that it exposed an underlying heat-flow monotonicity phenomenon.
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Here, we prove (1.9) following the argument in [3] with little extra work. Our main

contribution in Theorem 1.1 then is to unify estimates (1.2), (1.6) and (1.8) in a natural

way, highlight a startling connection to Boltzmann’s H-theorem, and to establish a full

characterisation of extremising initial data for every σ > (1− d)/4. When σ = (2− d)/4,

it was observed in [15] that equality holds with u0(x) = v0(x) = exp(a|x|2) for any a < 0,

and when σ = 0, a full characterisation of extremisers was provided in [5].

The lower bound σ > (1− d)/4 is necessary; in particular, the optimal constant

blows up at this threshold. For σ ∈ ((1− d)/4, (2− d)/4) (so that, in particular, the

exponent 4σ + d − 2 on the kernel in (1.9) is negative) and p, q ∈ (2,∞) such that

(1/p) + (1/q) = (4σ + 3d− 2)/2d, it follows from the (forward) Hardy–Littlewood–

Sobolev inequality that

FLp(Rd)×FLq(Rd) ⊆ Υσ ,

where FLp denotes the Fourier–Lebesgue space of measurable functions whose Fourier

transform belongs to Lp; such spaces also capture smoothness by the correspondence

between decay of the Fourier transform and smoothness. Thus, for such σ, p and q, we

obtain the estimates

‖(−∆)σ(uv)‖2L2 ≤ Cd,σ‖u0‖2FLp‖v0‖2FLq

with a finite, but not necessarily optimal, constant Cd,σ. We also remark that for such

σ, via the Parseval identity, the quantity Iσ(u0, v0) is given by

Iσ(u0, v0) = Cd,σ

∫
Rd

d̂µ(x)d̂ν(x)

|x|4σ+2d−2
dx

and is the mutual (4σ + d − 2)-dimensional energy of the measures dµ(η) = |û0(η)|2dη

and dν(η) = |v̂0(η)|2dη.

When σ = (2− d)/4, clearly we have Υ0 = L2(Rd)×L2(Rd). Also, for σ > (2− d)/4,

we can use the trivial upper bound

Iσ(u0, v0) . ‖u0‖2Ḣ2σ+(d−2)/2‖v0‖2L2 + ‖u0‖2L2‖v0‖2Ḣ2σ+(d−2)/2

so that

H2σ+(d−2)/2(Rd)×H2σ+(d−2)/2(Rd) ⊆ Υσ

where, as usual, Hs denotes the inhomogeneous Sobolev space L2 ∩ Ḣs. In the special

case σ = (4− d)/4 we can be more accurate and obtain the following sharp estimates of

this type.

Corollary 1.2. Let d ≥ 2. Then

‖(−∆)(4−d)/4(|u|2)‖2L2 ≤
2−dπ(2−d)/2

Γ((d+ 2)/2)
‖u0‖2Ḣ1‖u0‖2L2 (1.10)

for solutions u of (1.1) with initial data u0 ∈ H1, and the constant is optimal. Further-
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more, the initial data u0 is an extremiser if and only if û0 ∈ Gr.

Note that the class of extremisers is slightly smaller than in Theorem 1.1. In the

case d = 4, Corollary 1.2 was proved by Carneiro [5] and our result generalises this

to d ≥ 2. We remark that the case d = 2 involves only classical derivatives, with the

estimate (1.10) simplifying to

‖∇(|u|2)‖L2(R1+2) ≤
1

2
‖u0‖L2‖∇u0‖L2

for any u0 ∈ H1(R2), where the constant is optimal and attained precisely when û0 ∈ Gr.

It is natural to wonder what happens when we consider u2 rather |u|2, or more

generally, uv rather than uv. Taking the classical exponent σ = (2− d)/4 in the Ozawa–

Tsutsumi estimates (1.2), we know that

‖(−∆)(2−d)/4(uv)‖2L2 ≤ Cd‖u0‖2L2‖v0‖2L2 (1.11)

holds for some finite constant Cd, d ≥ 2, independent of the initial data (u0, v0) ∈
L2(Rd)×L2(Rd). This can easily be seen using Sobolev embedding, Hölder’s inequality,

and the mixed-norm linear Strichartz estimate

L2(Rd)→ L4
tL

2d/(d−1)
x (R× Rd)

for the solution of (1.1). However, our next result confirms that there is a distinction

between (1.2) and (1.11) at the level of sharp estimates whenever d ≥ 3.

