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Long time existence of classical solutions for the 3D

incompressible rotating Euler equations

By Ryo Takada
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Abstract. We consider the initial value problem of the 3D incompress-
ible rotating Euler equations. We prove the long time existence of classical
solutions for initial data in Hs(R3) with s > 5/2. Also, we give an upper
bound of the minimum speed of rotation for the long time existence when
initial data belong to H7/2(R3).

1. Introduction.

Let us consider the initial value problem of the rotating Euler equations in R3,
describing the motion of perfect incompressible fluids in the rotational framework.





∂u

∂t
+ Ωe3 × u + (u · ∇)u +∇p = 0 in (0,∞)× R3,

div u = 0 in (0,∞)× R3,

u(0, x) = φ(x) in R3.

(EΩ)

Here, u = (u1(t, x), u2(t, x), u3(t, x)) and p = p(t, x) denote the velocity field and the
pressure of the fluids, respectively, while φ = (φ1(x), φ2(x), φ3(x)) denotes the given
initial velocity field satisfying div φ = 0. The real constant Ω ∈ R represents the speed
of rotation of the fluids around the vertical unit vector e3 := (0, 0, 1).

In this manuscript, we prove the long time existence of classical solutions to (EΩ) for
initial data in Hs(R3) with s > 5/2 when the speed of rotation is sufficiently high. More
precisely, we shall show that for given initial velocity φ ∈ Hs(R3) with s > 5/2 satisfying
div φ = 0 and for given finite time T , there exists a positive number Ωφ,T such that the
3D rotating Euler equation admits a unique classical solution on the time interval [0, T ]
provided |Ω| ≥ Ωφ,T . Furthermore, we shall give an upper bound of the minimum speed
of rotation Ωφ,T which ensures the long time existence to (EΩ) in terms of the norm of
initial data and the given time T when initial data belong to H7/2(R3). This also gives
a lower bound for the maximal existence time of the solution to (EΩ) in terms of the
rotating speed |Ω|.

Before stating our results, we summarize the known results for the existence of
classical solutions to the Euler equations for both non-rotating Ω = 0 and rotating Ω ∈ R
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cases. Let P := (δjk +RjRk)1≤j,k≤3 be the Helmholtz projection onto the divergence-free
vector fields, where Rj denotes the Riesz transform in R3. Applying the projection P
to both sides of the first equation of (EΩ), we obtain the following abstract evolution
equations.





∂u

∂t
+ ΩP(e3 × u) + P(u · ∇)u = 0 in (0,∞)× R3,

div u = 0 in (0,∞)× R3,

u(0, x) = φ(x) in R3.

(E′Ω)

Let us first review the local existence results on the original Euler equations for
Ω = 0 in R3. Kato [18] proved that for given integer m ∈ Z with m > 5/2 and
for given divergence-free initial velocity φ ∈ Hm(R3), there exists a positive time
T = T (m, ‖φ‖Hm) such that (E′0) possesses a unique classical solution u in the class
C([0, T ];Hm(R3)) ∩ C1([0, T ];Hm−1(R3)). Kato–Ponce [20] extended this result to the
Sobolev spaces W s,p(R3) of the fractional order for s > 3/p + 1, 1 < p < ∞. Chae
[8] and Chen–Miao–Zhang [12] gave further extensions to the Triebel–Lizorkin spaces
F s

p,q(R3) with s > 3/p+1, 1 < p, q < ∞ and the Besov spaces Bs
p,q(R3) with s > 3/p+1,

1 < p < ∞, 1 ≤ q ≤ ∞ or s = 3/p + 1, 1 < p < ∞, q = 1. The currently-known best
result on the local existence was given by Pak–Park [24] in the Besov space B1

∞,1(R3).
For the high-speed rotation case |Ω| À 1, Dutrifoy [14], [15] showed the long time

existence of classical solutions for the initial data in Hs(R3) with s > 7/2 or B
7/2
2,1 (R3),

and proved the asymptotics of solutions to vortex patches or Yudovich solutions as the
Rossby number goes to zero for some particular initial data. Similar results are obtained
for the quasigeostrophic systems by Dutrifoy [14] and Charve [9]. Koh–Lee–Takada [21]
obtained the optimal range of the Strichartz estimate for the linear propagator associated
with the Coriolis force, and showed the long time existence results for the initial data
in Hs(R3) with s > 7/2. For the periodic setting in T3, we refer to Babin–Mahalov–
Nicolaenko [1], [2].

Here we remark that the local existence results for the original Euler equations (E′0)
were obtained in function spaces which are embedded in C1(R3), while the long time
existence results for the rotating Euler equations (E′Ω) have required more regular class
of initial data which are embedded in C2(R3). This is due to the loss of derivative in the
nonlinear term (u · ∇)u. In the non-rotating case (E′0), such a loss of derivative can be
recovered by the classical energy method and the commutator estimates [8], [18], [20]. In
the high-speed rotating case (E′Ω), the key ingredient for the proof of long time existence
results is the Strichartz estimate for the linear propagator e±iΩt(D3/|D|) generated by the
Coriolis force Ωe3 × u [9], [11], [14], [15], [21]. However, in the energy methods, we
cannot derive such a dispersion effect of the Coriolis force because of its skew-symmetry

∫

R3
Ωe3 × u(t, x) · u(t, x)dx = 0.

Also, the smoothing property of the propagator e±iΩt(D3/|D|) is not enough to recover
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the loss of derivative in the nonlinear term [21, Corollary 1.2].
In this paper, we relax the smoothness conditions for initial data, and prove the long

time existence of classical solutions to the high-speed rotating Euler equations (E′Ω) for
initial data in Hs(R3) with s > 5/2, which is the same regularity as the local existence
results for the original Euler equations (E′0).

Our first result reads as follows:

Theorem 1.1. Let s ∈ R satisfy s > 5/2. Then for every φ ∈ Hs(R3) satisfying
div φ = 0 and for every 0 < T < ∞, there exists a positive constant Ωφ,T depending on
s, T and φ such that if |Ω| ≥ Ωφ,T then (E′Ω) possesses a unique classical solution u in
the class

u ∈ C([0, T ];Hs(R3)) ∩ C1([0, T ];Hs−1(R3)).

Remark 1.2. Theorem 1.1 states that the long time existence of classical solutions
to the rotating Euler equations (E′Ω) can be proved for the initial velocity in Hs(R3)
with s > 5/2. This regularity condition corresponds to the local existence results for the
original Euler equations. From the viewpoint of smoothness assumptions for initial data,
Theorem 1.1 gives an improvement of the results in [14], [15], [21].

In the proof of Theorem 1.1, we adapt the regularization and the approximation
arguments in Kato–Lai [19] and Bona–Smith [5], where they proved the continuous
dependences of solutions on initial data for the original Euler equations and the KdV
equations, respectively. Given φ ∈ Hs(R3) with s > 5/2 and 0 < ε ≤ 1, let φε be
an regularization of φ by an approximate identity. By the previous result [21], we can
construct a solution uε with uε(0) = φε on the given time interval [0, T ] if |Ω| ≥ Ωφε,T .
Then, the difference vε = uε − u of uε and the local solution u with u(0) = φ satisfies

∂tvε + ΩP(e3 × vε) + P(vε · ∇)uε + P(u · ∇)vε = 0 (1.1)

with vε(0) = φε−φ on some local time interval. We shall show that the Hs-norm of vε can
be taken arbitrarily small provided that the parameter ε > 0 is small enough depending
only on the given data s, T and φ. Then, the local solution u has a uniform Hs-bound,
and can be continued to the given time interval [0, T ]. Here, we should remark that
similar regularization argument has already been used in Babin–Mahalov–Nicolaenko [3]
for the 3D rotating Boussinesq equations in the periodic setting. However, the proof in
this paper is not the same as in [3], and gives an alternative one. We establish an a priori
bound for smooth solutions to (E′Ω), and give detailed analyses for how to recover the
loss of derivative in the convection term (vε ·∇)uε in (1.1) and how to continue the local
solution u to the given time interval [0, T ].

Besides the smoothness condition on the initial data, we shall consider the relation
between the given data (φ, T ) and the speed of rotaion Ωφ,T which ensures the long time
existence of solutions to (E′Ω). In other words, we are interested in a characterization of
a lower bound for the maximal existence time TΩ of the solution to (E′Ω) in terms of the
speed of rotation |Ω|. Dutrifoy [15] considered vortex patches or Yudovich solutions and



582 R. Takada

gave lower bounds of maximal existence times by TΩ & log log log |Ω| or TΩ & log log |Ω|,
respectively. Koh–Lee–Takada [21] established a single logarithmic lower bound TΩ &
log |Ω| by using a single exponential estimate for the blow-up criterion. Here we remark
that in those results [15], [21] the initial data have to belong to the regular Sobolev
spaces Hs(R3) with s > 7/2. Unfortunately, in Theorem 1.1, it seems to be difficult to
characterize a upper bound of the minimum speed of rotation in terms of the norm of
initial data and the given time T because of the regularization and the approximation
arguments. In this paper, we shall characterize such a relation between the given data
(φ, T ) and the speed of rotation Ωφ,T for the initial data φ in the Sobolev space H7/2(R3).

