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Abstract. The analogue of the Bruhat—Tits building of a p-adic group
in Fl-geometry is a single apartment. In this setting, the trace formula gives
rise to a several variable zeta function analogously to the p-adic case. The
analogy carries on to the fact that the restriction to certain lines yield zeta
functions which are defined in geometrical terms. Also, the classical formula
of Thara has an analogue in this setting.

1. Introduction.

It has been observed by several authors that many formulae in the geometry of
Bruhat-Tits buildings over a non-Archimedean field F' of residue cardinality ¢ do still
make sense for ¢ = 1, in which case they coincide with the analogous formulae on the
corresponding spherical geometry. Jacques Tits asked in [Tit57], whether the explana-
tion of this phenomenon might be the existence of a “field of one element” F; such that
for a Chevalley group G the group G(IF1) equals the Weyl group of G. In the first decade
of the new millennium, various approaches to the elusive “field” F; have been suggested,
see [KOWO03], [Sou04], [Dei05], [Har07], [TV09], [CC10].

In the middle between the geometry of the full Bruhat—Tits building and the spher-
ical geometry, which may be considered as the local geometry of an apartment, there is
the geometry of a single apartment and its affine Weyl group. If the field of one element
is the analogue of the residue field of a non-Archimedean field, then the geometry of a
single apartment should correspond to a “non-Archimedean field in characteristic one”.
In order to fix terms we shall write Q. It appears that the approach via monoids of
[Dei05] yields an explanation whereby @Q; is the infinite cyclic group and one can de-
scribe the building of PGL,,(Q;) in terms of lattices in perfect analogy to the case of a
non-Archimedean field.

Another strand of investigations, which is connected to Fi-theory in this paper, is
the theory of generalized Ihara zeta functions. The IThara zeta function for a finite graph
is defined as an Euler product over closed cycles in the graph. Its reciprocal turns out
to be a polynomial and can be expressed in terms of the characteristic function of the
adjacency operator, this latter fact being known under the name Ihara formula. Due to
the complicated simplicial structure of higher dimensional building, there is no general
formulation or conjecture of Thara formula for higher dimensional building. The only
known cases are PGL3 and PGSPy, see [KL14], [KLW10], [FLW13].
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In Section 2, we express the original Thara formula for PGLy(F) as a connection
between Thara zeta function and Langlands L-function. Such a reformulation suggests a
possible way to obtain a generalized Thara formula and it still makes sense when g = 1.
In Section 3 we apply the philosophy of the field of one element [Dei05] to buildings. In
the world of F1-rings there exists, next to F1, a universal F;-algebra Z; and its quotient
field Q. It turns out that PGL,(Q1) coincides with the extended affine Weyl group
attached to an apartment the Bruhat-Tits building of PGL, (Q,) for any prime number
p. It therefore is suggestive to consider one such apartment as the “building” of the group
PGL,(Q1). In Section 4 we develop the trace formula for the group PGL,,(Q1) which
involves, among other things, the determination of its unitary dual. As an application, we
get a several variable zeta function Sp(u) which contains all information on the building
and its quotient by a subgroup I' from a group-theoretical viewpoint. In Section 5 we
give a geometric interpretation of St(u) in terms of homotopy classes of closed geodesics.
At the end of the paper, we give a generalized Thara formula for PGL, (Q;). This can
be a starting point of finding a generalized Thara formula of PGL, (F).

2. Thara zeta functions and Langlands L-functions.

Let F' be a non-Archimedean local field with ¢ elements in its residue field. Let Op
be the ring of integers of F' and let m be a uniformizer. Given a discrete torsion-free
cocompact subgroup I' of G(F) = PGLs(F), the quotient of the Bruhat-Tits tree of
PGLy(F) by I is a finite (¢ + 1)-regular graph Xp. The Ihara zeta function of X is
defined by

Zxp(u) = [T(1 =),
¥

where the product runs over all equivalence classes of prime cycles [c] and I(c) denotes
the length. The Thara formula asserts that when |u| is small enough, the reciprocal of
Zxr(u) converges to a polynomial so that

Zx.(u)™! = det(1 — Au + qu®)(1 — u?)7X,

where A is the adjacency operator and x is the Euler-characteristic (which is always
non-positive). The adjacency operator A is indeed a Hecke operator K ( 1 W)K and it
acts on K-fixed vectors of L?(T'\G). Here K = G(OF) is a maximal compact subgroup
of G.

