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Abstract. Starting from a model with a weakly compact cardinal, we
construct a model in which the weak stationary reflection principle for ω2

holds but the Fodor-type reflection principle for ω2 fails. So the stationary
reflection principle for ω2 fails in this model. We also construct a model in
which the semi-stationary reflection principle holds but the Fodor-type reflec-
tion principle for ω2 fails.

1. Introduction.

Various reflection principles are known and studied widely. First we review several
reflection principles.

We recall some basic definitions. Let X be an uncountable set. A set C ⊆ [X]ω is
club in [X]ω if:

(1) For every x ∈ [X]ω there is y ∈ C with x ⊆ y.
(2) For every α < ω1 and every ⊆-increasing sequence 〈xi : i < α〉 in C, we have⋃

i<α xi ∈ C.

A set S ⊆ [X]ω is stationary in [X]ω if S ∩ C 6= ∅ for every club C in [X]ω. It is known
that S ⊆ [X]ω is stationary in [X]ω if and only if for every function f : [X]<ω → X,
there is x ∈ S which is closed under f .

Definition 1.1. Let λ be a cardinal ≥ ω2. WRP(λ) (the Weak stationary Re-
flection Principle for λ) is the assertion that for every stationary S ⊆ [λ]ω, there exists
X ∈ [λ]ω1 such that ω1 ⊆ X and S ∩ [X]ω is stationary in [X]ω. Let WRP be the
assertion that WRP(λ) holds for every λ ≥ ω2. When λ is regular, RP(λ) (the stationary
Reflection Principle for λ) is the assertion that for every stationary S ⊆ [λ]ω, there exists
X ∈ [λ]ω1 such that ω1 ⊆ X, cf(sup(X)) = ω1, and S ∩ [X]ω is stationary in [X]ω. RP
is the assertion that RP(λ) holds for every regular λ ≥ ω2.

WRP was introduced by Foreman–Magidor–Shelah [4] and it has many interesting
consequences.

Shelah developed a reflection principle of semi-stationary sets in the study of
semiproper forcing notions:
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Definition 1.2 (Shelah [14, Chapter XIII, Section 1, 1.1. Definition and 1.5. Defi-
nition]). For a set X with ω1 ⊆ X, a subset S ⊆ [X]ω is semi-stationary in [X]ω if the
set {x ∈ [X]ω : ∃y ∈ S (y ⊆ x and y ∩ω1 = x∩ω1)} is stationary in [X]ω. For a cardinal
λ ≥ ω2, SSR(λ) (the Semi-Stationary Reflection principle for λ) is the assertion that for
every semi-stationary S ⊆ [λ]ω, there is X ∈ [λ]ω1 such that ω1 ⊆ X and S ∩ [X]ω is
semi-stationary in [X]ω. SSR is the assertion that SSR(λ) holds for every λ ≥ ω2.

Shelah [14] showed that SSR is equivalent to the statement that every ω1-stationary
preserving forcing notion is semiproper, and Doebler–Schindler [3] showed that SSR can
be characterized by a generalized Chang’s conjecture.

We turn to another reflection principle. For a set E of ordinals, a ladder system
on E is a sequence ~c = 〈cα : α ∈ E〉 such that each cα ⊆ α is unbounded in α and
ot(cα) = cf(α). We will sometime denote cα as ~cα to emphasize the sequence ~c.

Definition 1.3. Let λ be a regular cardinal ≥ ω2. FRP(λ) (the Fodor-type Reflec-
tion Principle for λ) is the assertion that for every stationary E ⊆ {α < λ : cf(α) = ω}
in λ and every ladder system ~c on E, there is I ∈ [λ]ω1 such that cf(sup(I)) = ω1, cα ⊆ I

for α ∈ E ∩ I, and for every function f : E ∩ I → I with f(α) ∈ cα, there is γ with
{α ∈ I ∩ E : f(α) = γ} stationary in sup(I). FRP is the assertion that FRP(λ) holds
for every regular λ ≥ ω2.

It is known that FRP can be characterized by various reflection phenomenons. For
instance:

Fact 1.4 (Fuchino–Juhász–Soukup–Szentmiklóssy–Usuba [5], Fuchino–Sakai–
Soukup–Usuba [7]). The following are equivalent :

(1) FRP holds.
(2) For every locally compact Hausdorff topological space X, if every subspace of X of

size ≤ ω1 is metrizable, then X is metrizable.
(3) For every regular λ ≥ ω2, stationary S ⊆ {α < λ : cf(α) = ω}, and ladder system ~c

on S, there is β < λ such that for every regressive f : S ∩ β → β, there are distinct
α0, α1 ∈ S ∩ β with (cα0 \ f(α0)) ∩ (cα1 \ f(α1)) 6= ∅.

See Fuchino–Juhász–Soukup–Szentmiklóssy–Usuba [5], Fuchino–Rinot [6], and
Fuchino–Sakai–Soukup–Usuba [7] for FRP.

The following implications between our reflection principles are known:

Fact 1.5. (1) ([5]) For every regular λ ≥ ω2, RP(λ) ⇒ FRP(λ). Hence RP ⇒
FRP.

(2) WRP(λ) ⇒ SSR(λ) for every λ ≥ ω2. So WRP ⇒ SSR.
(3) (Sakai [13]) WRP(ω2) ⇐⇒ SSR(ω2).
(4) ([13]) It is consistent that SSR holds but WRP(ω3) fails. So SSR 6⇒ WRP.
(5) (Baumgartner [1], Veličković [16]) ZFC+ WRP(ω2) is equiconsistent with ZFC+

∃weakly compact cardinal.
(6) (Miyamoto [11]) ZFC+ FRP(ω2) is equiconsistent with ZFC+∃Mahlo cardinal.
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Now we have the following diagram:

RP(ω2) +3

&.VVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVV WRP(ω2) ks +3 SSR(ω2)

FRP(ω2).

FRP(ω2) does not imply WRP(ω2) by (5) and (6) of Fact 1.5, in fact FRP does not
imply WRP(ω2); Todorčević showed that WRP(ω2) implies 2ω ≤ ω2 (e.g., see Todorčević
[15]) but FRP is consistent with arbitrary large continuum ([5]). On the other hand,
Kruger [10] showed that WRP(ω2) does not imply RP(ω2): Starting from a model with
a κ+-supercompact κ, he constructed a model in which WRP(ω2) holds but RP(ω2) fails.

In this paper, we give a simpler construction of a model of WRP(ω2)+¬RP(ω2) than
Krueger’s one. Moreover we reduce the large cardinal assumption of a κ+-supercompact
cardinal κ to that of a weakly compact cardinal κ, which is optimal by Fact 1.5 (5), and
obtain a model in which WRP(ω2) holds but FRP(ω2) fails (so RP(ω2) also fails by Fact
1.5 (1)).

Theorem 1.6. Suppose “ZFC+∃weakly compact cardinal” is consistent. Then so
is “ZFC + WRP(ω2) + ¬FRP(ω2) (so ¬RP(ω2))”.

We also prove that even SSR does not imply FRP(ω2), so does not RP(ω2):

Theorem 1.7. Suppose “ZFC + ∃supercompact cardinal” is consistent. Then so
is “ZFC + SSR +¬FRP(ω2)”.

By the way, we also mention RC (Rado’s Conjecture). A tree T is special if T is
a countable union of antichains of T . RC is the assertion that every uncountable non-
special tree has a non-special subtree of size ω1. See Todorčević’s article [15] for RC and
related topics. Recently Doebler [2] proved that RC implies SSR, and Fuchino–Sakai–
Perez–Usuba [8] showed that RC implies FRP and RP(ω2). So Theorem 1.7 tells us that
SSR does not imply RC. In [8], they pointed out that RC does not imply WRP(ω3).

RP +3

%-SSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSS WRP +3 SSR

RC +3

19kkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkk
FRP

Here we present some basic definitions, notations, and facts which will be used later
sections.

For i < 2, let S2
i = {α < ω2 : α > ω1, cf(α) = ωi}.

For a set x of ordinals, let lim(x) = {α < sup(x) : α is limit and x∩α is unbounded
in α}.

