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Abstract. This paper studies the stability of a stationary solution of
the Navier–Stokes system in 3-D exterior domains. The stationary solution is
called a Leray’s stationary solution if the Dirichlet integral is finite. We apply
an energy inequality and maximal Lp-in-time regularity for Hilbert space-
valued functions to derive the decay rate with respect to time of energy so-
lutions to a perturbed Navier–Stokes system governing a Leray’s stationary
solution.

1. Introduction.

1.1. Purposes.

This paper has two purposes. The first one is to provide a new method for deriving

the decay rate with respect to time of energy solutions to incompressible viscous fluid

systems by using both an energy inequality and maximal Lp-in-time regularity for Hilbert

space-valued functions. The second one is to investigate the decay rate with respect to

time of global-in-time strong L2-solutions of a perturbed Navier–Stokes system governing

a small stationary solution by the method.

There are many literature on the stability for the Navier–Stokes flow. Especially,

this paper considers the decay rate with respect to time of energy solutions to an incom-

pressible viscous fluid system. Masuda [32] used an energy inequality and the Stokes

operator to derive L∞-decay for energy solutions of a perturbed Navier–Stokes system

governing a stationary solution in exterior domains. Kato [19] applied Lp-Lq estimates

for the heat kernel to investigate the decay rate with respect to time of global-in-time

mild Ln-solutions of the Navier–Stokes system in the whole space R
n. Schonbek [38],

[39] made use of the Fourier transform and an energy inequality to derive L2-decay

for weak solutions of the Navier–Stokes system in the whole space R
3 when the initial

datum belongs to L1 ∩ L2. In this paper we investigate both L2-asymptotic stability

and Lr(2 < r ≤ ∞)-decay rate with respect to time of energy solutions to a perturbed

Navier–Stokes system governing a stationary solution in an exterior domain. We in-

troduce a new approach to derive Lr-decay for energy solutions of the incompressible

viscous fluid system by applying an energy inequality and maximal Lp-in-time regularity

for Hilbert space-valued functions. This method improves one from Masuda [32]. In our
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method we use neither the Fourier transform nor Lp-Lq estimates for the semigroup gen-

erated by a linear operator, so our approach of this paper enables us to derive Lr-decay

for energy solutions of various incompressible viscous fluid systems.

Let Ω be an exterior domain with smooth boundary in R
3. Let us consider the

following initial-boundary value problem of the Navier–Stokes system:⎧⎪⎪⎨
⎪⎪⎩
∂tu− νΔu+ (u,∇)u+∇Π = ∇ · F in Ω× (0,∞),

∇ · u = 0 in Ω× (0,∞),

u|∂Ω = 0, lim
|x|→∞

u = u∞, u|t=0 = u0,

(1.1)

where the unknown function u = u(x, t) = (u1, u2, u3) is the velocity of the fluid, the

unknown function Π = Π(x, t) is the pressure of the fluid, while the given function

F = F (x) = (Fjk(x))j,k=1,2,3 is the external force, the given positive constant ν is the

viscosity coefficient, the given constant u∞ = (u1
∞, u2

∞, u3
∞) ∈ R

3 is the velocity of the

fluid at infinity, and u0 = u0(x) is the given initial datum. Here we use the convention:

Δ := ∂2
1 + ∂2

2 + ∂2
3 and ∇ := (∂1, ∂2, ∂3). Note that ∇ · F = (

∑3
k=1 ∂kFjk)j=1,2,3. The

model (1.1) illustrates the motion of an incompressible viscous fluid past an obstacle.

This paper studies the stability of the system (1.1) around solutions of the following

stationary Navier–Stokes equations:⎧⎪⎪⎨
⎪⎪⎩
−νΔw + (u∞,∇)w + (w,∇)w +∇π = ∇ · F in Ω,

∇ · w = 0 in Ω,

w|∂Ω = −u∞, lim
|x|→∞

w = 0.

(1.2)

Here w = w(x) = (w1, w2, w3) and π = π(x). A solution (w, π) of the system (1.2)

is called a Leray’s stationary solution if the Dirichlet integral
∫
Ω
|∇w(x)|2dx is finite

and w ∈ L6(Ω) (see Leray [29] and Heck–Kim–Kozono [14]). This paper discusses the

stability of Leray’s stationary solutions under the more general conditions:

Assumption 1.1. The function w satisfies ∇ · w = 0 in Ω and

w ∈ [L3,∞(Ω) ∩ Lp1(Ω) ∩ Ẇ 1,p2(Ω)]3 for some p1 ∈ (3,∞] and p2 ∈ [2,∞).

Here L3,∞(Ω) and Ẇ 1,p2(Ω) are the weak L3-space and the homogeneous Sobolev space,

respectively. Note that there exists a solution (w, π) of the system (1.2) satisfying

Assumption 1.1. Kim–Kozono [20] and Heck–Kim–Kozono [14] showed the existence

of a unique Leray’s weak solution of (1.2) belonging to L3,∞(Ω) ∩ L6(Ω) ∩ Ẇ 1,2(Ω)

when u∞ is sufficiently small and F is sufficiently small in a suitable norm. Borchers–

Miyakawa [5] and Novotný–Padula [35] constructed a solution (w, π) of (1.2) satisfying

sup{|x||w(x)|} + sup{|x|2|∇w(x)|} < +∞ when u∞ = 0 and f is sufficiently small in

their weighted norm. Remark that w ∈ L3,∞ ∩ Lr1 for r1 > 3 if sup{|x||w(x)|} < +∞.

Remark also that ∇w ∈ L3/2,∞ ∩ Lr2 for r2 > 3/2 if sup{|x|2|∇w(x)|} < +∞. Many

researchers have been studying both the existence and the uniqueness of solutions to the

system (1.2) since Leray [29] and Finn [10]. See [14], [26], [41], and the references given
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there.

In this paper we investigate both L2-asymptotic stability and L∞-decay of energy

solutions to the following perturbed Navier–Stokes system governing a Leray’s stationary

solution: ⎧⎪⎪⎨
⎪⎪⎩
∂tv − νΔv + (u∞,∇)v + (w,∇)v + (v,∇)w + (v,∇)v +∇p = 0,

∇ · v = 0 in Ω× (0,∞),

v|∂Ω = 0, lim
|x|→∞

v = 0, v|t=0 = v0.

(1.3)

Note that we check that (v, p) formally satisfies the system (1.3) if we set v = v(x, t) =

(v1, v2, v3) := u(x, t)− u∞ −w(x), p = p(x, t) := Π(x, t)− π(x), and v0 := u0 − u∞ −w.

We call a solution (v, p) of the system (1.3) an energy solution if there is C > 0 such

that for all 0 ≤ s < t

‖v(t)‖2L2 + C

∫ t

s

‖∇v(τ)‖2L2dτ ≤ ‖v(s)‖2L2 .

We easily see that ‖v(t)‖L2 tends to a non-negative constant C0 as t → ∞ if (v, p) is an

energy solution of the system (1.3), however, we do not know whether C0 = 0 or not in

general.

1.2. Known results.

In this paper we study the stability of L2-solutions to the system (1.3). Heywood

[15], [16] first investigated the stability of L2-solutions to (1.3) under the conditions that

w ∈ W 2,2(Ω) and sup{|x||w(x)|} is sufficiently small. He applied the Galerkin method

and an energy inequality to show the existence of a unique global-in-time strong L2-

solution of (1.3) with the property that for each Ω′ ⊂ Ω, ‖v(t)‖L2(Ω′) → 0 as t → ∞.