On the other hand, recall that unramified irreducible representations (p, V') of G are
parametrized by the Satake parameters s,, which are semisimple conjugacy classes in
the complex dual group of G which is isomorphic to SLo(C). The Langlands L-function
associated to p is given by

L(p,u) = det(1 — s,u)"*.

Now for the representation L?(T'\G), we define its Langlands L-function as the product
of the L-functions of its irreducible unramified subrepresentations. From the Satake
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isomorphism, it is easy to see that
L(L*(T\G), ¢"?u) = det(1 — Au+ qu?)~*.
Thus, we can rewrite Thara formula as
Zxp(u) = (1 — u®)XL(L*(T\G), ¢"/?u).

Note that the right hand side of the above formula can be canonically generalized
to PGL,, and it remains to figure out the left hand side.

On the other hand, in the case that G = PG Ly(F), if we just naively let ¢ = 1, then
the building of G(a (¢ + 1)-regular tree) becomes a 2-regular tree, which is indeed an
apartment of the building. Then we shall replace G by its affine Weyl group W, which
acts on the standard apartment as automorphisms. In this case, for a discrete torsion-
free cocompact subgroup I' of W, one can define Langlands L-function of L?(I'\W) by a
similar way such that the above Thara formula still holds. Details of the above would be
covered later for the case of PGL,.

3. The building of PGL,(Q,).

According to the philosophy of [Dei05] we will denote the trivial monoid of one
element by F; = {1}. Further we write Z; = {1,7,72,...} for the free monoid of one
generator 7 and Q; = {...,771,1,7,...} for its quotient group. A module of a given
monoid A is a set with an A-action. The category of A-modules contains direct sums,
these turn out to be disjoint unions of modules. For a given natural number n consider
the Q;-module V =V, = @?:1 Q = H?Zl Q1. A lattice in V is a finitely generated
Z1-submodule L of V with the property that QL = V. Two lattices L, L’ are homothetic
if there exists a € Q; with L' = aL.

The group GL,(Q;) is by definition the automorphism group of the Qi-module
V= @?:1 Q1. Each such automorphism permutes the copies of Q; that make up V and
multiplies the inhabitants of each copy by a scalar in QQ;. The structure of this group is

GL,(Q1) = QY % Per(n),

where Per(n) denotes the permutation group in n letters. Its center is the subgroup
GL1(Q1) =2 Q; embedded diagonally. The group PGL,(Q;) is defined to be

PGL,(Q1) = GL,(Q1)/GL1(Q1).

One way to picture GL,,(Q1) is to consider all n X n matrices with exactly one non-zero
entry in every row and column and this entry be in Q;. Then PGL,(Q;) consist of
homothety classes of such matrices.

The building B of PGL,(Q;) is the (n — 1)-dimensional building defined as follows.
The set of vertices is the set of all homothety classes of lattices in V,,. For 1 <k <mn-—1,
distinct vertices [Lo], ..., [Lg] form the vertices of a k-dimensional face if, after adjusting
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the order, one has representatives satisfying Ly D L1 D --+ D Ly D 7Lg. Besides the
mere geometry of being a building, this lattice description of B adds more features, like
the order of the vertices of a face which is determined up to a cyclic permutation. First
of all, there is a standard chamber Cj given by the vertices

LO = <ela MR en—?a en—17 en>)

Ly = <61a sy En_2, 6n71776n>7

Ly = <ela ) en—ZvTen—177-en>a

L, = {e1,Teq,...,T€n_9,TCn_1,TECp).

Here e; stands the element 1 in the i-th copy of Q; in V. A general lattice in V' can be
written as

L= (1%,...,7"ey)

for some integers cy, ..., c,. We define its type to be ¢; +- -+ ¢, mod n. Note that the
group (1,...,1) x Per(n) is the stabilizer of L.

Observe that under this construction the building of PGL,,(Q) is exactly isomorphic
to any apartment of the building attached to PGL,(Qy) for a prime number p and the
group PGL, (Q1) becomes the extended affine Weyl group of PGL,,(Q)).

