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Abstract. We relate certain universal curvature identities for Kähler
manifolds to the Euler–Lagrange equations of the scalar invariants which are
defined by pairing characteristic forms with powers of the Kähler form.

1. Introduction.

Throughout this paper, we shall assume that (M, g) is a compact smooth oriented
Riemannian manifold of dimension 2m. Let dνg be the Riemannian volume m-form.
In the introduction, we will establish the notation that will enable us to state the two
main results of this paper – Theorem 1.2 (which describes the symmetric 2-tensor valued
universal curvature identities in the Kähler setting) and Theorem 1.3 (which gives the
Euler–Lagrange equations for the scalar invariants defined by pairing characteristic forms
with powers of the Kähler form in the Kähler setting). These two Theorems extend pre-
vious results from the real setting to the Kähler setting as we shall discuss subsequently
in Remark 1.2.

1.1. Kähler geometry.
A holomorphic structure on M is an endomorphism J of the tangent bundle TM so

that J2 = − id and so that there exist local holomorphic coordinate charts (x1, . . . , xm,

y1, . . . , ym) covering M satisfying

J∂xα
= ∂yα

and J∂yα
= −∂xα

for 1 ≤ α ≤ m.

Equivalently, via the Newlander–Nirenberg Theorem [22], this means that the Nijenhuis
tensor NJ vanishes where one defines (see [6]):

NJ(X, Y ) := [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ].

In a system of holomorphic coordinates, we define for 1 ≤ α ≤ m:

zα := xα +
√−1yα,

∂zα :=
1
2
(∂xα −

√−1∂yα), ∂z̄α :=
1
2
(∂xα +

√−1∂yα),
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dzα := dxα +
√−1dyα, dz̄α := dxα −√−1dyα.

Extend J to be complex linear on the complexified tangent bundle to obtain:

J∂zα
=
√−1∂zα

and J∂z̄α
= −√−1∂z̄α

.

We can decompose the bundles S2M and Λ2M of symmetric and anti-symmetric
bilinear forms as S2M = S2

+M ⊕ S2
−M and Λ2M = Λ2

+M ⊕ Λ2
−M where

S2
±M := {h ∈ S2M : J∗h = ±h} and Λ2

±M := {h ∈ Λ2M : J∗h = ±h}.

A symmetric bilinear form h ∈ S2
+M is said to be Hermitian; if h is Hermitian, then

associated Kähler form Ωh ∈ Λ2
+M is given by setting:

Ωh(x, y) := h(x, Jy).

Conversely, given Ω ∈ Λ2
+M , we can recover h = hΩ by setting h(x, y) = Ω(x,−Jy).

This correspondence defines a natural isomorphism between S2
+M and Λ2

+M .
A triple Mm := (M, g, J) is said to be a Hermitian manifold if g ∈ C∞(S2

+M)
is positive definite (and thus defines a Riemannian metric on M) and if (M, J) is a
holomorphic of complex dimension m. Let Ω = Ωg. We then have that

dνg =
1
m!

Ωm. (1.a)

A Hermitian manifold Mm is said to be a Kähler manifold if dΩ = 0. Let ∇ be the
Levi–Civita connection and let

R(x, y) := ∇x∇y −∇y∇x −∇[x,y] and R(x, y, z, w) := g(R(x, y)z, w)

be the curvature operator and the curvature tensor, respectively. We shall also denote
these tensors by RM and RM when it is necessary to emphasize the role that Mm plays.
If Mm is a Kähler manifold, then ∇J = 0 and we have an additional curvature symmetry
called the Kähler identity:

R(x, y)J = JR(x, y) i.e. R(x, y, z, w) = R(x, y, Jz, Jw). (1.b)

1.2. The characteristic classes and characteristic numbers.
Let Mm(C) be the matrix algebra of all m×m complex matrices and let the asso-

ciated general linear group be GLm(C) ⊂ Mm(C). Let Sm be the ring of polynomial
maps from Mm(C) to C which are invariant under the action of GLm(C), i.e. S ∈ Sm if
and only if

S(ABA−1) = S(B) for all A ∈ GLm(C) and for all B ∈ Mm(C).

Define Trµ ∈ Sm by setting Trµ(B) := Tr(Bµ). We then have:
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Sm = C[Tr1, . . . ,Trm]. (1.c)

Let Sm,k ⊂ Sm be the finite dimensional subspace of maps which are homogeneous of
degree k. We may then decompose

Sm = ⊕kSm,k.

Definition 1.1. Let k be a positive integer. A partition π of k is a decomposition
of k = n1 + · · · + n` as the sum of positive integers where we order n1 ≥ · · · ≥ n` ≥ 1.
Let ρ(k) be the partition function; this is the number of distinct partitions π of k. We
use Equation (1.c) to see that a basis for Sm,k consists of all monomials of the form
Trν1

1 · · ·Trνm
m where ν1 + 2ν2 + · · ·+ mνm = k. Consequently

dim{Sm,k} = ρ(k) if k ≤ m. (1.d)

Let n < m and let Bn ∈ Mn(C). Let 0` be the additive unit of M`(C). The natural
map Bn 7→ Bn ⊕ 0m−n defines an inclusion of Mn(C) into Mm(C) and induces dually a
restriction map rm,n : Sm → Sn which is characterized by the identity:

{rm,n(Sm)}(Bn) := Sm(Bn ⊕ 0m−n). (1.e)

Remark 1.1. Let n < m. Since the restriction map preserves the grading, rm,n

maps Sm,k to Sn,k. Since Tr{Bi
n} = Tr{(Bn⊕0m−n)i}, rm,n(Tri) = Tri. Thus Equation

(1.c) shows that rm,n is always a surjective map from Sm,k to Sn,k. Furthermore, if
n ≥ k, then rm,n is an isomorphism from Sm,k to Sn,k.

Let Mm = (M, g, J) be a Kähler manifold. We use J to give TM a complex
structure and to regard TM as a complex vector bundle; Equation (1.b) then shows that
R(x, y) is complex linear. We regard R as a matrix of 2-forms. If Sm,k ∈ Sm,k, then the
evaluation on R yields an element

Sm,k(R) ∈ C∞(Λ2kM).

We have that Sm,k(R) is a closed differential form; the corresponding element in de
Rham cohomology is independent of the particular Kähler metric g on M and is called
a characteristic class:

[Sm,k(R)] ∈ H2k
DeR(M).

If k = m, then we may use the natural orientation of M and integrate over M to
define a corresponding characteristic number which is independent of g. If the complex
dimension m = 1, then dim{S1,1} = 1. If S1,1 ∈ S1,1, then there is a universal constant
c = c(S1,1) so that

∫

M

S1,1(RM) = c · χ(M)
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where χ(M) is the Euler–Poincaré characteristic of M . Let sign denote the Hirzebruch
signature. If the complex dimension m = 2, then dim{S2,2} = 2. If S2,2 ∈ S2,2, then
there are universal constants ci = ci(S2,2) so that:

∫

M

S2,2(RM) = c1 · χ(M) + c2 · sign(M).