Masuda [32] and Miyakawa–Sohr [33] considered the stability of a weak solution of (1.3)

when ∇w ∈ L3 and sup{|x||w(x)|} is sufficiently small. Masuda [32] made use of the

Stokes operator and an energy inequality to show the existence of a weak solution of (1.3)

satisfying L∞-asymptotic stability. Miyakawa and Sohr [33] constructed a weak solution

of (1.3) satisfying the strong energy inequality to derive L2-asymptotic stability of their

solution. Maremonti [31] studied the decay rate for L2-solutions of (1.3) when u∞ = 0,

w ∈ L6 ∩ W 1,3 ∩ Ẇ 1,p for p ∈ (3,∞], and ν is sufficiently large. He applied an energy

inequality and the Galerkin approach to construct a global-in-time L2-solution of (1.3)

satisfying ‖v(t)‖L∞ ≤ Ct−1/2 as t → ∞. Under the condition that the initial datum is

in L� ∩ L2 for some 1 < � < 2, Borchers and Miyakawa [4] applied the bounded analytic

semigroup generated by the Stokes operator to study L2-decay for the Navier–Stokes flow

in exterior domains, i.e. the system (1.3) when u∞ = 0 and w = 0. Neustupa [34] derived

a sufficient condition of the stability of solutions to (1.3) when ∇w ∈ L3/2 ∩ L3. They

made use of their assumptions on the semigroup generated by the main linear operator

of the system (1.3) to show the existence of a unique global-in-time strong L2-solution

of (1.3), satisfying limt→∞ ‖∇v(t)‖L2 = 0. Koba [22] applied maximal Lp-regularity for

Hilbert space-valued functions to investigate L2-asymptotic stability of energy solutions

to the generalized Navier–Stokes–Boussinesq system including (1.3).
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This paper investigates the decay rate with respect to time of a global-in-time so-

lution of the system (1.3). Iwashita [18] used Lp-Lq estimates for the Stokes semi-

group to derive Lr(r > 3)-decay for a global-in-time mild solution of the Navier–Stokes

system in an exterior domain. Kozono and Ogawa [25] constructed a unique global-

in-time strong L3-solution of (1.3) when u∞ = 0, w ∈ C(Ω) ∩ L3(Ω) ∩ Ẇ 1,3/2(Ω),

and ‖w‖L3 + ‖∇w‖L3/2 is sufficiently small. Under the condition that the initial da-

tum belongs to L� ∩ L3 for some 1 < � < 3, they investigated the decay rate with

respect to time of their solution by applying Lp-Lq estimates for the semigroup gener-

ated by the main linear operator of their system. Borchers and Miyakawa [5] studied

the asymptotic stability of solutions of (1.3) under the restrictions that w ∈ L∞(Ω) and

supx∈Ω{|x||w(x)|}+supx∈Ω{|x|2|∇w(x)|} is sufficiently small. They applied fundamental

properties of the analytic semigroup generated by their main linear operator to derive the

stability. Galdi–Heywood–Shibata [12] and Shibata [37] applied Lp-Lq estimates for the

Oseen semigroup, which was obtained by Kobayashi–Shibata [24], to show the existence

of a unique global-in-time mild L3-solution, satisfying Lr(r > 3)-asymptotic stability, of

(1.3) when w ∈ W 1,∞(Ω) and sup{(1 + |x|)(1 + |x| − x · u∞/|u∞|)δ|w(x)|} + sup{(1 +

|x|)3/2(1+ |x|−x ·u∞/|u∞|)1/2+δ|∇w(x)|} is sufficiently small for some δ > 0. Enomoto

and Shibata [8], [9] improved the method from [24] to study the stability of (1.3). In [9],

they derived L∞-decay for a global-in-time mild L3-solution of the system (1.3) when

‖w‖L3/(1−ε) , ‖w‖L3/(1+ε) , ‖∇w‖L3/(2+ε) , and ‖∇w‖L3/(2−ε) are sufficiently small for some

ε > 0. Under the same assumptions in [9], Bae and Roh [2] investigated the decay rate

with respect to time of mild L3-solutions of (1.3) when the initial datum is in a weighted

Lebesgue space.

In this paper, we consider the stability of solutions to the system (1.3) under the

restriction that ‖w‖L3,∞ is sufficiently small. Kozono and Yamazaki [27] studied the

system (1.3) when u∞ = 0, w ∈ L3,∞(Ω) ∩ L∞(Ω) ∩ Ẇ 1,r(Ω) for some r > 3, and both

‖v0‖L3,∞ and ‖w‖L3,∞ are sufficiently small. They derived Lp,∞-Lq estimates for the

semigroup generated by the main linear operator of their system to prove the existence

of a unique global-in-time strong L3,∞-solution of (1.3) satisfying Lr-asymptotic stability.

Shibata [40] showed the existence of a unique global-in-time mild L3,∞-solution, satisfy-

ing Lr(r > 3)-asymptotic stability, of (1.3) when ‖v0‖L3,∞ and ‖w‖L3,∞ are sufficiently

small by applying Lp-Lq estimates for the Oseen semigroup and the real interpolation

theory. Recently, Koba [23] made use of Lp-Lq type estimates for the Oseen semigroup

to investigate the stability of L3,∞-solutions of the system (1.3) when ‖v0‖L3,∞ and

‖w‖L3,∞ are sufficiently small. See Yamazaki [43] for the stability of Ln,∞-solutions to

the Navier–Stokes system with time-dependent external force and Hishida–Shibata [17]

for the stability for the motion of an incompressible viscous fluid past a rotating obstacle

in L3,∞-framework.

1.3. Main results and key ideas.

We now state main results.

Theorem 1.2. Let ν > 0, u∞ ∈ R
3, and let w be as in Assumption 1.1. Then

there are δ0 = δ0(ν) > 0 and c0 = c0(Ω, ν, u∞, w) > 0 such that if

‖w‖L3,∞(Ω) < δ0 (1.4)
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and if

v0 ∈ H1
0,σ(Ω) and ‖v0‖W 1,2(Ω) < c0,

then there exists a unique global-in-time strong solution (v, p):

v ∈ BC([0,∞);H1
0,σ(Ω)) ∩ C((0,∞); [W 2,2(Ω)]3) ∩ C1((0,∞);L2

σ(Ω)),

∇p ∈ C((0,∞)); [L2(Ω)]3),

of the system (1.3), satisfying

lim
t→∞ ‖v(t)‖L2(Ω) = 0. (1.5)

Furthermore, if p1 ∈ [6,∞] and p2 ∈ [2, 6], then

‖vt(t)‖L2(Ω) = O(t−1/4) as t → ∞,

‖∇v(t)‖L2(Ω) = O(t−1/8) as t → ∞,

‖v(t)‖L∞(Ω) = O(t−1/16) as t → ∞,

and for each 2 < q < 6

‖∇v(t)‖Lq(Ω) = O(t−(3/q−1/2)/8) as t → ∞.

Here L2
σ(Ω) and H1

0,σ(Ω) are the two solenoidal spaces defined by Section 2, p is a pressure

associated with v, and f(t) = O(t−α) as t → ∞ means that there are C > 0 and T > 0

such that f(t) ≤ Ct−α for t > T .

Remark that δ0 is the constant introduced in Lemma 3.5, and c0 the constant introduced

in Proposition 4.2. Remark also that we can choose u∞ = 0 in the assumptions of

Theorem 1.2. Note that our solution (v, p) is an energy solution of the system (1.3) (see

Lemma 4.1). Combining Miyakawa–Sohr [33] and Theorem 1.2, we obtain

Corollary 1.3. Let ν > 0, u∞ ∈ R
3, and let w be as in Assumption 1.1 such that

(1.4) holds. Assume that p1 = ∞ and p2 = 3. Then for every v0 ∈ L2
σ(Ω) there exists

at least one weak solution of the system (1.3) satisfying L2-asymptotic stability (1.5).