4. The trace formula for PGL,(Q;).

Let A C Z™ denote the subgroup spanned by the element (1,...,1). We write
A =7Z"/A and G = PGL,(Q1) & (Z"/A) x Per(n) = A x Per(n). We denote the
permutation subgroup Per(n) by K and we let I' C G denote a subgroup of finite index.
The trace formula [DE14] for the pair (G,T) says that for any f € £}(G) one has

Z Nr(m)trm(f) = Z #(L\GA)O4(f),

el ]
where L*(T\G) = @, . Nr(m)r is the decomposition into irreducibles, the sum on the
right hand side runs over all conjugacy classes [y] in I', the groups G., and I'; are the
centralizers of v in G and T, and

O,(f)= Y. flaya™)

x€G/G

is the orbital sum.

Consider the group Gg = (R"/A(R)) x Per(n). We denote the subgroup
(R"/AR)) x {1} 2 A®R by Ag.

Let Gf be the set of all (v,p) € Gg such that p(v) = v. Then Gy is the set of all
ak € Gg with a € Ag, k € K such that ak = ka.
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LEMMA 4.1.  The set Gﬁ s a set of representatives for Gg modulo Ag-conjugacy.
The set Gﬁ{ is stable under K -conjugation.

PrROOF. Let (v,p) € Gr be arbitrary and n = (z,1) € Ag. Then

n(v,p)n~! = (v+x — p(x),p).

Let Eig(p,1) denote the eigenspace of p for the eigenvalue 1, i.e., the set of all y € R™
such that p(y) = y. We shall show that for every v € R™ there exists € R™ such that
v+ a — p(z) lies in Eig(p,1). This then implies the same property modulo A. Since
p is an orthogonal transformation on R”, there is a p-stable direct sum decomposition
R" = Eig(1,p) ® Eig(1,p)* and since 1 — p is injective on orthogonal space Eig(1,p)=,
it is also surjective, i.e., the space Eig(1,p)’ equals the image of (1 — p). Hence for
any v € R™ there exists z € R™ such that v + 2 — p(z) lies in Eig(p,1) as claimed.
Therefore the set Gﬁ contains a set of representatives of Ag-conjugacy. Next assume
(v,p) € G and a € Ag with a(v,p)a™! € Gi. Then v € Eig(p, 1) and if a = (z, 1), then
v+x —p(x) € Eig(p, 1) as well, so that z — p(z) € Eig(p, 1), which implies = — p(z) = 0,
so a(v,p)a~t = (v,p) and G§ is indeed a set of representatives. O

Next we determine the unitary dual of G. The unitary dual Aof Azt is
isomorphic to T"~!, where T = {z € C : |z| = 1} is the circle group. There is a standard
way of constructing the unitary dual of a semi-direct product out of the duals of the
factors. The group K acts by conjugation on A and hence on its dual A. For a given
X € A let K, denote the stabilizer of x in the group K. For (o,V,) € I?x define V, , to
be the space of all ¢ € L?(K,V,) such that ¢(mk) = o(m)¢(k) holds for all m € K, and
all k € K. On this space we define a unitary representation m, , of G by

o (n, W)g(k) = x(kun(ku)~")d(ku).

PROPOSITION 4.2.  The unitary dual G of G is the set of all representations my o,
where x runs through a set of representatives of /AX/K and o runs through IA(X. Note that
as special case we have x = 1 in which case K, = K, so K s in a canonical way a subset
of G. Every m € G is finite-dimensional.

PROOF. Let (m, V) € G. The restriction of 7 to the abelian subgroup A is a
direct sum of characters, so Vi = €4 Vr(n), where Vi(u) is the set of all v € V;
such that m(A)v = p(\)v holds for every A € A. For some x € A we have Vy(x) # 0.
If v € Vz(x) then it is easy to see that m(G)v C D ,cf, Vr(p), where the sum runs
over the finite K-orbit of x. The isotypical space V() is acted upon by the stabilizer
group K. Let T be a unitary K,-intertwiner on this space, then T" extends to a unitary
7(G)-intertwiner T via T'(w(g)v) = 7(g)Tv. By Schur’s lemma the map T is a scalar
multiple of the identity, hence so is T and so, by the converse direction of Schur’s lemma,
the K -representation o on Vi (x) is irreducible, so that finally 7 = m, ,. Similarly one
sees that 7y , is irreducible. Furthermore, , , is finite-dimensional, so every 7 € G is
finite-dimensional.
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If on the other hand, my , = 7y o/, then x’ must lie in the K-orbit of x. By
conjugation one may assume that x = x’. Then the K-action on V__(x) and |2 (x)
must be isomorphic, which means that o = ¢”.