Our second result reads as follows:

Theorem 1.3. For every φ ∈ H7/2(R3) satisfying div φ = 0 and for every 0 <

T < ∞, there exists a positive constant Ωφ,T depending on T and ‖φ‖H7/2 such that if
|Ω| ≥ Ωφ,T then (E′Ω) possesses a unique classical solution u in the class

u ∈ C([0, T ];H7/2(R3)) ∩ C1([0, T ];H5/2(R3)). (1.2)

In particular, let Ω∗φ,T be the infimum of the set of |Ω| ≥ 0 such that (E′Ω) admits a
unique classical solution u in the class (1.2). Then, for 2 < q < ∞ there exist a positive
absolute constant C∗ = C∗(7/2) and a positive constant Cq depending on q such that

0 < Ω∗φ,T ≤ CqT
q−1

{‖φ‖H5/2 + T (‖φ‖H7/2 + e)C∗eC∗T
}q

. (1.3)

Remark 1.4. It follows from the characterization (1.3) in Theorem 1.3 that the
maximal existence time TΩ ≥ 1 has a lower bound

TΩ ≥
C ′q

log(‖φ‖H7/2 + e)
log

( |Ω|
C ′′q

)

for sufficiently high speed of rotation |Ω| with some positive constants C ′q and C ′′q de-
pending on q. This single logarithmic order is due to the use of the logarithmic Sobolev
inequality for the blow-up criterion (see Lemma 2.3 and Lemma 6.1).

The key ingredient of the proof of Theorem 1.3 is a refined blow-up criterion in
BMO(R3) or Ḃ0

∞,∞(R3) of the Beale–Kato–Majda and the Kozono–Taniuchi type [4],
[22], [23]. Roughly speaking, in the proof of (1.3), there appears loss of 3/2 + 1 + 1
derivatives because of the Strichartz estimate

∥∥∆je
±iΩt(D3/|D|)∥∥

Lq
t L∞x

. |Ω|−1/q23j/2‖∆jf‖L2
x

(see Corollary 5.3), the blow-up criterion for the vorticity ∇× u and the nonlinear term
(u·∇)u, respectively. Hence, we needed 7/2+ regularity due to the continuous embedding
B0+
∞,2(R3) ↪→ L∞(R3). The refined embeddings Ḃ0

∞,2(R3) ↪→ BMO(R3) ↪→ Ḃ0
∞,∞(R3)

allow us to treat the critical case H7/2(R3).

This paper is organized as follows. In Section 2, we recall the definitions of function
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spaces and the bilinear and the commutator estimates in these spaces. In Section 3, we
establish an a priori estimate for the solution of (E′Ω) with smooth initial data, which
is one of the key ingredients in the proof of Theorem 1.1. In Section 4, we present
the proof of Theorem 1.1. In Section 5, we derive the solution formula for the linear
vorticity equations and recall the linear estimates. In Section 6, we state the refined
blow-up criterion of Kozono–Taniuchi type for the local solutions to (E′Ω). In Section 7,
we present the proof of Theorem 1.3. In Section 8, we give an alternative derivation of
the solution formula to the vorticity equations as an Appendix.

Throughout this paper, we denote by C the constants which may differ from line to
line. In particular, C = C(·, . . . , ·) will denote the constant which depends only on the
quantities appearing in parentheses. For A,B ≥ 0, A . B means that there exists some
positive constant C such that A ≤ CB. Also, A & B is defined in the same way. A ∼ B

means that A . B and A & B.

2. Preliminaries.

We first introduce some function spaces. We denote by C∞0,σ(R3) the set of all C∞

vector functions v = (v1, v2, v3) with compact support in R3 satisfying div v = 0. L2
σ(R3)

denotes the closure of C∞0,σ(R3) with respect to the L2(R3)-norm ‖·‖L2 . Let S (R3) be the
Schwartz class, and let S ′(R3) be the space of tempered distributions. For f ∈ S (R3),
the Fourier transform and the inverse Fourier transform are defined by

F [f ](ξ) = f̂(ξ) :=
∫

R3
e−ix·ξf(x)dx, ξ ∈ R3,

F−1[f ](x) :=
1

(2π)3

∫

R3
eix·ξf(ξ)dξ, x ∈ R3,

respectively. Next, we recall the definition of the Littlewood–Paley decomposition. Let
ϕ0 be a function in S (R3) satisfying 0 ≤ ϕ̂0(ξ) ≤ 1 for all ξ ∈ R3, supp ϕ̂0 ⊂ {ξ ∈ R3

∣∣
1/2 ≤ |ξ| ≤ 2} and

∑

j∈Z
ϕ̂j(ξ) = 1 for all ξ ∈ R3 \ {0},

where ϕj(x) := 23jϕ0(2jx). We set χ̂(ξ) := 1 − ∑
j≥1 ϕ̂j(ξ). Let {∆j}j∈Z be the

Littlewood–Paley operator defined by ∆jf := ϕj ∗ f for f ∈ S ′(R3). Then, we re-
call the definitions of the inhomogeneous and the homogeneous Besov spaces.

Definition 2.1. ( i ) For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Besov
space Bs

p,q(R3) is defined to be the set of all tempered distributions f ∈ S ′(R3)
such that

‖f‖Bs
p,q

:= ‖χ ∗ f‖Lp +
∥∥{2sj‖∆jf‖Lp}∞j=1

∥∥
`q < ∞.

( ii ) For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃs
p,q(R3) is defined to
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be the set of all tempered distributions f ∈ S ′(R3) such that

‖f‖Ḃs
p,q

:=
∥∥{2sj‖∆jf‖Lp}j∈Z

∥∥
`q < ∞.

Let Hs(R3) denote the Sobolev space of order s ∈ R with the inner product

〈f, g〉Hs :=
∫

R3
(1−∆)s/2f(x)(1−∆)s/2g(x)dx =

1
(2π)3

∫

R3
(1 + |ξ|2)sf̂(ξ)ĝ(ξ)dξ

and the norm ‖f‖Hs :=
√
〈f, f〉Hs . For s > 0, it is known that the norm equivalence

‖f‖Hs ∼ ‖f‖L2 + ‖f‖Ḣs (2.1)

holds, where ‖ · ‖Ḣs denotes the homogeneous Sobolev semi-norm defined by

‖f‖Ḣs := ‖f‖Ḃs
2,2

=
( ∑

j∈Z
22sj‖∆jf‖2L2

)1/2

.

We end this section by preparing some key inequalities and estimates for the proofs of
Theorem 1.1 and Theorem 1.3. We first recall the Gronwall inequality and the logarithmic
Sobolev inequality of the Brezis–Gallouet–Wainger type [6], [7].

Lemma 2.2. Let 0 < T < ∞, 0 ≤ A < ∞, and let f, g and h be non-negative,
continuous functions on [0, T ] satisfying

f(t) ≤ A +
∫ t

0

g(s)ds +
∫ t

0

h(s)f(s)ds

for all t ∈ [0, T ]. Then it holds

f(t) ≤ Ae
R t
0 h(τ)dτ +

∫ t

0

e
R t

s
h(τ)dτg(s)ds

for all t ∈ [0, T ].

Lemma 2.3 ([22], [23]). For s > 3/2, there exists a positive constant C = C(s)
such that

‖f‖L∞ ≤ C
{
1 + ‖f‖Ḃ0∞,∞

(1 + log+ ‖f‖Hs)
}

holds for all f ∈ Hs(R3), where log+ a := max{log a, 0} for a > 0.

Next, we recall several bilinear and commutator estimates in the Sobolev spaces.

Lemma 2.4 ([8], [10], [13]). For s > 0, there exists a positive constant C = C(s)
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such that

‖fg‖Ḣs ≤ C(‖f‖L∞‖g‖Ḣs + ‖g‖L∞‖f‖Ḣs)

holds for all f, g ∈ L∞(R3) ∩ Ḣs(R3).

Lemma 2.5 ([12], [25]).

(1) For s > 0, there exists a positive constant C = C(s) such that

( ∑

j∈Z
22sj

∥∥[u · ∇,∆j ]f
∥∥2

L2

)1/2

≤ C(‖∇u‖L∞‖f‖Ḣs + ‖∇f‖L∞‖u‖Ḣs)

for all u, f ∈ Ẇ 1,∞(R3) ∩ Ḣs(R3) with div u = 0.
(2) For s > −1, there exists a positive constant C = C(s) such that

( ∑

j∈Z
22sj

∥∥[u · ∇,∆j ]f
∥∥2

L2

)1/2

≤ C(‖∇u‖L∞‖f‖Ḣs + ‖f‖L∞‖u‖Ḣs+1)

for all f ∈ L∞(R3) ∩ Ḣs(R3) and u ∈ Ẇ 1,∞(R3) ∩ Ḣs+1(R3) with div u = 0.

Lemma 2.6 ([20]). For s ≥ 0, there exists a positive constant C = C(s) such that

‖(1−∆)s/2(fg)− f(1−∆)s/2g‖L2 ≤ C(‖∇f‖L∞‖g‖Hs−1 + ‖g‖L∞‖f‖Hs)

holds for all f ∈ Ẇ 1,∞(R3) ∩Hs(R3) and g ∈ L∞(R3) ∩Hs−1(R3).

