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By Katsunori Iwasaki and Shu Okada

(Received Sep. 9, 2013)
(Revised Sep. 19, 2014)

Abstract. For the first Painlevé equation we establish an orbifold poly-
nomial Hamiltonian structure on the fibration of Okamoto’s spaces and show
that this geometric structure uniquely recovers the original Painlevé equation,
thereby solving a problem posed by K. Takano.

1. Introduction.

For each of the six Painlevé equations PJ , Okamoto [5] constructed what he called
the space of initial conditions. It is a fiber Et of a fibration π : E → T on which PJ defines
a foliation that is uniform and transversal to each fiber. For its construction, he first had
a compact surface Et as an eight-time blowup of a Hirzebruch surface and then obtained
Et = Et \Vt by removing a divisor Vt called the vertical leaves. Afterwards, Takano et al.
[3], [4], [9] constructed a symplectic atlas of Et, on each chart of which PJ enjoys
a polynomial Hamiltonian structure, and they went on to show that such a structure
uniquely recovers PJ . More precisely, they were able to do so for J = II, III, IV,V,VI, but
left open the case J = I. We settle this last case in this article. Independently, Chiba [1]
solved the problem based on his framework of Painlevé equations on weighted projective
spaces. Our approach is more classical, along the lines of Okamoto and Takano, where
what is new for J = I is the consideration of an orbifold Hamiltonian structure.

The first Painlevé equation PI is a nonlinear ordinary differential equation

d2x

dt2
= 6x2 + t,

for an unknown function x = x(t) with a time variable t ∈ T := Ct. If we put y := dx/dt

then this equation can be represented as a time-dependent Hamiltonian system

dx

dt
=

∂HI

∂y
,

dy

dt
= −∂HI

∂x
, HI(x, y, t) =

1
2
y2 − 2x3 − tx. (1)

In order to construct the space Et for system (1), it is sufficient to carry out an
eight-time blowup of a Hirzebruch surface as in Okamoto [5], or alternatively a nine-time
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blowup of P2 as in Duistermaat and Joshi [2], followed by removing vertical leaves. But
this is not sufficient for the purpose of providing a symplectic atlas with Et. Indeed, for
J = II, III, IV,V,VI, Takano et al. [3], [9] had to do some extra work in the course of
successive blowups. We are in an even more intricate situation that is specific for J = I.
For this we shall carry out the following.

Construction of Okamoto’s space. Start with the Hirzebruch surface Σ of degree
2. Take a two-time blowup of Σ to get a compact surface S, which contains a (−2)-
curve C. Choose an open neighborhood U of C in S. Consider a branched double
cover (U,C) ← (V, D) ª σ ramifying along D, the fixed curve of the deck involution
σ. Along the (−1)-curve D, take a blowdown (V, D) → (W,p) and let σ : (W,p) ª be
the induced involution. The result is the unique σ-fixed point p ∈ W , together with a
pair of σ-equivalent singular points p± ∈ W of the foliation. To resolve the singularities
p±, carry out a pair of σ-equivariant six-time blowups (W,p, p±) ← (X, p, E±). Take
a quotient X/σ, which identifies E+ and E−, and make a gluing F = (S \ C) ∪ (X/σ)
in accordance with the union S = (S \ C) ∪ U . Then F is a compact surface with an
A1-singularity p ∈ F arising from the σ-fixed point p ∈ X. Take a minimal resolution of
p ∈ F to obtain a smooth compact surface Et, which contains an E

(1)
8 -type configuration

Vt of (−2)-curves that are the vertical leaves, where the black-filled node in Figure 1
corresponds to the exceptional curve for the last resolution. Finally we get Et = Et \ Vt

by removing the vertical leaves Vt. Details of these processes are described in Section 2
(see Figure 3–Figure 9).

Figure 1. Dynkin diagram of type E
(1)
8 .

Recipe for producing local charts. We look at how a blowup produces two new local
charts from an old one. Start with an (x, y)-plane and blow up a point (a, 0) ∈ C2

(x,y) on
the x-axis {y = 0}. The ensuing morphism C2

(x,y) ← C2
(q,p) ∪C2

(Q,P ) is represented by 　

x− a = qp, y = p; x− a = Q, y = QP,

where the exceptional curve is {p = 0} ∪ {Q = 0} ∼= P1 while the strict transform of
{y = 0} is {P = 0}, respectively. This procedure leads to a creation of two local charts
(see Figure 2):

(x, y) ; (q, p), (Q,P ). (2)

Beginning with the local charts of the Hirzebruch surface Σ, we make a repeated
application of recipe (2) to produce new local charts in the course of successive blowups.
Recall that there is one step of blowdown (V, D) → (W,p), at which we apply (2) in the
opposite direction.
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Figure 2. A blowup produces two new charts from an old one.