Give complex projective space CPn the Fubini–Study metric. If ~ν = (ν1, . . . , ν`),
let CP~ν = CPν1 × · · · × CPν` . This is a compact homogeneous Kähler manifold of
complex dimension ν1 + · · · + ν`. If Sk,k is non-trivial as an invariant polynomial, then
the associated characteristic number is non-trivial. We refer to [1], [10] for the proof of:

Lemma 1.1. Let 0 6= Sk,k ∈ Sk,k. Then there exists ~ν with k = ν1 + · · ·+ ν` so

∫

CP~ν

Sk,k(RCP~ν )dνCP~ν 6= 0.

1.3. Scalar valued universal curvature identities.
In the real setting,Weyl’s first theorem of invariants [23] can be used to show that

all polynomial scalar invariants in the derivatives of the metric arise from contractions
of indices in the curvature tensor and its covariant derivatives. Let {ei} be a local
orthonormal frame for a Riemannian manifold (M, g) and let Rijkl be the components
of the curvature tensor. Adopt the Einstein convention and sum over repeated indices
to define:

E2 := Rijji, E4 := RijjiRkllk − 4RaijaRbijb + RijklRijkl, and

E6 := RijjiRkllkRabba − 12RijjiRaijaRbijb + 3RabbaRijklRijkl

+ 24RaijaRbklbRjlik + 16RaijaRbjkbRcikc − 24RaijaRjklnRlnik

+ 2RijklRklanRanij − 8RkaijRinklRjlan.

E2, E4, and E6 are universally defined scalar invariants of order µ = 2, µ = 4, and
µ = 6, respectively. They are generically non-zero in real dimension at least µ but vanish
in lower dimensions; in particular, they give non-trivial universal curvature identities
in real dimension µ − 1. Modulo a suitable normalization, these are the integrals of
the Chern–Gauss–Bonnet Theorem [3] and more generally, up to rescaling, the Pfaffian
Eµ gives the only universal curvature identity of order µ vanishing identically in real
dimension µ − 1. This fact plays an important role in the proof of the Chern–Gauss–
Bonnet theorem using heat equation methods [8].

Definition 1.2. Let Pm be the polynomial algebra in the components of R,
in the components of the covariant derivative ∇R, and so forth for Kähler metrics on
manifolds of complex dimension m. Let PU

m,k be the subspace of polynomials which are
homogeneous of degree 2k in the derivatives of the metric and which are invariant under
the action of the unitary group U(m).
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H. Weyl’s theorem on invariants of the orthogonal group [23] has been extended by
Fukami [7] and Iwahori [14] to this setting; all such invariants arise by contractions of
indices using the metric and the Kähler form. In practice, the Kähler identity means that
we will not be in fact using the Kähler form to contract indices. Rather, we will contract
a lower holomorphic (resp. anti-holomorphic) index against the corresponding upper
holomorphic (resp. anti-holomorphic) index. The Kähler form Ω := −√−1gαβ̄dzα ∧ dz̄β

is given by contracting upper against lower indices of the same type; it is not necessary
for the frame to be unitary. We can also contract a lower holomorphic index against
a corresponding lower anti-holomorphic index using the metric relative to a unitary
frame. Thus, for example, the scalar curvature is given by τ = Rαᾱβ̄β modulo a suitable
normalizing constant.

Definition 1.3. Let PU
m,k be as defined in Definition 1.2. Let KP,m,k ⊂ PU

m,k

be the subspace of invariant local formulas which are homogeneous of degree 2k in the
derivatives of the metric and which vanish when restricted from complex dimension m to
complex dimension k−1; we shall give an algebraic characterization presently in Lemma
3.1.

Elements 0 6= Pm,k ∈ KP,m,k give universal curvature identities of degree 2k in
complex dimension k − 1. We sum over repeated indices in a unitary frame field to
define:

P1
m,2 := Rα1ᾱ1ᾱ3α4Rα2ᾱ2ᾱ4α3 −Rα1ᾱ2ᾱ3α4Rα2ᾱ1ᾱ4α3 ,

P2
m,2 := Rα1ᾱ1ᾱ3α3Rα2ᾱ2ᾱ4α4 −Rα1ᾱ2ᾱ3α3Rα2ᾱ1ᾱ4α4 .

One then has that P 1
m,2 and P 2

m,2 are generically non-zero if m ≥ 2 but vanish identically
in complex dimension m = 1. Thus P1

m,2 and P2
m,2 are universal curvature identities in

the Kähler setting. One sees this not by using index notation but by noting that:

P1
m,2 :=

1
2
g(Tr{R2},Ω2) and P2

m,2 :=
1
2
g(Tr{R}2,Ω2).

We generalize this construction:

Definition 1.4. If Sm,k ∈ Sm,k, define ΞP,m,k : Sm,k → PU
m,k by setting:

ΞP,m,k(Sm,k) :=
1
k!

g(Sm,k(R),Ωk). (1.f)

We may use Equation (1.a) to see that if m = k, then

ΞP,m,m(Sm,m)dνg = Sm,m(R). (1.g)

Thus by Lemma 1.1, ΞP,m,k(Sm,k) is generically non-zero in complex dimension m ≥ k

but vanishes in complex dimension m = k − 1. Consequently, ΞP,m,k takes values in
KP,m,k.
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The following result played an important role in the proof of the Riemann–Roch
formula using heat equation methods [9]:

Theorem 1.1. If m ≥ k, then ΞP,m,k is an isomorphism from Sm,k to KP,m,k.
In other words, any scalar valued curvature identity of order 2k that is given universally
by contracting indices in pairs, that is generically non-zero in complex dimension m ≥ k,
and that vanishes in complex dimension m = k − 1 is of this form.

1.4. Universal curvature identities which are symmetric 2-tensor valued.
In the real setting, let S2M ⊂ ⊗2T ∗M be the bundle of symmetric 2-cotensors and

let S2M ⊂ ⊗2TM be the dual bundle; this is the bundle of symmetric 2-tensors. We can
extend H. Weyl’s theorem first theorem of invariants to construct polynomial invariants
which are S2M valued by contracting all but 2 indices and symmetrizing the remaining
two indices. For example, we can define:

T2 := Rijjiek ◦ ek − 2Rijkiej ◦ ek,

T4 := −1
4
(RijjiRkllk − 4RijkiRljkl + RijklRijkl)en ◦ en

+ {RklniRklnj − 2RknikRlnjl − 2RikljRnkln + RkllkRnijn}ei ◦ ej .

The invariants Tn are generically non-zero in real dimension greater than n but vanish
identically in real dimension n. The identity T2 = 0 in real dimension 2 is the classical
identity relating the scalar curvature and the Ricci tensor; the identity T4 = 0 in real
dimension 4 is the Berger–Euh–Park–Sekigawa identity [2], [4]. More generally, such
invariants can be formed through the transgression of the Euler form; we refer to [11] for
further details. We also refer to [12] where the pseudo-Riemannian setting is treated and
to [13] where manifolds with boundary are treated. We note that Navarro and Navarro
[21] have applied the theory of natural operators [15], [20] to discuss more generally
p-covariant identities for any even p.