Finally, we introduce a mollifier Jε of the Friedrichs type in R3, and state some
properties of Jε. For the proof, we refer to [5, Lemma 5] (see also [19, (7.2)]).

Lemma 2.7. Let Gt(x) be the Gauss kernel defined by

Gt(x) :=
1

(4πt)3/2
exp

{
− |x|2

4t

}
t > 0, x ∈ R3.

For 0 < ε ≤ 1 and f ∈ S ′(R3), let Jε be the mollifier defined by Jεf := Gε2 ∗ f . Then,
the followings hold:

(1) For all 0 < ε ≤ 1 and all f ∈ Hs(R3) with s ∈ R, there hold

‖Jεf‖Hs ≤ ‖f‖Hs , ‖Jεf‖Hs+1 ≤ 1
ε
‖f‖Hs .

(2) For every f ∈ Hs(R3) with s ∈ R, there hold

lim
ε→0

‖Jεf − f‖Hs = lim
ε→0

1
ε
‖Jεf − f‖Hs−1 = 0.
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3. A priori estimate for the solution with smooth initial data.

In this section, we shall establish an a priori estimate for the solution to (E′Ω) on
the given time interval [0, T ] when the initial velocity belongs to Hs+1(R3) with s > 5/2.
This is one of the key ingredient for the treatment of the convection term (vε · ∇)uε in
the perturbed system (1.1). More precisely, we shall prove the following.

Theorem 3.1. Let s ∈ R satisfy s > 5/2. Then for every φ ∈ Hs+1(R3) with
div φ = 0 and for every 0 < T < ∞, there exists a positive constant Ωφ,T depending on
s, T and ‖φ‖Hs+1 such that if |Ω| ≥ Ωφ,T , then (E′Ω) possesses a unique classical solution
u satisfying

u ∈ C([0, T ];Hs+1(R3)) ∩ C1([0, T ];Hs(R3)).

Furthermore, for every s ≤ r ≤ s + 1 there exists positive constant Cr such that

sup
0≤t≤T

‖u(t)‖Hr ≤ Cr‖φ‖Hr . (3.1)

Proof. By [21, Theorem 1.4], we see that there exists a positive constant Ω0
φ,T

depending on s, T, ‖φ‖Hs+1 such that if |Ω| ≥ Ω0
φ,T , then (E′Ω) possesses a unique classical

solution u on the time interval [0, T ] in the class

u ∈ C([0, T ];Hs+1(R3)) ∩ C1([0, T ];Hs(R3)).

Hence it remains to prove the a priori estimate (3.1). Taking the L2 inner product of
(E′Ω) with u, we have

1
2

d

dt
‖u(t)‖2L2 = 0

by the skew-symmetry of e3 × u and the divergence-free condition. Hence we have

‖u(t)‖L2 = ‖φ‖L2 (3.2)

for all 0 ≤ t ≤ T . Next, applying the Littlewood–Paley projection operator ∆j to both
sides of (E′Ω), we have

∂t∆ju + ΩP(e3 ×∆ju) + P∆j(u · ∇)u = 0. (3.3)

Taking the L2 inner product of (3.3) with ∆ju, we see that

1
2

d

dt
‖∆ju(t)‖2L2 + 〈∆j(u(t) · ∇)u(t),∆ju(t)〉L2 = 0. (3.4)

Since it holds
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∫

R3
(u(t, x) · ∇)∆ju(t, x) ·∆ju(t, x)dx = 0

by integration by parts and the divergence-free condition, the Schwartz inequality yields
that

∣∣〈∆j(u(t) · ∇)u(t),∆ju(t)〉L2

∣∣

=
∣∣〈∆j(u(t) · ∇)u(t)− (u(t) · ∇)∆ju(t),∆ju(t)〉L2

∣∣

≤ ∥∥[u(t) · ∇,∆j ]u(t)
∥∥

L2‖∆ju(t)‖L2 . (3.5)

Substituting (3.5) into (3.4), we have

1
2

d

dt
‖∆ju(t)‖2L2 ≤

∥∥[u(t) · ∇,∆j ]u(t)
∥∥

L2‖∆ju(t)‖L2 ,

which yields that

‖∆ju(t)‖L2 ≤ ‖∆jφ‖L2 +
∫ t

0

∥∥[u(τ) · ∇,∆j ]u(τ)
∥∥

L2dτ. (3.6)

Multiplying both sides of (3.6) by 2rj and then taking the `2(Z)-norm, from the
Minkowski inequality and Lemma 2.5 (1) we have

‖u(t)‖Ḣr ≤ ‖φ‖Ḣr +
∫ t

0

( ∑

j∈Z
22rj

∥∥[u(τ) · ∇,∆j ]u(τ)
∥∥2

L2

)1/2

dτ

≤ ‖φ‖Ḣr + Cr

∫ t

0

‖∇u(τ)‖L∞‖u(τ)‖Ḣrdτ (3.7)

with some positive constant Cr = C(r). Combining (3.2) and (3.7) and using the norm
equivalence (2.1), we obtain

‖u(t)‖Hr ≤ Cr‖φ‖Hr + Cr

∫ t

0

‖∇u(τ)‖L∞‖u(τ)‖Hrdτ

with some positive constant Cr = C(r). Hence the Gronwall inequality yields that

‖u(t)‖Hr ≤ Cr‖φ‖Hr exp
{

Cr

∫ t

0

‖∇u(τ)‖L∞dτ

}
(3.8)

for all 0 ≤ t ≤ T . Now, let us set

V (t) :=
∫ t

0

‖∇u(τ)‖L∞dτ, 0 ≤ t ≤ T.
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It follows from [21, (8.10) in page 743] that for 2 < q < ∞ there exist positive constants
Cs,q and Cs such that

V (t) ≤ Cs,qt
1−1/q|Ω|−1/q‖φ‖Hs+1

(
1 + ‖φ‖Hs+1teCsV (t)

)
(3.9)

for all 0 ≤ t ≤ T . Let us define

XT := {t ∈ [0, T ] | V (t) ≤ 1},
T∗ := sup XT .

We shall prove that T∗ = T provided the speed of rotation is sufficiently high. Assume
that T∗ < T . We take a sequence {Tj}∞j=1 ⊂ XT such that Tj ↗ T∗ as j → ∞. Since
T∗ < T and u belongs to C([0, T ];Hs+1(R3)), V (t) is uniformly continuous on [0, T∗] and
it holds that

V (T∗) = lim
j→∞

V (Tj) ≤ 1. (3.10)

Take a sufficiently large Ω ∈ R \ {0} so that |Ω| ≥ Ω0
φ,T and

|Ω|1/q ≥ 2Cs,qT
1−1/q‖φ‖Hs+1

(
1 + ‖φ‖Hs+1TeCs

)
. (3.11)

Then, since T∗ < T , by (3.9), (3.10) and (3.11) we have

V (T∗) ≤ Cs,qT
1−1/q
∗ |Ω|−1/q‖φ‖Hs+1

(
1 + ‖φ‖Hs+1T∗eCsV (T∗)

)

≤ Cs,qT
1−1/q|Ω|−1/q‖φ‖Hs+1

(
1 + ‖φ‖Hs+1TeCs

)

≤ 1
2
.

Hence one can take S such that T∗ < S < T and V (S) ≤ 1, which contradicts the
definition of T∗. Hence we have T∗ = T provided the speed of rotation is high enough.
Therefore, since u ∈ C([0, T ];Hs+1(R3)), we obtain

∫ T

0

‖∇u(τ)‖L∞dτ = lim
t↗T

V (t) ≤ 1. (3.12)

Substituting (3.12) into (3.8), we obtain the desired estimate. ¤

4. Proof of Theorem 1.1.

We first recall the uniform local existence theorem with respect to Ω ∈ R.

Theorem 4.1 ([21, Theorem 1.3]). Let s ∈ R satisfy s > 5/2. Then for every
M > 0 and for every φ ∈ Hs(R3) satisfying div φ = 0 and ‖φ‖Hs ≤ M , there exists
a positive time T0 = T0(s,M) depending only on s and M such that (E′Ω) possesses a
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unique classical solution u for all Ω ∈ R satisfying

u ∈ C([0, T0];Hs(R3)) ∩ C1([0, T0];Hs−1(R3)).

In particular, there exist positive constants C0 = C0(s) and C1 = C1(s) such that

T0 ≥ C0

M
, sup

0≤t≤T0

‖u(t)‖Hs ≤ C1‖φ‖Hs . (4.1)

Now we are ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let s > 5/2, and let φ ∈ Hs(R3) with div φ = 0. Also,
let 0 < T < ∞ be the given finite time. We use the regularization of the data by a family
{Jε}0<ε≤1 of mollifiers defined in Lemma 2.7. For 0 < ε ≤ 1, we put φε := Jεφ. We
remark that this small parameter ε is determined later depending only on the given data
s, T and φ. By Lemma 2.7, we see that φε ∈ Hs+1(R3) and

‖φε‖Hs ≤ ‖φ‖Hs , ‖φε‖Hs+1 ≤ 1
ε
‖φ‖Hs .