Theorem 1.1. The construction mentioned above leads to the following description
of Et:

Et = C2
(x,y) ∪ (C2

(z,w) ∪ C2
(u,v))/σ, (3)

where C2
(z,w) and C2

(u,v) are glued together along the subset {w 6= 0} = {v 6= 0} via

u = z − 2tw−2 − 8w−6, v = w, (4)

with σ : C2
(z,w) ∪ C2

(u,v) ª being a holomorphic involution that restricts to

σ : C2
(z,w) → C2

(u,v), (z, w) 7→ (u, v) = (−z,−w),

σ : C2
(z,w) → C2

(z,w), (z, w) 7→ (−z + 2tw−2 + 8w−6, −w), (5)

σ : C2
(u,v) → C2

(u,v), (u, v) 7→ (−u− 2tv−2 − 8v−6, −v),

while C2
(x,y) and the quotient space (C2

(z,w) ∪ C2
(u,v))/σ are glued together via

x =
1

w2
, y = − 2

w3
− tw

2
− w2

2
+

zw3

2
, (6)

x =
1
v2

, y =
2
v3

+
tv

2
− v2

2
+

uv3

2
, (7)

along the subset {x 6= 0} = {w 6= 0}/σ = {v 6= 0}/σ.

We remark that formulas (6) and (7) were already known to Painlevé [7] in a different
context, that is, through the Laurent expansion around a pole of a solution, where any
pole must be of order two so that it is converted into a simple zero via the transformations
x = w−2 = v−2.

The total space E of the fibration π : E → T is made up of three (orbifold) charts
C3

(x,y,t), C
3
(z,w,t) and C3

(u,v,t) patched together through the symplectic mappings (4), (6)
and (7), where by symplectic we mean δx ∧ δy = δz ∧ δw = δu ∧ δv with δ being the
relative exterior differentiation on the fibration π : E → T so that t is thought of as
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a constant. In this situation one can speak of a time-dependent Hamiltonian structure
on the fibration, which can be represented by a triple of Hamiltonians H = H(x, y, t),
K = K(z, w, t) and L = L(u, v, t) that should share a fundamental 2-form Ω in common,
to the effect that

Ω = dy ∧ dx− dH ∧ dt = dw ∧ dz − dK ∧ dt = dv ∧ du− dL ∧ dt,

where d is the exterior differentiation on the total space E so that t is regarded as a
variable. Under transformation rules (4), (6) and (7), this last condition can be written

H = K + 1/w = L− 1/v, K = L− 2/v. (8)

In order to speak of an orbifold Hamiltonian structure we should also take into account
the σ-invariance of Ω. In view of formulas (5) the condition σ∗Ω = Ω can be written

K ◦ σ = K + 2/w, L ◦ σ = L− 2/v. (9)

The first Painlevé equation PI admits an orbifold Hamiltonian structure. Indeed,
its Hamiltonian triple {HI,KI, LI} is given by formula (1) together with

KI(z, w, t) =
1
8
w6z2 − 1

4
(4 + tw4 + w5)z +

1
8
w2(t + w)2,

LI(u, v, t) =
1
8
v6u2 +

1
4
(4 + tv4 − v5)u +

1
8
v2(t− v)2.

(10)

Note that HI, KI and LI are polynomials of their respective variables. Suppose that

H, K, L are entire holomorphic in their respective variables

and meromorphic on E, (11)

where π : E → T is the fibration with compactified fibers Et (t ∈ T ). The following
theorem asserts that such an orbifold Hamiltonian structure is unique and just coming
from PI.

Theorem 1.2. If a function triple {H, K, L} satisfies conditions (8), (9) and (11),
then H = HI, K = KI and L = LI modulo functions of t ∈ T .

Here we remark that a Hamiltonian makes sense only up to addition of a function
of t ∈ T . Theorem 1.2 is an easy consequence of the following function-theoretic property
of Et and Et.

Theorem 1.3. Any function holomorphic on Et and meromorphic on Et must be
constant.