Definition 1.8. Let S ⊆ [ω2]ω be stationary in [ω2]ω. Let WRP(S) (RP(S),
respectively) be the assertion that for every stationary S′ ⊆ S, there exists α < ω2
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(α ∈ S2
1 , respectively) such that S′ ∩ [α]ω is stationary in [α]ω.

Note that WRP(ω2) ⇐⇒ WRP([ω2]ω) and RP(ω2) ⇐⇒ RP([ω2]ω). For a
stationary S ⊆ [ω2]ω, WRP(S) holds (RP(S) holds, respectively) if and only if for every
stationary S′ ⊆ S, the set {α < ω2 : S′ ∩ [α]ω is stationary in [α]ω} ({α ∈ S2

1 : S′ ∩ [α]ω

is stationary in [α]ω}, respectively) is stationary in ω2.
We say that a subset S ⊆ [ω2]ω is non-reflecting if S ∩ [α]ω is non-stationary in [α]ω

for every α < ω2.

Definition 1.9. For a sequence ~π = 〈πα : α < ω2〉 of surjections πα : ω1 → α, let
C~π be the set of all x ∈ [ω2]ω such that:

(1) ω1 ∈ x and x ∩ ω1 ∈ ω1.
(2) sup(x) /∈ x.
(3) πα“(x ∩ ω1) = x ∩ α for every α ∈ x.

C~π forms a club in [ω2]ω, and we denote it by C∗ if ~π is clear from the context.

Definition 1.10. Let ~c be a ladder system on S2
0 . Let S~c be the set of all x ∈ C∗

such that csup(x) ⊆ x. S~c is stationary for every ladder system ~c on S2
0 .

Of course, we should denote S~c as S~π,~c. But the choice of ~π is not important and
we omit ~π for simplicity.

The following fact might be well-known, but the author could not find the proof of
it. So we will give a proof in Section 7 for the completeness.

Fact 1.11. Let ~c be a ladder system on S2
0 and E ⊆ ω1 stationary in ω1. Let

T = {x ∈ [ω2]ω : x ∩ ω1 ∈ E, x /∈ S~c}. Then T is stationary in [ω2]ω.

Let θ be a sufficiently large regular cardinal, M ≺ Hθ a countable model, and P ∈ M

a poset. A condition p ∈ P is an (M,P)-generic condition if p °“M ∩ON = M [G]∩ON”.
See Shelah [14, Chapter V, Section 1] for the following.

Definition 1.12 (Shelah [14]). Let P be a poset and θ a sufficiently large regular
cardinal.

(1) For a countable M ≺ Hθ with P ∈ M , a descending sequence 〈pn : n < ω〉 in P ∩M

is called an (M,P)-generic sequence if for every dense open set D ∈ M in P, there is
some n with pn ∈ D ∩M .

(2) Let λ ≥ ω1 be a cardinal and T a stationary subset of [λ]ω. A poset P is said to be
T -complete if for every countable M ≺ Hθ, if P, T ∈ M and M ∩ λ ∈ T then every
(M,P)-generic sequence has a lower bound.

Fact 1.13 (Shelah [14]). Let λ ≥ ω1 be a cardinal and T ⊆ [λ]ω stationary.

(1) If P is T -complete, then P is σ-Baire, and P preserves the stationarity of all station-
ary subsets of T .

(2) Every countable support iteration of T -complete forcings is also T -complete.

Now we explain an outline of the proof of Theorem 1.6. First, by forcings, we collapse
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a weakly compact cardinal κ to ω2 and add a special ladder system ~c on S2
0 , which implies

¬FRP(ω2). Second, we force WRP(S~c) by an iteration of club shootings. Finally we
check that the weak compactness of κ in the ground model yields that WRP([ω2]ω \ S~c)
holds in the final model. Theorem 1.7 can be obtained by the same argument with
replacing weak compact by supercompact.

2. Non-reflecting ladder system.

In this section, we study a special ladder system of which the existence implies
¬FRP(ω2).

Definition 2.1. A ladder system ~c on S2
0 is said to be non-reflecting if for every

β ∈ S2
1 , there are a club C in β and an injection f on C such that f(α) ∈ cα for every

α ∈ C.

The following is obvious from the definitions of a non-reflecting ladder system and
S~c:

Lemma 2.2. Suppose that there is a non-reflecting ladder system ~c on S2
0 .

(1) For every α ∈ S2
1 , S~c ∩ [α]ω is non-stationary in [α]ω. Hence RP(S~c) fails.

(2) FRP(ω2) fails.

We define a poset which adds a generic non-reflecting ladder system and collapses a
regular κ to ω2.

Definition 2.3. Let κ be a regular cardinal ≥ ω2. Let Eκ
ω = {α < κ : cf(α) =

ω, α > ω1} and Eκ
>ω = {α < κ : cf(α) > ω, α > ω1}.

Definition 2.4. Let κ > ω1 be a regular cardinal. Lκ is the poset which consists
of all pairs 〈f, g〉 such that:

(1) f is a function with dom(f) ∈ [Eκ
ω]ω and for every α ∈ dom(f), f(α) ⊆ α is a cofinal

subset of α with ot(f(α)) = ω.
(2) g is a function with dom(g) ∈ [Eκ

>ω]ω.
(3) For every α ∈ dom(g), g(α) is an injection such that dom(g(α)) ∈ [dom(f) ∩ α]ω is

a closed bounded subset of α, and g(α)(β) ∈ f(β) for every β ∈ dom(g(α)).

For 〈f0, g0〉, 〈f1, g1〉 ∈ Lκ, define 〈f0, g0〉 ≤ 〈f1, g1〉 in Lκ if:

(a) f0 ⊇ f1.
(b) dom(g0) ⊇ dom(g1).
(c) For every α ∈ dom(g1), g0(α) ⊇ g1(α) and dom(g0(α)) is an end-extension of

dom(g1(α)).

Lemma 2.5. Suppose x ∈ [κ]ω. Let D be the set of all 〈f, g〉 ∈ Lκ such that
x∩Eκ

ω ⊆ dom(f), x∩Eκ
>ω ⊆ dom(g), and max(dom(g(α)) = sup(dom(f)∩α) for every

α ∈ dom(g). Then D is dense in Lκ.

Proof. Take 〈f ′, g′〉 ∈ Lκ. Take a sufficiently large regular θ and take a countable
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M ≺ Hθ containing all relevant objects. Note that for each α ∈ M ∩Eκ
>ω, sup(M ∩α) ∈

Eκ
ω and sup(M ∩ α) /∈ M . Then define 〈f, g〉 as follows:

(1) dom(f) = lim(M ∩ κ) ∩ Eκ
ω.

(2) f(α) = f ′(α) for every α ∈ dom(f ′).
(3) For α ∈ dom(f) \ dom(f ′), let f(α) be a cofinal subset of α with ot(f(α)) = ω and

f(α) *M (this is possible since α > ω1 and M is countable).
(4) dom(g) = M ∩ Eκ

>ω.
(5) For α ∈ dom(g′), dom(g(α)) = dom(g′(α)) ∪ {sup(M ∩ α)}, g(α)(β) = g′(α)(β) for

β ∈ dom(g′(α)), and g(α)(sup(M ∩ α)) is an element of f(sup(M ∩ α)) \M (note
that f(sup(M ∩ α)) *M).

(6) For α ∈ dom(g) \ dom(g′), dom(g(α)) = {sup(M ∩ α)} and g(α)(sup(M ∩ α)) is an
element of f(sup(M ∩ α)) \M (as before, f(sup(M ∩ α)) *M).

Then it is a routine to check that 〈f, g〉 is an element of the dense subset and 〈f, g〉 ≤
〈f ′, g′〉. ¤

Lemma 2.6. Lκ has a σ-closed dense subset.

