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Abstract. We consider the Yamabe equation on a complete non-
compact Riemannian manifold and study the condition of stability of solu-
tions. If (Mm, g) is a closed manifold of constant positive scalar curvature,
which we normalize to be m(m−1), we consider the Riemannian product with
the n-dimensional Euclidean space: (Mm × Rn, g + gE). And we study, as in
[2], the solution of the Yamabe equation which depends only on the Euclidean
factor. We show that there exists a constant λ(m, n) such that this solution
is stable if and only if λ1 ≥ λ(m, n), where λ1 is the first positive eigenvalue
of −∆g . We compute λ(m, n) numerically for small values of m, n showing in
these cases that the Euclidean minimizer is stable in the case M = Sm with
the metric of constant curvature. This implies that the same is true for any
closed manifold with a Yamabe metric.

Introduction.

Let (XN , h) be a complete non-compact Riemannian manifold of dimension N ≥ 3,
without boundary. We consider the h-Yamabe functional given by:

Yh(u) =

∫
X

(aN‖∇u‖2 + shu2) dvh( ∫
X
|u|p dvh

)2/p
=

Eh(u)
‖u‖2p

,

where aN = 4(N − 1)/(N − 2), p = pN = 2N/(N − 2), sh will denote the scalar curva-
ture of the metric h and dvh its volume element. The function u 6= 0 is assumed to be
in the Sobolev space L2

1(X). We will always require that (X, h) is such that the Sobolev
embedding L2

1(X) ⊂ Lp(X) holds for (X, h). This is true for instance if the injectivity
radius is positive and the Ricci curvature is bounded below [8, Corollary 3.19].

The Yamabe constant of (X, h) is defined as

Y (X, h) = inf
u∈L2

1(X)−{0}
Yh(u).

When sh ≥ 0 this number is always finite (and non-negative) and it is bounded
above by the Yamabe constant of (SN , gN

0 ), where gN
0 is the metric of constant sectional

curvature 1 on SN , by the well known local argument of T. Aubin [4].
Although Yamabe constants have been more often considered and are better under-
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stood in the case of closed manifolds, the study of the constants for open Riemannian
manifolds is also of interest by itself and in connection with the closed case. A general
study of Yamabe constants of non-compact manifolds can be found in [7]. See also [1],
[2], [13].

Our main motivation is to understand the Yamabe constants of certain non-compact
Riemannian manifolds which play a central role in the study of the Yamabe invariants of
closed manifolds (in particular when studying how the invariants behave under surgery,
see [3]). In the present article we will consider the stability of solutions of the Yamabe
equation. A solution f of the h-Yamabe equation is a solution of the Euler–Lagrange
equation of Yh which means that for each u ∈ C∞0 (X) the function Hu(t) = Yh(f + tu)
verifies H ′

u(0) = 0. The solution f is called stable if for every u, H ′′
u (0) ≥ 0. The

condition is well understood in the closed case: f being a solution of the Yamabe equation
means that fp−2h has constant scalar curvature and it is stable if and only if sfp−2h ≤
(N − 1)λ1(fp−2h), where λ1 is the first positive eigenvalue of the positive Laplacian of
the Riemannian metric. This condition can be expressed also in terms of the original
metric h, but in the closed case there is no reason to use such expression. A typical
situation of interest in the complete non-compact case is a metric of constant positive
scalar curvature and infinite volume for which one is interested in computing the Yamabe
constant. A solution of the Yamabe equation gives a metric of constant scalar curvature
which is non-complete, of finite volume. Since the analysis in such a manifold is not
well understood it seems more reasonable to work with the original metric. Therefore
we will begin this article by studying the stability condition on a non-compact complete
Riemannian manifold of constant positive scalar curvature.