Hence it follows from Theorem 3.1 that for every 0 < ε ≤ 1, there exists a positive
constant Ωε,T depending on s, T and ‖φε‖Hs+1 such that if |Ω| ≥ Ωε,T then there exists
a unique classical solution uε to (E′Ω) with uε(0) = φε in the class

uε ∈ C([0, T ];Hs+1(R3)) ∩ C1([0, T ];Hs(R3)).

Furthermore, it follows from (3.1) and Lemma 2.7 (1) that there exists positive constant
Cs such that there hold

sup
0≤t≤T

‖uε(t)‖Hs ≤ Cs‖φ‖Hs , (4.2)

sup
0≤t≤T

‖uε(t)‖Hs+1 ≤ Cs

ε
‖φ‖Hs . (4.3)

Also, since φ ∈ Hs(R3), it follows from Theorem 4.1 that there exists a positive time
T0 = T0(s, ‖φ‖Hs) such that (E′Ω) possesses a unique classical solution u in the class

u ∈ C([0, T0];Hs(R3)) ∩ C1([0, T0];Hs−1(R3))

for all Ω ∈ R, and there exists a positive constant C1 = C1(s) such that

sup
0≤t≤T0

‖u(t)‖Hs ≤ C1‖φ‖Hs . (4.4)

If T0 ≥ T , then the proof is completed. We shall consider the case T0 < T and prove
that the local solution u on [0, T0] can be extended to the solution of (E′Ω) on the given
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time interval [0, T ] when |Ω| is sufficiently large.
Let us set vε := uε − u and |Ω| ≥ Ωε,T . Then vε solves





∂tvε + ΩP(e3 × vε) + P(vε · ∇)uε + P(u · ∇)vε = 0,

div vε = 0,

vε(0) = φε − φ

(4.5)

on the local time interval [0, T0]. Let us derive the estimates for vε. Taking the L2 inner
product of (4.5) with vε, we have

1
2

d

dt
‖vε(t)‖2L2 + 〈(vε(t) · ∇)uε(t), vε(t)〉L2 = 0. (4.6)

The Schwartz inequality gives that

|〈(vε(t) · ∇)uε(t), vε(t)〉L2 | ≤ ‖(vε(t) · ∇)uε(t)‖L2‖vε(t)‖L2

≤ ‖∇uε(t)‖L∞‖vε(t)‖2L2 . (4.7)

Substituting (4.7) into (4.6), we have

1
2

d

dt
‖vε(t)‖2L2 ≤ ‖∇uε(t)‖L∞‖vε(t)‖2L2 ,

which yields with the aid of the continuous embedding Hs(R3) ↪→ C1(R3) that

‖vε(t)‖L2 ≤ ‖vε(0)‖L2 +
∫ t

0

‖∇uε(τ)‖L∞‖vε(τ)‖L2dτ

≤ ‖vε(0)‖L2 + C

∫ t

0

‖uε(τ)‖Hs‖vε(τ)‖L2dτ (4.8)

for all 0 ≤ t ≤ T0 with some positive constant C = C(s). Next, applying the Littlewood–
Paley projection operator ∆j to both sides of (4.5), we have

∂t∆jvε + ΩP(e3 ×∆jvε) + P∆j(vε · ∇)uε + P∆j(u · ∇)vε = 0. (4.9)

Taking the L2 inner product of (4.9) with ∆jvε, we have

1
2

d

dt
‖∆jvε(t)‖2L2 + 〈∆j(vε(t) · ∇)uε(t),∆jvε(t)〉L2

+ 〈∆j(u(t) · ∇)vε(t),∆jvε(t)〉L2 = 0.

(4.10)

For the second term of (4.10), it follows from the Schwartz inequality that

|〈∆j(vε(t) · ∇)uε(t),∆jvε(t)〉L2 | ≤ ‖∆j(vε(t) · ∇)uε(t)‖L2‖∆jvε(t)‖L2 . (4.11)
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For the third term of (4.10), since it holds

∫

R3
(u(t, x) · ∇)∆jvε(t, x) ·∆jvε(t, x)dx = 0

by the divergence-free condition, we see that

|〈∆j(u(t) · ∇)vε(t),∆jvε(t)〉L2 |
= |〈∆j(u(t) · ∇)vε(t)− (u(t) · ∇)∆jvε(t),∆jvε(t)〉L2 |
≤

∥∥[u(t) · ∇,∆j ]vε(t)
∥∥

L2‖∆jvε(t)‖L2 . (4.12)

Substituting (4.11) and (4.12) into (4.10), we have

1
2

d

dt
‖∆jvε(t)‖2L2 ≤ ‖∆j(vε(t) · ∇)uε(t)‖L2‖∆jvε(t)‖L2

+
∥∥[u(t) · ∇,∆j ]vε(t)

∥∥
L2‖∆jvε(t)‖L2 ,

which yields that

‖∆jvε(t)‖L2 ≤ ‖∆jvε(0)‖L2 +
∫ t

0

‖∆j(vε(τ) · ∇)uε(τ)‖L2dτ

+
∫ t

0

∥∥[u(τ) · ∇,∆j ]vε(τ)
∥∥

L2dτ (4.13)

for all 0 ≤ t ≤ T0. Multiplying both sides of (4.13) by 2(s−1)j and then taking the
`2(Z)-norm, we have

‖vε(t)‖Ḣs−1 ≤ ‖vε(0)‖Ḣs−1 +
∫ t

0

‖(vε(τ) · ∇)uε(τ)‖Ḣs−1dτ

+
∫ t

0

( ∑

j∈Z
22(s−1)j

∥∥[u(τ) · ∇,∆j ]vε(τ)
∥∥2

L2

)1/2

dτ. (4.14)

For the second term of the right hand side of (4.14), it follows from Lemma 2.4 and the
continuous embeddings Hs−1(R3) ↪→ C(R3) and Hs(R3) ↪→ C1(R3) that

‖(vε · ∇)uε‖Ḣs−1 ≤ C(‖vε‖L∞‖∇uε‖Ḣs−1 + ‖∇uε‖L∞‖vε‖Ḣs−1)

≤ C‖uε‖Hs‖vε‖Hs−1 (4.15)

with some positive constant C = C(s). For the third term of the right hand side of (4.14),
it follows from Lemma 2.5 (2) and the continuous embeddings Hs−1(R3) ↪→ C(R3) and
Hs(R3) ↪→ C1(R3) that
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( ∑

j∈Z
22(s−1)j

∥∥[u · ∇,∆j ]vε

∥∥2

L2

)1/2

≤ C(‖∇u‖L∞‖vε‖Ḣs−1 + ‖vε‖L∞‖u‖Ḣs)

≤ C‖u‖Hs‖vε‖Hs−1 (4.16)

with some positive constant C = C(s). Substituting (4.15) and (4.16) into (4.14), we
have

‖vε(t)‖Ḣs−1 ≤ ‖vε(0)‖Ḣs−1 + C

∫ t

0

(‖uε(τ)‖Hs + ‖u(τ)‖Hs)‖vε(τ)‖Hs−1dτ. (4.17)

Combining (4.8) and (4.17), by the norm equivalence (2.1) we see that

‖vε(t)‖Hs−1 ≤ C‖vε(0)‖Hs−1 + C

∫ t

0

(‖uε(τ)‖Hs + ‖u(τ)‖Hs)‖vε(τ)‖Hs−1dτ (4.18)

for all 0 ≤ t ≤ T0 with some positive constant C = C(s). Hence by (4.2), (4.4) and
(4.18), we have

‖vε(t)‖Hs−1 ≤ Cs‖vε(0)‖Hs−1 + Cs‖φ‖Hs

∫ t

0

‖vε(τ)‖Hs−1dτ.

Hence the Gronwall inequality yields that

sup
0≤t≤T0

‖vε(t)‖Hs−1 ≤ Cs‖Jεφ− φ‖Hs−1eCsT‖φ‖Hs . (4.19)

Next, let us derive the Hs-estimate. Multiplying both sides of (4.13) by 2sj and then
taking the `2(Z)-norm, we have

‖vε(t)‖Ḣs ≤ ‖vε(0)‖Ḣs +
∫ t

0

‖(vε(τ) · ∇)uε(τ)‖Ḣsdτ

+
∫ t

0

( ∑

j∈Z
22sj

∥∥[u(τ) · ∇,∆j ]vε(τ)
∥∥2

L2

)1/2

dτ. (4.20)

For the second term of the right hand side of (4.20), it follows from Lemma 2.4 and the
continuous embeddings Hs−1(R3) ↪→ C(R3) and Hs(R3) ↪→ C1(R3) that

‖(vε · ∇)uε‖Ḣs ≤ C(‖vε‖L∞‖∇uε‖Ḣs + ‖∇uε‖L∞‖vε‖Ḣs)

≤ C(‖uε‖Hs+1‖vε‖Hs−1 + ‖uε‖Hs‖vε‖Hs) (4.21)

with some positive constant C = C(s). For the third term of the right hand side of (4.20),
it follows from Lemma 2.5 (1) and the continuous embeddings Hs−1(R3) ↪→ C(R3) and
Hs(R3) ↪→ C1(R3) that
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( ∑

j∈Z
22sj

∥∥[u · ∇,∆j ]vε

∥∥2

L2

)1/2

≤ C(‖∇u‖L∞‖vε‖Ḣs + ‖∇vε‖L∞‖u‖Ḣs)