Theorem 1.3. Suppose d ≥ 3. Whenever û0 ∈ G and v0 is a scalar multiple of

u0, then (u0, v0) is not a critical point for the functional

(u0, v0) 7→ ‖(−∆)(2−d)/4(uv)‖L2

‖u0‖L2‖v0‖L2

. (1.12)

Instead the natural analogues of the estimates in Theorem 1.1 and Corollary 1.2

which preserve the class of Gaussian extremisers arise by replacing powers of −∆ with

powers of |D|, where D = i∂t + (1/2)∆. Further evidence is provided by considering

the case of d = 1; we have already observed that (1.2) is really the identity in (1.3) in

one spatial dimension, and similar considerations in case of uv lead us to an identity

involving D; we expound this point in Section 4.

Writing |D|β for the Fourier multiplier operator given by |τ + (1/2)|ξ|2|β , and re-

calling the constant C(d) in (1.7), we obtain the following.

Theorem 1.4. Let d ≥ 2 and β > (1− d)/2. Then

|| |D|β(uv)‖2L2 ≤ 2−2βC(d)

∫
R2d

|û0(ζ)|2|v̂0(η)|2|ζ − η|4β+d−2 dζdη (1.13)

for solutions u and v of (1.1) with initial data (u0, v0) ∈ Υβ. The constant is optimal

and is attained if and only if û0 ∈ G and v0 is a scalar multiple of u0.
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Corollary 1.5. Let d ≥ 2. Then

‖ |D|(2−d)/4(u2)‖2L2 ≤
2(2−3d)/2π(2−d)/2

Γ(d/2)
‖u0‖4L2 (1.14)

and

‖ |D|(4−d)/4(u2)‖2L2 ≤
2(2−3d)/2π(2−d)/2

Γ(d/2)
‖u0‖2Ḣ1‖u0‖2L2 (1.15)

for solutions u of (1.1) with initial data u0 ∈ L2 and u0 ∈ H1, respectively, and in each

case, the constant is optimal. Initial data u0 is an extremiser for (1.14) if and only if

û0 ∈ G, and u0 is an extremiser for (1.15) if and only if û0 ∈ Gr.

It is interesting to contrast our observations with the case of the half-wave propagator

eit
√
−∆ where the situation is somewhat different. Sharp space-time estimates which are

analogous to those in Theorems 1.1 and 1.4 have very recently been obtained in [4], in

which case the class of extremisers is the same for both uv and uv and in each case the

multiplier operator is a power of |�| = |∂2
t −∆|.

It is possible to prove (1.9) by modifying to the approach of Ozawa–Tsutsumi in

[15], and similarly, one can prove (1.13) by appropriately modifying the approach of

Foschi in [8]; these approaches are rather different. Here, our proofs of (1.9) and (1.13)

are based on the alternative perspective in [3], which has the main advantage of being

simultaneously applicable to (1.9) and (1.13), thus permitting a streamlined presentation.

A consequence of this is that the characterisation of extremisers in both Theorems 1.1 and

1.4 may be reduced immediately to finding the solution of the same functional equation.

Furthermore, by using the approach based on [3] we are able to expose underlying heat-

flow monotonicity phenomena in the general context of (1.9) and (1.13), extending some

of the results in [3]. In particular, we shall prove the following.

Theorem 1.6. Suppose d ≥ 2. For any σ > (1− d)/4 and initial data (u0, v0) ∈
Υσ, the quantity

ρ 7→ OT (d, σ)Iσ(eρ∆u0, e
ρ∆v0)− ‖(−∆)σ(eρ∆u eρ∆v)‖2L2

t,x

is nonincreasing on (0,∞). Similarly, for any β > (1− d)/2 and (u0, v0) ∈ Υβ, the

quantity

ρ 7→ 2−2βC(d)Iβ(eρ∆u0, e
ρ∆v0)− ‖ |D|β(eρ∆u eρ∆v)‖2L2

t,x

is nonincreasing on (0,∞).

The monotonicity of the quantities in Theorem 1.6 for ρ > 0 recovers the sharp

estimates in (1.9) and (1.13), respectively, and this is seen by comparing the limiting

behaviour of the quantities as ρ → 0+ and ρ → ∞. Thus, the functionals are interpo-

lating between the two sides of the inequalities and the heat-flow is evolving arbitrary

initial data to a Gaussian shape for large (heat-flow) time ρ; we refer the reader to [3]
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for background and further details on this perspective.