Moreover, the weak solution is smooth with respect to time when time is sufficiently

large.

Miyakawa and Sohr [33] proved that for every v0 ∈ L2
σ(Ω) there exists at least one

weak solution satisfying the strong energy inequality of the system (1.3) when p1 = ∞
and p2 = 3. From a weak-strong argument, we deduce Corollary 1.3. See [33] for the

definition of weak solutions of the system (1.3). See also [21, Chapters 5 and 7].

Since the assumptions on w of Theorem 1.2 are weaker than those of ([32], [31], [33],

[5], [9]), our results on both L2-asymptotic stability and L∞-decay of solutions to the

system (1.3) are the generalization of a part of their results (see the previous subsection).

Note that their results on the decay rate with respect to time of their solution cannot
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directly be compared with our decay results because our assumptions are different from

their ones.

Now we compare our results with [32], [31] and [9]. Under the conditions that

∇w ∈ L3 and sup{|x||w(x)|} is sufficiently small, Masuda [32] showed that for every

initial datum v0 ∈ L2
σ there exists at least one weak solution of the system (1.3) satisfying

‖v(t)‖L∞ = O(t−1/8) as t → ∞. Maremonti [31] proved the existence of a global-in-

time L2-solution of (1.3), satisfying ‖v(t)‖L∞ = O(t−1/2) as t → ∞, when u∞ = 0,

w ∈ L6 ∩ W 1,3 ∩ Ẇ 1,p(p > 3), and ν is sufficiently large. Under the assumptions that

‖v0‖L3 , ‖w‖L3/(1−ε) , ‖w‖L3/(1+ε) , ‖∇w‖L3/(2+ε) , and ‖∇w‖L3/(2−ε) are sufficiently small for

some ε > 0, Enomoto–Shibata [9] established the existence a unique global-in-time mild

L3-solution of (1.3) satisfying ‖v(t)‖L∞ ≤ Ct−1/2 and ‖∇v(t)‖L3 ≤ Ct−1/2 for t > 0. On

the other hand, under our assumptions, this paper shows the existence of a unique global-

in-time strong L2-solution satisfying ‖v(t)‖L∞ = O(t−1/16) and ‖∇v(t)‖L3 = O(t−1/16)

as t → ∞. Note that our solution (v, p) is a weak solution and a mild L3-solution of the

system (1.3).

Let us explain two difficulties in deriving L2-asymptotic stability (1.5) and the decay

rate with respect to time of solutions to the system (1.3). The first difficulty is that it

is not easy to show that the semigroup generated by the main linear operator of (1.3)

is a bounded analytic semigroup even if w is sufficiently small in L3,∞. The second one

is that it is difficult to derive Lp-Lq estimates for the semigroup generated by our main

linear operator under the restriction that ‖w‖L3,∞ is sufficiently small. To overcome

these two difficulties, we apply an abstract theory on linear stability in [22](see Lemma

3.2) and make use of an energy inequality for v and maximal Lp-in-time regularity for

Hilbert space-valued functions. The approach is new and improves the method from [32].

Remark that we cannot derive the decay rate with respect to time of solutions of (1.3)

by just using the method from [32] since our assumptions on w are weaker than those of

[32].

Let us sketch out our method for deriving the decay rate with respect to time of

energy solutions to the system (1.3). We first change the system (1.3) into the following

abstract system: {
vt +Av = F (v,∇v), t > T0,

v|t=T0
= v(T0).

(1.6)

Here A is the Stokes operator and F is a map (see Sections 2 and 4 for details). Secondly,

we make use of an energy inequality for v, the structure of the system (1.6), and the

Hölder inequality to show that for t > T0

‖vt(t)‖L2 ≤ Ct−1/p

(∫ t

T0

‖vt(s)‖pL2ds

)1/p

. (1.7)

Thirdly, we apply maximal Lp-regularity for the Stokes operator and an energy inequality

for v into the system (1.6) to observe that
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∫ ∞

T0

‖vt(s)‖pL2ds < Const. < +∞. (1.8)

Combining (1.7) and (1.8) yields that for t > T0

‖vt(t)‖L2 ≤ Ct−1/p. (1.9)

From an energy inequality, the structure of the system (1.6), and (1.9), we derive the

decay rate with respect to time of both ‖Av(t)‖L2 and ‖∇v(t)‖L2 . Finally, we make use

of useful properties of the Stokes operator to derive the L∞-decay for the solution v.

The outline of this paper is as follows: In Section 2 we first introduce function spaces

and notation, and then state some inequalities and fundamental properties of the Stokes

operator. In Section 3 we apply fundamental properties of the Stokes operator to study

the main linear operator of the system (1.3), and show the stability of the semigroup

generated by our main linear operator. In Section 4 we give the proof of Theorem 1.2 and

introduce our method to derive the decay rate with respect to time of energy solutions

of (1.3) by applying an energy inequality and maximal Lp-in-time regularity for Hilbert

space-valued functions.

2. Preliminaries.

In this section we prepare three tools to analyze the system (1.3). The first tool is

some inequalities for functions in the Sobolev spaces and the Lorentz spaces. Using these

inequalities, we derive an energy inequality for L2-solutions of our system. The second

one is the Stokes operator in a solenoidal L2-space L2
σ. Applying fundamental properties

of the Stoke operator, we study basic properties of the main linear operator of (1.3). The

third one is maximal Lp-in-time regularity for Hilbert space valued-functions. This is a

key tool to derive the decay rate with respect to time of energy solutions to our system.

Let us first introduce function spaces. For m ∈ N, 1 < p < ∞, and 1 ≤ q ≤ ∞, the

symbols Lq(Ω), Wm,q(Ω), Lp,q(Ω) denote the usual Lebesgue space, Sobolev space, and

Lorentz space with norms ‖ · ‖Lq (= ‖ · ‖Lq(Ω)), ‖ · ‖Wm,q (= ‖ · ‖Wm,q(Ω)), and ‖ · ‖Lp,q (=

‖ · ‖Lp,q(Ω)), respectively. Furthermore,

C∞
0,σ(Ω) := {f = (f1, f2, f3) ∈ [C∞

0 (Ω)]3; ∇ · f = 0},
Lp
σ = Lp

σ(Ω) := C∞
0,σ(Ω)

‖·‖Lp

,

Gp(Ω) := {f = (f1, f2, f3) ∈ Lp(Ω); f = ∇g for some g ∈ Lp
loc(Ω)},

Ẇ 1,p(Ω) := {f ∈ Lp
loc(Ω); ‖∇f‖Lp < +∞},

Ẇ 1,p
0 (Ω) := C∞

0 (Ω)
‖∇·‖Lp

, Ẇ 1,p
0,σ (Ω) := C∞

0,σ(Ω)
‖∇·‖Lp

,

H1
0 (Ω) := C∞

0 (Ω)
‖·‖W1,2

, H1
0,σ(Ω) := C∞

0,σ(Ω)
‖·‖W1,2

.

Here

‖∇f‖Lp = ‖∇f‖Lp(Ω) :=

(∫
Ω

|∇f(x)|pdx
)1/p

.
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See [3] and [1] for the Lebesgue spaces, Sobolev spaces, and Lorentz spaces. Throughout

this paper, we always consider Lq(Ω),Wm,q(Ω), Lp,q(Ω), C∞
0 (Ω), C∞

0,σ(Ω), L
p
σ(U), Gp(Ω),

Ẇ 1,p(Ω), Ẇ 1,p
0 (Ω), Ẇ 1,p

0,σ (Ω), Ḣ
1
0 (Ω), and H1

0,σ(Ω) as real-valued function spaces. We

write its complexification of a real Banach space X as X ⊕ iX. Here i is the imaginary

unit, and ⊕ the direct sum. By 〈·, ·〉, we define the usual L2-inner product, that is, for

all f = (f1, f2, f3), g = (g1, g2, g3) ∈ [L2(Ω)⊕ iL2(Ω)]3

〈f, g〉 :=
∫
Ω

f(x) · g(x)dx =

∫
Ω

{f1(x)g1(x) + f2(x)g2(x) + f3(x)g3(x)}dx,

where g is its complex conjugate of g.