We introduce the following invariant:

Definition 0.1. Let (X, h) be a complete Riemannian manifold of constant posi-
tive scalar curvature and f ∈ C∞+ (X) ∩ L2

1(X) be a positive smooth critical point of Yh.
Let N(h, f) =

{
u ∈ L2

1(X)− {0} :
∫

X
fp−1u dvh = 0

}
and define

α(X, h, f) = inf
u∈N(h,f)

Eh(u)∫
X

fp−2u2 dvh
.

With this notation the condition for stability reads:

Theorem 0.2. Let (X, h) be a complete Riemannian manifold of constant positive
scalar curvature and f ∈ C∞+ (X) ∩ L2

1(X) be a positive smooth critical point of Yh. f is
stable if and only if

α(X, h, f) ≥ (p− 1)
Eh(f)
‖f‖p

p
.

To study stability of solutions of the Yamabe equation on open manifolds one would
need to compute the invariant α.

The example we will be most interested in is the case (Mm×Rn, g +gn
E) where Mm

is closed and g has constant positive scalar curvature which we normalize to be m(m−1).
One can restrict the functional to functions which depend only on the Euclidean variable
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and define as in [2]

YRn(M × Rn, g + gn
E) = inf

u∈L2
1(Rn)−{0}

Yg+gn
E
(u).

In [2] YRn(M ×Rn, g +gn
E) is computed in terms of the best constant of the classical

Gagliardo–Nirenberg inequality. In particular there is a unique YRn -minimizer f which is
a radial, decreasing, smooth function and the scalar curvature of fp−2(g+gn

E) is m(m−1).
It follows that Eh(f)/‖f‖p

p = m(m − 1). In Section 1 we will show the existence of a
minimizer for α(M × Rn, g + gn

E , f) and then in Section 3 we will show that it is of the
form a(y)b(x) where −∆ga = λ1a, λ1 is the first positive eigenvalue of −∆g. Then we
see from Theorem 0.2 that:

Theorem 0.3. Let (Mm, g) be a closed Riemannian manifold of constant scalar
curvature m(m−1) and let f be the YRn-minimizer normalized so that the scalar curvature
of fp−2(g + gn

E) is m(m− 1). f is a stable critical point of Yg+gn
E

if and only if

inf
b∈L2

1(Rn)−{0}

(∫
Rn(aN‖∇b‖22 + m(m− 1)b2)∫

Rn fp−2b2
+ aNλ1

∫
Rn b2

∫
Rn fp−2b2

)

≥ (p− 1)m(m− 1). (1)

In order to use the previous theorem we will consider the function:

λ 7→ A(λ) = inf
b∈L2

1(Rn)−{0}

(∫
Rn(aN‖∇b‖22 + m(m− 1)b2)∫

Rn fp−2b2
+ aNλ

∫
Rn b2

∫
Rn fp−2b2

)
. (2)

In Section 3 we will prove that A(λ) is realized by a radial decreasing function and
then deduce the following:

Corollary 0.4. The infimum is a strictly increasing function of λ. Therefore
there exists a unique value of λ > 0 such that A(λ) = (p− 1)m(m− 1).

We introduce the following constant which depends only on the dimensions m and
n:

Definition 0.5. The value of λ given by the previous corollary will be denoted
by λ(m,n).

We have

Theorem 0.6. Let (M, g) be a closed Riemannian manifold of constant scalar
curvature m(m− 1). Let λ1 > 0 be the first positive eigenvalue of −∆g. Then the metric
fp−2(g + gn

E) is stable if and only if λ1 ≥ λ(m,n).

Note that if g is a Yamabe metric (a minimizer for the Yamabe functional) then in
particular it is stable and as we mentioned before this means that λ1(g) ≥ m. Therefore
we have
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Theorem 0.7. If m ≥ λ(m,n) then for any Yamabe metric g on a closed manifold
M the YRn-minimizer on (M × Rn, g + gn

E) is stable.