≤ C‖u‖Hs‖vε‖Hs (4.22)

with some positive constant C = C(s). Substituting (4.21) and (4.22) into (4.20), we
have

‖vε(t)‖Ḣs ≤ ‖vε(0)‖Ḣs + C

∫ t

0

‖uε(τ)‖Hs+1‖vε(τ)‖Hs−1dτ

+ C

∫ t

0

(‖uε(τ)‖Hs + ‖u(τ)‖Hs)‖vε(τ)‖Hsdτ. (4.23)

Combining (4.8) and (4.23), by the norm equivalence (2.1) we have

‖vε(t)‖Hs ≤ C‖vε(0)‖Hs + C

∫ t

0

‖uε(τ)‖Hs+1‖vε(τ)‖Hs−1dτ

+ C

∫ t

0

(‖uε(τ)‖Hs + ‖u(τ)‖Hs)‖vε(τ)‖Hsdτ (4.24)

for all 0 ≤ t ≤ T0 with some positive constant C = C(s). For the second term of the
right hand side of (4.24), since 0 ≤ t ≤ T0 < T , it follows from (4.3) and (4.19) that

∫ t

0

‖uε(τ)‖Hs+1‖vε(τ)‖Hs−1dτ ≤ t
Cs

ε
‖φ‖HsCs‖Jεφ− φ‖Hs−1eCsT‖φ‖Hs

≤ CsT‖φ‖HseCsT‖φ‖Hs 1
ε
‖Jεφ− φ‖Hs−1 (4.25)

for all 0 ≤ t ≤ T0. For the third term of the right hand side of (4.24), it follows from
(4.2) and (4.4) that

∫ t

0

(‖uε(τ)‖Hs + ‖u‖Hs)‖vε(τ)‖Hsdτ ≤ Cs‖φ‖Hs

∫ t

0

‖vε(τ)‖Hsdτ (4.26)

for all 0 ≤ t ≤ T0. Substituting (4.25) and (4.26) into (4.24), we have

‖vε(t)‖Hs ≤ Cs‖Jεφ− φ‖Hs + CsT‖φ‖HseCsT‖φ‖Hs 1
ε
‖Jεφ− φ‖Hs−1

+ Cs‖φ‖Hs

∫ t

0

‖vε(τ)‖Hsdτ

for all 0 ≤ t ≤ T0. Hence the Gronwall inequality yields that
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sup
0≤t≤T0

‖vε(t)‖Hs

≤
{

Cs‖Jεφ− φ‖Hs + CsT‖φ‖HseCsT‖φ‖Hs 1
ε
‖Jεφ− φ‖Hs−1

}
eCsT‖φ‖Hs . (4.27)

Since

lim
ε→0

‖Jεφ− φ‖Hs = lim
ε→0

1
ε
‖Jεφ− φ‖Hs−1 = 0

by Lemma 2.7 (2), it follows from (4.19) and (4.27) that for every 0 < δ ≤ 1, there exists
a positive constant εδ = ε(δ, s, T, φ) ∈ (0, 1] such that

sup
0≤t≤T0

‖vε(t)‖Hs ≤ δ,
1
ε

sup
0≤t≤T0

‖vε(t)‖Hs−1 ≤ δ (4.28)

for all 0 < ε ≤ εδ.
Next, we shall regard u(T0) as the initial velocity. Then for every 0 < ε ≤ εδ, we

have by (4.2) and (4.28)

‖u(T0)‖Hs ≤ δ + ‖uε(T0)‖Hs ≤ 1 + Cs‖φ‖Hs . (4.29)

Hence by (4.29) and Theorem 4.1 we see that there exists a positive time T1 =
T1(s, ‖φ‖Hs) such that u can be uniquely extended to the solution of (E′Ω) on the time
interval [T0, T1] for all |Ω| ≥ Ωε,T (The uniqueness can be proved by the standard argu-
ment. See, for example, [21, pp. 726–728]). Also, by (4.1) we have

T1 − T0 ≥ C0

1 + Cs‖φ‖Hs

, (4.30)

sup
T0≤t≤T1

‖u(t)‖Hs ≤ C1(1 + Cs‖φ‖Hs). (4.31)

If T1 ≥ T , the proof is completed. Hence we assume T1 < T . Let us derive the estimates
for vε on [T0, T1]. Similarly to (4.8), we have

‖vε(t)‖L2 ≤ ‖vε(T0)‖L2 + C

∫ t

T0

‖uε(τ)‖Hs‖vε(τ)‖L2dτ (4.32)

for all T0 ≤ t ≤ T1 with some positive constant C = C(s). Also, similarly to (4.17) and
(4.18), it follows from (4.32) that

‖vε(t)‖Hs−1 ≤ C‖vε(T0)‖Hs−1 + C

∫ t

T0

(‖uε(τ)‖Hs + ‖u(τ)‖Hs)‖vε(τ)‖Hs−1dτ (4.33)

for all T0 ≤ t ≤ T1 with some positive constant C = C(s). Hence by (4.2), (4.31) and
(4.33), we have
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‖vε(t)‖Hs−1 ≤ Cs‖vε(T0)‖Hs−1 + Cs

(
1 + ‖φ‖Hs

) ∫ t

T0

‖vε(τ)‖Hs−1dτ.

Hence the Gronwall inequality yields that

sup
T0≤t≤T1

‖vε(t)‖Hs−1 ≤ Cs‖vε(T0)‖Hs−1eCsT (1+‖φ‖Hs ). (4.34)

For the Hs-estimate, similarly to (4.24), we have

‖vε(t)‖Hs ≤ C‖vε(T0)‖Hs + C

∫ t

T0

‖uε(τ)‖Hs+1‖vε(τ)‖Hs−1dτ

+ C

∫ t

T0

(‖uε(τ)‖Hs + ‖u(τ)‖Hs)‖vε(τ)‖Hsdτ (4.35)

for all T0 ≤ t ≤ T1 with some positive constant C = C(s). For the second term of the
right hand side of (4.35), since T0 ≤ t ≤ T1 < T , it follows from (4.3) and (4.34) that

∫ t

T0

‖uε(τ)‖Hs+1‖vε(τ)‖Hs−1dτ ≤ (t− T0)
Cs

ε
‖φ‖HsCs‖vε(T0)‖Hs−1eCsT (1+‖φ‖Hs )

≤ CsT‖φ‖HseCsT (1+‖φ‖Hs ) 1
ε
‖vε(T0)‖Hs−1 (4.36)

for all T0 ≤ t ≤ T1. For the third term of the right hand side of (4.35), it follows from
(4.2) and (4.31) that

∫ t

T0

(‖uε(τ)‖Hs + ‖u‖Hs)‖vε(τ)‖Hsdτ ≤ Cs(1 + ‖φ‖Hs)
∫ t

T0

‖vε(τ)‖Hsdτ. (4.37)

Substituting (4.36) and (4.37) into (4.35), we have

‖vε(t)‖Hs ≤ Cs‖vε(T0)‖Hs + CsT‖φ‖HseCsT (1+‖φ‖Hs ) 1
ε
‖vε(T0)‖Hs−1

+ Cs(1 + ‖φ‖Hs)
∫ t

T0

‖vε(τ)‖Hsdτ

for all T0 ≤ t ≤ T1. Hence the Gronwall inequality yields that

sup
T0≤t≤T1

‖vε(t)‖Hs

≤
{

Cs‖vε(T0)‖Hs + CsT‖φ‖HseCsT (1+‖φ‖Hs ) 1
ε
‖vε(T0)‖Hs−1

}
eCsT (1+‖φ‖Hs ) (4.38)

Substituting (4.28) into (4.34) and (4.38), we obtain
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1
ε

sup
T0≤t≤T1

‖vε(t)‖Hs−1 ≤ Csδe
CsT (1+‖φ‖Hs ) (4.39)

and

sup
T0≤t≤T1

‖vε(t)‖Hs ≤ Csδ
{
1 + T‖φ‖HseCsT (1+‖φ‖Hs )

}
eCsT (1+‖φ‖Hs ) (4.40)

for all 0 < ε ≤ εδ. Since 0 < δ ≤ 1 is arbitrary, it follows from (4.39) and (4.40) that
for given 0 < λ ≤ 1, one can take δλ = δ(λ, s, T, ‖φ‖Hs) ∈ (0, 1] such that for every
0 < δ ≤ δλ there exists a positive number ελ,δ = ε(λ, δ, s, T, φ) ∈ (0, 1] such that

sup
T0≤t≤T1

‖vε(t)‖Hs ≤ λ,
1
ε

sup
T0≤t≤T1

‖vε(t)‖Hs−1 ≤ λ (4.41)

holds for all 0 < ε ≤ ελ,δ. In particular, it follows from by (4.2) and (4.41) that

‖u(T1)‖Hs ≤ λ + ‖uε(T1)‖Hs ≤ 1 + Cs‖φ‖Hs . (4.42)