In the Kähler setting, let S+
2 M be the bundle dual to S2

+M and let 〈·, ·〉 denote the
natural pairing between these two bundles.

Definition 1.5. Let QU
m,k be the space of all S2

+ valued invariants which are
homogeneous of degree 2k in the derivatives of the metric and which are invariant under
the action of the unitary group. We consider the subspace KQ,m,k ⊂ QU

m,k of invariants
which vanish when restricted from complex dimension m to complex dimension k; again,
we shall give an algebraic characterization presently in Lemma 3.1.

Example 1.1. Let {eα} be a local unitary frame field for TM (viewed as a com-
plex vector bundle). We contract holomorphic with anti-holomorphic indices in pairs to
construct the following invariant of degree 2:

Qm,1 := Rα1ᾱ1r̄1r1eα2 ◦ eᾱ2 −Rα1ᾱ2r̄1r1eα2 ◦ eᾱ1 .

Similarly, we may construct invariants of degree 4:
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Q1
m,2 := Rα1ᾱ1γ̄1δ1Rα2ᾱ2δ̄1γ1

eα3 ◦ eᾱ3 + Rα1ᾱ3γ̄1δ1Rα2ᾱ1δ̄1γ1
eα3 ◦ eᾱ2

+ Rα1ᾱ2γ̄1δ1Rα2ᾱ3δ̄1γ1
eα3 ◦ eᾱ1 −Rα1ᾱ1γ̄1δ1Rα2ᾱ3δ̄1γ1

eα3 ◦ eᾱ2

−Rα1ᾱ2γ̄1δ1Rα2ᾱ1δ̄1γ1
eα3 ◦ eᾱ3 −Rα1ᾱ3γ̄1δ1Rα2ᾱ2δ̄1γ1

eα3 ◦ eᾱ1 ,

Q2
m,2 := Rα1ᾱ1σ̄1σ1Rα2ᾱ2σ̄2σ2eα3 ◦ eᾱ3 + Rα1ᾱ3σ̄1σ1Rα2ᾱ1σ̄2σ2eα3 ◦ eᾱ2

+ Rα1ᾱ2σ̄1σ1Rα2ᾱ3σ̄2σ2eα3 ◦ eᾱ1 −Rα1ᾱ1σ̄1σ1Rα2ᾱ3σ̄2σ2eα3 ◦ eᾱ2

−Rα1ᾱ2σ̄1σ1Rα2ᾱ1σ̄2σ2eα3 ◦ eᾱ3 −Rα1ᾱ3σ̄1σ1Rα2ᾱ2σ̄2σ2eα3 ◦ eᾱ1 .

We have Qm,1 ∈ KQ,m,1, Q1
m,2 ∈ KQ,m,2 and Q2

m,2 ∈ KQ,m,2. The invariant Qm,1 is
generically non-zero in complex dimension m ≥ 2 but vanishes in complex dimension
m = 1; the invariants Q1

m,2 and Q2
m,2 are generically non-zero in complex dimension

m ≥ 3 but vanish in complex dimension m = 2. One sees this not by using the index
notation but rather by expressing

Qm,1 =
1
2
Rα1β̄1γ̄1γ1

eα2 ◦ eβ̄2
g(dzα1 ∧ dz̄β1 ∧ dzα2 ∧ dz̄β2 ,Ω2),

Q1
m,2 =

1
6
Rα1β̄1γ̄1δ1

Rα2β̄2δ̄1γ1
eα3 ◦ eβ̄3

g(eα1 ∧ ēβ1 ∧ eα2 ∧ ēβ2 ∧ eα3 ∧ ēβ3 ,Ω3),

Q2
m,2 =

1
6
Rα1β̄1σ̄1σ1

Rα2β̄2σ̄2σ2
eα3 ◦ eβ̄3

g(eα1 ∧ ēβ1 ∧ eα2 ∧ ēβ2 ∧ eα3 ∧ ēβ3 ,Ω3).

We generalize this construction:

Definition 1.6. Let Sm,k ∈ Sm,k. The transgression ΞQ,m,k(Sm,k) ∈ S+
2 is

defined by setting:

ΞQ,m,k(Sm,k) :=
1

(k + 1)!
g(Sm,k(R) ∧ eα ∧ ēβ ,Ωk+1)eα ◦ ēβ .

Example 1.2. Adopt the notation of Example 1.1. Then Qm,1 = ΞQ,m,1(Tr1).
Let ρ be the Ricci tensor and let τ be the scalar curvature. We have

Qm,1 = −1
2
τg + ρ.

This symmetric 2-form valued tensor is generically non-zero if m ≥ 2 but vanishes identi-
cally in complex dimension m = 1; this is a classic identity. Recall that Trk(R) = Tr(Rk).
Let Q1

m,2 = ΞQ,m,2(Tr2) and Q2
m,2 = ΞQ,m,2(Tr21). Let ρ be the Ricci tensor. Set

Řij = RabciR
abc

j , ρ̌ij = ρaiρ
a

j , Lij = 2Riabjρ
ab.

We then have:

Q1
m,2 =

(
1
2
|ρ|2 − 1

4
|R|2

)
g + (Ř− L(ρ)) and Q2

m,2 = 2ρ̌− τρ− 1
2

(
|ρ|2 − τ2

2

)
g.
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The characteristic class c2
1 corresponds to Tr2; the formula for Q2

m,2 agrees with that
given in Theorem 5.3 [5] for the associated Euler–Lagrange equation. Furthermore, the
Euler class in real dimension 4 corresponds to 2 det(A) = Q2

m,2 −Q1
m,2. We express:

Q2
m,2 −Q1

m,2 =
1
4

(
|R|2 − |ρ|2 +

τ2

4

)
g − Ř + L(ρ) + 2ρ̌− τρ.

This is the universal curvature identity discussed in [2], [4] that is generated by the
Euler–Lagrange equation of this characteristic class. Note that the complex structure is
not involved; this is no longer the case when we consider invariants of order 6 and higher.

The invariants of Definition 1.6 yield the universal S+
2 valued curvature identities

that we have been searching for; every S+
2 valued invariant which is homogeneous of

degree 2k in the derivatives of the metric and which is generically non-zero in complex
dimension m > k and which vanishes in complex dimension k arises in this fasion.
Theorem 1.1 generalizes to this setting to become the following result which is the first
major new result of this paper:

Theorem 1.2. If m > k, then map ΞQ,m,k of Definition 1.6 is an isomorphism
from Sm,k to KQ,m,k. This means that a S+

2 valued curvature identity of order 2k which is
given universally by contracting indices in pairs, which is generically non-zero in complex
dimension m > k, and which vanishes in complex dimension m = k is of this form.