Indeed, take the differences H = H −HI, K = K −KI and L = L− LI. Since both
{H, K, L} and {HI,KI, LI} satisfy conditions (8), (9) and (11), one has H = K = L,
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K ◦ σ = K and L ◦ σ = L so that H = K = L defines a function h holomorphic on E

and meromorphic on E. Theorem 1.3 then implies that h is only a function of t ∈ T .
This proves Theorem 1.2. Theorem 1.1 and Theorem 1.3 will be proved in Section 2 and
Section 3, respectively.

2. Construction of Okamoto’s Space.

Our construction of Et and thus a proof of Theorem 1.1 consist of the following
twelve steps.

1. The Hirzebruch surface Σ of degree 2 is made up of four local charts C2
(qi,pi)

,
i = 1, 2, 3, 4, glued together according to the relations:

q1q2 = 1, p1 = −q2
2p2; q3 = q1, p1p3 = 1; q4 = q2, p2p4 = 1, (12)

where (q3, p3) = (x, y) is the original chart for system (1). Consider the Pfaffian system
on C2

(x,y) × T defined by formula (1) and extend it to the entire space Σ × T . For each
t ∈ T the associated foliation has two vertical leaves {p1 = 0}∪{p2 = 0} ∼= P1 and {q2 =
0} ∪ {q4 = 0} ∼= P1, together with an accessible singular point a

(0)
t = {(q4, p4) = (0, 0)}

(see Figure 3). In what follows by a singularity we always mean an accessible singularity.
2. Blowup at a

(0)
t produces two new charts (q(1), p(1)) and (Q(1), P (1)) such that

q4 = q(1)p(1), p4 = p(1); q4 = Q(1), p4 = Q(1)P (1).

Rewrite the Pfaffian system in terms of the new charts. The ensuing foliation has two
vertical leaves; the exceptional curve {p(1) = 0}∪{Q(1) = 0} of the blowup and the proper

Figure 3. Start with Σ. Figure 4. Blowup at a
(0)
t .
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image {q(1) = 0} of {q4 = 0}, together with a singular point a
(1)
t = {(q(1), p(1)) = (0, 0)}

(see Figure 4).
3. Blowup at a

(1)
t produces two new charts (q(2), p(2)) and (Q(2), P (2)) such that

q(1) = q(2)p(2), p(1) = p(2); q(1) = Q(2), p(1) = Q(2)P (2).

In terms of the new charts there are three vertical leaves; the exceptional curve {p(2) =
0}∪{Q(2) = 0} of the blowup, the proper images {q(2) = 0} of {q(1) = 0} and {P (2) = 0}
of {p(1) = 0}, together with a singular point a

(2)
t = {(Q(2), P (2)) = (0, 4)} (see Figure 5).

4. Consider the (−2)-curve C = {Q(1) = 0} ∪ {P (2) = 0} and its tubular neighbor-
hood U = C2

(Q(1),P (1))
∪C2

(Q(2),P (2))
. Let (U,C) ← (V, D) with V = C2

(r,s) ∪C2
(R,S) be the

branched double covering ramifying along D = {s = 0} ∪ {R = 0}, which is defined by

Q(1) = s2, P (1) = r; Q(2) = S, P (2) = R2.

The deck involution σ : V ª maps (r, s) 7→ (r,−s) on C2
(r,s) and (R, S) 7→ (−R, S)

on C2
(R,S), respectively. Three vertical leaves mentioned in step 3 become {S = 0},

{q(2) = 0} and {R = 0}, respectively, while the singular point a
(2)
t ∈ U lifts up to a pair

of σ-equivalent points in V :

ã
(2)
t = {(R, S) = (2, 0)} ⊕ b̃

(2)
t = {(R, S) = (−2, 0)}, (13)

where (∗)⊕ (∗∗) indicates that (∗) and (∗∗) are permuted by the involution σ (see Figure
6). In what follows (∗)⊕ (∗∗) will be thought of as a single (that is, not a dual) object.

Figure 5. Blowup at a
(1)
t . Figure 6. Double cover.
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5. Since the branching locus C downstairs is a (−2)-curve, the ramifying locus D

upstairs is a (−1)-curve that can be blown down into a smooth point p. Blowdown of D

into p induces a morphism (V, D) → (W,p) with W = C2
(r(2),s(2))

and p = {(r(2), s(2)) =
(0, 0)} such that

r(2) = rs, s(2) = s; r(2) = R, s(2) = RS.