Note that the above bound (4.42) is exactly same as (4.29). Hence by Theorem 4.1
and (4.1), u can be uniquely extended to the solution of (E′Ω) on the time interval
[T1, T1 + (T1 − T0)] (defined in (4.30)) for all |Ω| ≥ Ωε,T with 0 < ε ≤ ελ,δ and satisfies

sup
T1≤t≤2T1−T0

‖u(t)‖Hs ≤ C1(1 + Cs‖φ‖Hs). (4.43)

Also note that the bound (4.43) is exactly same as (4.31). Since T is arbitrary finite
time, we repeat a finite number of the same procedures in the above, and continue the
solution u to the time interval [0, T ]. This completes the proof of Theorem 1.1. ¤

5. The linear rotating vorticity equations.

In this section, we consider the linear problem for the vorticity equations in the
rotational framework. The linear equations for (E′Ω) are described as





∂u

∂t
+ ΩP(e3 × u) = 0, div u = 0,

u(0, x) = φ(x).
(5.1)

Taking curl to (5.1) and using the divergence-free condition, we have

∂ω

∂t
− Ω

∂u

∂x3
= 0, ω(0, x) = ψ(x), (5.2)

where ω := curlu = ∇× u and ψ := curlφ. By the Biot–Savart law, the gradient of the
velocity ∇u has the representation in terms of the vorticity ω such that
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∂u

∂xj
=

∂

∂xj
(−∆)−1 curlω = Rj(R× ω), j = 1, 2, 3, (5.3)

where R = (R1, R2, R3) and Rj denotes the Riesz transform in R3. Then the linear
vorticity equations (5.2) can be rewritten as

∂ω

∂t
− Ω

∂

∂x3
(−∆)−1 curlω = 0, ω(0, x) = ψ(x). (5.4)

Taking the Fourier transform to (5.4) yields

∂

∂t
ω̂(t, ξ)− Ω

ξ3

|ξ|




0
ξ3

|ξ| − ξ2

|ξ|

− ξ3

|ξ| 0
ξ1

|ξ|
ξ2

|ξ| − ξ1

|ξ| 0




ω̂(t, ξ) = 0, ω̂(0, ξ) = ψ̂(ξ). (5.5)

Let us define

R(ξ) :=




0
ξ3

|ξ| − ξ2

|ξ|

− ξ3

|ξ| 0
ξ1

|ξ|
ξ2

|ξ| − ξ1

|ξ| 0




, S(ξ) :=
ξ3

|ξ|R(ξ) (5.6)

for ξ ∈ R3 \ {0}. Then the solution to (5.5) is written as

ω̂(t, ξ) = eΩtS(ξ)ψ̂(ξ),

where eΩtS(ξ) is defined by the convergent series

eΩtS(ξ) :=
∞∑

j=0

1
j!

(Ωt)jS(ξ)j on {ξ}⊥.

Let I be the 3× 3 identity matrix. Note that since it holds

S(ξ)2v(ξ) = − ξ2
3

|ξ|2 Iv(ξ)

for v(ξ) ∈ R3 with ξ · v(ξ) = 0, the solution of (5.5) is explicitly given by
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ω̂(t, ξ) = cos
(

Ωt
ξ3

|ξ|
)

Iψ̂(ξ) + sin
(

Ωt
ξ3

|ξ|
)

R(ξ)ψ̂(ξ)

=
1
2
eiΩt(ξ3/|ξ|){I − iR(ξ)}ψ̂(ξ) +

1
2
e−iΩt(ξ3/|ξ|){I + iR(ξ)}ψ̂(ξ). (5.7)

We remark that the explicit formula (5.7) has already been derived in [1], [16], [17] for
the original equations of velocity fields. By (5.7), we have the following proposition.

Proposition 5.1. For every Ω ∈ R and every ψ ∈ L2
σ(R3), there exists a unique

solution ω to (5.4) which is given explicitly by

ω(t, x) = T (Ωt)ψ(x) :=
1
2
eiΩt(D3/|D|)(I +R)ψ(x) +

1
2
e−iΩt(D3/|D|)(I −R)ψ(x) (5.8)

for t ≥ 0 and x ∈ R3, where

e±it(D3/|D|)f(x) :=
1

(2π)3

∫

R3
eix·ξ±it(ξ3/|ξ|)f̂(ξ)dξ, R :=




0 R3 −R2

−R3 0 R1

R2 −R1 0


 .

We end this section by recalling the linear estimates for T (t) given in (5.8). Since the
phase ξ3/|ξ| is homogeneous function of degree 0, by the Littlewood–Paley decomposition
and scaling, the matter is reduced to the frequency localized case. Now let us consider
the operator

G±(t)f(x) :=
∫

R3
eix·ξ±it(ξ3/|ξ|)Φ̂(ξ)f̂(ξ)dξ, (t, x) ∈ R1+3,

where Φ ∈ S (R3) satisfies supp Φ̂ ⊂ {ξ ∈ R3
∣∣ 2−2 ≤ |ξ| ≤ 22} and Φ̂ = 1 on {ξ ∈ R3

∣∣
2−1 ≤ |ξ| ≤ 2}. The sharp Strichartz estimates for G±(t) were obtained in [21]:

Theorem 5.2 ([21, Theorem 1.1]). Let 2 ≤ q, r ≤ ∞ with (q, r) 6= (2,∞). Then
the space-time estimate

‖G±(t)f‖Lq
t Lr

x
. ‖f‖L2

holds if and only if

1
q

+
1
r
≤ 1

2
.

Corollary 5.3. Let 2 ≤ q, r ≤ ∞ satisfy (q, r) 6= (2,∞) and 1/q + 1/r ≤ 1/2.
Then, there exists a positive constant C = C(q, r) such that

∥∥∆je
±iΩt(D3/|D|)f

∥∥
Lq

t Lr
x
≤ C|Ω|−1/q(2j)3/2−3/r‖∆jf‖L2
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holds for all Ω ∈ R \ {0}, j ∈ Z and f ∈ L2(R3).

Proof. Since Φ̂(ξ) = 1 on the support of ϕ̂0, we have

G±(t)∆0f(x) =
∫

R3
eix·ξ±it(ξ3/|ξ|)Φ̂(ξ)ϕ̂0(ξ)f̂(ξ)dξ

= (2π)3e±it(D3/|D|)∆0f(x).

Hence by Theorem 5.2 there exists a positive constant C = C(q, r) such that

∥∥e±it(D3/|D|)∆0f
∥∥

Lq
t Lr

x
≤ C‖∆0f‖L2 . (5.9)

Since the phase ξ3/|ξ| is homogeneous of degree 0 and ϕ̂j(ξ) = ϕ̂0(ξ/2j), by the change
of variable ξ 7→ 2jξ, we have

e±it(D3/|D|)∆jf(x) =
1

(2π)3

∫

R3
ei2jx·ξ±it(ξ3/|ξ|)ϕ̂0(ξ)F

[
f

( ·
2j

)]
(ξ)dξ

= e±it(D3/|D|)∆0

[
f

( ·
2j

)]
(2jx)

for j ∈ Z. Also it holds ∆jf(x) = ∆0

[
f
( ·

2j

)]
(2jx). Hence by (5.9) and scaling, we have

∥∥∆je
±it(D3/|D|)f

∥∥
Lq

t Lr
x
≤ C(2j)−3/r

∥∥∥∥∆0

[
f

( ·
2j

)]∥∥∥∥
L2

= C(2j)3/2−3/r‖∆jf‖L2 .

The scaling in time t 7→ Ωt gives the desired estimate. ¤

6. A priori estimate and the blow-up criterion.

In this section, we shall establish the blow-up criterion of the Beale–Kato–Majda
and the Kozono–Taniuchi type [4], [22], [23] for the local solution to (E′Ω).

Lemma 6.1. Let s > 5/2,Ω ∈ R and φ ∈ Hs(R3) with div φ = 0. Let u be the
solution to (E′Ω) in the class C([0, T );Hs(R3)) ∩C1([0, T );Hs−1(R3)) with some T > 0.
Then, there exists a positive constant C = C(s) depending only on s such that

‖u(t)‖Hs + e ≤ (‖φ‖Hs + e)α(t) exp{Ctα(t)} (6.1)

holds for all 0 ≤ t < T , where

α(t) := exp
{

C

∫ t

0

‖ curlu(τ)‖Ḃ0∞,∞
dτ

}
.
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By Theorem 4.1, for the given initial velocity φ ∈ Hs(R3) with s > 5/2, the
time interval [0, T ) of the existence of the solution u to (E′Ω) in C([0, T );Hs(R3)) ∩
C1([0, T );Hs−1(R3)) depends only on s and ‖φ‖Hs . Hence by the standard argument of
continuation of local solutions, Lemma 6.1 yields the following blow-up criterion.

Lemma 6.2. Let s > 5/2,Ω ∈ R and φ ∈ Hs(R3) with div φ = 0. Let u be the
solution to (E′Ω) in the class C([0, T );Hs(R3))∩C1([0, T );Hs−1(R3)). Assume that T is
maximal, that is, u cannot be continued to the solution in the class C([0, T ′);Hs(R3)) ∩
C1([0, T ′);Hs−1(R3)) for any T ′ > T . Then, it holds

∫ T

0

‖ curlu(t)‖Ḃ0∞,∞
dt = ∞.