Let X be a Banach space and A a linear operator on X. The symbols D(A ),

R(A ), and N(A ) represent the domain of A , the range of A , and the null space of A ,

respectively. When A generates a C0-semigroup on X, we write the semigroup as etA .

We will use the symbol C to denote a positive constant. We write C(η1, η2) if the

constant C depends on certain quantities η1, η2.

Let us recall the weak Hölder and Sobolev inequalities.

Lemma 2.1 ([27, Proposition 2.1]). Let 1 < p1, p2 < ∞ and 1 ≤ q1, q2 ≤ ∞. Set

1/p = 1/p1+1/p2. Then there is C = C(p1, p2, q1, q2) > 0 such that for all f ∈ Lp1,q1(Ω)

and g ∈ Lp2,q2(Ω)

‖fg‖Lp,q ≤ C‖f‖Lp1,q1 ‖g‖Lp2,q2 , where q := min{q1, q2}.

Lemma 2.2 ([20, Lemma 2.1], [26, Lemma 2.1]). Let p ∈ [2, 3). Then there is

C = C(p) > 0 such that for all g ∈ Ẇ 1,p
0 (Ω)

‖g‖L3p/(3−p),p ≤ C‖∇g‖Lp .

Combining Lemmas 2.1 and 2.2, we have a key inequality to construct an energy

inequality.

Lemma 2.3. There is C > 0 such that for all f ∈ L3,∞(Ω) and g ∈ Ẇ 1,2
0 (Ω)

‖fg‖L2 ≤ C‖f‖L3,∞‖∇g‖L2 . (2.1)

Using the Extension theory and the Gagliardo–Nirenberg inequality, we obtain

Lemma 2.4. (i) Let 2 ≤ p ≤ 6. Then there is C = C(p) > 0 such that for all

f ∈ H1
0 (Ω)

‖f‖Lp ≤ C‖f‖(6−p)/(2p)
L2 ‖∇f‖(3p−6)/(2p)

L2 .

(ii) Let 2 ≤ p ≤ 6. Then there is C = C(p,Ω) > 0 such that for all f ∈ W 2,2(Ω)

‖∇f‖Lp ≤ C‖∇f‖(6−p)/(2p)
L2 ‖f‖(3p−6)/(2p)

W 2,2 .
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(iii) Let 6 ≤ p ≤ ∞. Then there is C = C(p,Ω) > 0 such that

for all f ∈ H1
0 (Ω) ∩W 2,2(Ω)

‖f‖Lp ≤ C‖∇f‖(p+6)/(2p)
L2 ‖f‖(p−6)/(2p)

W 2,2 ,

where (p+ 6)/(2p) := 1/2 and (p− 6)/(2p) := 1/2 if p = ∞.

Proof of Lemma 2.4. We only prove (iii). Fix p ∈ [6,∞]. Applying the Ex-

tension theory, the Gagliardo–Nirenberg inequality, (i), and (ii), we check that for each

f ∈ H1
0 (Ω) ∩W 2,2(Ω)

‖f‖Lp ≤ C(p,Ω)‖f‖(p+6)/(2p)
L6 (‖f‖L6 + ‖∇f‖L6)(p−6)/(2p)

≤ C(p,Ω)‖∇f‖(p+6)/(2p)
L2 ‖f‖(p−6)/(2p)

W 2,2 .

Note that the above constant C(p,Ω) is independent of f . Therefore we see (iii). �

Next we study the Stokes operator. Let ν > 0. Let P be the Helmholtz projection

such that P : [L2(Ω)]3 → L2
σ(Ω) and (I − P ) : [L2(Ω)]3 → G2(Ω). See [42, 2.5.2

Lemma in Chapter II] for the Helmholtz projection. We define the Stokes operator A in

L2
σ(Ω)⊕ iL2

σ(Ω) as follows:{
Af := P (−νΔ)f,

D(A) := [L2
σ(Ω) ∩ [W 1,2

0 (Ω) ∩W 2,2(Ω)]3]⊕ i[L2
σ ∩ [W 1,2

0 ∩W 2,2]3].

We recall some fundamental properties of the Stokes operator A. From [42, Chapter III]

and [11, Chapter V], we have

Lemma 2.5 (Fundamental properties of the Stokes operator (I)).

(i) The operator −A generates a bounded analytic semigroup on L2
σ(Ω)⊕ iL2

σ(Ω).

(ii) There is C = C(Ω, ν) > 0 such that for all f ∈ D(A)

‖f‖W 2,2 ≤ C‖(A+ 1)f‖L2 . (2.2)

(iii) D(A1/2) = H1
0,σ(Ω) and for all f ∈ D(A1/2)

‖A1/2f‖L2 = ν1/2‖∇f‖L2 . (2.3)

(iv) For all f ∈ D(A)

‖A1/2f‖L2 ≤ ‖f‖1/2L2 ‖Af‖1/2L2 . (2.4)

Since A is a non-negative selfadjoint operator, we easily see the property (i).

Combining Lemma 2.4, (2.2), and (2.3), we derive properties of the Stokes operator.

Lemma 2.6 (Fundamental properties of the Stokes operator (II)).
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(i) Let 2 ≤ p ≤ 6. Then there is C = C(ν, p) > 0 such that for all f ∈ D(A1/2)

‖f‖Lp ≤ C‖f‖(6−p)/(2p)
L2 ‖A1/2f‖(3p−6)/(2p)

L2 . (2.5)

(ii) Let 2 ≤ p ≤ 6. Then there is C = C(Ω, ν, p) > 0 such that for all f ∈ D(A)

‖∇f‖Lp ≤ C‖A1/2f‖(6−p)/(2p)
L2 (‖f‖L2 + ‖Af‖L2)(3p−6)/(2p). (2.6)

(iii) Let 6 ≤ p ≤ ∞. Then there is C = C(Ω, ν, p) > 0 such that for all f ∈ D(A)

‖f‖Lp ≤ C‖A1/2f‖(p+6)/(2p)
L2 (‖f‖L2 + ‖Af‖L2)(p−6)/(2p), (2.7)

where (p+ 6)/(2p) := 1/2 and (p− 6)/(2p) := 1/2 if p = ∞.

Finally, we state maximal Lp-regularity (maximal Lp-in-time regularity for Hilbert

space-valued functions). Since −A generates a bounded analytic semigroup on L2
σ ⊕ iL2

σ,

it follows from [6] that A has maximal Lp-regularity.

Lemma 2.7 (Maximal Lp-regularity). Write H = L2
σ(Ω)⊕ iL2

σ(Ω). Let ν > 0 and

1 < p < ∞. Then for each T ∈ (0,∞] and (F,W0) ∈ Lp(0, T ;H) × (H,D(A))1−1/p,p,

the system {
Wt +AW = F, t ∈ (0, T ),

W |t=0 = W0,

has a unique solution W satisfying

‖Wt‖Lp(0,T ;L2(Ω)) + ‖AW‖Lp(0,T ;L2(Ω))

≤ Cp

(
‖F‖Lp(0,T ;L2(Ω)) + ‖W0‖L2(Ω) +

(∫ 1

0

‖Ae−tAW0‖pL2(Ω)dt

)1/p
)
,

where Cp > 0 is independent of (T, F,W0). Here (H,D(A))1−1/p,p is the real interpola-

tion space between H and D(A).