The induced involution σ : (W,p) ª maps (r(2), s(2)) 7→ (−r(2),−s(2)). Through the
blowdown morphism the vertical leaf {S = 0} descends to {s(2) = 0}, while the singular
point (13) to

p+ = {(r(2), s(2)) = (2, 0)} ⊕ p− = {(r(2), s(2)) = (−2, 0)}. (see Figure 7)

6. Blowup at p+⊕p− produces new charts (z(3), w(3))⊕(u(3), v(3)) and (Z(3),W (3))⊕
(U (3), V (3)) such that

r(2) = 2 + z(3)w(3), s(2) = w(3); r(2) = 2 + Z(3), s(2) = Z(3)W (3),

r(2) = −2 + u(3)v(3), s(2) = v(3); r(2) = −2 + U (3), s(2) = U (3)V (3),

where the induced involution σ maps (z(3), w(3)) 7→ (z(3) + 4/w(3), −w(3)) on C2
(z(3),w(3))

and (u(3), v(3)) 7→ (u(3) − 4/v(3), −v(3)) on C2
(u(3),v(3))

, respectively. In terms of the new

charts there are two vertical leaves; the exceptional curve {w(3) = 0} ∪ {Z(3) = 0} ⊕
{v(3) = 0} ∪ {U (3) = 0} and the proper image {W (3) = 0} = {V (3) = 0} of {s(2) = 0},
together with a singular point a

(3)
t = {(z(3), w(3)) = (0, 0)}⊕ b

(3)
t = {(u(3), v(3)) = (0, 0)}

(see Figure 8).

Figure 7. Blowdown of D. Figure 8. Blowup at p+ ⊕ p−.
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7. Blowup at a
(3)
t ⊕ b

(3)
t produces new charts (z(4), w(4)) ⊕ (u(4), v(4)) and

(Z(4),W (4))⊕ (U (4), V (4)) such that

z(3) = z(4)w(4), w(3) = w(4), z(3) = Z(4), w(3) = Z(4)W (4),

u(3) = u(4)v(4), v(3) = v(4), u(3) = U (4), v(3) = U (4)V (4),

where the induced involution σ maps (z(4), w(4)) 7→ (−z(4) − 4(w(4))−2, −w(4)) on
C2

(z(4),w(4))
and (u(4), v(4)) 7→ (−u(4) + 4(v(4))−2, −v(4)) on C2

(u(4),v(4))
, respectively. In

terms of the new charts there are two vertical leaves; the exceptional curve {w(4) = 0}
∪{Z(4) = 0}⊕{v(4) = 0}∪{U (4) = 0} and the proper image {W (4) = 0}⊕{V (4) = 0} of
{w(3) = 0} ⊕ {v(3) = 0}, as well as a singular point a

(4)
t = {(z(4), w(4)) = (0, 0)} ⊕ b

(4)
t =

{(u(4), v(4)) = (0, 0)}.
8. Blowup at a

(4)
t ⊕ b

(4)
t produces new charts (z(5), w(5)) ⊕ (u(5), v(5)) and

(Z(5),W (5))⊕ (U (5), V (5)) such that

z(4) = z(5)w(5), w(4) = w(5), z(4) = Z(5), w(4) = Z(5)W (5),

u(4) = u(5)v(5), v(4) = v(5), u(4) = U (5), v(4) = U (5)V (5),

where the induced involution σ maps (z(5), w(5)) 7→ (z(5) + 4(w(5))−3, −w(5)) on
C2

(z(5),w(5))
and (u(5), v(5)) 7→ (u(5) − 4(v(5))−3, −v(5)) on C2

(u(5),v(5))
, respectively. In

terms of the new charts there are two vertical leaves; the exceptional curve {w(5) = 0}
∪{Z(5) = 0}⊕{v(5) = 0}∪{U (5) = 0} and the proper image {W (5) = 0}⊕{V (5) = 0} of
{w(4) = 0} ⊕ {v(4) = 0}, as well as a singular point a

(5)
t = {(z(5), w(5)) = (0, 0)} ⊕ b

(5)
t =

{(u(5), v(5)) = (0, 0)}.
9. Blowup at a

(5)
t ⊕ b

(5)
t produces new charts (z(6), w(6)) ⊕ (u(6), v(6)) and

(Z(6),W (6))⊕ (U (6), V (6)) such that

z(5) = z(6)w(6), w(5) = w(6), z(5) = Z(6), w(5) = Z(6)W (6),

u(5) = u(6)v(6), v(5) = v(6), u(5) = U (6), v(5) = U (6)V (6),

where the induced involution σ maps (z(6), w(6)) 7→ (−z(6) − 4(w(6))−4, −w(6)) on
C2