Organisation. In the next section we prove the sharp estimates appearing in

Theorems 1.1 and 1.4 and Corollaries 1.2 and 1.5, along with the heat-flow monotonicity

in Theorem 1.6. The statements concerning characterisations of extremisers in these

results are proved in Section 3. Finally, in Section 4 we discuss the case d = 1 in order

to clarify the relationship between Theorems 1.1 and 1.4, and we provide a proof of

Theorem 1.3.

2. Proof of the sharp estimates (1.9)–(1.15).

For appropriate functions F on R1+d, we will use the notation F̃ for the space-time

Fourier transform of F given by

F̃ (τ, ξ) =

∫
R1+d

F (t, x) exp(−i(tτ + x · ξ)) dtdx .

Proof of (1.9). Since the argument for σ = (2− d)/4 may be found in [3] and

we only need make straightforward modifications to handle general σ, we shall be brief

in certain parts of the argument.

An application of Plancherel’s theorem in space-time gives

‖(−∆)σ(uv)‖2L2 =
1

(2π)d+1

∫
Rd+1

|ξ|4σ|(̃uv)(τ, ξ)|2 dξdτ

and since ũv = (1/(2π)d+1) ũ ∗ ṽ we obtain

‖(−∆)σ(uv)‖2L2

=
1

(2π)3d−1

∫
R2d

∫
R2d

|ζ1 + ζ2|4σû0(ζ1)v̂0(ζ2)û0(η1)v̂0(η2)

× δ(−|ζ1|2 + |ζ2|2 + |η1|2 − |η2|2)δ(ζ1 + ζ2 − η1 − η2) dζdη .

Relabelling the variables (ζ1, η1, ζ2, η2)→ (ζ1, η1, η2, ζ2), we have

‖(−∆)σ(uv)‖2L2 =
1

(2π)3d−1

∫
R2d

∫
R2d

Û0(ζ)Û0(η) dΣζ(η)dζ (2.1)

where U0 = u0 ⊗ v0(− ·) and the measure dΣζ(η) is given by

dΣζ(η) = |ζ1 + η2|4σδ(|η1|2 + |η2|2 − |ζ1|2 − |ζ2|2)δ(η1 − η2 − (ζ1 − ζ2))dη . (2.2)

Lemma 2.1. For each ζ ∈ R2d we have∫
R2d

dΣζ = π(d−1)/2 Γ(2σ + (d− 1)/2)

2Γ(2σ + d− 1)
|ζ1 + ζ2|4σ+d−2 .

Proof. We have
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R2d

dΣζ(η) =
1

2

∫
Rd
|ξ2|4σδ(|ξ2|2 − ξ2 · (ζ1 + ζ2))dξ2

=
1

2

∫
Sd−1

∫ ∞
0

r4σ+d−2δ(r − ω · (ζ1 + ζ2))drdω

via the change of variables (ξ1, ξ2) = (η1 +ζ2, η2 +ζ1) and subsequently polar coordinates

ξ2 = rω. By applying a rotation, we may replace ζ1 + ζ2 with |ζ1 + ζ2|e1, and thus (via,

for example, the Funk–Hecke formula; see [1])∫
R2d

dΣζ(η) =
π(d−1)/2

Γ((d− 1)/2)
|ζ1 + ζ2|4σ+d−2

∫ 1

0

s4σ+d−2(1− s2)(d−3)/2ds .

To obtain the claimed expression for the constant we change variables once more∫ 1

0

s4σ+d−2(1− s2)(d−3)/2ds =
1

2

∫ 1

0

t2σ+(d−3)/2(1− t)(d−3)/2dt

=
1

2
B

(
d− 1

2
, 2σ +

d− 1

2

)
,

where B is the beta function. An application of the identity B(x, y) = Γ(x)Γ(y)/Γ(x+ y)

completes the proof. �

Lemma 2.1 and the symmetry relation dΣη(ζ)dη = dΣζ(η)dζ imply that

OT (d, σ)Iσ(u0, v0) =
1

(2π)3d−1

∫
R2d

∫
R2d

|Û0(ζ)|2 dΣζ(η)dζ

=
1

2(2π)3d−1

∫
R2d

∫
R2d

(
|Û0(ζ)|2 + |Û0(η)|2

)
dΣζ(η)dζ .