Proof of Lemma 6.1. The proof is based on the energy method with the com-
mutator estimates and the Gronwall inequality with the logarithmic Sobolev inequality
as in [4], [22], [23]. Taking the Hs inner product of (E′Ω) with u, by the skew-symmetry
of the operator e3× we have

1
2

d

dt
‖u(t)‖2Hs + 〈(u(t) · ∇)u(t), u(t)〉Hs = 0. (6.2)

Here, it follows from the divergence-free condition, the Schwartz inequality and Lemma
2.6 that

|〈(u · ∇)u, u〉Hs | = |〈(1−∆)s/2(u · ∇)u− (u · ∇)(1−∆)s/2u, (1−∆)s/2u〉L2 |
≤ ‖(1−∆)s/2(u · ∇)u− (u · ∇)(1−∆)s/2u‖L2‖u‖Hs

≤ C(‖∇u‖L∞‖∇u‖Hs−1 + ‖∇u‖L∞‖u‖Hs)‖u‖Hs

≤ C‖∇u‖L∞‖u‖2Hs (6.3)

with some constant C = C(s) > 0. Substituting (6.3) into (6.2), we have

1
2

d

dt
‖u(t)‖2Hs ≤ C‖∇u(t)‖L∞‖u(t)‖2Hs ,

which yields

d

dt
‖u(t)‖Hs ≤ C‖∇u(t)‖L∞‖u(t)‖Hs .

Hence it follows from the Gronwall inequality that

‖u(t)‖Hs ≤ ‖φ‖Hs exp
{

C

∫ t

0

‖∇u(τ)‖L∞dτ

}
(6.4)

for all 0 ≤ t < T with some constant C = C(s) > 0.
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Let ω := curlu be the vorticity of u. Since s > 5/2, it follows from Lemma 2.3, the
Biot–Savart law (5.3) and the boundedness of the Riesz transforms in Ḃ0

∞,∞(R3) that

‖∇u‖L∞ ≤ C
{
1 + ‖∇u‖Ḃ0∞,∞

(1 + log+ ‖∇u‖Hs−1)
}

≤ C
{
1 + ‖ω‖Ḃ0∞,∞

(1 + log+ ‖u‖Hs)
}

(6.5)

with C = C(s) > 0. Substituting (6.5) into (6.4), we have

‖u(t)‖Hs ≤ ‖φ‖Hs exp
[
C

∫ t

0

{
1 + ‖ω(τ)‖Ḃ0∞,∞

(1 + log+ ‖u(τ)‖Hs)
}
dτ

]
(6.6)

for all 0 ≤ t < T . Moreover, since log+ ‖u(τ)‖Hs ≤ log(‖u(τ)‖Hs + e), (6.6) implies that

‖u(t)‖Hs + e ≤ (‖φ‖Hs + e) exp
[
C

∫ t

0

{
1 + ‖ω(τ)‖Ḃ0∞,∞

log(‖u(τ)‖Hs + e)
}
dτ

]
. (6.7)

Let us define z(t) := log(‖u(t)‖Hs + e). Then it follows from (6.7) that

z(t) ≤ z(0) + Ct + C

∫ t

0

‖ω(τ)‖Ḃ0∞,∞
z(τ)dτ

for all 0 ≤ t < T . Hence by Lemma 2.2, we obtain

z(t) ≤ z(0) exp
{

C

∫ t

0

‖ω(τ)‖Ḃ0∞,∞
dτ

}
+ C

∫ t

0

exp
{

C

∫ t

s

‖ω(τ)‖Ḃ0∞,∞
dτ

}
ds

≤ (z(0) + Ct) exp
{

C

∫ t

0

‖ω(τ)‖Ḃ0∞,∞
dτ

}
,

which implies that

log(‖u(t)‖Hs + e) ≤ log
{
(‖φ‖Hs + e)α(t)eCtα(t)

}
,

where

α(t) := exp
{

C

∫ t

0

‖ω(τ)‖Ḃ0∞,∞
dτ

}
.

This completes the proof of Lemma 6.1. ¤

7. Proof of Theorem 1.3.

Proof of Theorem 1.3. We shall prove that the local solution u to (E′Ω) con-
structed in Theorem 4.1 with s = 7/2 can be extended to any time interval [0, T ] provided
the speed of rotation is sufficiently high. To this end, we adapt the argument in [9], [15],



602 R. Takada

[21].
Let φ ∈ H7/2(R3) with div φ = 0, and let u be the solution to (E′Ω) in the class u ∈

C([0, TΩ);H7/2(R3)) ∩ C1([0, TΩ);H5/2(R3)), where 0 < TΩ < ∞ denotes the maximal
time of existence. Taking curl to (E′Ω) and using the Biot–Savart law (5.3), we have the
vorticity equation





∂ω

∂t
− Ω

∂

∂x3
(−∆)−1 curlω + (u · ∇)ω − (ω · ∇)u = 0,

ω(0, x) = ψ(x),
(7.1)

where ω := curlu = ∇×u and ψ := curlφ. By the Plancherel theorem and the Lebesgue
dominated convergence theorem, we see that Ω(∂/∂x3)(−∆)−1 curl is the infinitesimal
generator of the C0 semigroup T (Ωt) (defined in Proposition 5.1) on L2

σ(R3) with the
domain of generator L2

σ(R3). Therefore by the Duhamel principle, the solution ω to (7.1)
can be represented as

ω(t) = T (Ωt)ψ −
∫ t

0

T (Ω(t− τ))(u(τ) · ∇)ω(τ)dτ

+
∫ t

0

T (Ω(t− τ))(ω(τ) · ∇)u(τ)dτ (7.2)

for 0 < t < TΩ. We shall derive the Ḃ0
∞,∞(R3)-estimates for the vorticity ω. Let

2 < q < ∞. Then, by the Minkowski inequality and Corollary 5.3, we have

‖T (Ωt)ψ‖Lq
t (0,∞;Ḃ0∞,∞) ≤

∥∥∥∥
( ∑

j∈Z
‖∆jT (Ωt)ψ‖2L∞

)1/2∥∥∥∥
Lq

t (0,∞)

≤
( ∑

j∈Z
‖∆jT (Ωt)ψ‖2Lq

t (0,∞;L∞)

)1/2

≤ C|Ω|−1/q

{ ∑

j∈Z

(
23j/2‖∆jψ‖L2

)2
}1/2

= C|Ω|−1/q‖ψ‖Ḣ3/2 (7.3)

with some constant C = C(q) > 0. Next, let us consider the Duhamel terms in (7.2). It
follows from the Minkowski inequality and Corollary 5.3 that

∥∥∥∥∆j

∫ t

0

T (Ω(t− τ))(u(τ) · ∇)ω(τ)dτ

∥∥∥∥
Lq

t (0,T ;L∞)

≤
∫ T

0

‖∆jT (Ω(t− τ))(u(τ) · ∇)ω(τ)‖Lq
t (τ,T ;L∞)dτ
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≤ C|Ω|−1/q

∫ T

0

23j/2‖∆j(u(τ) · ∇)ω(τ)‖L2dτ (7.4)

for all j ∈ Z and 0 < T < TΩ with some constant C = C(q) > 0. Hence, by the
Minkowski inequality and (7.4), we have

∥∥∥∥
∫ t

0

T (Ω(t− τ))(u(τ) · ∇)ω(τ)dτ

∥∥∥∥
Lq

t (0,T ;Ḃ0∞,∞)

≤
∥∥∥∥
( ∑

j∈Z

∥∥∥∥∆j

∫ t

0

T (Ω(t− τ))(u(τ) · ∇)ω(τ)dτ

∥∥∥∥
2

L∞

)1/2∥∥∥∥
Lq

t (0,T )

≤
( ∑

j∈Z

∥∥∥∥∆j

∫ t

0

T (Ω(t− τ))(u(τ) · ∇)ω(τ)dτ

∥∥∥∥
2

Lq
t (0,T ;L∞)

)1/2

≤ C|Ω|−1/q

{ ∑

j∈Z

( ∫ T

0

23j/2‖∆j(u(τ) · ∇)ω(τ)‖L2dτ

)2}1/2

≤ C|Ω|−1/q

∫ T

0

{ ∑

j∈Z

(
23j/2‖∆j(u(τ) · ∇)ω(τ)‖L2

)2
}1/2

dτ

= C|Ω|−1/q

∫ T

0

‖(u(τ) · ∇)ω(τ)‖Ḣ3/2dτ. (7.5)

Similarly to (7.4) and (7.5), we also have

∥∥∥∥
∫ t

0

T (Ω(t− τ))(ω(τ) · ∇)u(τ)dτ

∥∥∥∥
Lq

t (0,T ;Ḃ0∞,∞)

≤ C|Ω|−1/q

∫ T

0

‖(ω(τ) · ∇)u(τ)‖Ḣ3/2dτ. (7.6)

Therefore, by (7.2), (7.3), (7.5) and (7.6), we see that for every 2 < q < ∞ there exists
a positive constant C = C(q) such that