The group K = Per(n) acts on Ag = R"/A(R) and the closed cone

A&z{[ml,...,xn] EAR:ixy > 20> >1p}
is a set of representatives of Ag/K. Define elements a;, ..., a,_1 of the dual space by
ay(z) =nl(xy —22), ..., an_1(x) = nl(@p_1 — zp).

Then Aj is the set of all z € Ag with a;(x) > 0,...,a,—1(z) > 0. Any subset S C
{1,...,n — 1} defines a face of the cone A by

A‘S“:{xeAﬁ{:aj(:c):O & je S}

The cone Aﬁg is the disjoint union of its faces, in particular, Aa' is the open interior of

Aﬁg and Azrl 1} is the point 0.

Sn—
LEMMA 4.3.  The set GEH(A]}{ x K) contains a set of representatives for Ggr modulo
conjugation. If (a, k), (a', k') € Gg N (AL x K) are conjugate, then a = o’ and k' = pkp~*
for some p € K with p(a) = a.
Therefore, there exists unique conjugation-invariant functions ly,...,l,—1 on Ggr
such that

(v, k) = oj(v), if (v, k) € GE N (Af x K).

The functions ly,...,l,—1 are integer-valued on the subgroup G.

PrOOF. First, by Lemma 4.1, Gi{ is a set of representatives with respect to Ag-
conjugation, which is K-stable. As every element of G;{ is K-conjugate to an element of
Af x K, the first claim follows. Now let (a,k), (a/,k') € G N (Af x K) be conjugate,
say (a’, k') = (v,p)(a,k)(v,p)~t. Then

(a',K') = (p(a) +v — pkp~*(v), pkp™").

Since k(a) = a, it follows k’'(p(a)) = p(a), i.e., p(a) € Eig(k’,1). As o’ € Eig(k’,1) we
get v — pkp~1(v) = v —k'(v) € Eig(k’,1). This can only be if v — k’(v) = 0, so @’ = p(a).
But as a,a’ are both in Aj, it follows that a = o’ as claimed.

Finally, we need to show that [;(x) is integral for « € G. Write = (v,p) with
v € Z™. Then, as shown in the proof of Lemma 4.1, there exists a € R™ such that
v+ (1 —p)(a) € Eig(p,1). We have to show that this vector lies in (1/n!)Z™. For this
write p a product of disjoint cycles, after changing the numeration one may assume

p:(17...,161)(]61+1,...,]€2>-~-<k‘r,1—|—1,...,]€T).
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A basis of Eig(p, 1) is given by

v =(1,...,1,0,...,0),...,0, = (0,...,0, 1,...,1 ).
N—— S~——

k1-times kr—kyr_1-times

We claim that one can find a € R™ such that

1 1
—(1-— —7Z e 7,
v—(1-p)la) € " v DD —— v
We start with v = ey the first standard basis vector. In this case the vector a =
0, —(k1 = 1)/k1,—(k1 — 2)/k1,...,—1/k1,0...,0) will do the job. If v = e; for some

1 <j <k, thenv = pj’lej, so one can take the vector a as before and apply p?~! to
get a vector doing the job. If v is a Z-linear combination of these e;, then a can be taken
as the corresponding linear combination of the vectors one gets for the e;’s. The other
coordinates are treated in the same way and the claim follows. O

For u € C" ! and z € G we write

For u € C™ ! let

[l = max(|uil, ..., [tn_1])-

max

THEOREM 4.4 (Several variable Selberg type zeta function).  The infinite sum

Sr(u) = Z #(\Gy) u! )
(]

converges locally uniformly for ||ul| .. < 1 to a rational function in w. There exist
P1s- .-, px € T and a polynomial Q(u) such that

Q(u)
Sr(u) = .
() Hf:1 H?:_11(uj —Dij)

ProOOF. Let R C G be any set of representatives of G modulo conjugation. Define
a function f,, on G by

fulx) =

ut® e R,
0 z ¢ R.