Since the left-hand side of (2.1) is nonnegative, we may take the real part of both sides

and apply the arithmetic–geometric mean inequality

2Re
(
Û0(ζ)Û0(η)

)
≤ |Û0(ζ)|2 + |Û0(η)|2

to obtain

‖(−∆)σ(uv)‖2L2 ≤ OT (d, σ)Iσ(u0, v0)

which establishes (1.9). �

Proof of (1.13). Writing ũv = (1/(2π)d+1) ũ ∗ ṽ leads to

|| |D|β(uv)‖2L2

= 2−3d+1−2βπ−1−3d

∫
R2d

∫
R2d

|ζ1 − ζ2|4β û0(ζ1)v̂0(ζ2)û0(η1)v̂0(η2)

× δ(|ζ1|2 + |ζ2|2 − |η1|2 − |η2|2)δ(ζ1 + ζ2 − η1 − η2) dζdη

= 2−3d+1−2βπ−1−3d

∫
R2d

∫
R2d

Û0(ζ)Û0(η) dΣζ(η)dζ .
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Here, U0 = u0 ⊗ v0, the measure dΣζ(η) is given by

dΣζ(η) = |ζ1 − ζ2|4βδ(|ζ1|2 + |ζ2|2 − |η1|2 − |η2|2)δ(ζ1 + ζ2 − η1 − η2)dη (2.3)

and where we have used the fact that if τ = −|ζ1|2 − |ζ2|2 and ξ = ζ1 + ζ2, then∣∣∣∣τ +
1

2
|ξ|2
∣∣∣∣ =

1

2
|ζ1 − ζ2|2.

Remark. Notice that the function U0 and the measure dΣζ in the current proof

of (1.13) are slightly different to the U0 and dΣζ used in the previous proof of (1.9).

We have decided to use the same notation in order to highlight that the two proofs are

structurally the same.

Lemma 2.2. For each ζ ∈ R2d we have∫
R2d

dΣζ =
πd/2

2d−1Γ(d/2)
|ζ1 − ζ2|4β+d−2.

Proof. Using the change of variables (ξ1, ξ2) = ((ζ1 + ζ2)/2−η1, (ζ1 + ζ2)/2−η2)

and a subsequent polar coordinate change of variables in ξ2, we have∫
R2d

dΣζ(η) = |ζ1 − ζ2|4β
∫
R2d

δ

(
1

2
|ζ1 − ζ2|2 − |ξ1|2 − |ξ2|2

)
δ(ξ1 + ξ2) dξ

= |Sd−1||ζ1 − ζ2|4β
∫ ∞

0

δ

(
1

2
|ζ1 − ζ2|2 − 2r2

)
rd−1 dr

=
πd/2

2d−1Γ(d/2)
|ζ1 − ζ2|4β+d−2.

In the last step, we used the well-known formula |Sd−1| = 2πd/2/Γ(d/2) for the measure

of the unit sphere in Rd. �

As in the proof of (1.9), we now use the symmetry relation dΣη(ζ)dη = dΣζ(η)dζ,

Lemma 2.2 and the arithmetic–geometric mean inequality to obtain

|| |D|β(uv)‖2L2 = 2−3d+1−2βπ−1−3d

∫
R2d

∫
R2d

Û0(ζ)Û0(η) dΣζ(η)dζ

≤ 2−3d−2βπ−1−3d

∫
R2d

∫
R2d

(
|Û0(ζ)|2 + |Û0(η)|2

)
dΣζ(η)dζ

= 2−2βC(d)Iβ(u0, v0)

as desired. �

Proofs of (1.10), (1.14) and (1.15). The estimate (1.14) is an immediate con-

sequence of (1.13) and Plancherel’s theorem.

For (1.10) and (1.15), expanding |ζ − η|2 and using Plancherel’s theorem we obtain
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I(4−d)/4(u0, u0) = 2(2π)2d‖u0‖2L2‖u0‖2Ḣ1 − 2

∫
R2d

|û0(ζ)|2|û0(η)|2ζ · η dζdη

and therefore

I(4−d)/4(u0, u0) ≤ 2(2π)2d‖u0‖2L2‖u0‖2Ḣ1 (2.4)

for any u0 ∈ H1. The estimates (1.10) and (1.15) now follow at once from (1.9) and

(1.13). �

Proof of Theorem 1.6. The above proof of (1.9) in fact shows that

OT (d, σ)Iσ(u0, v0)− ‖(−∆)σ(uv)‖2L2 = c

∫
R2d

∫
R2d

∣∣Û0(ζ)− Û0(η)
∣∣2 dΣζ(η)dζ

where 1/c = 2(2π)3d−1, U0 = u0 ⊗ v0(− ·) and the measure dΣζ(η) is given by (2.2).