(z(6),w(6))
and (u(6), v(6)) 7→ (−u(6) + 4(v(6))−4, −v(6)) on C2

(u(6),v(6))
, respectively. In

terms of the new charts there are two vertical leaves; the exceptional curve {w(6) = 0}
∪{Z(6) = 0}⊕{v(6) = 0}∪{U (6) = 0} and the proper image {W (6) = 0}⊕{V (6) = 0} of
{w(5) = 0}⊕{v(5) = 0}, as well as a singular point a

(6)
t = {(z(6), w(6)) = (t/2, 0)}⊕b

(6)
t =

{(u(6), v(6)) = (−t/2, 0)}.
10. Blowup at a

(6)
t ⊕ b

(6)
t produces new charts (z(7), w(7)) ⊕ (u(7), v(7)) and

(Z(7),W (7))⊕ (U (7), V (7)) such that

z(6) = t/2 + z(7)w(7), w(6) = w(7), z(6) = t/2 + Z(7), w(6) = Z(7)W (7),

u(6) = −t/2 + u(7)v(7), v(6) = v(7), u(6) = −t/2 + U (7), v(6) = U (7)V (7),
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where the induced involution σ maps (z(7), w(7)) 7→ (z(7) + t/w(7) +4(w(7))−5, −w(7)) on
C2

(z(7),w(7))
and (u(7), v(7)) 7→ (u(7)− t/v(7)−4(v(7))−5, −v(7)) on C2

(u(7),v(7))
, respectively.

In terms of the new charts there are two vertical leaves; the exceptional curve {w(7) = 0}
∪{Z(7) = 0}⊕{v(7) = 0}∪{U (7) = 0} and the proper image {W (7) = 0}⊕{V (7) = 0} of
{w(6) = 0}⊕{v(6) = 0}, as well as a singular point a

(7)
t = {(z(7), w(7)) = (1/2, 0)}⊕b

(7)
t =

{(u(7), v(7)) = (1/2, 0)}.
11. Blowup at a

(7)
t ⊕ b

(7)
t produces new charts (z(8), w(8)) ⊕ (u(8), v(8)) and

(Z(8),W (8))⊕ (U (8), V (8)) such that

z(7) = 1/2 + z(8)w(8), w(7) = w(8), z(7) = 1/2 + Z(8), w(7) = Z(8)W (8),

u(7) = 1/2 + u(8)v(8), v(7) = v(8), u(7) = 1/2 + U (8), v(7) = U (8)V (8),

where the induced involution σ maps (z(8), w(8)) 7→ (−z(8)−t(w(8))−2−4(w(8))−6, −w(8))
on C2

(z(8),w8))
and (u(8), v(8)) 7→ (−u(8) + t(v(8))−2 + 4(v(8))−6, −v(8)) on C2

(u(8),v(8))
,

respectively. In terms of the new charts there is only one vertical leaf; the proper image
{W (8) = 0}⊕ {V (8) = 0} of {w(7) = 0}⊕ {v(7) = 0}. Observe that the exceptional curve
{Z(8) = 0} ∪ {w(8) = 0} ⊕ {U (8) = 0} ∪ {v(8) = 0} is not a vertical leaf and there is no
singular point of the foliation.

12. Composition of steps 6–11 leads to a proper modification (W,p, p±) ←
(X, p, E±). The rest is just as mentioned in Section 1. Make a gluing F = (S\C)∪(X/σ)
to have a compact surface F with an A1-singularity p ∈ F ; take its minimal resolution
to get a smooth compact space Et; and finally remove the vertical leaves Vt to obtain
Et. All these procedures are symbolically represented by Figure 9. In order to make the
final result exactly symplectic, we define the final charts (z, w) and (u, v) by z(8) = −z/2,

Figure 9. A “deer” whose dual “horns” E± are identified by σ.



970 K. Iwasaki and S. Okada

w(8) = w; u(8) = −u/2, v(8) = v. Among all charts of Et we have constructed, those
which are disjoint with Vt are exactly C2

(x,y), C
2
(z,w) and C2

(u,v). These three make an
orbifold symplectic atlas of Et. A careful check of steps 1–11 yields the desired relations
(4), (6), (7) as well as formula (5) for the involution σ.

It might be fun to think of Figure 9 as a “deer” whose dual “horns” E± are identified
by σ, and whose “nose” is just the fixed point p ∈ X or the A1-singularity p ∈ X/σ arising
from it.