The condition on Theorem 0.7 can be checked numerically: a radial minimizer for
A(λ(m,n)) is given by a solution of the ordinary linear differential equation:

u′′(t) +
n− 1

t
u′(t) +

(
(p− 1)m(m− 1)

aN
fp−2 −

(
m(m− 1)

aN
+ λ(m,n)

))
u(t) = 0 (3)

with u(0) = 1, u′(0) = 0. In the previous equation replace λ(m,n) by a variable λ. As
explained in Section 4 using Sturm comparison theory one can easily check that λ(m,n)
is the unique value of λ such that the solution of previous equation (with the given initial
conditions) is positive and decreasing. For λ > λ(m,n) the solution has a local minimum
and for λ < λ(m,n) has a 0 at finite time. The function f can be computed numerically
(see for instance the discussion in [2]) and then for a fixed λ one can compute numerically
the solution of (3) and check whether λ < λ(m,n) or λ > λ(m,n).

In Figure 1 we show the solutions of equation (3) for m,n = 2. In this case one
computes λ(2, 2) ≈ 1.80405. . . and we display solutions with λ > λ(2, 2) and λ < λ(2, 2).

Table 1 gives the numerical computed value of λ(m,n), for low dimensions (m+n ≤
9): in these cases one has λ(m,n) ≤ m.

(a) λ < 1.80405, u(t) = 0
for some t > 0.

(b) λ(2, 2) ≈ 1.80405,
u is always decreasing.

(c) λ > 1.80405, u has a local
minimum at some t > 0.

Figure 1. For dimensions m, n = 2, we display numerical
solutions of equation (3). λ(2, 2) ≈ 1.80405.

Table 1. Numerical values of λ(m, n).

m n λ(m,n)
2 2 1.8041
3 2 2.9183
2 3 1.6735
2 4 1.5823
3 3 2.8372
4 2 3.9553
2 5 1.5145

m n λ(m,n)
3 4 2.7669
4 3 3.9023
5 2 4.9718
2 6 1.4459
3 5 2.7070
4 4 3.8506
5 3 4.9348

m n λ(m,n)
6 2 5.9806
2 7 1.4165
3 6 2.6551
4 5 3.8028
5 4 4.8958
6 3 5.9533
7 2 6.9859
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1. Yamabe constants of open manifolds.

In this section we will discuss some preliminary definitions and results about Yamabe
constants on open manifolds. For an open Riemannian manifold (XN , h) we consider the
h-Yamabe functional defined as

Yh(u) =

∫
X

(aN‖∇u‖2 + shu2) dvh( ∫
X
|u|p dvh

)2/p
,

where the function u is taken to be (non-zero) in L2
1(X) and recall that we are assuming

that the Sobolev embedding L2
1 ⊂ Lp holds. The Yamabe constant of (X, h) is then

defined as

Y (X, h) = inf
u

Yh(u).

Let Eh(u) =
∫

X
(aN‖∇u‖2 + shu2) dvh, so that Yh(u) = Eh(u)‖u‖−2

p .
A critical point of Yh is a solution of the corresponding Euler–Lagrange equation,

which is called the Yamabe equation:

−aN∆hf + shf = λfp−1 (4)

with λ ∈ R.
We begin now studying the stability of solutions of the Yamabe equation. The

following is a standard computation:

Lemma 1.1. Let (X, h) be an open manifold and f be a smooth positive critical
point of Yh. For any u ∈ C∞0 (X) let Hu(t) = Yh(f + tu). Then H ′

u(0) = 0 and

H ′′(0)
2

=
Eh(u)
‖f‖2p

− Eh(f)
‖f‖4p

(
(2− p)‖f‖2−2p

p

( ∫

X

fp−1u

)2

+ (p− 1)‖f‖2−p
p

∫

X

fp−2u2

)
.

Proof. By a standard computation

H ′(t) = 2

( ∫
X

(aN (h(∇f,∇u) + t‖∇u‖2) + sh(fu + tu2)) dvh

)× ‖f + tu‖2p
‖f + tu‖4p

− 2

(∫
X

(aN‖∇(f + tu)‖2 + sh(f + tu)2) dvh

)×‖f + tu‖2−p
p ×∫

X
(f + tu)p−1u dvh

‖f + tu‖4p
.