1.5. Euler–Lagrange equations.
Let Mm = (M, g, J) be a compact Kähler manifold. Let Sm,k ∈ Sm,k for k ≤ m.

Although Sm,k determines a cohomology class, it does not determine a corresponding
scalar invariant if k < m. We integrate the invariant of Definition 1.4 to define:

{ΞP,m,k(Sm,k)}[Mm] :=
1
k!

∫

M

g(Sm,k(RM),Ωk
g)dνg. (1.h)

If k = m, we use Equation (1.g) to see

{ΞP,k,k(Sk,k)}[Mm] =
∫

M

Sk,k(RM)

is a characteristic number that is independent of the metric g. However, more generally,
if m > k, then this integral depends upon the metric. Let gε := g + εh be a smooth
1-parameter family of Kähler metrics; such families may be obtained using the Kähler
potential as we shall discuss presently in Section 2.3. We integrate by parts to obtain
the corresponding Euler–Lagrange formula.

Definition 1.7. Let Sm,k ∈ Sm,k. Let Mm = (M, g, J) be a Kähler mani-
fold of complex dimension m. Let Mm

ε := (M, g + εh, J) be a Kähler variation. Let
ΘQ,m,k{Sm,k} ∈ S+

2 M be the associated Euler–Lagrange invariant; it is uniquely char-
acterized by the identity:
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∂ε{ΞP,m,k(Sm,k)[Mm
ε ]}∣∣

ε=0
=

∫

M

〈{ΘQ,m,k(Sm,k)}(RM), h
〉
dνg.

What is perhaps somewhat surprising is that the Euler–Lagrange formulas for Sm,k

are closely related to the universal curvature identities defined by the transgression. We
adopt the notation of Example 1.1 and Example 1.2. It is well known that Qm,1 is
the Euler–Lagrange equation for the Gauss–Bonnet integrand. Work of [5] shows that
universal curvature identity Q1

m,2 is the Euler–Lagrange equation for Tr2. Similarly, work
of [2], [4] shows that the universal curvature identity Q2

m,2−Q1
m,2 is the Euler–Lagrange

equation of the Euler class. Thus ΞQ,m,k = ΘQ,m,k if k = 1, 2. This is true more
generally; the map from the characteristic forms to the symmetric 2-tensors given by the
Euler–Lagrange equations coincides with the map given algebraically by the transgression
in the Kähler setting. Let ΘQ,m,k be as given in Definition 1.7 and let ΞQ,m,k be as given
in Definition 1.6. The following is the second main result of this paper:

Theorem 1.3. If m > k, then ΘQ,m,k = ΞQ,m,k. This means that if Sm,k ∈ Sm,k,
if m > k, and if Mm

ε := (M, g + εh, J) is a Kähler variation, then

∂ε{ΞP,m,k(Sm,k)[Mm
ε ]}

∣∣
ε=0

=
1

(k + 1)!

∫

M

g(Sm,k(R) ∧ eα ∧ ēβ ,Ωk+1)〈eα ◦ ēβ , h〉dνM.

Remark 1.2. A-priori, since the local invariant Sm,k involves 2nd derivatives,
the associated Euler–Lagrange invariant could involve the first and second covariant
derivatives of the curvature tensor. The somewhat surprising fact is that this is not the
case as Theorem 1.3 shows. In the real setting, one can work with the Pfaffian; this
is the integrand of the Chern–Gauss–Bonnet formula [3]. Berger [2] conjectured that
the corresponding Euler–Lagrange invariant only involved the second derivatives of the
metric. This was established by Kuz’mina [16] and Labbi [17], [18], [19] (see also the
discussion in [11]). Theorem 1.3 is the extension to the complex setting of this result.

1.6. Outline of the paper.
Fix a point of a Kähler manifold Mm. In Section 2, we normalize the choice of the

coordinate system to be the unitary group up to arbitrarily high order. In Section 3, we
give an algebraic description of the space KP,m,k (resp. KQ,m,k) from the point of the
restriction map from complex dimension m to complex dimension k − 1 (resp. k) and
show that ΞP,m,k (resp. ΞQ,m,k and ΘQ,m,k) takes values in KP,m,k (resp. KQ,m,k). In
Section 4 we discuss invariance theory. We take a slightly non-standard point of view.
Weyl’s first theorem of invariants [23] gives generators for the space of invariants of the
orthogonal group; in brief, this generating set can be described in terms of contractions of
indices. Fukami [7] and Iwahori [14] have extended this result to the complex setting; the
generating set is formed by using both the metric and the Kähler form to contract indices.
However, what is needed in our analysis is Weyl’s second theorem of invariants which
describes the relations among the generating set described above. This analysis does not
seem to have been extended to the complex setting. Even were this to have been done,
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we would still need to use the Kähler identity suitably. For that reason, it seemed easiest
simply to do the necessary invariance theory from scratch in a non-standard setting and
we apologize in advance if this is unfamiliar. Let KQ,m,k be as given in Definition 1.5 and
let ρ(k) be the partition function of Definition 1.1. The crucial estimate in this regard is
given in Lemma 4.3:

dim{KQ,m,k} ≤ ρ(k).

In Section 5, we use these results of Section 3 to establish Theorem 1.1, Theorem 1.2,
and Theorem 1.3.

2. Normalizing the coordinates.

In this section, we probe in a bit more detail into Kähler geometry. In Section
2.1, we introduce some basic notational conventions. In Section 2.2, we reduce the
structure group to the unitary group modulo a holomorphic transformation of arbitrarily
high order. In Section 2.3, we discuss Kähler potentials; this provides a way of varying
the original Kähler metric that will be very useful in considering the Euler–Lagrange
equations. In Section 2.4, we will use the Kähler potential to specify the jets of the
metric; we shall work with a polynomial algebra in the derivatives of the metric and in
this section, we show there are no hidden relations or analogues of the Bianchi identities.
This will be crucial in our subsequent discussion in Section 3.

2.1. Notational conventions.
Let P be a point of a Kähler manifold Mm. Extend the J-invariant Riemannian

metric g to be a symmetric complex bilinear form. Let

gαβ := g(∂zα
, ∂zβ

), gᾱβ̄ := g(∂z̄α
, ∂z̄β

), gαβ̄ := g(∂zα
, ∂z̄β

).

Since g is J-invariant, we may show that gαβ = gᾱβ̄ = 0 by computing:

gαβ = g(J∂zα , J∂zβ
) = g

(√−1∂zα ,
√−1∂zβ

)
= −gαβ ,

gᾱβ̄ = g(J∂z̄α
, J∂z̄β

) = g
(−√−1∂z̄α

,−√−1∂z̄β

)
= −gᾱβ̄ .