Here we use the common convention that 09 = 1.

LemMA 4.5, If ||lul . = max(|uil, ..., |lun—1|) < 1, then f, € (*(G).
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PrROOF. By Lemma 4.3 it suffices to show that we have

S @) <,

ze(1/n!)A

where (1/n)A = (1/n!)Z™/A. Modulo the diagonal A, every z € R™ can be assumed to
have z,, = 0. Then the sum is

Z |ul|w1—wz L |un72‘a7n—2_lnfl ‘un71|$n71.

zez™ ™t
12x22>2%p 120

If all |u;| are < ¢ for some 0 < g < 1, then each summand is less that ¢**. So we have to
show that for ¢ < 1 one has Z;io cxq® < 0o, where ¢, is the number of tuples of integers
with k > 29 > - > 2,1 > 0 which is < (k + 1)"~!, whence the claim. O

We want to plug f, into the trace formula. As either side of the trace formula is
invariant under conjugation, neither depends on the choice of R. We give a special choice
for our computations.

Let S be a partition of n, i.e., S is a tuple (ny,...,n,) of natural numbers with
n=mny+---+n,. Then set

AT = {(tle(nl),...,t,«e(nr)) S Rn/A >ty > > tr},

where e(m) = (1,...,1) € R™. For x € A we write x = [t1,...,t,]s for these coordi-
nates. We define

ky k
+ _ e i .
AS,(l/n)Z_ {l:nl""’nr]s'kla---7kr€Z}~

Let Kg denote the pointwise stabilizer of A;r in K and fix a set Rg C Kg of representa-
tives of K modulo conjugation.

If F C F is an extension of groups, the F-conjugacy class of an element e of E
intersected with E, may decompose into several F-conjugacy classes. In the following
lemma we show that this is not the case for the extension G C Gg.

LEMMA 4.6. FEvery x € G is in Gg conjugate to a unique element of
+
ALz x Bs.
s
Every element of this set is Gr-conjugate to an element of G. If x,y € G are Ggr-

conjugate, then they are G-conjugate.

ProoF. The first two statements are proven similar to Lemma 4.3. For the third
suppose = = (a,k) and y = (a’, k') are Gg-conjugate, i.e., there exists (v,p) € Gr with
(a', k") = (v+p(a)—pkp~(v),pkp~!). Then v—k'(v) lies in the intersection of Eig(k’, 1)+
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and Z". Writing p as a product of disjoint cycles as in the proof of Lemma 4.3 one sees
that there exists w € Z™ such that v — k'(v) = w — k' (w). O

Let now 7 € G. Then 7 is finite-dimensional and

trw(fy) = Z u!@ tro(z).

TER

Since the functions [y, . ..,[,_1 are defined on Gy and are conjugation-invariant, we may,
in the computation assume that R is equal to the set in Lemma 4.6, although this set is
not contained in G. In the expression 7(z) for z € R~ G we then replace x with any
Gr-conjugate inside G. We then compute

tr(fu) = Z Z ul@ Z tr(ak).

5 a€Af \ kERs
Let Vo = V1@ ® Vy p, be the decomposition into A-eigenspaces, i.e., each a € A acts
on V; ; as multiplication by A} for some character A—T, a— Aj, where T is the circle
group, i.e., the set of complex numbers of absolute value one. Then tr7(f,) equals

YoX D WX (k) Vi)

i=1 +
S j aEAS,(l/n)Z k€Rs

=

LEMMA 4.7. Let V denote a Q vector space of dimensionr € N. Let Vg =V @ R
and let C C Vg be an open rational sharp cone with r sides, i.e., its closure C does not
contain a line and there exist aq, ..., «, € Hom(V,Q) such that

C={veVg:a1(v) >0,...,a.(v) >0}

Let ¥ C V be a lattice, i.e., a finitely generated subgroup which spans V. Then there
exists a finite subset F' C ¥ and aq,...,a, € X such that C N'X is the set of allv € V of
the form

v=1vp+kiar + -+ krar,

where vg € F and ky,...,k. € Ng. The vector vy and the numbers kq,..., k. € Ny are
uniquely determined by v.