H ′(0) = 0 since f in a critical point and then by a direct computation

H ′′(0) =
(

2
‖f‖4p

∫

X

(aN‖∇u‖2 + shu2)dvh

)
× ‖f‖2p
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− 2
Eh(f)
‖f‖4p

(
2
p
− 1

)( ∫

X

fpdvh

)2/p−2

p

( ∫

X

fp−1u dvh

)2

− 2
Eh(f)
‖f‖4p

(p− 1)‖f‖2−p
p

∫

X

fp−2u2 dvh. ¤

Definition 1.2. A critical point of the Yamabe functional Yh is called stable if for
each u ∈ C∞0 (M) one has H ′′

u (0) ≥ 0.

Of course local minimizers are stable critical points of Yh.
The previous lemma now reads:

Corollary 1.3. f is a stable critical point of Yh if and only if for any u ∈ C∞0 (X)

Eh(u) ≥ Eh(f)
(

(2− p)‖f‖−2p
p

( ∫

X

fp−1u dvh

)2

+ (p− 1)‖f‖−p
p

∫

X

fp−2u2 dvh

)
.

Note that equality holds for u = f since in that case Hf is actually a constant
function. Usually one restricts Yh to metrics of some fixed volume. In terms of the
function u this means that we would consider u such that

∫
X

fp−1u = 0. In this situation
one would have:

Corollary 1.4. A critical point f of Yh is stable if and lnly if for all u ∈ L2
1(X)

such that
∫

X
fp−1u dvh = 0 one has Eh(u) ≥ (p− 1)Eh(f)‖f‖−p

p

∫
X

fp−2u2 dvh.

Proof. It is clear that if f is stable then one has the required inequality. Now
assume that the inequality is true for each u ∈ L2

1(X) such that
∫

X
fp−1u dvh = 0. Each

v ∈ L2
1(X) can be written as v = u+ cf where u ∈ L2

1(X) verifies that
∫

X
fp−1u dvh = 0

and c ∈ R. Note that then c = ‖f‖−p
p

∫
X

fp−1v dvh.
Then

E(v) =
∫

X

(aN‖∇(u + cf)‖2 + sh(u + cf)2) dvh

=
∫

X

(aN‖∇u‖2 − 2aNcu∆f + aNc2‖∇f‖2 + shu2 + 2cshuf + shc2f2) dvh

= E(u) + c2E(f)

(using for the last equality that −aN∆f + shf = λfp−1). Then

E(v)‖f‖p
p = (E(u) + c2E(f))‖f‖p

p ≥ E(f)(p− 1)
∫

X

fp−2u2 dvh + c2E(f)‖f‖p
p

= (p− 1)E(f)
∫

X

fp−2(v − cf)2 dvh + c2E(f)‖f‖p
p

= (p− 1)E(f)
∫

X

fp−2v2 dvh − 2c(p− 1)E(f)
∫

X

fp−1v dvh + pc2E(f)‖f‖p
p.
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And replacing the value of c we obtain:

E(v)‖f‖2p ≥ (p− 1)E(f)
∫

X

fp−2v2 dvh + E(f)‖f‖−p
p

( ∫

X

fp−1v dvh

)2

(2− p).

This shows that f is a stable critical point. ¤

Given a complete Riemannian manifold (X, h) and f ∈ C∞+ (X) ∩ L2
1(X) a positive

smooth critical point of Yh, we let as in the introduction N(h, f) = {u ∈ L2
1(X)− {0} :∫

X
fp−1u dvh = 0} and call

α(X, h, f) = inf
u∈N(h,f)

Eh(u)∫
X

fp−2u2 dvh
.