See [13], [7], [28] for maximal Lp-regularity and [30, Proposition 6.2] for the real inter-

polation norms. See also [36] and [21, Appendix A].

3. Linear operators.

In this section, we study the main linear operator of the system (1.3). Let ν > 0,

u∞ ∈ R
3, and let w be as in the Assumption 1.1. Let P be the Helmholtz projection

and A the Stokes operator defined by Section 2. Multiplying P into the system (1.3), we

obtain the following abstract system.{
vt + Lv = −P (v,∇)v, t > 0,

v|t=0 = Pv0.
(3.1)
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Here Lv = P (−νΔv+(u∞,∇)v+(w,∇)v+(v,∇)w). To study the main linear operator

of the system (3.1), we define{
Bf := P ((u∞,∇)f + (w,∇)f + (f,∇)w) ,

D(B) := {f ∈ L2
σ(Ω)⊕ iL2

σ(Ω); Bf ∈ L2
σ(Ω)⊕ iL2

σ(Ω)},{
Lf := Af +Bf,

D(L) := D(A) ∩D(B).

From Lemmas 2.5 and 3.3, we observe that D(L) = D(A) and that the operator −L

generates an analytic semigroup on L2
σ(Ω)⊕ iL2

σ(Ω). The aim of this section is to prove

the following linear stability.

Lemma 3.1. There is δ0 = δ0(ν) > 0 such that if

‖w‖L3,∞ < δ0

then for each f ∈ L2
σ(Ω)

lim
t→∞ ‖e−tLf‖L2 = 0.

Here δ0 is the constant introduced in Lemma 3.5.

In order to prove Lemma 3.1, we shall apply the following abstract theory:

Lemma 3.2 ([22, Lemma 4.1]). Let H be a Hilbert space and ‖ · ‖H its norm.

Let A : D(A )(⊂ H) → H and B : D(B)(⊂ H) → H be two linear operators on H

such that D(A ) ⊂ D(B). Define L v := A v + Bv and D(L ) := D(A ). Assume that

−A generates a bounded analytic semigroup on H. Assume that there are 0 < α ≤ 1,

0 < β < 1, and C1 > 0 such that for all ϕ ∈ D(A )

‖Bϕ‖H ≤ C1‖A βϕ‖αH(‖ϕ‖H + ‖A ϕ‖H)1−α. (3.2)

Suppose that there is C2 > 0 such that for all φ ∈ H and s, t ≥ 0(s < t)

‖e−tL φ‖2H + C2

∫ t

s

‖A βe−τL φ‖2Hdτ ≤ ‖e−sL φ‖2H . (3.3)

If the range R(L ) is dense in H, then for each ψ ∈ H

lim
t→∞ ‖e−tLψ‖H = 0. (3.4)

To this end, we study the linear operator B.

Lemma 3.3 (Properties of the operator B).

(i) Assume that 3 ≤ p2 < ∞. Then there is C = C(Ω, ν, u∞, w, p1, p2) > 0 such that

for all f ∈ D(A)
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‖Bf‖L2 ≤ C{‖A1/2f‖L2 + ‖A1/2f‖(p1−3)/p1

L2 (‖f‖L2 + ‖Af‖L2)3/p1

+ ‖A1/2f‖3/p2

L2 (‖f‖L2 + ‖Af‖L2)(p2−3)/p2}. (3.5)

(ii) Assume that 2 ≤ p2 ≤ 3. Then there is C = C(Ω, ν, u∞, w, p1, p2) > 0 such that

for all f ∈ D(A)

‖Bf‖L2 ≤ C{‖A1/2f‖L2 + ‖A1/2f‖(p1−3)/p1

L2 (‖f‖L2 + ‖Af‖L2)3/p1

+ ‖A1/2f‖(2p2−3)/p2

L2 (‖f‖L2 + ‖Af‖L2)(3−p2)/p2}. (3.6)

(iii) There are C = C(Ω, ν, u∞, w) > 0 and 0 < α ≤ 1 such that for all f ∈ D(A)

‖Bf‖L2 ≤ C‖A1/2f‖αL2(‖f‖L2 + ‖Af‖L2)1−α, (3.7)

where α = α(p1, p2).

(iv) For each ε > 0 there is C = C(Ω, ν, u∞, w, p1, p2, ε) > 0 such that for all f ∈ D(A)

‖Bf‖L2 ≤ ε‖Af‖L2 + C‖f‖L2 . (3.8)

(v) Assume that 6 ≤ p1 ≤ ∞ and that 2 ≤ p2 ≤ 6. Then there is C =

C(Ω, ν, u∞, w, p1, p2) > 0 such that for all f ∈ D(A)

‖Bf‖L2 ≤ C‖A1/2f‖1/2L2 (‖f‖L2 + ‖Af‖L2)1/2. (3.9)

Proof of Lemma 3.3 . We first show (i) and (ii). Fix f ∈ D(A). A calculation

gives

‖Bf‖L2 ≤ ‖(u∞,∇)f‖L2 + ‖(w,∇)f‖L2 + ‖(f,∇)w‖L2 .

From (2.3), we have

‖(u∞,∇)f‖L2 ≤ C(ν, u∞)‖A1/2f‖L2 .

Applying the Hölder inequality and (2.6), we check that

‖(w,∇)f‖L2 ≤ C‖w‖Lp1 ‖∇f‖L(2p1)/(p1−2)

≤ C(Ω, ν, w, p1)‖A1/2f‖(p1−3)/p1

L2 (‖f‖L2 + ‖Af‖L2)3/p1 .

The Hölder inequality shows that

‖(f,∇)w‖L2 ≤ C(p2)‖∇w‖Lp2 ‖f‖L(2p2)/(p2−2) .

Using (2.5) and (2.7), we see that

‖f‖L(2p2)/(p2−2)
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≤
{
C(ν, p2)‖A1/2f‖3/p2

L2 (‖f‖L2 + ‖Af‖L2)(p2−3)/p2 if p2 ∈ [3,∞),

C(Ω, ν, p2)‖A1/2f‖(2p2−3)/p2

L2 (‖f‖L2 + ‖Af‖L2)(3−p2)/p2 if p2 ∈ [2, 3).

Consequently, we obtain (3.5) and (3.6).

Next we prove (iii), (iv), and (v). From (2.4), (3.5), and (3.6), we see (iii). Applying

(2.4) and the Young inequality into (3.7), we observe that for each ε > 0 there is C =

C(Ω, ν, u∞, w, p1, p2, ε) > 0 such that for each f ∈ D(A)

‖Bf‖L2 ≤ C‖f‖α/2L2 (‖f‖L2 + ‖Af‖L2)1−α/2

≤ ε‖Af‖L2 + C‖f‖L2 ,

which is (iv). It is easy to check that

p1 − 3

p1
≥ 1

2
if 6 ≤ p1 ≤ ∞,

3

p2
≥ 1

2
if 3 ≤ p2 ≤ 6,

2p2 − 3

p2
≥ 1

2
if 2 ≤ p2 < 3.

Therefore we have (3.9) from (2.4), (3.5), and (3.6). �

We shall study the linear operator B without a break.

Lemma 3.4. There is C∗ > 0 such that for all g ∈ L2
σ(Ω) ∩D(A) and f ∈ D(A)

|〈Bg, g〉| ≤ C∗‖w‖L3,∞‖∇g‖2L2 ,

|〈Bf, f〉+ 〈f,Bf〉| ≤ C∗‖w‖L3,∞‖∇f‖2L2 .