Replacing (u0, v0) with (eρ∆u0, e
ρ∆v0) for fixed ρ > 0, commuting the Schrödinger and

heat flows, and using the support of dΣζ , we obtain

OT (d, σ)Iσ(eρ∆u0, e
ρ∆v0)− ‖(−∆)σ(eρ∆u eρ∆v)‖2L2

t,x

= c

∫
R2d

∫
R2d

e−2ρ(|ζ1|2+|ζ2|2)
∣∣Û0(ζ)− Û0(η)

∣∣2 dΣζ(η)dζ

which is manifestly nonincreasing for ρ ∈ (0,∞).

A similar argument based on the previous proof of (1.13) shows that

2−2βC(d)Iβ(eρ∆u0, e
ρ∆v0)− ‖ |D|β(eρ∆u eρ∆v)‖2L2

t,x

= c

∫
R2d

∫
R2d

e−2ρ(|ζ1|2+|ζ2|2)
∣∣Û0(ζ)− Û0(η)

∣∣2 dΣζ(η)dζ

where, now, 1/c = 23d+2βπ1+3d, U0 = u0 ⊗ v0 and the measure dΣζ(η) is given by (2.3).

This completes our proof of Theorem 1.6. �

Remark. It is clear from the proof of Theorem 1.6 that the monotone quantities

are in fact completely monotone since their ρ-derivatives have sign (−1)j for every j ∈ N.

3. Characterisation of extremising initial data.

It was shown in Section 2 that (1.9) and (1.13) follow from a single application of

the arithmetic–geometric mean inequality

2Re
(
Û0(ζ)Û0(η)

)
≤ |Û0(ζ)|2 + |Û0(η)|2 (3.1)

for each ζ ∈ R2d and each η in the support of dΣζ , which is obviously an equality if and

only if Û0(ζ) and Û0(η) coincide. For each estimate (1.9) and (1.13), U0 and dΣζ are

slightly different.

For (1.13), U0 = u0 ⊗ v0 and dΣζ is given by (2.3), which means (u0, v0) is an

extremising pair of initial data if and only if
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û0(ζ1)v̂0(ζ2) = û0(η1)v̂0(η2)

for almost every ζ ∈ R2d and almost every η ∈ R2d satisfying |η1|2 + |η2|2 = |ζ1|2 + |ζ2|2
and η1 + η2 = ζ1 + ζ2, or equivalently

û0(ζ1)v̂0(ζ2) = Λ(|ζ1|2 + |ζ2|2, ζ1 + ζ2) (3.2)

for almost every ζ ∈ R2d, and where Λ is a scalar function.

For (1.9), U0 = u0⊗ v0(− ·) and dΣζ is given by (2.2). Since Û0(ζ) = û0(ζ1)v̂0(−ζ2)

and for η in the support of dΣζ we have |η1|2 + |η2|2 = |ζ1|2 + |ζ2|2 and η1− η2 = ζ1− ζ2,

it follows that (u0, v0) is an extremising pair of initial data for (1.9) if and only if (3.2)

holds.

Using the above observations, the characterisation of extremisers for (1.9) and (1.13)

will be established if we can show that, whenever Iσ(u0, v0) <∞, the pair (u0, v0) solves

(3.2) if and only if û0 ∈ G and v0 is a scalar multiple of u0. The sufficiency part of this

claim is obvious so we show how to justify the necessity part.

Remark. The functional equation

F (ζ1)F (ζ2) = Λ(|ζ1|2 + |ζ2|2, ζ1 + ζ2)

is known in the kinetic equations literature as the Maxwell–Boltzmann (MB) functional

equation, and the system of equations

ζ ′1 + ζ ′2 = ζ1 + ζ2 and |ζ ′1|2 + |ζ ′2|2 = |ζ1|2 + |ζ2|2

express the conservation of momentum and kinetic energy, respectively, during a binary

collision, where (ζ1, ζ2) are the velocities of a pair of particles before collision, and (ζ ′1, ζ
′
2)

are the velocities of the same pair after collision.

It is known that if F ∈ L1(Rd), then F satisfies the MB equation if and only if

F ∈ G. A justification of this can be found in lecture notes of Villani [20] (but the result

goes back further; see, for example, work of Lions [14] and Perthame [16]). We make

use of this below to complete the characterisation of extremisers for (1.9) and (1.13).