3. Holomorphic functions.

We prove Theorem 1.3. Fixing t ∈ T we do not refer to the dependence upon
t. Any function holomorphic on Et and meromorphic on Et is represented by a triple
{H, K, L} of functions H = H(x, y), K = K(z, w) and L = L(u, v) entire in their
respective variables such that H = K = L under transformations (4), (6) and (7), as
well as K ◦ σ = K and L ◦ σ = L.

Lemma 3.1. We have H ∈ C[x, y], K ∈ C[z, w] and L ∈ C[u, v].

Proof. As an entire holomorphic function of (x, y), H admits a Taylor expansion

H =
∞∑

i,j=0

cij xiyj , cij ∈ C.

Using relation (12) we can rewrite it in terms of (q2, p2) to have

H =
∞∑

i,j=0

(−1)jcij q
−(i+2j)
2 p−j

2 .

In order for this to be meromorphic on the vertical leaf {q2 = 0}, there must be a
nonnegative integer N such that cij = 0 for every i + 2j > N , which forces H ∈ C[x, y].
Next we show that K ∈ C[z, w]. Under transformation (6) we have K = H ∈ C[x, y] so
that K ∈ C[z, w, w−1]. On the other hand, K ∈ C{z, w} (the convergent power series
ring), since it is an entire function of (z, w). Thus we have K ∈ C[z, w, w−1]∩C{z, w} =
C[z, w]. Similarly, L ∈ C[u, v]. ¤

Let us discuss the problem of finding a function K such that

K ◦ σ = K, K = K(z, w) ∈ C[z, w], (14)

where σ : C2
(z,w) ª is the involution defined by formula (5). We begin by a simple

reduction. Consider the decomposition of K into even and odd components with respect
to w:

K = K+ + K−, K± := (K ± Ǩ)/2, Ǩ(z, w) := K(z,−w). (15)
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Lemma 3.2. If K is a solution to problem (14), then so are K±.

Proof. It suffices to show that if K is a solution to problem (14) then so is Ǩ.
First, it is obvious that K ∈ C[z, w] implies Ǩ ∈ C[z, w]. Next, observe that

(Ǩ ◦ σ)(z, w) = Ǩ(8w−6 + 2tw−2 − z, −w) = K(8w−6 + 2tw−2 − z, w)

= K(8(−w)−6 + 2t(−w)−2 − z, −(−w)) = (K ◦ σ)(z,−w)

= K(z,−w) = Ǩ(z, w),

where K ◦σ = K is used in the fifth equality. Thus Ǩ is also a solution to problem (14).
¤

Let K be a solution to problem (14) and put ξ = w2. The even component of K

can be written K+(z, w) = F (z, w2) with F = F (z, ξ) being a solution to the problem

F ◦ τ = F, F = F (z, ξ) ∈ C[z, ξ], (16)

where τ : C2
(z,ξ) ª is an involution (z, ξ) 7→ (8ξ−3 + 2tξ−1 − z, ξ). There is a particular

solution E(z, ξ) := z(ξ3z − 2tξ2 − 8) to problem (16), which plays an important role in
the following.

Lemma 3.3. Any nontrivial solution to problem (16) must be of the form

F (z, ξ) =
M∑

m=0

fm(ξ)Em(z, ξ), fm(ξ) ∈ C[ξ], (17)

where M ≥ 0 and fM (ξ) is a nonzero polynomial of ξ.

Proof. We prove the lemma by induction on degz F (z, ξ). If degz F (z, ξ) = 0
then formula (17) obviously holds with M = 0. Suppose that degz F (z, ξ) ≥ 1 and put
f0(ξ) := F (0, ξ) ∈ C[ξ]. Notice that F0(z, ξ) := F (z, ξ)− f0(ξ) ∈ C[z, ξ] is also a solution
to problem (16). It is divisible by z, that is, F0(z, ξ) = zF1(z, ξ) for some F1(z, ξ) ∈
C[z, ξ]. The τ -invariance of F0(z, ξ) implies zF1(z, ξ) = (8ξ−3 +2tξ−1−z)F2(z, ξ), where
F2(z, ξ) := F1(8ξ−3 + 2tξ−1 − z, ξ) ∈ C(ξ)[z]. Writing F2(z, ξ) = −F3(z, ξ)/a(ξ) with
F3(z, ξ) ∈ C[z, ξ] and a(ξ) ∈ C[ξ], we obtain a(ξ)ξ3zF1(z, ξ) = (ξ3z − 8 − 2tξ2)F3(z, ξ)
in C[z, ξ]. Since the right-hand side is divisible by ξ3z − 8 − 2tξ2, so must be the left-
hand side, but a(ξ)ξ3z and ξ3z − 8 − 2tξ2 have no common factor, so that F1(z, ξ)
must be divisible by ξ3z − 8− 2tξ2, that is, F1(z, ξ) = (ξ3z − 8− 2tξ2)F4(z, ξ) for some
F4(z, ξ) ∈ C[z, ξ]. Thus we have F0(z, ξ) = E(z, ξ)F4(z, ξ). Since F0(z, ξ) and E(z, ξ)
are τ -invariant, F4(z, ξ) is also τ -invariant and hence yields a solution to problem (16)
with degz F4(z, ξ) = degz F0(z, ξ)−2 = degz F (z, ξ)−2. By induction hypothesis we can
write F4(z, ξ) =