As a result, we have that:

Ω(∂zα , ∂zβ
) = g(∂zα , J∂zβ

) =
√−1gαβ = 0,

Ω(∂z̄α
, ∂z̄β

) = g(∂z̄α
, J∂z̄β

) = −√−1gᾱβ̄ = 0,

Ω(∂zα
, ∂z̄β

) = g(∂zα
, J∂z̄β

) = −√−1gαβ̄ ,

Ω = −√−1gαβ̄dzα ∧ dz̄β .

The equation dΩ = 0 is then equivalent to the relations
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0 = ∂zγ
gαβ̄dzγ ∧ dzα ∧ dz̄β − ∂z̄γ

gαβ̄dzα ∧ dz̄γ ∧ dz̄β , i.e.

∂zγ gαβ̄ = ∂zαgγβ̄ and ∂z̄γ gαβ̄ = ∂z̄β
gαγ̄ .

(2.a)

Let δ be the Kronecker symbol. Let A := (α1, . . . , αν) be an ordered collection of
indices αi where 1 ≤ αi ≤ m. Let |A| = ν, let zA = zα1 · · · zαν , and let

degα(A) := δαα1 + · · ·+ δααν

be the number of times the index α appears in A. Let B = (β1, . . . , βµ) be another
collection of indices and let ~z = (z1, . . . , zm) be a local holomorphic system of coordinates
on a Kähler manifold Mm. Set

g~z(A;B) :=
{
∂zα2

· · · ∂zαν
∂z̄β2

· · · ∂z̄βµ

}
gα1β̄1

.

We shall often omit the superscript ~z if there is only one coordinate system under con-
sideration. If σ and τ are permutations, let

Aσ := (ασ(1), . . . , ασ(ν)) and Bτ := (βτ(1), . . . , βτ(µ)).

Equation (2.a) may then be differentiated to see:

g(A;B) = g(Aσ;Bτ )

so the variables g(A;B) are symmetric in the holomorphic indices and also in the anti-
holomorphic indices; the order of the indices comprising A and comprising B plays no
role. Note that

g~z(B;A) = ḡ~z(A;B).

2.2. Reducing the structure group to U(m).
The following result will enable us to normalize the structure group of admissible

coordinate transformations from the full group of holomorphic transformations to the
unitary group modulo changes which vanish to arbitrarily high order at a given point P

of M :

Lemma 2.1. Let P be a point of a Kähler manifold Mm. Fix n.

1. There exist local holomorphic coordinates (z1, . . . , zm) centered at P so that

gαβ̄(P ) = δαβ and g~z(A;B)(P ) = 0 for |B| = 1 and 2 ≤ |A| ≤ n. (2.b)

2. If (w1, . . . , wm) is another system of local holomorphic coordinates on M which are
centered at P and which satisfy the relations of Equation (2.b), then we have that
z = Tw + O(|w|n+1) for some linear map T ∈ U(m).
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Proof. Suppose that n = 1. We use the Gram–Schmidt process to make a com-
plex linear change of coordinates to ensure that gαβ̄(P ) = δαβ . Assertion (1) now follows;
Assertion (2) is then immediate. We therefore proceed by induction and assume that
n ≥ 2. Let z be a system of coordinates normalized satisfying gαβ̄(P ) = δαβ and
g(A;B) = 0 for |B| = 1 and 2 ≤ |A| < n (this condition is vacuous if n = 2). Consider
the coordinate transformation:

wβ = zβ +
∑

|A|=n

cβ
AzA

where the constants cβ
A are to be chosen suitably. Set

ε(A) := ∂zα1
· · · ∂zαn

{zA} ∈ N. (2.c)

We sum over repeated indices to compute:

∂zα
= ∂wα

+ cγ
A∂zα

{zA}∂wγ
, ∂z̄β

= ∂w̄β
+ c̄γ

A∂z̄β
{z̄A}∂w̄γ

,

g(∂zα
, ∂z̄β

) = g(∂wα
, ∂w̄β

) + cβ
A∂zα

{zA}+ c̄α
A∂z̄β

{z̄A}+ O(|z|n),

g~z(A, β)(P ) = g ~w(A, β)(P ) + ε(A) · cβ
A.

To ensure that g ~w(A, β)(P ) = 0 for all A, β, we solve the equations:

ε(A)cβ
A = g~z(A, β)(P ).

Assertion (2) now follows since the transformation is uniquely defined if we suppose
dT (P ) = id. ¤

We use Lemma 2.1 to normalize the system of holomorphic coordinates ~z to arbi-
trarily high order henceforth; note that we also have:

g~z(B;A)(P ) = ḡ~z(A;B)(P ) = 0 for |B| = 1.

The structure group is now the unitary group U(m) and the variables g~z(A;B) are
tensors; we shall suppress the role of the coordinate system ~z whenever no confusion is
likely to result. If we fix |A| = n1 ≥ 2 and |B| = n2 ≥ 2, then g(·; ·) is a symmetric
cotensor of type (n1, n2), i.e.

g(·; ·) ∈ Sn1(Λ1,0)⊗ Sn2(Λ0,1).

The Kähler identity of Equation (1.b) yields R(∂za , ∂zb
) = R(∂z̄a , ∂z̄b

) = 0. Let
A = (α1, α2) and B = (β1, β2). We compute that:
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R(∂zα1
, ∂z̄β1

, ∂z̄β2
, ∂zα2

)(P ) =
1
2
{∂zα1

∂z̄β2
g(∂zα2

, ∂z̄β1
) + ∂zα2

∂z̄β1
g(∂zα1

, ∂z̄β2
)}(P )

= g(A;B)(P ).

A similar computation shows for A = (α1, α2, α3) and B = (β1, β2) that:

∇R(∂zα1
, ∂z̄β1

, ∂z̄β2
, ∂zα2

; ∂zα3
)(P ) = g(A;B)(P ).

The expression of the variables g(A;B)(P ) in terms of covariant derivatives of curvature
(and vice-versa) for larger values of |A| and |B| is more complicated.

2.3. The Kähler potential.
Let

dzI := dzi1 ∧ · · · ∧ dzip for I = {1 ≤ i1 < · · · < ip ≤ m},
dz̄J := dz̄j1 ∧ · · · ∧ dz̄jq for J = {1 ≤ j1 < · · · < jq ≤ m}.

We set Λp,qM := SpanC{dzI ∧ dz̄J}|I|=p,|J|=q and decompose

ΛnM ⊗R C =
⊕

p+q=n

Λp,qM.

Thus, for example, Λ2
+M ⊗R C = Λ1,1M . Decompose d = ∂ + ∂̄ where

∂ : C∞(Λp,qM) → C∞(Λp+1,qM) and ∂̄ : C∞(Λp,qM) → C∞(Λp,q+1M)

are defined by setting:

∂(fI,JdzI ∧ dz̄J) := ∂zα
(fI,J )dzα ∧ dzI ∧ dz̄J ,

∂̄(fI,JdzI ∧ dz̄J) := ∂z̄α(fI,J )dz̄α ∧ dzI ∧ dz̄J .