Extremisers characterisation for (1.9) and (1.13). The right-hand side of

(3.2) is symmetric in ζ1 and ζ2 and therefore û0 and v̂0 are linearly dependent; by

scaling we may assume u0 = v0. To show that û0 ∈ G, we argue differently depending

on sign of the exponent on the kernel in Iσ(u0, u0).

First we consider the case σ < (2− d)/4 and define

F (ζ) = e−|ζ|
2

û0(ζ).

By the Cauchy–Schwarz inequality on L2(R2d), we obtain(∫
Rd
|F |
)4

≤ Iσ(u0, u0)

∫
Rd

∫
Rd

e−2(|ζ|2+|η|2)

|ζ − η|4σ+d−2
dζdη
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and the double integral is finite since 4σ + d − 2 < 0. Thus F ∈ L1(Rd) and clearly

inherits the property of being a solution of the MB equation from û0. From the above

remark, it follows that F ∈ G, and therefore û0 ∈ G.

For σ ≥ (2− d)/4, we argue somewhat differently, and begin by observing that we

may apply the reverse Hardy–Littlewood–Sobolev inequality (see, for example, [6]) to

obtain

Iσ(u0, u0) ≥ Cd,σ‖û0‖4p

for p = 4d/(4σ + 3d− 2) ∈ (0, 1]. Therefore, |û0|p ∈ L1(Rd) is a solution of the MB

equation; again using the above remark, it follows that |û0|p ∈ G, and hence |û0| ∈ G.

The polar part |û0|−1û0 is a solution of the MB equation too; whilst this function is not

integrable on Rd, we may argue as above to see that e−|·|
2 |û0|−1û0 ∈ G. It follows that

û0 ∈ G, as required. �

Remark. If we were to know that locally integrable solutions of the MB equation

must be Gaussian, the above proof would be streamlined (by avoiding the introduction

of the Gaussian factors). This is, in fact, true and in this extended remark we include

an outline of a proof since it contains some interesting features.

In the case d = 2, in the characterisation of the extremisers for (1.5), Foschi [8]

showed that, for locally integrable functions, the MB equation admits only Gaussian

solutions. This was achieved by first showing such solutions must in fact be continuous;

more precisely, Foschi showed the existence of smooth maps P and Q such that

û0(x)û0(y) = û0(P (x, y))û0(Q(x, y)) (3.3)

and det ∂P/∂y(x, y),det ∂Q/∂y(x, y) 6= 0, from which the desired continuity follows upon

integration in one of the variables.

The mappings P and Q used by Foschi were given by

2P (x, y) = x+ y +H(x− y) and 2Q(x, y) = x+ y −H(x− y) ,

where H(x1, x2) = (−x2, x1). Importantly for the argument, H is smooth, isometric and

H(x) ⊥ x. This extends to Rd when d is even, by taking P,Q exactly as above, now with

the block-form matrix

H(x1, x2, . . . , xd−1, xd) = (−x2, x1,−x4, x3, . . . ,−xd, xd−1) .

Interestingly, it seems we cannot proceed like this when d is odd because of the Hairy Ball

theorem from algebraic topology. In particular, it follows (see, for example, [18]) from

the Hairy Ball theorem that any continuous map H from an even dimensional sphere to

itself cannot have the property that H(x) ⊥ x for every x (because there must exist some

point on the sphere which is fixed or sent to its antipode). So, when d is odd, we cannot

find an isometric map H : Rd → Rd which is continuous and is such that H(x) ⊥ x.

Despite this obstruction, we remark that construction of P and Q satisfying (3.3)

is possible in all dimensions; specifically, we may take P (x, y) and Q(x, y) to be the two

intersection points of the sphere in Rd with centre (x+ y)/2 and radius |x− y|/2 and the
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straight line passing through the origin and the centre of this sphere.

Once continuity of û0 is established, one can show that solutions of the MB equation

never vanish (for example, by extending Lemma 7.13 in [8] to higher dimensions) after

which it becomes much easier to obtain that the solutions must be Gaussian. Indeed,

after normalising so that û0(0) = 1, one can use (3.2) to show that

e(ζ) := log û0(ζ) + log û0(−ζ) and o(ζ) := log û0(ζ)− log û0(−ζ),

are orthogonally additive functions (that is, additive when restricted to orthogonal vec-

tors) which are even and odd, respectively. Since we have established that these functions

are continuous, it is possible to show that we must have e(ζ) = a|ζ|2 and o(ζ) = b · ζ, for

some a ∈ C and b ∈ Cd, and hence û0 is Gaussian.