Proof of Lemma 3.4. Fix g ∈ L2
σ(Ω) ∩D(A). Integrating by parts, we observe

that

〈Bg, g〉 = 〈(u∞,∇)g, g〉+ 〈(w,∇)g, g〉+ 〈(g,∇)w, g〉
= 〈∇ · (g ⊗ w), g〉
=− 〈g ⊗ w,∇g〉.

Using the Cauchy–Schwarz inequality and (2.1), we see that

|〈Bg, g〉| ≤ C‖g ⊗ w‖L2‖∇g‖L2

≤ C‖w‖L3,∞‖∇g‖2L2 .

Let f ∈ D(A). Similarly, we obtain

|〈Bf, f〉+ 〈f,Bf〉| ≤ C‖w‖L3,∞‖∇f‖2L2 .

Here we used the fact that

〈(u∞,∇)f, f〉+ 〈f, (u∞,∇)f〉 = 0,

〈(w,∇)f, f〉+ 〈f, (w,∇)f〉 = 0.
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Therefore the lemma follows. �

Lemma 3.4 gives one key lemma to show the stability of the semigroup e−tL.

Lemma 3.5. There is δ0 = δ0(ν) > 0 such that if ‖w‖L3,∞ < δ0 then for all

g ∈ L2
σ(Ω) ∩D(A) and f ∈ D(A)

|〈Bg, g〉| ≤ ν

2
‖∇g‖2L2 , (3.10)

|〈Bf, f〉+ 〈f,Bf〉| ≤ ν

2
‖∇f‖2L2 . (3.11)

Proof of Lemma 3.5. Let C∗ be the constant appearing in Lemma 3.4. Set

δ0 = ν/(2C∗). From Lemma 3.4, we easily obtain (3.10) and (3.11). �

From Lemma 3.3, we see that D(L) = D(A) ∩ D(B) = D(A). Since the Stokes

operator −A generates an analytic semigroup on L2
σ ⊕ iL2

σ, we apply a perturbation

theory on analytic semigroups and the assertion (iv) of Lemma 3.3 to find that the

operator −L generates an analytic semigroup on L2
σ ⊕ iL2

σ.

Let us now discuss the adjoint operator L∗ of the operator L.

Lemma 3.6. Let L∗ be the adjoint operator of the operator L in L2
σ(Ω)⊕ iL2

σ(Ω).

Then {
L∗f = P (−νΔf − (u∞,∇)f − (w,∇)f − (f,∇)w),

D(L∗) = D(A).

Moreover, the operator −L∗ generates an analytic semigroup on L2
σ(Ω)⊕ iL2

σ(Ω).

Proof of Lemma 3.6. Define{
B′f := P (−(u∞,∇)f − (w,∇)f − (f,∇)w),

D(B′) := {f ∈ L2
σ(Ω)⊕ iL2

σ(Ω);B
′f ∈ L2

σ(Ω)⊕ iL2
σ(Ω)},{

L′f := P (−νΔf − (u∞,∇)f − (w,∇)f − (f,∇)w),

D(L′) := D(A) ∩D(B′).

By the integration by parts, we check that for all f, g ∈ D(A)

〈Lf, g〉 = 〈f, L′g〉 = 〈f, L∗g〉.

This shows that L∗ = L′ on D(A). By an argument similar to that in the proof of Lemma

3.3, we see that for each ε > 0 there is C = C(Ω, ν, u∞, w, p1, p2, ε) > 0 such that for all

f ∈ D(A)

‖B′f‖L2 ≤ ε‖Af‖L2 + C‖f‖L2 .

This implies that D(L′) = D(A) ∩ D(B′) = D(A). Since −A generates an analytic

semigroup on L2
σ ⊕ iL2

σ, we apply a perturbation theory on analytic semigroups to find
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that −L′ generates an analytic semigroup on L2
σ ⊕ iL2

σ. We make use of an argument in

[22, the proof of Lemma 3.11] to conclude that L∗ = L′ and D(L∗) = D(L′) = D(A). �

Next we consider the two linear operators L and L∗ when ‖w‖L3,∞ is sufficiently small.

Lemma 3.7. Let δ0 be the constant appearing in Lemma 3.5. Assume that

‖w‖L3,∞ < δ0.

Then the following three assertions hold :

(i) For all ϕ ∈ L2
σ(Ω)⊕ iL2

σ(Ω) and s, t ≥ 0(s < t)

‖e−tLϕ‖2L2 + ν

∫ t

s

‖∇e−τLϕ‖2L2 dτ ≤ ‖e−tLϕ‖2L2 , (3.12)

‖e−tL∗
ϕ‖2L2 + ν

∫ t

s

‖∇e−τL∗
ϕ‖2L2 dτ ≤ ‖e−tL∗

ϕ‖2L2 . (3.13)

(ii) There is C = C(Ω, ν, u∞, w) > 0 such that for all φ ∈ D(A)

‖φ‖W 2,2 ≤ C‖(L+ 1)φ‖L2 , (3.14)

‖φ‖W 2,2 ≤ C‖(L∗ + 1)φ‖L2 . (3.15)

(iii) The range R(L) is dense in L2
σ(Ω)⊕ iL2

σ(Ω).

Proof of Lemma 3.7. We first show (i). Fix ϕ ∈ L2
σ(Ω)⊕ iL2

σ(Ω). Set V (t) :=

e−tLϕ. A direct calculation gives

d

dt
‖V (t)‖2L2 = 〈Vt, V 〉+ 〈V, Vt〉

= 〈−LV, V 〉+ 〈V,−LV 〉
=− 〈AV, V 〉 − 〈V,AV 〉 − 〈BV, V 〉 − 〈V,BV 〉.

By the integration by parts, we have

d

dt
‖V (t)‖2L2 + 2ν‖∇V (t)‖2L2 = −〈BV, V 〉 − 〈V,BV 〉.

Using (3.11) and integrating with respect to time, we observe that for s, t ≥ 0 (s < t)

‖V (t)‖2L2 + ν

∫ t

s

‖∇V (τ)‖2L2 dτ ≤ ‖V (s)‖2L2 ,

where V (0) = ϕ. This is (3.12). Similarly, we have (3.13).

Next we prove (ii). Let f ∈ D(A). We use (3.8) with ε = 1/2 to obtain

‖Af‖L2 ≤ ‖(L+ 1)f‖L2 + (1/2)‖Af‖L2 + C‖f‖L2 .

Since ‖f‖L2 ≤ C‖(L+ 1)f‖L2 , we have
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‖Af‖L2 ≤ C‖(L+ 1)f‖L2 . (3.16)

Combing the assertion (ii) of Lemma 2.5 and (3.16) gives (3.14). Similarly, we obtain

(3.15).

Finally, we show (iii). Assume that D(L) = D(L∗) = L2
σ ∩D(A). Take f ∈ D(L∗)

such that 〈L∗f, f〉 = 0. By the integration by parts, we have

0 = 〈L∗f, f〉 = 〈f, Lf〉 ≥ ν

2
‖∇f‖2L2 .

This implies that f = 0. Therefore we see that N(L∗) = {0}, where N(L∗) is the null set
of L∗. Since L is a closed operator, we conclude that R(L)∩L2

σ is dense in L2
σ. Therefore

we deduce (iii). �

Let us derive the stability of the semigroup e−tL.

Proof of Lemma 3.1. Applying Lemmas 3.2 and 3.7, and the assertion (iii) of

Lemma 3.3, we see that for each f ∈ L2
σ(Ω)

lim
t→∞ ‖e−tLf‖L2 = 0

when ‖w‖L3,∞ < δ0, where δ0 is the constant appearing in Lemma 3.5. �

4. Nonlinear stability and decay properties.

This section derives L2-asymptotic stability and the decay rate with respect to time

of energy solutions to the system (3.1). Let ν > 0, u∞ ∈ R
3, and let w be as in

Assumption 1.1. We first construct an energy inequality for solutions of (3.1).