If f ∈ C∞(M), define a real Hermitian symmetric bilinear form hf ∈ C∞(S2
+) and a

corresponding real anti-symmetric 2-form Ωhf
∈ C∞(Λ2

+) by setting:

Ωhf
= −√−1∂∂̄f = −√−1

∂2f

∂zα∂z̄β

dzα ∧ dz̄β and hf =
∂2f

∂zα∂z̄β

dzα ◦ dz̄β .

We then have dΩhf
= 0 and, consequently, for small ε, g + εhf is positive definite and

thus a Kähler metric.

2.4. Specifying the jets of the metric at P .
The variables {g(A;B)} are a good choice of variables since, unlike the covariant

derivatives of the curvature tensor, there are no additional identities as the following
result shows; we are dealing with a pure polynomial algebra and we have avoided the
Bianchi identities:
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Lemma 2.2. Fix n ≥ 2. Let constants c(A;B) ∈ C be given for 2 ≤ |A| ≤ n and
2 ≤ |B| ≤ n so that c(A;B) = c̄(B;A). Let P be a point of a Kähler manifold (M, g0, J).
Use Lemma 2.1 to normalize the coordinate system ~z at P so g0 satisfies Equation (2.b).
Then exists a Kähler metric g on (M, J) so that g~z also satisfies Equation (2.b) and so
that g~z(A;B)(P ) = c(A;B) for 2 ≤ |A| ≤ n and 2 ≤ |B| ≤ n.

Proof. Let φ be a plateau function which is identically 1 for |z| ≤ 1 and which
vanishes identically for |z| ≥ 2. Let φr(z) := φ(z/r). Let ε(·) be the multiplicity which
was defined in Equation (2.c). For r small, we define:

fr(z, z̄) =
n∑

|A|=2

n∑

|B|=2

c(A;B)− g~z
0(A;B)(P )

ε(A)ε(B)
φr(z, z̄)zAz̄B .

The function fr is real and is supported arbitrarily close to P for r sufficiently small. We
follow the discussion of Section 2.3 to define hf . Let g := g0 + hf . Then

gαβ̄ := g0,αβ̄ +
n∑

|A|=2

n∑

|B|=2

c(A;B)− g~z
0(A;B)(P )

ε(A)ε(B)
∂zα∂z̄β

{φr(z, z̄)zAz̄B}.

The perturbation has compact support near P ; consequently, g extends smoothly to all
of M . Furthermore, since φr ≡ 1 near P ,

g~z(A;B)(P ) = g~z
0(A;B)(P ) + c(A;B)− g~z

0(A;B)(P ) = c(A;B).

Since |A| ≥ 2 and |B| ≥ 2, g~z satisfies Equation (2.b) at P . Thus the only point
remaining is to show that gαβ̄ is positive definite if the parameter r is chosen sufficiently
small. Since |A| ≥ 2 and |B| ≥ 2, there exists a constant C so that if r is small and if
|z| ≤ r, we have:

zAz̄B ≤ Cr4, ∂zα
(zAz̄B) ≤ Cr3, ∂z̄β

(zAz̄B) ≤ Cr3,

∂zα
∂z̄β

(zAz̄B) ≤ Cr2, φr ≤ C, ∂zα
φr ≤ Cr−1,

∂z̄β
φr ≤ Cr−1, ∂zα

∂z̄β
φr ≤ Cr−2.

After possibly increasing C, we may conclude that:

∂zα∂z̄β
{φrz

Az̄B} ≤ Cr2.

Thus the perturbation of the original metric can be made arbitrary small in the C0

topology as r → 0 and hence g is positive definite if r is sufficiently small. ¤
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3. The restriction map.

It is necessary to be somewhat more formal at this stage. In Section 3, we shall
establish notation and make precise the notions discussed previously in Definition 1.3
and in Definition 1.5.

Definition 3.1. Let Pm be the polynomial algebra in formal variables g(A;B)
where 2 ≤ |A| and 2 ≤ |B|. Let Qm be the Pm module of all Q := Pαβ̄∂zα

◦ ∂z̄β
which

are S2
+ valued where Pαβ̄ ∈ Pm for 1 ≤ α, β ≤ m. If P ∈ Pm (resp. Q ∈ Qm), if P is

a point of Kähler manifold Mm of complex dimension m, and if ~z is a system of local
holomorphic coordinates on M centered at P satisfying the normalizations of Lemma 2.1,
then there is a natural evaluation P(Mm, ~z)(P ) (resp. Q(Mm, ~z)(P )). We use Lemma
2.1 to see that we can specify the variables g(A;B) arbitrarily and therefore we may
identify the abstract element P ∈ Pm (resp. Q ∈ Qm) with the local formula it defines.
If P(Mm, ~z)(P ) = P(Mm)(P ) (resp. Q(Mm, ~z)(P ) = Q(Mm)(P )) is independent of
the particular system of local holomorphic coordinates ~z, then we say P (resp. Q)
is invariant. Let PU

m be the subalgebra and let QU
m the PU

m submodule of all such
invariants. The choice of ~z is unique up to the action of U(m). There is a natural dual
action of U(m) on Pm and Qm; PU

m and QU
m are simply the fixed points of this action.

A typical monomial A of P ∈ Pm or of Q ∈ Qm takes the form:

A = g(AA1 ;BA
1 ) · · · g(AA` ;BA

` )∂zαA ◦ ∂z̄βA
,

where we omit the ∂zαA ◦∂z̄βA
variables when dealing with an element of Pm. Let c(A,P)

(resp. c(A,Q)) be the coefficient of A in P (resp. Q); we say that A is a monomial of P
(resp. Q) if c(A,P) (resp. c(A,Q)) is non-zero.

Definition 3.2. We introduce a grading on Pm and on Qm by defining:

ord(g(A;B)) := |A|+ |B| − 2 and ord(A) =
∑

i

{|AAi |+ |BA
i | − 2}.

The components of R have order 2; the components of ∇R have order 3, and so forth.
Let T := − id ∈ U(m). Then TA = (−1)ord(A)A. Thus if A is a monomial of an invariant
polynomial P or Q, then ord(A) is necessarily even. Decompose an invariant polynomial
P = P0 + P1 + · · · where

Pi :=
∑

ord(A)=2i

c(A,P)A.

Each Pi is invariant separately since U(m) preserves the order. Let PU
m,k be the vector

space of all elements of PU
m which are homogeneous of order 2k in the derivatives of the

metric and which are invariant under the action of the unitary group U(m). We define
QU

m and QU
m,k similarly. We may then decompose
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PU
m = ⊕kPU

m,k and QU
m = ⊕kQU

m,k.

Definition 3.3. Let degγ(A) be the number of times the index γ appears in a
collection of indices A. If

A0 = g(AA0
1 ;BA0

1 ) · · · g(AA0
` ;BA0

` ),

let len(A0) := ` be the length of A0. Let degγ(A0) (resp. degγ̄(A0)) be the number
of times the holomorphic index γ (resp. the anti-holomorphic index γ̄) appears in the
monomial A0:

degγ(A0) = degγ(AA0
1 ) + · · ·+ degγ(AA0

` ),

degγ̄(A0) = degγ̄(BA0
1 ) + · · ·+ degγ̄(BA0

` ).