Proof. Let D = {〈f, g〉 ∈ Lκ : max(dom(g(α)) = sup(dom(f) ∩ α) for every
α ∈ dom(g)}. D is dense by Lemma 2.5. We see that D is σ-closed. Let 〈〈fn, gn〉 : n < ω〉
be a decreasing sequence in D. Define 〈f, g〉 as follows:

(1) dom(f) =
⋃

n<ω dom(fn) ∪ lim(
⋃

n<ω dom(fn)).
(2) For α ∈ ⋃

n<ω dom(fn), f(α) = fn(α) for some n < ω with α ∈ dom(fn).
(3) For α /∈ ⋃

n<ω dom(fn), let f(α) be a cofinal subset of α with ot(f(α)) = ω and
f(α) *

⋃{fn(β) : β ∈ dom(fn), n < ω} (note that α > ω1, so we can take such an
f(α)).

(4) dom(g) =
⋃

n<ω dom(gn).
(5) For α ∈ ⋃

n<ω dom(gn), let dα =
⋃{dom(gn(α)) : n < ω,α ∈ dom(gn)}. Then

dom(g(α)) = dα ∪ {sup(dα)}, and for β ∈ dα, let g(α)(β) = gn(α)(β), where n <

ω is minimal with β ∈ dom(gn(α)). If sup(dα) /∈ dα, then we have sup(dα) /∈⋃
n<ω dom(fn) since each 〈fn, gn〉 is in D, and let g(α)(sup(dα)) be an element of

f(sup(dα)) \⋃{fn(β) : β ∈ dom(fn), n < ω}.
One can check that 〈f, g〉 is a lower bound of the 〈fn, gn〉’s. ¤

The following is immediate from the definition of Lκ and Lemmas 2.5, 2.6.

Lemma 2.7. Let G be (V,Lκ)-generic. In V [G], ω
V [G]
1 = ωV

1 and cf(α) = ω1

for every α ∈ (Eκ
>ω)V . Let ~c =

⋃{f : ∃g (〈f, g〉 ∈ G)}. Then ~c is a ladder system
on (Eκ

ω)V . Define the function h by dom(h) =
⋃{dom(g) : ∃f (〈f, g〉 ∈ G)}, and for

α ∈ dom(h), h(α) =
⋃{g(α) : ∃f (〈f, g〉 ∈ G), α ∈ dom(g))}. Then h is a function with

dom(h) = (Eκ
>ω)V , and for every α ∈ dom(h), h(α) is an injection, dom(h(α)) is a club

in α, and h(α)(β) ∈ cβ for every β ∈ dom(hα). So if κ = ω
V [G]
2 , then the function h

witnesses that ~c is a non-reflecting ladder system on S2
0 .

Lemma 2.8. If λω < κ for every λ < κ, then Lκ satisfies the κ-c.c.
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Proof. Take F ⊆ Lκ with size κ. By the ∆-system lemma and the pigeonhole
principle, we can find F ′ ⊆ F such that:

(1) |F ′| = κ.
(2) There exists R0 ∈ [κ]ω such that for each distinct 〈f, g〉, 〈f ′, g′〉 ∈ F ′, dom(f) ∩

dom(f ′) = R0 and f |R0 = f ′|R0.
(3) There exists R1 ∈ [κ]ω such that for each distinct 〈f, g〉, 〈f ′, g′〉 ∈ F ′, dom(g) ∩

dom(g′) = R1 and g|R1 = g′|R1.

We see that every pair from F ′ is compatible. Take distinct 〈f, g〉, 〈f ′, g′〉 ∈ F ′.
Then define 〈f∗, g∗〉 as follows:

(1) dom(f∗) = dom(f) ∪ dom(f ′), f∗|dom(f) = f and f∗|dom(f ′) = f ′.
(2) dom(g∗) = dom(g) ∪ dom(g′), g∗|dom(g) = g and g∗|dom(g′) = g′.

Then we can check that 〈f∗, g∗〉 is a common extension of 〈f, g〉 and 〈f ′, g′〉. ¤

3. Destroying the stationarity of non-reflecting subsets.

In this section, we study a poset which destroys the stationarity of non-reflecting
subsets of S~c.

We define a club shooting into [ω2]ω with countable approximations, which was
observed in Sakai [12].

Definition 3.1. Let C be the poset which consists of all functions p : d(p)×d(p) →
ω1 such that d(p) ∈ [ω2]ω. For p, q ∈ C, let p ≤ q ⇐⇒ p ⊇ q.

For S ⊆ [ω2]ω, let C(S) be the suborder of C which consists of all p ∈ C with the
property that ∀x ⊆ d(p) (x ∈ S ⇒ x is not closed under p).

Lemma 3.2. (1) For every x ∈ [ω2]ω, the set {p ∈ C(S) : x ⊆ d(p)} is dense open
in C(S).

(2) Let G be (V,P)-generic and f =
⋃

G. Then f is a function from (ω2)V × (ω2)V to
(ω1)V , and there is no x ∈ S closed under f .

(3) C(S) satisfies (2ω)+-c.c.

Proof. (1) Take x ∈ [ω2]ω and q ∈ C(S). Then let a = d(q)∪x and fix α ∈ ω1 \a.
Define p as follows: p : a × a → ω1, p(β0, β1) = q(β0, β1) if 〈β0, β1〉 ∈ d(q) × d(q), and
p(β0, β1) = α otherwise. Clearly p ⊇ q. We have to check that p ∈ C(S). Take x ∈ S

and x ⊆ d(p) = a. If x ⊆ d(q), then x is not closed under q, and is not under p. Suppose
x * d(q). Fix β ∈ x \ d(q). Then p(β, β) = α /∈ d(p), so x cannot be closed under p.

(2) follows from (1).
(3) Let {pi : i < (2ω)+} ⊆ C(S). By the ∆-system lemma, we may assume that

{d(pi) : i < (2ω)+} forms a ∆-system with root R. Moreover, by a standard pigeonhole
argument, we may assume that pi|(R × R) = pj |(R × R) for every i < j < (2ω)+. We
check that for every i < j < (2ω)+, pi is compatible with pj . Let a = d(pi) ∪ d(pj),
and fix α ∈ ω1 \ a. Define q as follows: q : a × a → ω1, q(β0, β1) = pi(β0, β1) if
〈β0, β1〉 ∈ d(pi)×d(pi), q(β0, β1) = pj(β0, β1) if 〈β0, β1〉 ∈ d(pj)×d(pj), and q(β0, β1) = α

otherwise. This q is well-defined since pi|(R × R) = pj |(R × R). We see that q ∈ C(S),
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and then clearly q ≤ pi, pj . Take x ⊆ d(q) = a. If x ⊆ d(pi) then x is not closed under
pi, hence is not q. The case x ⊆ d(pj) is the same. Suppose x * d(pi) and x * d(pj).
Pick β0 ∈ x \ d(pi) and β1 ∈ x \ d(pj). Then q(β0, β1) = α /∈ a, hence x cannot be closed
under q. ¤

Now we assume that there is a non-reflecting ladder system ~c on S2
0 . From now on,

we will work with a fixed non-reflecting ladder system ~c on S2
0 . Let S∗ = S~c. S∗ ∩ [α]ω

is non-stationary in [α]ω for every α ∈ S2
1 . We show that if S ⊆ S∗ is a non-reflecting

subset, then C(S) has good properties.

Lemma 3.3. For x, y ∈ S∗, if x ∩ ω1 = y ∩ ω1 and sup(x) = sup(y) then x = y.

Proof. Let α = sup(x) = sup(y). We know cα ⊆ x∩ y. For each β ∈ cα, we have
x ∩ β = πβ“(x ∩ ω1) = πβ“(y ∩ ω1) = y ∩ β. cα is unbounded in α, so we have x = y. ¤

Lemma 3.4. Let θ be a sufficiently large regular cardinal, and M ≺ Hθ a countable
model containing all relevant objects. Suppose M ∩ ω2 /∈ S∗.
(1) For x ∈ S∗, if x ∩ ω1 < M ∩ ω1 and sup(x) ∈ M then x ∈ M .
(2) For every x ∈ S∗, if x ⊆ M ∩ω2 and x /∈ M , then x = M ∩α for some α ∈ M ∩ω2.
(3) If S ∈ M is a non-reflecting subset of S∗, then for every x ∈ S with x ⊆ M ∩ ω2, it

holds that x ∈ M .