Lemma 4.1. Let δ0 be the constant appearing in Lemma 3.5. Let v0 ∈ H1
0,σ(Ω),

T ∈ (0,∞] and,

v ∈ BC([0, T ); H1
0,σ(Ω)) ∩ C((0, T );D(A)) ∩ C1((0, T );L2

σ(Ω)).

Suppose that

‖w‖L3,∞ < δ0.

Assume that the function v is a strong solution of the system (3.1) on (0, T ). Then for

all s, t ≥ 0 with s < t < T

‖v(t)‖2L2 + ν

∫ t

s

‖∇v(τ)‖2L2dτ ≤ ‖v(s)‖2L2 . (4.1)

Proof of Lemma 4.1. Multiplying (3.1) by v, and then integrating by parts, we

obtain

1

2

d

dt
‖v(t)‖2L2 + ν‖∇v(t)‖2L2 = −〈Bv(t), v(t)〉.
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Here we used the fact that 〈(v,∇)v, v〉 = 0. Using Lemma 3.5 and integrating with

respect to time, we have (4.1). �

Applying Lemmas 3.1, 3.7, 4.1, and arguments similar to those in [21, Chapters 7

and 8] or [22], we obtain the following proposition.

Proposition 4.2. Let δ0 be the constant appearing in Lemma 3.5. Assume that

‖w‖L3,∞ < δ0.

Then there exists c0 = c0(Ω, ν, u∞, w) > 0 such that for every v0 ∈ H1
0,σ(Ω) with

‖v0‖W 1,2 < c0 the system (3.1) has a unique global-in-time strong solution:

v ∈ BC([0,∞); H1
0,σ(Ω)) ∩ C((0,∞);D(A)) ∩ C1((0,∞);L2

σ(Ω)),

satisfying

lim
t→∞ ‖v(t)‖L2(Ω) = 0. (4.2)

Next we discuss the uniqueness of the strong solutions of the system (3.1).

Lemma 4.3. Let v be a global-in-time strong solution obtained by Proposition 4.2

of the system (3.1). Let T0, T1 > 0 such that T0 < T1. Suppose that

ṽ ∈ W 1,p(T0, T1;L
2
σ(Ω)) ∩ Lp(T0, T1;D(A)) for some 1 < p < ∞.

Assume that ṽ satisfies the following system:{
ṽt + Lṽ = −P (v,∇)v, T0 < t < T1,

ṽ|t=T0
= v(T0).

Then v = ṽ on [T0, T1).

Proof of Lemma 4.3. Since v ∈ C1((0,∞);L2
σ(Ω)) ∩ C((0,∞);D(A)), we ob-

serve that

v ∈ W 1,p(T0, T1;L
2
σ(Ω)) ∩ Lp(T0, T1;D(A)).

The embedding theorem ([30, Corollary 1.14]) implies that

W 1,p(T0, T1;L
2
σ(Ω)) ∩ Lp(T0, T1;D(A)) ⊂ BC([T0, T1); (L

2
σ, D(A))1−1/p,p)

⊂ BC([T0, T1);L
2
σ(Ω)).

Set V = V (t) = v(t)− ṽ(t). It is easy to check that V satisfies the following system:{
Vt + LV = 0, T0 < t < T1,

V |t=T0
= 0.
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Since −L generates analytic semigroup on L2
σ, we see that V ≡ 0 on [T0, T1). Therefore

we conclude that v = ṽ on [T0, T1). �

Finally, we derive the decay rate with respect to time of an energy solution of the

system (3.1) to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let δ0, c0 be the two constants appearing in Lemma

3.5 and Proposition 4.2, respectively. Assume that ‖w‖L3,∞ < δ0. Let v0 ∈ H1
0,σ(Ω) with

‖v0‖W 1,2 < c0. From Proposition 4.2, there exists a unique global-in-time strong solution

v of the system (3.1) with the initial datum v0, satisfying (4.2). By an argument similar

to that in the proof of Lemma 4.1, we check that for all s, t ≥ 0 with s < t

‖v(t)‖2L2 + ν

∫ t

s

‖∇v(τ)‖2L2dτ ≤ ‖v(s)‖2L2 . (4.3)

To derive the decay rate with respect to time of v, we prepare the following lemma.

Lemma 4.4. There is T0 > 0 such that for all t, s > 0 such that T0 < s < t

‖vt(t)‖L2 ≤ 1

t− s

∫ t

s

‖vt(τ)‖L2dτ.

Proof of Lemma 4.4. We first show that there is T0 > 0 such that for all s, t > 0

and h ∈ (−1, 1) with T0 ≤ s ≤ t

‖v(t+ h)− v(t)‖L2 ≤ ‖v(s+ h)− v(s)‖L2 . (4.4)

Fix h ∈ (−1, 1). Set Q(t) := v(t + h) − v(t). Since v is a strong solution of (3.1), we

observe that

Qt(t) = vt(t+ h)− vt(t)

=− {Lv(t+ h)− P (v(t+ h),∇)v(t+ h)}+ {Lv(t) + P (v(t),∇)v(t)}
=− LQ(t)− P (v(t),∇)Q(t)− P (Q(t),∇)v(t)− P (Q(t),∇)Q(t).

A simple calculation gives

1

2

d

dt
‖Q(t)‖2L2 = 〈Qt(t), Q(t)〉

= 〈−LQ(t)− P (Q(t),∇)Q(t)− P (Q(t),∇)v(t)− P (Q(t),∇)Q(t), Q(t)〉.

By the integration by parts, we have

1

2

d

dt
‖Q(t)‖2L2 + ν‖∇Q(t)‖2L2 ≤ |〈BQ(t), Q(t)〉|+ |〈(Q(t),∇)v(t), Q(t)〉|.

From Lemma 3.5, we obtain

|〈BQ(t), Q(t)〉| ≤ ν

2
‖∇Q(t)‖2L2 .
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Using the integration by parts, the Hölder and the Gagliardo–Nirenberg inequalities, we

check that

|〈(Q(t),∇)v(t), Q(t)〉| = | − 〈Q⊗ v,∇Q〉|
≤ C‖Q‖L6‖v‖L3‖∇Q‖L2

≤ C‖v(t)‖L3‖∇Q(t)‖2L2 .

As a result, we have

1

2

d

dt
‖Q(t)‖2L2 +

ν

2
‖∇Q(t)‖2L2 ≤ C‖v(t)‖L3‖∇Q(t)‖2L2 .

Integrating with respect to time, we obtain

‖Q(t)‖2L2 + ν

∫ t

s

‖∇Q(τ)‖2L2dτ ≤ ‖Q(s)‖2L2 + sup
s≤τ<∞

‖v(t)‖L3

∫ t

s

‖∇Q(τ)‖2L2dτ.

Since v ∈ BC([0,∞);H1
0,σ(Ω)), we use the Gagliardo–Nirenberg inequality to see that

sup
s≤τ<∞

‖v(τ)‖L3 ≤ C sup
s≤τ<∞

(‖v(τ)‖1/2L2 ‖∇v(τ)‖1/2L2 )

≤ C sup
s≤τ<∞

‖v(τ)‖1/2L2 .

From (4.2), we find that there is T0 > 0 such that for all s ≥ T0

sup
s≤τ<∞

‖v(t)‖L3 <
ν

2
.

Thus, if s, t ≥ T0 and s < t, then

‖Q(t)‖2L2 +
ν

2

∫ t

s

‖∇Q(τ)‖2L2dτ ≤ ‖Q(s)‖2L2 .

Therefore, there is T0 > 0 such that for all t > s > T0

‖Q(t)‖L2 ≤ ‖Q(s)‖L2 .