With this notation we have that f is a stable solution of the Yamabe equation if
and only if

α(X, h, f) ≥ (p− 1)
Eh(f)
‖f‖p

p

as claimed in Theorem 0.2.
In the next sections we will consider the particular case when (X, h) = (M ×Rn, g +

gn
E), a Riemannian product of a closed Riemannian manifold of constant positive scalar

curvature with the Euclidean space, and f a critical point of Yh which is a smooth radial
decreasing positive function on Rn. We will use the fact that α is achieved:

Proposition 1.5. There exists u ∈ N(g + gn
E , f) which achieves the infimum in

the definition of α(M×Rn, g+gn
E , f). Every minimizer is a smooth function which solves

the equation

−an∆u + (sg − αfp−2)u = 0. (5)

The space of solutions of this equation is finite dimensional.

Proof. Let {ui} be a minimizing sequence. We can assume that
∫

X
fp−2u2

i dvh =
1 and ui ≥ 0. It follows that {ui} is a bounded sequence in L2

1(X) and therefore (after
taking a subsequence) it has a weak limit u|K in L2

1(K), for every compact K ⊂ X,
u|K ≥ 0. Also, ui converges to u|K in L2(K), since the Sobolev embedding is compact
for K ⊂ X, and by Hölder’s inequality.

Consider now compact subsets KR = M × BR ⊂ X (BR ⊂ Rn a closed ball with
radius R > 0). Since the convergence on L2(KR) is strong for each R, KR ⊂ KR′ for R <

R′, and X =
⋃∞

i Ki, then we have a well defined function on all of X, u = limR→∞ u|KR
.

Furthermore, on each compact KR

∫

KR

|∇u|2 dvh = lim
i→∞

∫

KR

〈∇u,∇ui〉h dvh
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and then, by the Cauchy inequality,

∫

KR

|∇u|2 dvh ≤ lim sup
i→∞

∫

KR

|∇ui|2 dvh.

Moreover, by the strong convergence on L2(KR)

∫

KR

u2 dvh = lim
i→∞

∫

KR

u2
i dvh.

It follows that
∫

KR

(a|∇u|2 + shu2) dvh ≤ lim sup
i→∞

∫

KR

(a|∇ui|2 + shu2
i ) dvh

≤ lim sup
i→∞

∫

X

(a|∇ui|2 + shu2
i ) dvh ≤ lim sup

i→∞
Eh(ui) = α. (6)

Then, by making R →∞, inequality (6) implies that Eh(u) ≤ α. Since α is an infimum
by definition, it remains to show that

∫
X

fp−2u2 dvh = 1, to prove that u in fact minimizes
Eh(u)/

∫
X

fp−2u2 dvh.
This follows from the fact that f is radially dependent on Rn and decreasing. Given

ε > 0, then, for big R, we have fp−2(r) < ε, for r > R. Hence

∫

X\M×Br

u2
i f

p−2 dvh ≤ ε

∫

X\M×Br

u2
i dvh ≤ ε

∫

X

u2
i dvh ≤ Cε,

for some constant C (recall that {ui} is a bounded sequence in L2
1(X)). It follows that

for every r > R

1 ≥ lim
i→∞

∫

M×Br

fp−2u2
i dvh ≥ 1− Cε,

that is

1 ≥
∫

M×Br

fp−2u2 dvh ≥ 1− Cε.

Finally, by making r → ∞, we have
∫

X
fp−2u2 dvh = 1. As stated, this proves that u

minimizes Eh(u)/
∫

X
fp−2u2 dvh.