Proof. First note that M ∩ ω2 ∈ C∗, hence we have csup(M∩ω2) *M ∩ ω2.
(1) follows from Lemma 3.3.
For (2), we have that sup(x) < sup(M ∩ ω2) since csup(x) ⊆ x but csup(M∩ω2) *

M ∩ ω2. Let α = min((M ∩ ω2) \ x) ∈ M . We show x = M ∩ α.
First we see that α = sup(x). If α > sup(x), then cf(α) > ω. Since ~c is a non-

reflecting ladder system, there is an injection f ∈ M such that dom(f) is a club in α

and f(β) ∈ cβ for every β ∈ dom(f). We have sup(x) = sup(M ∩ α) ∈ dom(f). Let
γ = f(sup(x)). We have γ ∈ M since x ⊆ M . Then sup(x) is definable in M as “the
unique β ∈ dom(f) with f(β) = γ”, so sup(x) ∈ M . This is a contradiction. Therefore
we have sup(x) = α ∈ M . If x∩ω1 < M ∩ω1, then x ∈ M by (1). This is a contradiction.
So x∩ω1 = M ∩ω1. It is easy to see that M ∩α ∈ S∗, hence x = M ∩α by Lemma 3.3.

For (3), take x ∈ S with x ⊆ M ∩ ω2. If x /∈ M , then x = M ∩ α for some
α ∈ M ∩ ω2 by (2). Since S is non-reflecting, S ∩ [α]ω is non-stationary. So there is a
⊆-increasing continuous cofinal sequence 〈xi : i < ω1〉 in [α]ω such that 〈xi : i < ω1〉 ∈ M

and S ∩{xi : i < ω1} = ∅. By the elementarity of M , we have xM∩ω1 = M ∩α. However
M ∩ α = x ∈ S, this is a contradiction. ¤

Lemma 3.5. Let S ⊆ S∗ be a non-reflecting set. Then C(S) is [ω2]ω \S∗-complete.

Proof. Take a countable M ≺ Hθ such that M∩ω2 ∈ [ω2]ω\S∗ and M contains all
relevant objects. Let 〈pn : n < ω〉 be an (M,C(S))-generic sequence. Let p =

⋃
n<ω pn.

We see that p ∈ C(S), this completes the proof. Since 〈pn : n < ω〉 is (M,C(S))-generic, p

is a function from (M∩ω2)×(M∩ω2) to ω1. To see that p ∈ C(S), take x ⊆ d(p) = M∩ω2

with x ∈ S. Since M ∩ ω2 ∈ [ω2]ω \ S∗, we have x ∈ M by Lemma 3.4. The set
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{q ∈ C(S) : x ⊆ d(q)} is dense open in C(S) and belongs to M , hence there is n with
x ⊆ d(pn). x is not closed under pn, hence is not closed under p. ¤

Next we consider a countable support iteration of club shootings. Let l be an ordinal
and 〈Pξ, Q̇η : η < ξ ≤ l〉 be a countable support iteration such that for η < l, °Pη

“Q̇η

is of the form C(Ṡη) for some non-reflecting subset Ṡη of S∗”. Then by Fact 1.13, Pl is
[ω2]ω \ S∗-complete, hence is σ-Baire. Under CH, we show that Pξ satisfies the ω2-c.c.
and more for every ξ ≤ l.

Lemma 3.6. Suppose CH. Let l be an ordinal and 〈Pξ, Q̇η : η < ξ < l〉 be a countable
support iteration such that for η < l, °Pη“ Q̇η is of the form C(Ṡη) for some non-reflecting
subset Ṡη of S∗”. Let D be the set of all p ∈ Pξ such that for all η ∈ supp(p), p(η) is the
canonical name for some r ∈ C. Then the following hold :

(1) Pl is [ω2]ω \ S∗-complete.
(2) Pl satisfies the ω2-c.c.
(3) D is dense in Pl.
(4) Let M ≺ Hθ be countable such that M ∩ω2 ∈ [ω2]ω \ S∗ and M contains all relevant

objects. Let 〈pn : n < ω〉 be an (M,Pl)-generic sequence such that pn ∈ D for every
n. For n < ω and η ∈ supp(pn), let rn,η be the function such that pn(η) is the
canonical name for rn,η. Let p ∈ Pl be the function defined by dom(p) = l, p(η) = ∅
for η /∈ M ∩ l, and for η ∈ M ∩ l, p(η) is the canonical name for

⋃{rn,η : n < ω, η ∈
supp(pn)}. Then p is a lower bound of the pn’s.

Proof. We prove the assertions by induction on l. For each ξ < l, suppose the
following induction hypotheses:

(a) Pξ is [ω2]ω \ S∗-complete.
(b) Pξ satisfies the ω2-c.c.
(c) Let Dξ = {p ∈ Pξ : ∀η ∈ supp(p) (p(η) is the canonical name for some r ∈ C)}. Then

Dξ is dense in Pξ.
(d) Let M ≺ Hθ be countable such that M ∩ω2 ∈ [ω2]ω \S∗ and M contains all relevant

objects. Let 〈pn : n < ω〉 be an (M,Pξ)-generic sequence such that pn ∈ Dξ for
every n. For n < ω and η ∈ supp(pn), let rn,η be the function such that pn(η) is the
canonical name for rn,η. Let p ∈ Pξ be the function defined by dom(p) = ξ, p(η) = ∅
for η /∈ M ∩ ξ, and for η ∈ M ∩ ξ, p(η) is the canonical name for

⋃{rn,η : n < ω, η ∈
supp(pn)}. Then p is a lower bound of the pn’s.

The assertion (1) follows from Fact 1.13.
To prove (2)–(4), first suppose l is limit.
To see that (3) holds, take an arbitrary q ∈ Pl. We will find p ≤ q with p ∈ D. Take

a countable M ≺ Hθ such that M ∩ ω2 ∈ [ω2]ω \ S∗ and M contains all relevant objects.
Take an (M,Pl)-generic sequence 〈pn : n < ω〉 with p0 ≤ q. Fix an increasing sequence
〈ξn : n < ω〉 in M ∩ l with sup{ξn : n < ω} = sup(M ∩ l). Since each Dξn

is dense in
Pξn

, we may assume that pn|ξn ∈ Dξn
.

For each n < ω and η ∈ supp(pn)∩ ξn, let rn,η be the function such that pn(η) is the
canonical name for rn,η. Then define p as follows: dom(p) = l, p(η) = ∅ if η /∈ M ∩ l, and
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for η ∈ M ∩ l, p(η) is the canonical name for
⋃{rn,η : n < ω, η ∈ supp(pn)|ξn}. By the

induction hypothesis (d), p|η is a lower bound of the pn|η’s for every η ∈ M ∩ l. Then
clearly p is a lower bound of the pn’s and p ∈ D.

The assertion (4) follows from the same argument.
For (2), as Lemma 3.2, apply a standard ∆-system argument with D.
Next we deal with the case that l is successor, say l = ξ + 1. By the induction

hypothesis (b), Pξ is σ-Baire. So the assertion (3) is clear. Note that Pξ forces CH and
preserves ω2 by the induction hypotheses. Hence Pξ forces that “Q̇ξ satisfies the ω2-c.c.”
by Lemma 3.2. Then it is immediate that Pl = Pξ ∗ Q̇ξ satisfies the ω2-c.c.