Similarly, if A = A0∂zαA ◦ ∂z̄βA
, set

degγ(A) := degγ(A0) + δγαA and degγ̄(A) := degγ̄(A0) + δγβA .

We wish to consider the space of universal scalar valued curvature identities KP,m,k

(resp. S+
2 valued curvature identities KQ,m,k) which are homogeneous of order 2k in the

derivatives of the metric, which are defined on a manifold of complex dimension m ≥ k

(resp. m ≥ k +1), and which vanish when restricted to a manifold of complex dimension
k − 1 (resp. of complex dimension k). We define these spaces algebraically as follows to
give precision to the notation introduced previously in Definition 1.3 and in Definition
1.5.

Definition 3.4. Define the restriction map

rm,ν{A} :=
{ A if degα(A) = degᾱ(A) = 0 for all α > ν

0 otherwise

}
.

We note that rm,ν{A} is then a monomial in complex dimension ν so we may extend
rm,ν to an algebra homomorphism and to a module homomorphism, respectively:

rm,ν : PU
m,k → PU

ν,k and rm,ν : QU
m,k → QU

ν,k.

There is an equivalent geometric formulation. Let T ` := (T`, gT, JT) be the flat
Kähler torus of complex dimension ` where T` := R2`/Z2` is the rectangular torus of
total volume 1, where gT is the flat metric induced by the usual Euclidean metric, and
where JT is the complex structure induced from the usual complex structure obtained by
identifying R2` = C`. Fix a base point Q of T `. The group of translations acts transitively
on T ` so the particular base point chosen is inessential. The following Lemma gives an
equivalent algebraic representation of the spaces of universal curvature identities KP,m,k

and KQ,m,k which were discussed in Definition 1.3 and in Definition 1.5.
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Lemma 3.1. Let ν < m. Let P be a point of a Kähler manifold N ν of complex
dimension ν.

1. If Pm,k ∈ PU
m,k, then Pm,k(N ν × T m−ν)(P, Q) = (rm,νPm,k)(N ν)(P ).

2. Let i(P ) := (P, Q) be the natural inclusion map of Nν into Nν × Tm−ν . If Qm,k ∈
QU

m,k, then i∗Qm,k(N ν × T m−ν)(P, Q) = (rm,νQm,k)(N ν)(P ).
3. KP,m,k = ker(rm,k−1) ∩PU

m,k and KQ,m,k = ker(rm,k) ∩QU
m,k.

Note: It is necessary to use the pull-back i∗ in order to regard the symmetric 2-tensor
P → Qm,k(N ν × T m−ν)(P, Q) as a symmetric 2-tensor on N ν . But it is not necessary
to use pull-back to regard the function P → Pm,k(N ν × T m−ν)(P, Q) as a function on
N ν so we shall omit the i∗ in that setting.

Proof. Let Mm := N ν ×T m−ν . Any polynomial in the derivatives of the metric
which involves an index greater than ν vanishes since the metric is flat on T m−ν . Since
we have restricted the symmetric 2-tensors to N ν , a symmetric 2-tensor also vanishes if
it contains a holomorphic (or an anti-holomorphic) index greater than ν. Assertion (1)
and Assertion (2) now follow. Lemma 2.2 permits us to identify an invariant polyno-
mial (which is an algebraic object) with the corresponding geometric formula it defines;
Assertion (3) now follows. ¤

We can now relate the restriction maps rm,ν on Sm of Definition 1.1 to the restriction
maps rm,ν on PU

m and on QU
m of Definition 3.4:

Lemma 3.2.

1. Let ΞP,m,k be as defined in Definition 1.4.
(a) If m > ν, then rm,νΞP,m,k = ΞP,ν,krm,ν on Sm,k.
(b) If m ≥ k, then ΞP,m,kSm,k ⊂ KP,m,k.
(c) If m ≥ k and if 0 6= Sm,k ∈ Sm,k, then rm,kΞP,m,kSm,k 6= 0.

2. Let ΞQ,m,k be as defined in Definition 1.6.
(a) If m > ν, then rm,νΞQ,m,k = ΞQ,ν,krm,ν on Sm,k.
(b) If m ≥ k + 1, then ΞQ,m,kSm,k ⊂ KQ,m,k.
(c) If m ≥ k + 1 and if 0 6= Sm,k ∈ Sm,k, then rm,k+1ΞQ,m,kSm,k 6= 0.

Proof. Recall that ΞP,m,k(Sm,k) = g(Sm,k(R),Ωk)/k!. Assertion (1a) is now
immediate. Furthermore since Ωk vanishes on a Kähler manifold of complex dimension
k−1, ΞP,k−1,k = 0. By Assertion (1a), rm,k−1ΞP,m,k = ΞP,k−1,krm,k−1 = 0. By Lemma
3.1, KP,m,k = ker(rm,k−1) ∩PU

m,k. Assertion (1b) now follows. By Remark 1.1, rm,k is
an isomorphism from Sm,k to Sk,k. Thus to prove Assertion (1c), it suffices to show
that ΞP,k,k is injective from Sk,k to PU

k,k. We use Equation (1.a) and Definition 1.4 to
see that:

ΞP,k,k(Sk,k)(R)dνg =
1
k!

g(Sk,k(R),Ωk)dνg = Sk,k(R).

If Sk,k 6= 0, we may apply Lemma 1.1 establish Assertion (1c) by choosing ~ν so that
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∫

CP~ν

Sk,k(RCP~ν ) 6= 0.

Recall that ΞQ,m,k(Sm,k) = (1/(k +1)!)g(Sm,k(R)∧ eα∧ ēβ ,Ωk+1)eα ◦ ēβ . Assertion
(2a) is now immediate. Since Ωk+1 vanishes on a Kähler manifold of complex dimension
k, ΞQ,k,k = 0. By Assertion (2a), rm,kΞQ,m,k = ΞQ,k,krm,k = 0. By Lemma 3.1,
KQ,m,k = ker(rm,k) ∩ QU

m,k. Assertion (2b) now follows. By Remark 1.1, rm,k is an
isomorphism from Sm,k to Sk+1,k. Thus to prove Assertion (2c), we may take m = k+1.
Let Mk+1 := N k ×T 1 where T 1 is the flat Kähler torus of complex dimension 1. Let w

be the usual periodic complex parameter on T1.

1
(k + 1)!

Ωk+1
M =

1
(k + 1)!

(ΩM + ΩT )k+1 =
1
k!

Ωk
M ∧ ΩT ,

ΞQ,k+1,k(Sk+1,k)(Mk+1) =
{
ΞP,k,k(rk+1,kSk+1,k)(N k)

}
∂w ◦ ∂w̄.