∑M
m=1 fm(ξ)Em−1(z, ξ) for some fm(ξ) ∈ C[ξ]. Substituting this into

F (z, ξ) = f0(ξ) + E(z, ξ)F4(z, ξ) yields formula (17). The induction is complete. ¤



972 K. Iwasaki and S. Okada

On the other hand, the odd component of K can be written K−(z, w) = wG(z, w2)
with G = G(z, ξ) being a solution to the problem

G ◦ τ = −G, G = G(z, ξ) ∈ C[z, ξ]. (18)

Notice that ∆(z, ξ) := ξ3z − tξ2 − 4 is a particular solution to problem (18).

Lemma 3.4. Any nontrivial solution to problem (18) must be of the form

G(z, ξ) = ∆(z, ξ)
N∑

n=0

gn(ξ)En(z, ξ), gn(ξ) ∈ C[ξ], (19)

where N ≥ 0 and gN (ξ) is a nonzero polynomial of ξ.

Proof. Substituting z = tξ−1+4ξ−3 into the skew τ -invariance G(8ξ−3+2tξ−1−
z, ξ) = −G(z, ξ) yields G(tξ−1 + 4ξ−3, ξ) = −G(tξ−1 + 4ξ−3, ξ), which forces G(tξ−1 +
4ξ−3, ξ) = 0. Thus G(z, ξ) is divisible by z − tξ−1 − 4ξ−3 in C(ξ)[z], that is, G(z, ξ) =
(z − tξ−1 − 4ξ−3)G1(z, ξ) for some G1(z, ξ) ∈ C(ξ)[z]. Writing G1(z, ξ) = G2(z, ξ)/b(ξ)
with G2(z, ξ) ∈ C[z, ξ] and b(ξ) ∈ C[ξ], we obtain b(ξ)ξ3G(z, ξ) = ∆(z, ξ)G2(z, ξ) in
C[z, ξ]. Since the right-hand side is divisible by ∆(z, ξ), so must be the left-hand side, but
b(ξ)ξ3 and ∆(z, ξ) have no common factor, so that G(z, ξ) must be divisible by ∆(z, ξ),
that is, G(z, ξ) = ∆(z, ξ)G3(z, ξ) for some G3(z, ξ) ∈ C[z, ξ]. Since G(z, ξ) and ∆(z, ξ)
are skew τ -invariant, G3(z, ξ) is τ -invariant and so yields a solution to problem (16).
Lemma 3.3 then allows us to write G3(z, ξ) =

∑N
n=0 gn(ξ)En(z, ξ) for some gn(ξ) ∈ C[ξ],

which leads to representation (19). ¤

Now a general solution to problem (14) can be written K(z, w) = K+(z, w) +
K−(z, w) with K+(z, w) = F (z, w2), K−(z, w) = wG(z, w2), where F (z, ξ) and G(z, ξ)
are as in formulas (17) and (19) respectively. Recall that we have H(x, y) = K(z, w)
under transformation (6). Let H(x, y) = H+(x, y) + H−(x, y) be the decomposition
parallel to the one K(z, w) = K+(z, w)+K−(z, w). Notice that H±(x, y) ∈ C[x, x−1, y].
Observe that

E(z, w2) = 4y2 + 4x−1y + x−2 − x−1(4x2 + t)2, w∆(z, w2) = 2x−2y + x−3, (20)

under relation (6). Indeed, the second formula readily follows from (6), while the first
formula is derived from the second one and the relation E(t, w2) = w−8{w∆(z, w2)}2 −
w2