For (4), take a countable M ≺ Hθ such that M ∩ ω2 ∈ [ω2]ω \ S∗ and M contains
all relevant objects. Take an (M,Pl)-generic sequence 〈pn : n < ω〉 such that pn ∈ D for
every n. Note that pn|ξ ∈ Dξ. For n < ω and η ∈ supp(pn), let rn,η be the function such
that pn(η) is the canonical name for rn,η. Let p ∈ Pl be the function defined by dom(p) =
l, p(η) = ∅ for η /∈ M ∩ l, and for η ∈ M ∩ l, p(η) is the canonical name for

⋃{rn,η :
n < ω, η ∈ supp(pn)}. The sequence 〈pn|ξ : n < ω〉 is an (M,Pξ)-generic sequence with
pn|ξ ∈ Dξ, hence p|ξ is a lower bound of the pn|ξ’s by the induction hypothesis (d). Then
p|ξ is an (M,Pξ)-generic condition. Take an (V,Pξ)-generic filter G with p|ξ ∈ G and
work in V [G]. We have M [G] ∩ ω2 = M ∩ ω2 ∈ [ω2]ω \ S∗ and 〈(pn(ξ))G : n < ω〉 is an
(M [G],Qξ)-generic sequence, where (pn(ξ))G is the interpretation of the Pξ-name pn(ξ)
by G. By Lemma 3.5, Qξ is [ω2]ω \ S∗-complete. Hence 〈(pn(ξ))G : n < ω〉 has a lower
bound

⋃
n<ω(pn(ξ))G ∈ Qξ. Now we have

⋃
n<ω(pn(ξ))G = (p(ξ))G. This argument

shows that, in V , the condition p is a lower bound of the pn’s. ¤

By Facts 1.11 and 1.13, we also have the following:

Lemma 3.7. Under the same assumptions in Lemma 3.6, Pl is ω1-stationary pre-
serving.

Combining Lω2 with an iteration of club shootings above and a standard book-
keeping method, we have the following. A similar result was already obtained by Sakai
[12].

Proposition 3.8. Suppose GCH. Then there exists an ω3-stage countable support
iteration P such that P is σ-Baire, satisfies the ω2-c.c., and forces that “there exists a
ladder system ~c on S2

0 such that WRP(S~c) holds but RP(S~c) fails”.

4. Partial strong Chang’s conjecture.

Recall that strong Chang’s conjecture is the assertion that for every sufficiently large
cardinal θ, every well-ordering ∆ on Hθ, every countable M ≺ 〈Hθ,∈,∆, . . .〉, and every
α < ω2, there is a countable N ≺ 〈Hθ,∈,∆, . . .〉 such that M ⊆ N , sup(N ∩ω2) ≥ α, and
M∩ω2 is a proper initial segment of N∩ω2. It is known that SSR implies strong Chang’s
conjecture, and strong Chang’s conjecture is a large cardinal property as implying the
usual Chang’s conjecture. We prove that if there is some stationary S ⊆ [ω2]ω such that
WRP(S) holds but RP(S) fails, then very weak form of strong Chang’s conjecture holds.
We will use Lemma 4.1 below to prove Theorem 1.7.
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Lemma 4.1. Suppose that there is a stationary set S ⊆ [ω2]ω such that WRP(S)
holds, but S ∩ [α]ω is non-stationary in [α]ω for every α ∈ S2

1 . Let θ be a sufficiently
large regular cardinal and ∆ a well-ordering on Hθ. Let M = 〈Hθ,∈,∆, S, . . .〉. Then
there is an expansion M′ of M such that for every countable M ≺ M′, if M ∩ ω2 ∈ S

then there is a countable N ≺ M′ such that M ⊆ N , M ∩ ω2 = N ∩ sup(M ∩ ω2) and
sup(M ∩ ω2) ∈ N , hence M ∩ ω2 is a proper initial segment of N ∩ ω2.

Proof. For x ⊆ Hθ, let SkM(x) denote the Skolem hull of x under the structure
M. Let X be the set of all countable M ≺ M such that M ∩ ω2 ∈ S and M ∩
ω2 6= SkM(M ∪ {sup(M ∩ ω2)}) ∩ sup(M ∩ ω2). It is enough to see that X is non-
stationary in [Hθ]ω; Fix a club D ⊆ [Hθ]ω with X ∩ D = ∅, and expand M to M′ =
〈Hθ,∈,∆, S, D, . . .〉. Then for every countable M ≺M′, we have M ∈ D, hence M∩ω2 =
SkM(M ∪ {sup(M ∩ ω2)}) ∩ sup(M ∩ ω2). Now we know SkM(M ∪ {sup(M ∩ ω2)}) ∩
ω2 = SkM

′
(M ∪ {sup(M ∩ ω2)}) ∩ ω2 (e.g., see Lemma 24 in [4]), where SkM

′
(M ∪

{sup(M ∩ ω2)}) is the Skolem hull of M ∪ {sup(M ∩ ω2)} under the structure M′. Let
N = SkM

′
(M ∪ {sup(M ∩ ω2)}) ≺M′. Then M ⊆ N , N ∩ sup(M ∩ ω2) = M ∩ ω2, and

sup(M ∩ ω2) ∈ N . So the structure M′ is as required.
Suppose to the contrary that X is stationary in [Hθ]ω. By Fodor’s lemma, we can

find a Skolem term t and x0, . . . , xn ∈ Hθ such that the set Y = {M ∈ X : x0, . . . , xn ∈
M, t(x0, . . . , xn, sup(M ∩ ω2)) < sup(M ∩ ω2) but not in M ∩ ω2} is stationary in [Hθ]ω.
Let Z = {M ∩ ω2 : M ∈ Y }. Z is a stationary subset of S. Since WRP(S) holds and
S ∩ [α]ω is non-stationary for every α ∈ S2

1 , we can find α ∈ S2
0 such that Z ∩ [α]ω is

stationary in [α]ω. Pick x ∈ Z∩ [α]ω with sup(x) = α, and take M ∈ Y with x = M ∩ω2.
We have sup(M ∩ ω2) = sup(x) = α, so t(x0, . . . , xn, α) < α but t(x0, . . . , xn, α) is not
in x. However, since cf(α) = ω and Z ∩ [α]ω is stationary, we can find x ∈ Z ∩ [α]ω such
that sup(x) = α and t(x0, . . . , xn, α) ∈ x. This is a contradiction. ¤

5. Proof of Theorem 1.6.

We start the proof of Theorem 1.6. Suppose that κ is weakly compact and GCH
holds. Let L = Lκ. Take a (V,L)-generic G and work in V [G]. Note that κ = ω2 and
GCH holds in V [G]. Let ~c be a non-reflecting ladder system on S2

0 induced by G. Let
S∗ = S~c. S∗ is stationary in [κ]ω and S∗∩[α]ω is non-stationary for every α ∈ S2

1 . Finally,
choose a κ+-stage countable support iteration of ([κ]ω \S∗)-complete club shootings Pκ+

from Section 3 such that Pκ+ forces WRP(S∗) holds. The poset Pκ+ is σ-Baire and
satisfies the κ-c.c. Take a (V [G],Pκ+)-generic H. In V [G][H], we have that FRP(ω2)
fails, S∗ is stationary, and WRP(S∗) holds. Thus, in order to see that WRP(ω2) holds,
it is enough to show that WRP([κ]ω \ S∗) holds.

We show the following weak but sufficient assertion:

Lemma 5.1. For ξ < κ+, let Hξ = H ∩ Pξ be the (V [G],Pξ)-generic filter induced
by H. Then in V [G][Hξ], WRP([κ]ω \ S∗) holds.

The theorem follows from this lemma. Let T ⊆ [κ]ω \ S∗ be stationary. Since
|T | = κ = ω2 and Pκ+ satisfies the κ-c.c., there is some ξ < κ+ such that T ∈ V [G][Hξ].
By the lemma, there is some α < ω2 such that T ∩ [α]ω is stationary in V [G][Hξ]. The
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tail poset Pξ,κ+ is also ([κ]ω \ S∗)-complete. Because of Lemma 3.7, the tail poset Pξ,κ+

preserves the stationarity of T ∩ [α]ω, hence T ∩ [α]ω is stationary in V [G][H].
To show the lemma, fix ξ < κ+. Return to V . Let Q = L ∗ Pξ. Fix a sufficiently

large regular θ and choose M ≺ Hθ such that |M | = κ ⊆ M , <κM ⊆ M , and M contains
all relevant objects. Now, because κ is weakly compact, we can find a transitive model
N of ZFC− and an elementary embedding j : M → N such that the critical point of j is
κ and <κN ⊆ N . We notice that Q ∈ N , because |Q| = κ and P(κ)M ⊆ P(κ)N .

Consider the map i = j|Q from Q to j(Q).

Claim 5.2. i is a complete embedding.