Of course, this implies that ∀ϕ ∈ C∞0 (X), (d/dt)
(
Eh(u + tϕ)/

∫
X

fp−2(u +
tϕ)2 dvh

)∣∣
t=0

= 0. That is,

2am+n

∫
X

(〈∇ϕ,∇u〉h + 2shϕu) dvh( ∫
X

f−2+pu2 dvh

)2/p
−2

( ∫

X

f−2+pϕudvh

)∫
X

(am+n∇u + shu2) dvh( ∫
X

fp−2u2 dvh

)2 = 0,
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it follows that

am+n

∫

X

(〈∇ϕ,∇u〉h + shϕu) dvh −
( ∫

X

fp−2ϕudvh

)
Eh(u)∫

X
fp−2u2 dvh

= 0,

and then
∫

X

ϕ(−am+n∆u + shu− αfp−2u) dvh = 0,

for every ϕ ∈ C∞0 (X). That is, u is a weak solution of equation (5). The fact that u is a
smooth function, follows from standard regularity results (see for example Theorem 4.1
in [11]).

Finally, we remark that the space of solutions is finite dimensional. Suppose it
were infinite dimensional, then we would have a sequence {ui} of minimizers, such that∫

X
fp−2u2

i dvh = 1, ui ≥ 0 and ‖ui − uk‖2 > ε, for every i, k, and for some ε > 0.
By applying the argument of the proof to this sequence, we would have strong L2(X)
convergence of a subsequence of {ui} to some L2(X) function u0, contradicting the
hypothesis that ‖ui − uk‖2 > ε. ¤

2. The YRn-minimizers on (M × Rn, g + gn
E).

We consider a closed Riemannian manifold (M, g) of constant positive scalar curva-
ture. We use the notation gn

E for the Euclidean metric on Rn. We will assume always
that m,n ≥ 2.

In general if (Z, G) = (M1 ×M2, g + h) is a Riemannian product we consider as in
[2] the restriction of YG to functions which depend on only one of the variables and let

YMi(Z, G) = inf
u∈L2

1(Mi)
YG(u).

In [2, Theorem 1.4] it was proved that YRn(M×Rn, g+gn
E) can be computed in terms

of the best constant in the Gagliardo–Nirenberg inequality. The Gagliardo–Nirenberg
inequality says that there exists a positive constant σ such that for all u ∈ L2

1(Rn)

‖u‖2pm+n
≤ σ‖∇u‖2n/(m+n)

2 ‖u‖2m/(m+n)
2 .

The best constant is of course the smallest value σm,n that makes the inequality
true:

σm,n =
(

inf
u∈L2

1(Rn)−{0}
‖∇u‖2n/(m+n)

2 ‖u‖2m/(m+n)
2

‖u‖2pm+n

)−1

.

The infimum is actually achieved. The minimizer is a solution of the Euler–Lagrange
equation of the functional in parenthesis:
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−n∆u + m
‖∇u‖22
‖u‖22

u− (m + n)
‖∇u‖22
‖u‖p

p
up−1 = 0. (7)

By invariance if a function u is a minimizer so is cuλ given by cuλ(x) = cu(λx)
for any constants c, λ ∈ R>0. In terms of equation (7) this means that a solution u

gives a 2-dimensional family of solutions. By picking c, λ appropriately we can choose
the (constant) coefficients appearing in the equation. In particular one would have a
solution of

−∆u + u− up−1 = 0. (8)

It is known since the classical work of Gidas–Ni–Nirenberg [5], [6] that all solutions
of equation (8) which are positive and vanish at infinity are radial functions. It is also
known the existence of a radial solution [12]. Moreover, M. K. Kwong [10] proved that
such a solution is unique.

In our situation we will prefer to first choose λ so that am+nm‖∇u‖22 = nsg‖u‖22
and then pick c so that (m + n)am+n‖∇u‖22 = sgn‖u‖p

p. Then the resulting function fK

satisfies

−am+n∆fK + sg fK = sg fp−1
K . (9)

Note that the function fK depends on m,n and sg. The metric gK = fp−2
K (g + gn

E)
has scalar curvature sgK

= sg. gK is a non-complete metric of finite volume. We will
denote the function fK by f = f

m,n,sg

K (in case it is necessary to make it explicit the
dependence on m, n, sg). Note that we have:

am+nm‖∇f
m,n,sg

K ‖22 = nsg‖fm,n,sg

K ‖22, (10)