Extremisers characterisation for (1.10) and (1.15). We saw in Section 2

that the estimates (1.10) and (1.15) follow from (1.9) and (1.13), respectively, followed

by (2.4). When u0 = v0, extremisers of (1.9) and (1.13) are such that û0 ∈ G, and since∫
R2d

|û0(ζ)|2|û0(η)|2ζ · η dζdη (3.4)

vanishes when |û0| is radial, it is clear that we have equality in (1.10) and (1.15) whenever

û0 ∈ Gr.

In order to show that there are no further extremisers, it suffices to show that if

û0(η) = exp(a|η|2 + b · η + c)

with a, c ∈ C, b ∈ Cd and Re(a) < 0, then the quantity in (3.4) is nonzero whenever Re(b)

is nonzero. For such b ∈ Cd we may perform a change of variables (ζ, η) 7→ (Rζ,Rη) in

(3.4), for a suitably chosen rotation R, so that it suffices to consider b ∈ Cd such that

Re(b) = b1e1, where b1 is a strictly positive real number. Now∫
R2d

|û0(ζ)|2|û0(η)|2ζ · η dζdη ≥
(∫

Rd
|û0(η)|2η1 dη

)2

and for such u0 we have∫
Rd
|û0(η)|2η1 dη = exp(2Re(c))

∫
Rd

exp(2Re(a)|η|2 + 2b1η1)η1 dη

= C

∫
R

exp(2Re(a)η2
1 + 2b1η1)η1 dη1

= C

∫ ∞
0

exp(2Re(a)η2
1 + 2b1η1)η1(1− exp(−2b1η1)) dη1 ,

where C is some strictly positive constant depending on a and c. Since b1 > 0 it follows

that the quantity in (3.4) is nonzero, as desired. �
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4. One spatial dimension and the proof of Theorem 1.3.

4.1. One spatial dimension and the role of the conjugate.

In the case of one spatial dimension, there are identities which are the analogues of

the sharp estimates in Theorems 1.1 and 1.4. We present these identities briefly here, for

completeness and to elucidate the role of the complex conjugation causing the change of

Fourier multiplier operator from powers of −∆ to powers of D, thus justifying our billing

of Theorem 1.4 as a natural analogue of Theorem 1.1.

For the analogue of (1.9) when d = 1, we have

‖(−∂2
x)σ(uv)‖2L2(R2) =

1

2(2π)2

∫
R2

|û0(ζ)|2|v̂0(η)|2|ζ − η|4σ−1 dζdη

by the well-known approach of writing

(uv)(t, x) =
1

(2π)2

∫
R2

exp(ix(ζ − η)) exp(−it(ζ2 − η2))û0(ζ)v̂0(η) dζdη , (4.1)

changing variables (ζ, η) 7→ (ζ−η, ζ2−η2), using Plancherel’s Theorem, and then undoing

the previous change of variables. The Jacobian from the change of variables is 2|ζ − η|
and it is clear from (4.1) that this interacts precisely on taking powers of ∂x-derivatives

of (uv)(t, x).

On the other hand, for the analogue of (1.13), we have

‖ |D|β(uv)‖2L2(R2) =
1

(2β+2π)2

∫
R2

|û0(ζ)v̂0(η) + û0(η)v̂0(ζ)|2|ζ − η|4β−1 dζdη

and therefore, if û0 and v̂0 have separated supports,

‖ |D|β(uv)‖2L2(R2) =
1

2(2β+1π)2

∫
R2

|û0(ζ)|2|v̂0(η)|2|ζ − η|4β−1 dζdη .

This follows in a similar way by writing

(uv)(t, x) =
1

(2π)2

∫
R2

exp(ix(ζ + η)) exp(−it(ζ2 + η2))û0(ζ)v̂0(η) dζdη ,

and conjugating use of Plancherel’s Theorem with the change of variables (ζ, η) 7→ (ζ +

η,−ζ2 − η2) on the half-plane H = {(ζ, η) ∈ R2 : ζ < η}. The Jacobian from the change

of variables is again 2|ζ − η|, so it no longer interacts precisely with ∂x-derivatives.

Powers of |D| do interact precisely with uv since −|τ + ξ2/2| = |ζ − η|2/2, where (τ, ξ) =

(−ζ2 − η2, ζ + η).