‖ω‖Lq(0,T ;Ḃ0∞,∞)

≤ C|Ω|−1/q

{
‖ψ‖Ḣ3/2 +

∫ T

0

(‖(u(τ) · ∇)ω(τ)‖Ḣ3/2 + ‖(ω(τ) · ∇)u(τ)‖Ḣ3/2

)
dτ

}
(7.7)

for all 0 < T < TΩ.
Now, let us define

V (t) :=
∫ t

0

‖ω(τ)‖Ḃ0∞,∞
dτ, 0 ≤ t < TΩ.
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Since it holds

‖(u · ∇)ω‖Ḣ3/2 + ‖(ω · ∇)u‖Ḣ3/2 ≤ C
(‖ω ⊗ u‖Ḣ5/2 + ‖u⊗ ω‖Ḣ5/2

)

≤ C
(‖ω ⊗ u‖H5/2 + ‖u⊗ ω‖H5/2

)

≤ C‖ω‖H5/2‖u‖H5/2 (7.8)

by the divergence-free conditions, it follows from the Hölder inequality, (7.7), (7.8) and
(6.1) that

V (t) ≤ t1−1/q‖ω‖Lq(0,t;Ḃ0∞,∞)

≤ Ct1−1/q|Ω|−1/q

(
‖ψ‖Ḣ3/2 +

∫ t

0

‖ω(τ)‖H5/2‖u(τ)‖H5/2dτ

)

≤ Ct1−1/q|Ω|−1/q

(
‖φ‖Ḣ5/2 +

∫ t

0

‖u(τ)‖H7/2‖u(τ)‖H5/2dτ

)

≤ Ct1−1/q|Ω|−1/q

(
‖φ‖H5/2 +

∫ t

0

‖u(τ)‖2H7/2dτ

)

≤ Ct1−1/q|Ω|−1/q

{
‖φ‖H5/2 +

∫ t

0

(‖φ‖H7/2 + e
)2α(τ) exp{Cτα(τ)}dτ

}
.

Hence, we see that there exist an absolute constant C∗ = C∗(7/2) > 0 and a constant
Cq > 0 depending on q such that

V (t) ≤ Cqt
1−1/q|Ω|−1/q

{‖φ‖H5/2 + t
(‖φ‖H7/2 + e

)2α(t) exp{C∗tα(t)}} (7.9)

for all 0 ≤ t < TΩ, where

α(t) := exp{C∗V (t)}.

Now, for given time 0 < T < ∞, we define

XT,Ω := {t ∈ [0, T ] ∩ [0, TΩ) | V (t) ≤ 1},
T ∗Ω := supXT,Ω.

We shall prove that T ∗Ω = min{T, TΩ} when |Ω| is sufficiently large by contradiction
argument. Assume that T ∗Ω < min{T, TΩ}. Then, we can take T̃ satisfying T ∗Ω < T̃ <

min{T, TΩ}. Since u belongs to C([0, T̃ ];H7/2(R3)), we see that V (t) is uniformly con-
tinuous on [0, T̃ ], and then it holds

V (T ∗Ω) ≤ 1. (7.10)

Since T ∗Ω < min{T, TΩ} ≤ T , it follows from (7.9) and (7.10) that
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V (T ∗Ω) ≤ Cq(T ∗Ω)1−1/q|Ω|−1/q
[‖φ‖H5/2 + T ∗Ω

(‖φ‖H7/2 + e
)2α(T∗Ω) exp{C∗T ∗Ωα(T ∗Ω)}]

≤ CqT
1−1/q|Ω|−1/q

[‖φ‖H5/2 + T
(‖φ‖H7/2 + e

)2 exp{C∗} exp{C∗eC∗T}]

≤ |Ω|−1/qCqT
1−1/q

{‖φ‖H5/2 + T
(‖φ‖H7/2 + e

)C′∗eC′∗T
}
. (7.11)

Hence taking a sufficiently large Ω ∈ R \ {0} so that

|Ω|1/q ≥ 2CqT
1−1/q

{‖φ‖H5/2 + T
(‖φ‖H7/2 + e

)C′∗eC′∗T
}
, (7.12)

by (7.11) we have

V (T ∗Ω) ≤ 1
2
.

Then, one can take a time S such that T ∗Ω < S < T̃ and V (S) ≤ 1, which contradicts
the definition of T ∗Ω. Therefore, we have T ∗Ω = min{T, TΩ} provided the speed of rotation
Ω ∈ R \ {0} satisfies (7.12).

Let Ω ∈ R \ {0} satisfy (7.12), and assume that TΩ < T . Then it follows from the
above argument that TΩ = T ∗Ω = sup XT,Ω. Therefore we have

V (t) =
∫ t

0

‖ω(τ)‖Ḃ0∞,∞
dτ ≤ 1 < ∞

for all 0 ≤ t < TΩ. However, by Lemma 6.2, this contradicts the maximality of TΩ.
Hence we obtain TΩ ≥ T if the speed of rotation Ω ∈ R \ {0} is high enough as in (7.12).
This completes the proof of Theorem 1.3. ¤

8. Appendix.

In this section, we shall give an alternative derivation of the solution formula (5.7)
to the linear vorticity equations (5.4). Let S(ξ) be the skew-symmetric matrix defined
in (5.6). The direct calculation gives that

det(λI − S(ξ)) = λ

(
λ2 +

ξ2
3

|ξ|2
)

.

Hence, the matrix S(ξ) possesses the eigenvalues ±i(ξ3/|ξ|) and 0. In order to de-
rive the corresponding eigenvectors, we shall use the Craya-Herring decomposition. Let
{e1(ξ), e2(ξ), e3(ξ)} be an orthonormal system in R3 defined by
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e1(ξ) :=




− ξ2

|ξh|
ξ1

|ξh|
0




, e2(ξ) :=




ξ1ξ3

|ξ||ξh|
ξ2ξ3

|ξ||ξh|

−ξ2
1 + ξ2

2

|ξ||ξh|




, e3(ξ) :=
ξ

|ξ| =




ξ1

|ξ|
ξ2

|ξ|
ξ3

|ξ|




,

where ξh := (ξ1, ξ2). Then, it is easy to see that

S(ξ)e1(ξ) =
ξ3

|ξ|e2(ξ), S(ξ)e2(ξ) = − ξ3

|ξ|e1(ξ), S(ξ)e3(ξ) = 0. (8.1)

Therefore, putting

v1(ξ) :=
1√
2
(e2(ξ) + ie1(ξ)) =

1√
2|ξ||ξh|




ξ1ξ3 − iξ2|ξ|
ξ2ξ3 + iξ1|ξ|
−(ξ2

1 + ξ2
2)


 ,

v2(ξ) :=
1√
2
(e2(ξ)− ie1(ξ)) =

1√
2|ξ||ξh|




ξ1ξ3 + iξ2|ξ|
ξ2ξ3 − iξ1|ξ|
−(ξ2

1 + ξ2
2)


 ,

v3(ξ) := e3(ξ),

we have by (8.1)

S(ξ)v1(ξ) = i
ξ3

|ξ|v1(ξ), S(ξ)v2(ξ) = −i
ξ3

|ξ|v2(ξ), S(ξ)v3(ξ) = 0.

Also, by the orthonormality of {e1(ξ), e2(ξ), e3(ξ)} we see that {v1(ξ), v2(ξ), v3(ξ)} is an
orthonormal basis in C3. Hence we see that U(ξ) := (v1(ξ), v2(ξ), v3(ξ)) is a unitary
matrix, and it holds that

U(ξ)∗S(ξ)U(ξ) =




i
ξ3

|ξ| 0 0

0 −i
ξ3

|ξ| 0

0 0 0




,

which yields that

eΩtS(ξ) = U(ξ)




eiΩt(ξ3/|ξ|) 0 0

0 e−iΩt(ξ3/|ξ|) 0
0 0 1


 U(ξ)∗. (8.2)
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Then, by direct calculations, we have

U(ξ)




eiΩt(ξ3/|ξ|) 0 0

0 e−iΩt(ξ3/|ξ|) 0
0 0 1


 U(ξ)∗

=
1
2
eiΩt(ξ3/|ξ|){I − F (ξ)− iR(ξ)}+

1
2
eiΩt(ξ3/|ξ|){I − F (ξ) + iR(ξ)}+ F (ξ), (8.3)

where I is the identity matrix, R(ξ) is the skew-symmetric matrix defined in (5.6) and
F (ξ) is defined by

F (ξ) :=
1
|ξ|2




ξ2
1 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ2
2 ξ2ξ3

ξ1ξ3 ξ2ξ3 ξ2
3


 .

Note that F (ξ)u(ξ) = 0 for all u(ξ) ∈ R3 satisfying ξ ·u(ξ) = 0. Hence by (8.2) and (8.3),
we obtain

eΩtS(ξ)ψ̂(ξ) =
1
2
eiΩt(ξ3/|ξ|){I − iR(ξ)}ψ̂(ξ) +

1
2
e−iΩt(ξ3/|ξ|){I + iR(ξ)}ψ̂(ξ)

for ψ ∈ L2
σ(R3). This completes an another derivation of the solution formula (5.7).
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