(m + n)am+n‖∇f
m,n,sg

K ‖22 = nsg‖fm,n,sg

K ‖p
p, (11)

(m + n)‖fm,n,sg

K ‖22 = m‖fm,n,sg

K ‖p
p. (12)

A minimizer for YRn(M×Rn, g+gn
E) must be a solution of (3). And by the previous

comments the solution is unique, so actually the solution f
m,n,sg

K is the unique minimizer
for YRn(M × Rn, g + gn

E). We have

YRn(M × Rn, g + gn
E) = sg Vol(gK)2/(m+n).

3. Stability of the YRn-minimizers.

Let g be a Riemannian metric on the closed m-manifold M of constant scalar cur-
vature sg = m(m − 1). For the sake of simplicity we will use the notation G = g + gn

E ,
N = m + n Let f : Rn → R>0 be the unique solution of equation (9) discussed in the
previous section.

Note that EG(f) = m(m− 1)‖f‖p
p.
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Lemma 3.1. If α = α(M × Rn, G, f) < (p − 1)m(m − 1) then it is realized by a
function u(y, x) = a(y)b(x) where a : M → R, −∆ga = λ1a (where λ1 is the first positive
eigenvalue) and b ∈ L2

1(Rn) satisfies the equation:

−aN∆b +
(−aNλ1 + m(m− 1)− αfp−2

)
b = 0. (13)

Proof. By Proposition 2.5 there exists a minimizer and it is a solution of the
equation

−aN∆u + (m(m− 1)− αfp−2)u = 0

(and the space of solutions of the equation is finite dimensional). Since f depends only
on Rn it follows that if u is a solution of the equation then ∆gu is also a solution.
Then for each x ∈ Rn the function u(−, x) lies in a finite dimensional ∆g-invariant sub-
space. It follows that there is a finite number of linearly independent ∆g-eigenfunctions
a1(y), . . . , ak(y), ∆gai = λiai (λi ≤ 0), such that u = Σai(y)bi(x) for some functions
bi : Rn → R.

But then we have that

k∑

i=1

(−aN (λiai(y)bi(x) + ai(y)∆bi(x)) + (m(m− 1)− αfp−2)ai(y)bi(x)
)

= 0.

But then since the ai are linearly independent it follows that for each i

−aN (λibi(x) + ∆bi(x)) + (m(m− 1)− αfp−2)bi(x) = 0.

So aibi is also a solution for each i. We have proved that there is a minimizer of the
form a(y)b(x) with −∆ga = λa for some λ ≥ 0. If λ = 0 we take a = 1 and then we
must have

∫
Rn bfp−1 dx = 0. Since f is a YRn -minimizer it is stable when we restrict the

functional to L2
1(Rn). Then restricting the variation to C∞0 (Rn) the same inequality as

in Corollary 2.3 gives:

α(M × Rn, G, f) ≥ (p− 1)
EG(f)
‖f‖p

p
= (p− 1)m(m− 1).

If λ > 0 note that

EG(ab)∫
Rn fp−2a2b2

=

∫
Rn(aN‖∇b‖22 + sgb

2)∫
Rn fp−2b2

+ aNλ

∫
Rn b2

∫
Rn fp−2b2

.

It follows that for the minimizer we must have λ = λ1 and the lemma follows. ¤

Therefore f is unstable if and only if
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inf
b∈L2

1(Rn)−{0}

(∫
Rn(aN‖∇b‖22 + m(m− 1)b2)∫

Rn fp−2b2
+ aNλ1

∫
Rn b2

∫
Rn fp−2b2

)

< (p− 1)m(m− 1) (14)

as claimed in Theorem 0.3.

Lemma 3.2. For each λ ≥ 0

A(λ) = inf
b∈L2

1(Rn)−{0}

(∫
Rn(aN‖∇b‖22 + sgb

2)∫
Rn fp−2b2

+ λ

∫
Rn b2

∫
Rn fp−2b2

)
≥ sgf(0)2−p

is realized by a radial decreasing function.