Proof. Since Q satisfies the κ-c.c. and has size κ, every maximal antichain of Q
lies in M . Moreover, for every maximal antichain A of Q, we know i“A = j(A). This
shows that i“A is maximal in j(Q). ¤

We work in V [G][Hξ]. In V [G][Hξ], it is known that M [G][Hξ] ≺ H
V [G][Hξ]
θ . More-

over, since M and N are closed under < κ-sequences and Q satisfies the κ-c.c., M [G][Hξ]
and N [G][Hξ] are closed under < κ-sequences in V [G][Hξ].

Now we consider the quotient poset R = j(Q)/G ∗ Hξ, where R = j(Q)/G ∗ Hξ is
the suborder of j(Q) consisting of all q ∈ j(Q) which is compatible with i(q′) for every
q′ ∈ G ∗Hξ. We can identify R with the forcing product j(L)/G ∗ j(Pξ)/Hξ.

Claim 5.3. (1) R is σ-Baire in V [G][Hξ].
(2) Let λ ≥ κ be a cardinal and T ⊆ [λ]ω stationary in [λ]ω such that x ∩ κ /∈ S∗ for

every x ∈ T . Then R preserves the stationarity of T .

For (2), we need only the special case λ = κ of Claim 5.3 in this section, but we will
the case λ > κ in the next section.

If this Claim 5.3 is verified, we can prove that WRP([κ]ω \ S∗) holds in V [G][Hξ]
as follows: Fix a stationary T ⊆ [κ]ω \ S∗. We may assume that T ∈ M [G][Hξ]. Take
a (V [G][Hξ], j(Q)/G ∗Hξ)-generic j(G) ∗ j(Hξ) and work in V [G ∗Hξ][j(G) ∗ j(Hξ)] =
V [j(G) ∗ j(Hξ)]. Then j : M → N can be extended to j : M [G][Hξ] → N [j(G)][j(Hξ)].
Now R is σ-Baire, hence j(Q) is σ-Baire in V . Since N is closed under < κ-sequences
and j(Q) is σ-Baire in V , N [j(G)][j(Hξ)] is closed under ω-sequences in V [j(G)∗ j(Hξ)],
so [κ]ω = ([κ]ω)N [j(G)][j(Hξ)]. Consider j(T ) ∩ [κ]ω. We know that j(T ) ∩ [κ]ω = T ∈
N [j(G)][j(Hξ)] and T is stationary in [κ]ω by Claim 5.3. So N [j(G)][j(Hξ)] satisfies the
statement that there is some α < j(κ) such that j(T )∩ [α]ω is stationary in [α]ω. By the
elementarity of j, M [G][Hξ] satisfies the statement that there is some α < κ such that
T ∩ [α]ω is stationary in [α]ω. Since M [G][Hξ] ≺ H

V [G][Hξ]
θ , T ∩ [α]ω is in fact stationary

in V [G][Hξ].

Now we start the proof of Claim 5.3. Fix a cardinal λ ≥ κ and a stationary set
T ⊆ [λ]ω in [λ]ω such that x ∩ κ /∈ S∗ for every x ∈ T . First we see that j(L)/G is σ-
Baire in V [G][Hξ] and preserves the stationarity of T . The following is straightforward.

Subclaim 5.4. For 〈f, g〉 ∈ j(L), 〈f |κ, g|κ〉 ∈ L, and 〈f, g〉 ∈ j(L)/G if and only
if 〈f |κ, g|κ〉 ∈ G.
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Let D be a σ-closed dense subset of L from Lemma 2.6. We may assume that D ∈ M .
j(D) is dense in j(L), hence j(D) ∩ (j(L)/G) is dense in j(L)/G. Take p ∈ j(L)/G.
Fix another sufficiently large regular cardinal χ > θ and take a countable M ≺ Hχ

containing all relevant objects and M∩λ ∈ T . We may assume that M∩(Hχ)V ≺ (Hχ)V .
The following subclaim immediately shows that j(L)/G is σ-Baire and preserves the
stationarity of T .

Subclaim 5.5. For every (M, j(L)/G)-generic sequence 〈pn : n < ω〉 with p0 ≤ p,
there is an (M, j(L)/G)-generic condition p such that, p is a lower bound of the pn’s,
and, letting p = 〈f, g〉, sup(M ∩ j(κ)) ∈ dom(f) and f(sup(M ∩ j(κ))) *M ∩ j(κ).

Proof of Subclaim. Take an (M, j(L)/G)-generic sequence 〈pn : n < ω〉 in
j(L)/G with p0 ≤ p. We know that 〈pn : n < ω〉 is an (M∩(Hχ)V , j(L))-generic sequence.
Let pn = 〈fn, gn〉. Since κ ∈ M , we may assume that min(j(Eκ

ω)\κ) ∈ dom(fn) for every
n < ω. We also may assume that 〈fn, gn〉 ∈ j(D), this means that max(dom(gn(α))) > κ

for every α ∈ dom(gn) \ κ. Take a lower bound 〈f ′, g′〉 ∈ G of the 〈fn|κ, gn|κ〉’s with
sup(M ∩ κ) ∈ dom(f ′). For n < ω, let f∗n = fn|[κ, j(κ)) and g∗n = gn|[κ, j(κ)). Then we
define p = 〈f, g〉 ∈ j(Lκ) as in Lemma 2.6 with the following modifications:

(1) f |κ = f ′.
(2) dom(f)|[κ, j(κ)) =

⋃
n<ω dom(f∗n) ∪ lim(

⋃
n<ω dom(f∗n)) ∪ {sup(M ∩ j(κ))}.

(3) For α ∈ ⋃
n<ω dom(f∗n), f(α) = f∗n(α) for some n < ω with α ∈ dom(f∗n).

(4) For α /∈ ⋃
n<ω dom(f∗n) (note that α > κ), f(α) is a cofinal subset of α with

ot(f(α)) = ω and f(α) *
⋃{f∗n(β) : β ∈ dom(f∗n), n < ω}, and if α = sup(M ∩ j(κ)),

we require that f(α) *M .
(5) g|κ = g′.
(6) dom(g)|[κ, j(κ)) =

⋃
n<ω dom(g∗n).

(7) For α ∈ ⋃
n<ω dom(g∗n), let dα =

⋃{dom(g∗n(α)) : n < ω,α ∈ dom(gn)}. Then
dom(g(α)) = dα ∪ {sup(dα)}. For β ∈ dα, let g(α)(β) = g∗n(α)(β), where n < ω is
minimal with β ∈ dom(g∗n(α)). When sup(dα) /∈ dα, we consider the following two
cases to decide the value of g(α)(sup(dα)):
(a) If sup(dα) /∈ dα and α > κ, then sup(dα) > κ, and the value of f(sup(dα)) was

assigned as in (4). Let g(α)(sup(dα)) be an element of f(sup(dα)) \ ⋃{f∗n(β) :
β ∈ dom(f∗n), n < ω}.

(b) If sup(dα) /∈ dα and α = κ, then sup(dα) = sup(M ∩ κ) < κ, and f(sup(dα)) =
f ′(sup(dα)) = ~csup(dα). So the value of f(sup(dα)) was already assigned by G.
But since M ∩ κ /∈ S∗, we have that f(sup(dα)) = ~csup(dα)) * M ∩ κ. Thus we
can take γ ∈ f(sup(dα)) \M ∩ κ, and put g(α)(sup(dα)) = γ.

Since N is closed under < κ-sequences in V and V [G][Hξ] is a σ-Baire forcing exten-
sion of V , N is closed under ω-sequences in V [G][Hξ]. So we have 〈〈fn, gn〉 : n < ω〉 ∈ N ,
and 〈f, g〉 ∈ N . Then it is straightforward to check that 〈f, g〉 ∈ j(L)/G and is a lower
bound of the 〈fn, gn〉’s. By the choice of the 〈fn, gn〉’s, 〈f, g〉 is a generic condition for
M below p. ¤

Now take an arbitrary (V [G][Hξ], j(L)/G)-generic j(G) and work in V [G][Hξ][j(G)].
We know that T is stationary in V [G][Hξ][j(G)]. Next we see that j(Pξ)/Hξ is σ-
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Baire and preserves the stationarity of T , which completes the proof of Claim 5.3. In
V [G][Hξ][j(G)], j : M → N can be extended to j : M [G] → N [j(G)]. Observe that the
following:

(1) The cofinality of κ is collapsed to ω1.
(2) There is a club C ⊆ κ and an injection f on C such that f(α) ∈ cα = j(~c)α for every

α ∈ (Eκ
ω)V . In particular S∗ is non-stationary in [κ]ω.