Theorem 1.3 further reinforces the point that at the level of sharp estimates, it is

natural to change the shape of the Fourier multiplier when considering u2 rather than

|u|2. We end with a proof of this result.

Proof of Theorem 1.3. If Φ is the functional given by
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Φ(u0, v0) =
‖(−∆)(2−d)/4(uv)‖L2

‖u0‖L2‖v0‖L2

then one can show that

lim
ε→0

Φ(u0 + εU0, v0 + εV0)− Φ(u0, v0)

ε
= 0

for all (U0, V0) ∈ L2(Rd)× L2(Rd) if and only if

Re

∫
Rd+1

M ũv (ũV + Ũv) = Re
(
Φ(u0, v0)(‖v0‖22〈u0, U0〉+ ‖u0‖22〈v0, V0〉)

)
for all (U0, V0) ∈ L2(Rd) × L2(Rd), where M(τ, ξ) = |ξ|2−d, and u, v, U and V are the

evolutions of u0, v0, U0 and V0, respectively, under eit∆. Therefore, by taking V0 = 0

and complex conjugation on both sides, it follows that if (u0, v0) is a critical point then

necessarily ∫
Rd+1

M(τ, ξ)ũv(τ, ξ)Ũv(τ, ξ) dτdξ = Φ(u0, v0)‖v0‖22〈U0, u0〉

for all U0 ∈ L2(Rd), and hence∫
R

exp(it∆)

(
M̃ũv(t, ·)v(t, ·)

)
(y) dt = Φ(u0, v0)‖v0‖22u0(y) (4.2)

for almost every y ∈ Rd.
We claim that (4.2) fails to hold whenever d ≥ 3, û0(η) = exp(a|η|2 + b · η + c) ∈ G

and v0 is a scalar multiple of u0 (from our calculation below it will be apparent that

such functions do satisfy (4.2) when d = 2). In what follows we denote by C a positive

constant, depending only on the parameters a, b, c defining u0, and the ambient dimension

d. The constant C may change from line to line.

Firstly, since

M(τ, ξ)ũv(τ, ξ) = C

∫
R2d

ea(|η1|2+|η2|2)+b·(η1+η2)

|η1 + η2|d−2
δ

(
τ + |η1|2 + |η2|2

ξ − η1 − η2

)
dη1dη2

and

v(t, x) = eit∆v0(x) = C

∫
Rd
eix·ζ−it|ζ|

2

ea|ζ|
2+b·ζ dζ,

we obtain the expression

M̃ũv(t, x)v(t, x)

= C

∫
R3d

e−ix·(η1+η2−ζ1)+it(|η1|2+|η2|2−|ζ1|2) e
a|ζ1|2+b·ζ1ea(|η1|2+|η2|2)+b·(η1+η2)

|η1 + η2|d−2
dηdζ1.

Hence for t ∈ R fixed,
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eit∆
(
M̃ũv(t, ·)v(t, ·)

)
(y) =

∫
R4d

e−iy·ζ2δ(η1 + η2 − ζ1 − ζ2)eit(|η1|
2+|η2|2−|ζ1|2−|ζ2|2)

× ea|ζ1|
2+b·ζ1ea(|η1|2+|η2|2)+b·(η1+η2)

|η1 + η2|d−2
dηdζ,

and integrating this expression with respect to t, it follows that the left-hand side of (4.2)

is equal to

C

∫
R4d

e−iy·ζ2δ

(
|η1|2 + |η2|2 − |ζ1|2 − |ζ2|2

η1 + η2 − ζ1 − ζ2

)
ea|ζ1|

2+b·ζ1ea(|ζ1|2+|ζ2|2)+b·(ζ1+ζ2)

|ζ1 + ζ2|d−2
dηdζ.

The integration with respect to η ∈ R2d is carried out using Lemma 2.2 (with β = 0),

from which we see that the left-hand side of (4.2) simplifies to

C

∫
R2d

(
|ζ1 − ζ2|
|ζ1 + ζ2|

)d−2

ea|ζ1|
2+b·ζ1ea(|ζ1|2+|ζ2|2)+b·(ζ1+ζ2)e−iy·ζ2 dζ,

and it follows that if (4.2) holds, then∫
Rd

(
|ζ1 − ζ2|
|ζ1 + ζ2|

)d−2

e2Re(a)|ζ1|2+2Re(b)·ζ1 dζ1 = C

for each ζ2 ∈ Rd. This is false for d ≥ 3 (and clearly true when d = 2) which completes

the proof of Theorem 1.3. �
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