PrOOF. For j =1,...,r let a; € ¥ be the unique element such that a;(a;) =0
for ¢ # j and a;(a;) is > 0 and minimal. Then a4,...,a, is a basis of V inside 3, hence
it generates a sublattice ¥/ C X. Let F' be a set of representatives of /%’ which may
be chosen such that each vy € F' lies in C, but for every j = 1,...,r the vector vy — a;
lies outside C'. Tt is clear that every v of the form given in the lemma is in C' N 3.

For the last statement, let v € C' N Y. Then there are uniquely determined vy € F,
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ki,...,k. € Z such that v =vg+ k1a1 +- - -+ k.a,. We have to show that kq,..., k. > 0.
Assume that k; < 0. Then

0 < OZj(U) = aj(’l)o) -+ k'jaj(aj) S Oéj(’l)o) — aj(aj) = ij(’l)o — (lj)

and the latter is < 0, as vg9 — a; lies outside C, a contradiction! g

We apply this lemma to V being the Q-span of AN Ag and C = Ag. We find that
tr(f) equals

m )
E E i E E ul(a0+k1a1+~-+krar)/\?o+k1a1+---+k7,a,,,

S j=1  ag€F ky,....kp=0

m 1 1
_ , l(ao) y @0 -
- ZZ‘UJ Z u /\j 1— A?lul(“l) 1— A?Tul(ar)’

S j=1 ao€F

where in the last row all sums are finite. We have shown

LEMMA 4.8. For each 7 € CAT', the map u — trw(fy), defined for small u, is a
rational function in u.

We now finish the proof of the theorem. For [lu|, .. < 1 the function f, goes into

the trace formula. This in particular means that the sum

Z #(L\Gy) O, (fu) = Sr(u)

[v]

converges locally uniformly. As the quotient I'\G is finite, the space L?(I'\G) is finite-
dimensional, so the sum » & Np(m)tro(f,) is a finite sum, i.e., the coefficient Np ()
vanishes for almost all 7. So Sr(u) is a finite sum of rational functions of the form in
Lemma 4.8. As the representation 7 is unitary, the complex numbers Aq,..., A, in the

lemma are all in T. The proof of the theorem is finished. O

5. Geometric interpretation.

In this section we assume I' to be torsion-free. It follows that I" is the fundamental
group of I'\B, where B =2 R"~! is the building of PGL,,(Q1). Then each conjugacy class
[v] gives a homotopy class of loops in T'\B, where a loop is a continuous map S' — B.
The Euclidean structure makes 5 and I'\ B a Riemannian manifold, where the geodesics
in B are straight lines.

LEMMA 5.1.  Ewvery loop on T'\B is homotopic to a closed geodesic.

This is a well known property of compact Riemannian manifolds, see for instance
[GHLO4, 2.98]. For the convenience of the reader we include a proof in this special
situation, which also works if I'\ B is non-compact and introduces some notation which
will be needed later.
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PrOOF. Take a loop in I'\B and lift it to a continuous path on B of infinite length,
which is closed by some non-trivial v € I'. This means that the path is v-stable and ~
acts on it by translation, i.e., the path is given by a continuous ¢ : R — B such that
ve(t) = ¢t +1). The element v acts on B = R"! as an affine motion. The affine
subspace P, = {z € B : d(z,yz) is minimal} is vy-stable and ~y acts as a translation by
some vector in P, followed by a linear map on the orthogonal space Pj. From this it
becomes clear that ¢ may, modulo homotopy through ~-stable maps, be assumed affine
and then moved inside P,, again by a 7-stable homotopy. As + is a translation on P,,
the claim follows. O

The group I is called a translation group, if I' C A. Since A has finite index in G,
every I' contains a finite-index translation subgroup.

We say that a geodesic in B or I'\B is a rational geodesic, if it is contained in the
1-skeleton By or (I'\B);.

LEMMA 5.2.  If the homotopy class attached to a given class [y] contains a rational
geodesic then one has 1;(y) =0 for all but one j € {1,...,n — 1}.

Conversely, if 1;(y) = 0 for all but one j € {1,...,n — 1}, then the homotopy class
attached to some power v* of v contains a rational geodesic. The minimal number k as
above is < n and if ' is a translation group, one always has k = 1.