(3) N [j(G)] and N [j(G)][Hξ] are still closed under ω-sequences in V [G][Hξ][j(G)].
(4) j(S∗) ∩ [κ]ω = S∗.
(5) By Subclaim 5.5, for every µ > λ+j(κ), the set {x ∈ [µ]ω : x∩λ ∈ T, x∩j(κ) /∈ j(S∗)}

is stationary in [µ]ω.

Now, by Lemma 3.6, we can identify Pξ with a poset which consists of functions p

with dom(p) ∈ [ξ]ω and p(η) ∈ C for every η ∈ dom(p). Where we identify the domain
of p with its support.

For p ∈ j(Pξ) (so p is a function with dom(p) ∈ [j(ξ)]ω), let p̂ be the function defined
by dom(p̂) = j−1“(dom(p)), and p̂(α) = p(j(α))|κ× κ for α ∈ dom(p̂).

Subclaim 5.6. Let p ∈ j(Pξ). Then p̂ ∈ Pξ, and p ∈ j(Pξ)/Hξ if and only if
p̂ ∈ Hξ.

Proof. We see only p̂ ∈ Pξ, the rest is straightforward.
If p̂ /∈ Pξ, then there are η ∈ dom(p̂) and x ∈ S∗ such that p̂|η ∈ Pη but there is some

q ≤ p̂|η with q °Pη“x ⊆ d(p̂(η)), x ∈ Ṡη and x is closed under p̂(η)”. Consider j(p̂|η +1).
We have j(p̂|η + 1) = j(p̂|η)_〈j(p̂(η))〉. Since p̂|η ∈ Pη, we have j(p̂|η) ∈ j(Pη), and
p|j(η) ≤ j(p̂|η) by the definition of p̂. On the other hand, j(q) is compatible with p|j(η);
For every ζ ∈ dom(j(q)) ∩ dom(p|j(η)), we have that j(q)(ζ) is compatible with p(ζ) as
a function since q ≤ p̂. Then we can construct a natural common extension of j(q) and
p|j(η) using the argument in the proof of Lemma 3.2.

We know j(q) °“j(x) ⊆ j(d(p̂(η))), j(x) ∈ j(Ṡη) and j(x) is closed under j(p̂(η))”.
Since j(q) is compatible with p|j(η), there is r ≤ j(q), p|j(η) which forces that statement.
Now, j(x) = x, j(p̂(η)) = p̂(η) = p(j(η))|κ×κ, and j(d(p̂(η))) = d(p̂(η)) = d(p(j(η)))∩κ.
Hence r °“p(j(η)) /∈ j(C(Ṡη))”, this is a contradiction. ¤

To show that j(Pξ)/Hξ is σ-Baire and preserves the stationarity of T , take p ∈
j(Pξ)/Hξ, a large regular χ, and a countable M ≺ Hχ such that M ∩ λ ∈ T and M

contains all relevant objects. Take an (M, j(Pξ)/Hξ)-generic sequence 〈pn : n < ω〉 such
that p0 ≤ p. We will find an (M, j(Pξ)/Hξ)-generic condition which is a lower bound of
the pn’s. This shows that j(Pξ)/Hξ is σ-Baire and preserves the stationarity of T .

By Subclaim 5.5, we can require that M ∩ j(κ) /∈ j(S∗). Fix µ ∈ N [j(G)] such that
µ is regular in N [j(G)] and sufficiently larger than j(κ) in N [j(G)]. We may assume that
(Hµ)N [j(G)] ∈ M . Let M ′ = M ∩ (Hµ)N [j(G)]. Then M ′ ∈ N [j(G)], M ′ ≺ (Hµ)N [j(G)],
and M ∩ j(κ) = M ′ ∩ j(κ) /∈ j(S∗). Then 〈pn : n < ω〉 ∈ N [j(G)] and is an (M ′, j(Pξ))-
generic sequence. Applying Lemma 3.6 to M ′ in N [j(G)], the pn’s have a lower bound
p∗ in j(Pξ) defined by:

(1) dom(p∗) =
⋃

n<ω dom(pn).
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(2) For every η ∈ dom(p∗), p∗(η) =
⋃{pn(η) : n < ω, η ∈ dom(pn)}.

Then, since p̂n ∈ Hξ for every n < ω, it is easy to see that p̂∗ ∈ Hξ, so p∗ ∈ j(Pξ)/Hξ.
This completes the proof of Claim 5.3, hence so does the proof of Theorem 1.6.

Remark 5.7. 2ω1 > ω2 holds in the final model, and this cardinal arithmetic is
necessary; Koenig–Larson–Yoshinobu [9] showed that if 2ω1 = ω2, then WRP(ω2) is
equivalent to RP(ω2).

6. Proof of Theorem 1.7.

Suppose GCH, and let κ be a supercompact cardinal. Let Lκ ∗ Pκ+ be the poset
used in the previous section. So it forces that κ = ω2, WRP(ω2), but ¬FRP(ω2). We
see that this poset also forces SSR.

To see this, fix a (V,Lκ)-generic G and a (V [G],Pκ+)-generic H. Work in V [G][H].
Fix λ > κ and we check that SSR(λ) holds in V [G][H]. Take a semi-stationary set
S ⊆ [λ]ω. Let T = {x ∈ [λ]ω : ∃y ∈ S (y ⊆ x and y ∩ ω1 = x ∩ ω1)}. T is stationary in
[λ]ω.

As before, let ~c be a non-reflecting ladder system induced by G and let S∗ = S~c.
First suppose that {x ∈ T : x ∩ κ /∈ S∗} is stationary in [λ]ω. In V , take a λ-

supercompact embedding j : V → N with critical point κ. Consider j(Lκ ∗ Pκ+)/G ∗
H. Then, by the same argument used in the proof of Claim 5.3, we can prove that
j(Lκ ∗ Pκ+)/G ∗H preserves the stationarity of T . For a (V [G][H], j(Lκ ∗ Pκ+)/G ∗H)-
generic j(G) ∗ j(H), we can extend j : V → N to j : V [G][H] → N [j(G)][j(H)]. Since
T is stationary in V [j(G) ∗ j(H)], j(T ) ∩ [j“λ]ω is also stationary in [j“λ]ω. Then in
N [j(G)][j(H)], j“λ witnesses that the statement that there is X ∈ [j(λ)]ω1 such that
ω1 ⊆ X and j(T ) ∩ [X]ω is stationary in [X]ω. By the elementarity of j, in V [G][H], we
have that there is X ∈ [λ]ω1 such that ω1 ⊆ X and T ∩ [X]ω is stationary in [X]ω. Then
clearly S ∩ [X]ω is semi-stationary in [X]ω.

Hence it is enough to check that {x ∈ T : x ∩ κ /∈ S∗} must be stationary in [λ]ω.
If {x ∈ T : x ∩ κ ∈ S∗} is non-stationary, we are done. Suppose it is stationary. Take a
club D in [λ]ω. We will find x ∈ T ∩D with x ∩ κ /∈ S∗.

Fix a sufficiently large regular cardinal θ and a well-ordering ∆ on Hθ. Let M =
〈Hθ,∈,∆, C∗,S∗, T, D, . . .〉. By Lemma 4.1, we may assume that for every countable
M ≺ M, if M ∩ κ ∈ S∗, then there is a countable N ≺ M such that M ⊆ N , M ∩ κ =
N ∩ sup(M ∩ κ), and sup(M ∩ κ) ∈ N .