Proof. Given any b ∈ L2
1(Rn)−{0} let b∗ be its radial decreasing rearrangement.

Then since f is also radial and decreasing we obtain from the Hardy–Littlewood inequal-
ity that

∫
Rn fp−2b2 ≤ ∫

Rn fp−2b∗2. And as usual
∫

b2 =
∫

b∗2 and ‖∇b∗‖22 ≤ ‖∇b‖22.
It follows that for the minimization we can consider only radial decreasing functions.
Let bi be a sequence of radial decreasing functions such that the corresponding quotient
converges to the infimum. We can normalize de sequence so that

∫
fp−2b2

i = 1. Then
bi is a bounded sequence in L2

1 which must have a subsequence converging to b ∈ L2
1.

Since the embedding L2
1 ⊂ Lp restricted to radial functions is compact it follows that

the sequence converges to b in Lp. But then
∫

fp−2b2
i →

∫
fp−2b2. It follows that b is a

minimizer. ¤

Since the infimum is realized it follows easily that the infimum is a strictly increasing
function of λ. Setting b = f for λ = 0 we see that in this case the infimum is at most
m(m− 1) and of course the infimum tends to ∞ as λ →∞.

Therefore there exists a unique value of λ > 0 such that A(λ) = (p − 1)m(m − 1),
as claimed in Corollary 0.4. This value of λ was called λ(m,n) in the introduction and
Theorem 0.6 follows from the previous comments.

The value of λ(m,n) can be computed numerically, but since the function f (and
correspondingly the best constant in the Gagliardo–Nirenberg inequality) can only be
computed numerically it seems that there is little hope to obtain an explicit computation
of it. To carry on the numerical computation we note that the minimizer b is a solution
of

−aN∆b + (m(m− 1) + aNλ(m,n))b = (p− 1)m(m− 1)fp−2b.

In general consider the equation

−∆b + Kb = Cfp−2b, (15)

where C = (p−1)m(m−1)/aN and K is a (variable) positive constant. A radial solution
is given by a solution of the ordinary linear differential equation:
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u′′(t) +
n− 1

t
u′(t) + (Cfp−2 −K)u(t) = 0 (16)

with u(0) = 1, u′(0) = 0.
Note that u′′(0) = (1/n)(K − Cfp−2(0)). We take K < Cfp−2(0) so that the

solution u is decreasing close to 0. We will denote the solution u by uK . We have 3
possibilities:

(a) uK is always decreasing and positive.
(b) uK(t) = 0 for some t > 0.
(c) uK has a local minimum at some t ≥ t0.

It is easy to see that in case (a) we have limt→∞ uK(t) = 0.
By Sturm comparison, as stated for instance in [10, Lemma 1, page 246] or in Ince’s

book [9], we have that if 0 < K1 < K2 and t0 > 0 is such that uK1 and uK2 are positive
on [0, t0) then for all t ∈ (0, t0) we have

u′K1

uK1

<
u′K2

uK2

.

It follows that if the solution uK1 verifies (c) then the solution uK2 also verifies (c).
If uK2 verifies (b) then uK1 also verifies (b). Moreover if uK2 verifies (a) then uK1 verifies
(b).

It follows that for λ = λ(m,n) the equation

u′′(t) +
n− 1

t
u′(t) +

(
(p− 1)m(m− 1)

aN
fp−2 −

(
m(m− 1)

aN
+ λ

))
u(t) = 0 (17)

is positive and decreasing. For λ > λ(m,n) the solution has a local minimum and for
λ < λ(m,n) has a 0 at finite time. The function f can be computed numerically (see
for instance the discussion in [2]) and then for a fixed λ one can compute numerically
the solution of (17) and check whether λ < λ(m,n) or λ > λ(m,n). In this way one can
numerically compute λ(m,n) as mentioned in the introduction.
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