PROOF. Suppose that the homotopy class given by [y] contains a rational geodesic
¢ in T\B. This means that there exists a lift ¢ € By and 7 induces a translation on é.
Since ~y preserves the affine structure on B, we may choose the origin in a vertex on the
rational geodesic ¢, or, which amounts to the same, conjugate v by an element on A.
Then v maps = € B to Fx +t, where F' is linear with F(t) =t, so vy € Gﬁ. Conjugating
by some k € K, we may assume t € Aﬁ{. As ¢ is rational, ¢ lies in a 1-dimensional face of
A, which is equivalent to saying [;() = 0 for all but one j.

For the converse direction, assume v = F(x) 4+t with F(t) = t. Let k be the order
of F on K = Per(n), then k is a divisor of n and 7* is a translation. As t lies in a
1-dimensional face of A%ﬁ , v closes a rational geodesic. O

6. An Ihara type formula.

The Thara zeta function of a finite, ¢ + 1 regular graph X is defined as the infinite
product

Zx(u) = [J(1 =),

C

where the product runs over all backtrackingless closed cycles ¢ and I(¢) denotes the

length. The Thara formula asserts that when |u| is small enough, Zx (u)~?

a polynomial so that

converges to

Zx(u)™! =det(1 — Au+ qu?)(1 — u?)7X,
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where A is the adjacency operator and x is the Euler-characteristic (which is always
non-positive). It has been proven in ascending order of generality in [Tha66], [Has89],
[Sun86], [Bas92]. For higher dimensional buildings, the question for a generalized Ihara
formula is still open. For the PG Ls-case see [KL14], [KLW10].

Fix the following set of generators of A,

S ={la1,...,an] € A’1£¢1,?)<(n{|ai —aj;|} =1}

As the set S has 2" — 2 elements and the group A is infinite, the Cayley graph X of
(A, S) is a (2™ — 2)-regular infinite graph. We shall show that the Cayley graph X is
isomorphic to the 1-skeleton of the building B of PGL,,(Q;) as graphs.

Recall that PGL,(Q1) = A x Per(n) acts transitively on the set of vertices By of its
building and Per(n) is the stabilizer of the vertex [Lo] where L¢ is the lattice spanned

by the standard basis ey, ..., e,. Therefore, for [ai,...,a,] € A,

[a1,...,an] — [(T%er, ..., 7% epn)]
defines a bijection between A and Bj. Moreover, by definition, two vertices
[(T%ey,...,7%¢e,)] and [(tY1ey,...,7"¢,)] form an edge if there is some integer ¢ so

that a; < b; +t < a; + 1 for all 4, which is equivalent to that [a1,...,a,] and [by, ..., by]
differ by some element of S. Therefore, the above bijection indeed gives a graph iso-
morphism between the Cayley graph X and the 1-skeleton B; of B. For convenience, we
identify X with B; in the rest of the paper.

Now for a = [ay,...,a,] € A, define its type 7(a) as a; + --- + a, mod n. Fix a
subgroup I' of A of finite index N. Then the quotient of X by I', denoted by Xr, is
the Cayley graph (A/T,S) of N vertices; it can be considered as the 1-skeleton of the
(n — 1)-dimensional simplicial torus B/T", denoted by Br. We shall assume that T only
contains type zero elements so that the type is well-defined on A/T".

In this case, the Thara formula states that

Z(Xp,u)"t =det(Iy — Au+ (2" — 3)u?Iy)(1 — u?) X

which only encodes the information of the 1-skeleton Xr but not the whole complex
Br. Therefore, we shall study a different kind of zeta function which encodes more
information about Br.

For a function f : A/T — C, define

Aif(@h) = > f(sgD),

seS,T(s)=i

call A; the type i adjacency operator of Xr.

A path (vg,...,v,) on the graph X is called a geodesic, if it is a straight line in
R™. As there are only finitely many directions of the latter which lie in the 1-skeleton,
if we defined a zeta function as the product over all closed geodesics in Xr, this zeta
function would be a finite product of functions, each of which is attached to one direction.
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We instead consider a zeta function corresponding to one direction only. A geodesic
(vo,...,vy) is called a positive geodesic if it is geodesic in R™ and 7(v;41) = 7(v;) + 1 for
1. A closed path ¢ in Xt is a positive geodesic if its lifting in X is a positive geodesic; c is
primitive if ¢ is not equal to a shorter path repeated several times. Two closed paths in
Xr are equivalent if one can be obtained from the other by changing the starting vertex.
Denote the equivalence class of a closed path ¢ by [¢]. In this paper, we shall consider
the following zeta function on X

Zi(u) = Z4(Xp,u) = [[(1 =)~
(]

where [c] runs through all equivalence classes of primitive positive closed geodesics in X.
We consider this particular zeta function, because it is the smallest building block of a zeta
function counting closed geodesics in the 1-skeleton and because of the following results
which generalize Thara’s Identity, relate this zeta function to Langlands L-functions and
to the group-theoretic several variable function Sp.