(
t + 4w−4

)2. Formulas (20) are substituted into formulas (17) and (19) to find

H+(x, y) =
M∑

m=0

fm(x−1)
{
4y2 + 4x−1y + x−2 − x−1(4x2 + t)2

}m
,

H−(x, y) = (2x−2y + x−3)
N∑

n=0

gn(x−1)
{
4y2 + 4x−1y + x−2 − x−1(4x2 + t)2

}n
,

(21)
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with fm(ξ) ∈ C[ξ] and gn(ξ) ∈ C[ξ], where if H+(x, y) is nontrivial then M ≥ 0 and
fM (ξ) is a nonzero polynomial, while if H−(x, y) is nontrivial then N ≥ 0 and gN (ξ) is
a nonzero polynomial. By convention we put M = −1 resp. N = −1 if H+(x, y) resp.
H−(x, y) is trivial. Suppose that H(x, y) is nontrivial, so that at least one of H±(x, y)
is nontrivial.

Lemma 3.5. We have M > N and H+(x, y) must be nontrivial.

Proof. Expanding formulas (21) into powers of y yields

H+(x, y) = 22MfM (x−1) y2M + 22MMx−1 fM (x−1) y2M−1 + · · · ,

H−(x, y) = 22N+1x−2gN (x−1) y2N+1 + · · · ,
(22)

where · · · denotes lower-degree terms with respect to y. If M ≤ N then 2M < 2N + 1
in formulas (22) so that H(x, y) = 22N+1x−2gN (x−1)y2N+1 + · · · ∈ C[x, y] and hence
x−2gN (x−1) ∈ C[x]. This is possible only if gN (ξ) is the zero polynomial, in which case
H−(x, y) is trivial with N = −1; then M = −1 and so H+(x, y) is also trivial. This
contradiction shows that M > N ≥ −1. Since M is nonnegative, H+(x, y) must be
nontrivial. ¤

Lemma 3.6. We have M = 0, N = −1 and H(x, y) = c ∈ C×.

Proof. By Lemma 3.5 we have M > N and hence 2M > 2N +1, so that formulas
(22) yield H(x, y) = 22MfM (x−1) y2M + · · · ∈ C[x, y], which implies fM (x−1) ∈ C[x]. On
the other hand we have fM (x−1) ∈ C[x−1]. Thus fM (ξ) must be a constant, say, c ∈ C.
Since H+(x, y) is nontrivial, fM (ξ) = c ∈ C× must be a nonzero constant. To show that
M = 0, suppose the contrary that M ≥ 1. In the first case where N = M − 1, formulas
(22) imply

H(x, y) = 22Mc y2M + {(M · 22M · c)x−1 + 22M−1x−2gM−1(x−1)}y2M−1 + · · · ∈ C[x, y],

and so (M · 22M · c)x−1 + 22M−1x−2gM−1(x−1) ∈ C[x], which is impossible. In the
second case where N < M − 1, formulas (22) imply H(x, y) = 22Mc y2M + (M · 22M ·
c)x−1y2M−1 + · · · ∈ C[x, y], and so (M · 22M · c)x−1 ∈ C[x], which is also impossible.
Thus M = 0 and H+(x, y) = c. Since N < M = 0, we have N = −1 and H−(x, y) = 0
so that H(x, y) = c. ¤

With the proof of Lemma 3.6 above, Theorem 1.3 has also been established com-
pletely.

Formulas (21) can be used to construct a meromorphic function on Et that is holo-
morphic on Et \ {x = 0} with poles only along {x = 0}. There is a connection of this
formula with a proof of the Painlevé property. In a qualitative proof of it, which does not
use isomonodromic deformations, it is crucial to deal with a kind of Lyapunov function
that can control the trajectories near the vertical leaves. As a Lyapunov function for PI

we usually employ
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U(x, y, t) = 2HI(x, y, t) +
y

x
= y2 − 4x3 − 2tx +

y

x

as in [6, formula (5)] or [8, formula (3.8)]. This function is just obtained by putting
M = 1, f1(ξ) = 1/4, f0(ξ) = ξ(t2 − ξ)/4 and N = −1, i.e., H−(x, y, t) = 0 in formulas
(21).

A quite different proof, but still of a qualitative nature, for the Painlevé property has
been proposed by H. Chiba in his framework of Painlevé equations on weighted projective
spaces [1].
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coordinates, Arch. Rational Mech. Anal., 202 (2011), 707–785.

[ 3 ] T. Matano, A. Matumiya and K. Takano, On some Hamiltonian structures of Painlevé systems,
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