This proves (4.4). From (4.4), we see that for T0 < τ < t and h �= 0∥∥∥∥v(t+ h)− v(t)

h

∥∥∥∥
L2

≤
∥∥∥∥v(τ + h)− v(τ)

h

∥∥∥∥
L2

.

Since v ∈ C1((0,∞);L2
σ(Ω)), we let h → 0 to check that

‖vt(t)‖L2 ≤ ‖vt(τ)‖L2 .

Integrating with respect to τ , we find that for T0 < s < t
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‖vt(t)‖L2 ≤ 1

t− s

∫ t

s

‖vt(τ)‖L2dτ.

Therefore the lemma follows. �

Now we return to the proof of Theorem 1.2. We now assume that p1 ∈ [6,∞] and

p2 ∈ [2, 6]. Let T0 be the constant appearing in Lemma 4.4. It is clear that for each

T > T0, v satisfies {
vt +Av = −Bv − P (v,∇)v, t ∈ (T0, T ),

v|t=T0 = v(T0).

Fix T > T0. Using maximal L4-regularity (Lemma 2.7) and Lemma 4.3, we see that

there is C4 > 0 independent of T such that

∫ T

T0

‖vt‖4L2dτ +

∫ T

T0

‖Av‖4L2dτ

≤ C4

(
‖v(T0)‖4W 2,2 +

∫ T

T0

‖ −Bv − P (v,∇)v‖4L2dτ

)
. (4.5)

Here we used that fact that∫ 1

0

‖Ae−τAv(T0)‖4L2dτ ≤ ‖Av(T0)‖4L2 ≤ C(ν)‖v(T0)‖4W 2,2 .

An easy computation gives

C4‖ −Bv − P (v,∇)v‖4L2 ≤ 16C4(‖Bv‖4L2 + ‖P (v,∇)v‖4L2). (4.6)

By (3.9), we have

16C4‖Bv‖4L2 ≤ C‖A1/2v‖2L2‖v‖2L2 + C‖A1/2v‖2L2‖Av‖2L2 .

Since ab ≤ εa2 + b2/(4ε) (a, b ≥ 0, ε > 0), we obtain

16C4

∫ T

T0

‖Bv‖4L2dτ ≤ C

∫ T

T0

‖A1/2v‖2L2‖v‖2L2dτ

+
1

4

∫ T

T0

‖Av‖4L2dτ + C

∫ T

T0

‖A1/2v‖4L2dτ. (4.7)

Using the Hölder inequality and Lemma 2.6, we check that

‖P (v,∇)v‖L2 ≤ C‖v‖L∞‖∇v‖L2

≤ C‖A1/2v‖3/2L2 (‖v‖L2 + ‖Av‖L2)1/2. (4.8)

The formula: ab ≤ εa2 + b2/(4ε) (a, b ≥ 0, ε > 0) shows that
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16C4

∫ T

T0

‖P (v,∇)v‖4L2dτ ≤ C

∫ T

T0

‖A1/2v‖6L2‖v‖2L2dτ

+
1

4

∫ T

T0

‖Av‖4L2dτ + C

∫ T

T0

‖A1/2v‖12L2dτ. (4.9)

From (4.3) and (2.3), we have∫ ∞

0

‖A1/2v(τ)‖2L2dτ < C < +∞. (4.10)

Since v ∈ BC([0,∞);H1
0,σ(Ω)), we see that

sup
0≤τ<∞

(‖v(τ)‖L2 + ‖∇v(τ)‖L2) < C < +∞. (4.11)

Applying (4.6), (4.7), (4.9), (4.10), and (4.11), we have

C4

∫ T

T0

‖ −Bv − P (v,∇)v‖4L2dτ ≤ 1

2

∫ T

T0

‖Av‖4L2dt+ C	, (4.12)

where C	 is independent of T . Combining (4.5) and (4.12) gives

∫ T

T0

‖vt‖4L2dτ +
1

2

∫ T

T0

‖Av‖4L2dτ ≤ C‖v(T0)‖4W 2,2 + C	.

Since the two constants C4 and C	 do not depend on T , we can tend T to ∞ to have∫ ∞

T0

‖vt‖4L2dτ +
1

2

∫ ∞

T0

‖Av‖4L2dτ < C < +∞. (4.13)

Applying Lemma 4.4, the Hölder inequality, and (4.13), we check that for T0 < s < t

‖vt(t)‖L2 ≤ 1

t− s

∫ t

s

‖vt(τ)‖L2dτ

≤ 1

(t− s)1/4

(∫ t

s

‖vt(τ)‖4L2dτ

)1/4

≤ C(t− s)−1/4.

Here we choose s = t/2 to see that

‖vt(t)‖L2 = O(t−1/4) as t → ∞.

Next we show that

‖∇v(t)‖L2(Ω) = O(t−1/8) as t → ∞,

‖v(t)‖L∞(Ω) = O(t−1/16) as t → ∞.

Since v is a strong solution of (3.1), we use the integration by parts to observe that
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ν‖∇v(t)‖2L2 = 〈Av, v〉
= 〈−vt −Bv − P (v,∇)v, v〉
= 〈−vt, v〉 − 〈Bv, v〉.

By the Cauchy–Schwarz inequality and Lemma 3.5, we have

ν‖∇v(t)‖2L2 ≤ ‖vt(t)‖L2‖v(t)‖L2 +
ν

2
‖∇v(t)‖2L2 .

This gives

‖∇v(t)‖L2 ≤ C(ν)‖v0‖1/2L2 ‖vt(t)‖1/2L2 ≤ Ct−1/8 as t → ∞. (4.14)

From the structure of the system (3.1), we check that

‖Av(t)‖L2 = ‖ − vt −Bv − P (v,∇)v‖L2

≤ ‖vt(t)‖L2 + ‖Bv(t)‖L2 + ‖P (v,∇)v(t)‖L2 .

Since ab ≤ εa2 + b2/(4ε) (a, b ≥ 0, ε > 0), it follows from (3.9) and (4.8) to see that

‖Bv(t)‖L2 ≤ 1

4
‖Av(t)‖L2 + C‖A1/2v(t)‖1/2L2 ‖v(t)‖1/2L2 + C‖A1/2v(t)‖L2

and that

‖P (v,∇)v(t)‖L2 ≤ 1

4
‖Av(t)‖L2 + C‖A1/2v(t)‖3/2L2 ‖v(t)‖1/2L2 + C‖A1/2v(t)‖3L2 .

As a result, we have

‖Av(t)‖L2 ≤ C(‖vt(t)‖L2 + ‖A1/2v(t)‖1/2L2 + ‖A1/2v(t)‖L2 + ‖A1/2v(t)‖3L2)

≤ Ct−1/4 + Ct−1/16 + Ct−1/8 + Ct−3/16.

Therefore we find that

‖Av(t)‖L2 = O(t−1/16) as t → ∞. (4.15)

By (2.3), (2.7), (4.14), and (4.15), we check that

‖v(t)‖L∞ = O(t−1/16) as t → ∞.

Finally, we prove that for each 2 < q < 6

‖∇v(t)‖Lq(Ω) = O(t−(3/q−1/2)/8) as t → ∞. (4.16)

Fix 2 < q < 6. Using the Gagliardo–Nirenberg inequality and (2.2), we see that

‖∇v(t)‖Lq ≤ C‖∇v(t)‖(3/q−1/2)
L2 ‖v(t)‖(3/2−3/q)

W 2,2

≤ C‖∇v(t)‖(3/q−1/2)
L2 (‖v(t)‖L2 + ‖Av(t)‖L2)(3/2−3/q).
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From (4.3), (4.14) and (4.15), we have (4.16). Therefore the theorem is proved. �

Remark that the proof of Lemma 4.4 is based on [32].
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