First, we will show that

THEOREM 6.1.  The infinite product Z, (Xt,u)~* converges to a polynomial which
can be expressed as

Zy(Xr,u) ' =det(Iy — Aju+ -+ (=1)" T A, 1w+ (=1)"u"Iy).

REMARK. As the Euler characteristic of the torus Br is zero, we can rewrite the
above equation as

det(Iny — Aju+ -+ (1) 1A, qu 1 + (=1)"u"Iy)

1
Zi(Xr,u)™" = (1 — um)x(B)

Now given a character p : A — C*, define the Satake parameters of p to be p; =
p(e;j), where eq, ..., e, is the standard basis of Z™. Then p; --- p, = 1 and we define the
Langlands L-function of p to be

H 1—pju 1.
Finally, we define the L-function of A/T" as

L(A/T,u) = H L(p,u)

pEA/F

Note that there is no multiplicity showing up as an exponent to the factor L(p,u) as,
since A/T" is an abelian group, characters do not come with multiplicities other than one.

THEOREM 6.2. Z;(Xrp,u) = L(A/T,u).
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PROOF OF THEOREMS 6.1 AND 6.2. Let s; be an element of S which has a rep-
resentative in Z" with all coordinates equal to zero except the i-th coordinate equal to
1. Set Sp = {s1,...,5n}, then

S = { Z s: 5" is a proper subset of SO}.

seS’
Given a vertex g + I in Xr, each positive geodesic has the form
g+T = (si+9)+T = (25 +g) + D — -
and it is primitive if its length is equal to the order of s; in A/T". Denote this order by
m;, then the contribution of such kind of positive closed geodesics to the Euler product
Z4(Xp,u) is given by
(1 —u™)N/mi = det(Iy — A(s;)u).

Here A is the regular representation of A/T". We conclude that

Z(Xp,u)™t = det(In — A(si)u).
i=1

The right hand side is clearly equal to L(A/T,u)~!. On the other hand,

R O30 B o | P 1O

S’'CSo,|S’|=i seS’ S'CSo,|S’|=i s€S’
so that
n
In = Ayt 4 (1) A qu T+ (D)™ Iy = [ U = Asiu),
i=1
which completes the proof of the two theorems. 0

7. Comparison.
We shall now compare the different types of zeta functions in the following theorem.
THEOREM 7.1. IfT is a translation group, then
Z/
Sr(z,0,...,0) = (n— 1)'Z—+(x)

+

PROOF. Let N be the index of I" in A. Then N equals the number of vertices in
I'"\B. AsT' C A we have for every v € I' that G, = AxK, and so #(I',\G,) = N#K,. In
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the sum Sp(u) = N >, # K., u!™ we find that if u = (,0,...,0) there will only survive
those summands with ly(y) = --- = l,_1(7) = 0, i.e., those v which are in G conjugate
to an element of the form (c,0,...,0) for some ¢ > 0. The K-centralizer K, of such an
element is isomorphic to Per(n — 1), hence #K, = (n — 1)!. Such a « closes a geodesic
¢ in the 1-skeleton and the number of vertices in that geodesic equals I(vg), where g is
the underlying primitive element. We also write ¢g for the underlying primitive geodesic.
The union of all geodesics inside the 1-skeleton of T'\ B which are homotopic to ¢ contains
all vertices of T'\B, hence, if k is their number, one has N = ki(vyo) = kl(cp), or

Sr(z,0,...,0) = (n—1)! Zl(co)xl(C)a

where the sum runs over all positive closed geodesics in I'\B. On the other hand one has
the following identities of formal power series,

z,

oo (Il )

co

(257

Co j:1

ZZ(CO)ixl(Co)j — Zl(co)xl((z). O
co j=1 .
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