Now take a countable M0 ≺ M with M0 ∩ λ ∈ T . We know M0 ∩ λ ∈ T ∩ D. If
M0 ∩ κ /∈ S∗, we are done. Suppose M0 ∩ κ ∈ S∗. Then there is a countable M1 ≺ M
such that M0 ⊆ M1, M0 ∩ κ = M1 ∩ sup(M0 ∩ κ), and sup(M0 ∩ κ) ∈ M1. Note that
M1 ∩ λ ∈ T ∩ D. If M1 ∩ κ /∈ S∗, we are done. Otherwise, take a countable M2 ≺ M
as before for M1. We repeat this procedure. Now suppose i < ω1 and 〈Mj : j < i〉 was
chosen so that:

(1) Mj ≺M is countable with Mj ∩ λ ∈ T ∩D and Mj ∩ κ ∈ S∗.
(2) For j < k < i, Mj ⊆ Mk, Mj ∩ κ = Mk ∩ sup(Mj ∩ κ), and sup(Mj ∩ κ) ∈ Mk.
(3) If j is limit, then Mj =

⋃
k<j Mk.
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If i is limit, then let Mi =
⋃

j<i Mj . If i is successor, since Mi−1 ∩ κ ∈ S∗, we can
take a countable Mi ≺ M such that Mi−1 ⊆ Mi, Mi−1 ∩ κ = Mi ∩ sup(Mi−1 ∩ κ), and
sup(Mi−1 ∩ κ) ∈ Mi. We know that Mi ∩ λ ∈ T ∩D, and if Mi ∩ κ /∈ S∗, then we stop
this construction and Mi ∩λ is as required. So suppose to the contrary that we can take
〈Mi : i < ω1〉. Let M =

⋃
i<ω1

Mi. Then ot(M ∩κ) = ω1, and M ∩sup(Mi∩κ) = Mi∩κ.
By the choice of the Mi’s, we have that {sup(Mi ∩ κ) : i < ω1} is a club in sup(M ∩ κ).
Let E = {i < ω1 : i = ot(Mi ∩ κ)}. E is a club in ω1. Since ~c is a non-reflecting ladder
system, there is an injection f such that dom(f) is a club in sup(M∩κ) and f(α) ∈ cα for
every α ∈ dom(f). Note that f(sup(Mi ∩ κ)) ∈ csup(Mi∩κ) ⊆ Mi ∩ κ = M ∩ sup(Mi ∩ κ)
for every i ∈ E. Let E′ be the set of all i ∈ E with sup(Mi ∩ κ) ∈ dom(f), and let
g : E′ → ω1 by g(i) = β ⇐⇒ f(sup(Mi ∩ κ)) is the β-th element of M ∩ κ. g is
regressive. Thus we can find β0 such that {i ∈ E : g(i) = β0} is stationary. So there are
i < j such that sup(Mi∩κ), sup(Mj∩κ) ∈ dom(f) but f(sup(Mi∩κ)) = f(sup(Mj∩κ)),
this is a contradiction.

Therefore we have that there is some i such that Mi ∩ λ ∈ T ∩D but Mi ∩ κ /∈ S∗,
so Mi ∩ λ is as required. Now we complete the proof of Theorem 1.7.

Question 6.1. We have known that SSR does not imply RP(ω2) nor FRP(ω2).
But the following are unknown:

(1) Does WRP imply FRP(ω2) or FRP?
(2) Does WRP imply RP(ω2) or RP?

7. Appendix.

In this section we give a proof of Fact 1.11. We prove a slightly stronger result.

Proposition 7.1. Let κ ≥ ω2 be regular, S ⊆ {α < κ : cf(α) = ω} stationary
in κ, and E ⊆ ω1 stationary in ω1. Let ~c be a ladder system on S. Then the set
{x ∈ [κ]ω : x ∩ ω1 ∈ E, sup(x) ∈ S, csup(x) * x} is stationary in [κ]ω.

To prove this, fix a function f : [κ]<ω → κ. We will find x ∈ [κ]ω such that
x ∩ ω1 ∈ E, sup(x) ∈ S, csup(x) * x, and x is closed under f .

For x ∈ [κ]ω, let Cf (x) be the closure of x under f .
For i < ω1, we consider the following two players game Γi of length ω, which is a

variant of Veličković’s game in [16]:

ONE α0, β0 α1, β1 · · ·
TWO γ0, δ0 γ1, δ1 · · · .

Where αn < βn < γn < δn < αn+1 < κ. For a play 〈αn, βn, γn, δn : n < ω〉, ONE wins if
Cf ({αn : n < ω} ∪ i) ∩ ω1 = i and Cf ({αn : n < ω} ∪ i) ∩⋃

n<ω[γn, δn] = ∅, otherwise
TWO wins. Clearly the game Γi is open for TWO, so it is a determined game.

Lemma 7.2. Let E0 = {i < ω1 : player ONE has a winning strategy in Γi}. Then
E0 contains a club in ω1.
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Proof. Suppose to the contrary that ω1 \ E0 is stationary in ω1. For each i ∈
ω1 \ E0, TWO has a winning strategy σi in Γi. Fix a sufficiently large regular θ. Take
elementary submodels Mn ≺ Hθ for n < ω such that:

(1) Mn contains all relevant objects.
(2) |Mn| < κ, Mn ∩ κ ∈ κ, and cf(Mn ∩ κ) > ω.
(3) M0 ⊆ M1 ⊆ M2 ⊆ · · · and M0 ∩ κ < M1 ∩ κ < M2 ∩ κ < · · · .
Fix α0 ∈ M0 ∩ κ and αn+1 ∈ (Mn+1 ∩ κ) \Mn for n < ω. Since ω1 \ E0 is stationary,
there is i ∈ ω1 \ E0 such that Cf ({αn : n < ω} ∪ i) ∩ ω1 = i. Let x = Cf ({αn : n <

ω} ∪ i). We have sup(x) = sup{Mn ∩ κ : n < ω}. Since cf(Mn ∩ κ) > ω but x is
countable, there is βn ∈ Mn ∩ κ with sup(x ∩ Mn ∩ κ) < βn < Mn ∩ κ. Note that
i ∈ M0, αn < βn < Mn ∩ κ ≤ min(x \ (Mn ∩ κ)) ≤ αn+1, and 〈αj , βj : j ≤ n〉 ∈ Mn

for n < ω. Let 〈γn, δn〉 = σi(〈αj , βj : j ≤ n〉) ∈ Mn. Since γn, δn ∈ Mn, we have
γn < δn < Mn ∩ κ < αn+1. Hence 〈αn, βn, γn, δn : n < ω〉 is a play in Γi such that
〈γn, δn〉 = σi(〈αj , βj : j ≤ n〉). σi is a winning strategy of TWO, thus x∩ [γn, δn] 6= ∅ for
some n < ω. But sup(x ∩Mn ∩ κ) < βn < γn < δn < Mn ∩ κ ≤ min(x \Mn ∩ κ), this is
a contradiction. ¤

Now we construct x ∈ [κ]ω such that x ∩ ω1 ∈ E, sup(x) ∈ S, csup(x) * x, and x is
closed under f . Take a countable M ≺ Hθ such that sup(M ∩ κ) ∈ S and M contains
all relevant objects. Fix an increasing sequence 〈ηn : n < ω〉 with limit sup(M ∩ κ). By
Lemma 7.2, there is i ∈ E∩M such that ONE has a winning strategy σ ∈ M in Γi. Then
define a sequence 〈αn, βn, δn, γn : n < ω〉 in M as follows: First let 〈α0, β0〉 = σ(∅) ∈ M .
Then take γ0, δ0 ∈ M ∩ κ such that β0, η0 < γ0 and csup(M∩κ) ∩ [γ0, δ0] 6= ∅. Put
〈α1, β1〉 = σ(〈γ0, δ0〉), and take γ1, δ1 ∈ M ∩ κ such that β1, η1 < γ1 and csup(M∩κ) ∩
[γ1, δ1] 6= ∅. Repeat this procedure. Let x = Cf ({αn : n < ω} ∪ i). Then x∩ω1 = i ∈ E,
sup(x) = sup(M ∩ κ) ∈ S, and csup(M∩κ) * x.
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