Because rk+1,k is an injective map from Sk+1,k to Sk,k, Assertion (2c) follows from
Assertion (1c). ¤

Lemma 3.3. Let ΘQ,m,k be as defined in Definition 1.7.

1. If m > ν, then rm,νΘQ,m,k = ΘQ,ν,krm,ν on Sm,k.
2. If m ≥ k + 1, then ΘQ,m,kSm,k ⊂ KQ,m,k.
3. If m ≥ k + 1 and if 0 6= Sm,k ∈ Sm,k, then rm,k+1ΘQ,m,kSm,k 6= 0.

Proof. It is necessary to expand the category in which we are working, if only
briefly. Let Mm = (M, g, J) be a Hermitian manifold of complex dimension m. Let
∇g be the associated Levi–Civita connection. We average over the action of the com-
plex structure J to define an auxiliary connection ∇̃g := (−J∇gJ +∇g)/2 on the tan-
gent bundle. It is immediate that ∇̃gJ = J∇̃g and thus ∇̃g is a complex connection.
The associated curvature R(∇̃g) is then a complex endomorphism and consequently
Sm,k(R(∇̃g)) ∈ Λ2k(M) is well defined and we may extend Definition 1.4, Definition 1.6,
and Definition 1.7 to this setting. If Mm

ε is a Hermitian variation, then ΘQ,m,k(Sm,k) is
characterized by the identity:

∂ε

{ ∫

M

ΞP,m,k(Sm,k)(RMε)dνMε

}∣∣∣∣
ε=0

=
∫

M

〈{ΘQ,m,k(Sm,k)}(RM), h〉dνg.

Let m > ν. We consider a product of the form Mm
ε = N ν

ε × T m−ν where the variation
is trivial on the Kähler torus and where N ν

ε is a Hermitian variation. Since T m−ν has
unit volume, we can ignore the integral over the torus and apply Lemma 3.1 and Lemma
3.2 to compute:

∂ε

{ ∫

M

ΞP,m,k(Sm,k)(RMε
)dνMε

}∣∣∣∣
ε=0

=
∫

M

〈{ΘQ,m,k(Sm,k)}(RM), h〉dνg

=
∫

N

〈{rm,νΘQ,m,k(Sm,k)}(RN ), h〉dνg.
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We may also compute:

∂ε

{ ∫

N

ΞP,ν,k(rm,νSm,k)(RNε
)dνNε

}∣∣∣∣
ε=0

=
∫

N

〈{ΘQ,ν,k(rm,νSm,k)}(RN ), h〉dνg.

This shows

0 =
∫

N

〈{rm,νΘQ,m,k(Sm,k)−ΘQ,ν,k(rm,νSm,k)}(RN ), h〉dνg.

Since it is not necessary to restrict to Kähler variations, we can complete the proof of
Assertion (1) by taking h to be the dual of

{rm,νΘQ,m,k(Sm,k)−ΘQ,ν,k(rm,νSm,k)}(RN )

with respect to the metric g to obtain

0 =
∫

N

‖{rm,νΘQ,m,k(Sm,k)−ΘQ,ν,k(rm,νSm,k)}(RN )‖2gdνg.

In complex dimension k, ΞP,k,k(Sk,k)[M ] is a characteristic number and, consequently,
since we constructed complex connections, ΞP,k,k(Sk,k)[M ] is independent of the partic-
ular Hermitian metric chosen. This shows the Euler–Lagrange Equations are trivial and
thus ΘQ,k,k = 0. Assertion (2) now follows from Assertion (1).

We return to the Kähler setting and, by Assertion (1), take m = k + 1 in proving
Assertion (3). Let Mk+1 := N k × T 1 where T 1 is the flat Kähler torus of complex
dimension 1. Let w be the usual periodic complex parameter on T1. We take a variation
of the form gε := gN + (1 + ε)dw ◦ dw̄. The curvature is unchanged but we have
dνε = (1 + ε)dνNdνT . Consequently,

ΘQ,k+1,k(Sk+1,k)(Mk+1) = {ΞP,k,k(rk+1,kSk+1,k)(N k)}∂w ◦ ∂w̄

and Assertion (3) follows from Assertion (1c) of Lemma 3.2. ¤

4. The action of the unitary group.

In this section, we use unitary invariance to study the spaces PU
m and QU

m. We
then examine the spaces of universal curvature identities KP,m,k and KQ,m,k and obtain
a fundamental estimate for their dimensions.

Lemma 4.1. Let U ∈ PU
m or let U ∈ QU

m. Let A be a monomial of U . Express

A = g(AA1 ;BA
1 ) · · · g(AA` ;BA

` )∂zαA ◦ ∂z̄βA

where we omit the ∂zαA ◦ ∂z̄βA
variables if A ∈ PU

m. Set len(A) = `.

1. If 1 ≤ α ≤ m, then degα(A) = degᾱ(A).
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2. Assume that degα(A) > 0. Fix β 6= α and create a monomial Ã by changing exactly
one holomorphic index in A α → β. Then there is a monomial A1 of U which is dif-
ferent from A and which also can create Ã either by changing exactly one holomorphic
index α → β or by changing exactly one anti-holomorphic index β̄ → ᾱ.

3. If U ∈ PU
m, then there exists a monomial A of U so degα(A) = 0 for α > len(A).

4. If U ∈ QU
m, then there exists a monomial A of U so degα(A) = 0 for α > len(A) + 1.

Proof. Fix 1 ≤ α ≤ m and consider the unitary transformation:

Tα(∂zγ
) :=

{
e
√−1θ∂zγ

if γ = α

∂zγ if γ 6= α

}
,

Tα(∂z̄γ
) :=

{
e−
√−1θ∂z̄γ

if γ = α

∂z̄γ if γ 6= α

}
.

Then TαA = e
√−1θ{degα(A)−degᾱ(A)}A, so we have

TαU = U =
∑

A
c(A,U)e

√−1θ{degα(A)−degᾱ(A)}A.

As θ was arbitrary, c(A,U) 6= 0 implies degα(A) = degᾱ(A). Assertion (1) follows.
We now prove Assertion (2). Fix indices α and β. Set:

ν := degα(A) + degβ(A) = degᾱ(A) + degβ̄(A),

Ũ :=
∑

B:degα(B)+degβ(B)=ν

c(B,U)B.

Then Ũ is invariant under the action of U(2) on the indices {α, β} and we work with Ũ
henceforth in the proof of Assertion (2); each monomial of Ũ is homogeneous of degree ν

in {α, β} and also in {ᾱ, β̄}. Let Ã be obtained from A by changing a single holomorphic
index α → β. Since

degα(Ã) = degα(A)− 1 = degᾱ(A)− 1 = degᾱ(Ã)− 1,

Assertion (1) implies Ã is not a monomial of Ũ . Let u, v ∈ C satisfy |u|2 + |v|2 = 1.
Consider the unitary transformation

T∂zσ =





∂zσ
if σ 6= α, β

u∂zα + v∂zβ
if σ = α

−v̄∂zα + ū∂zβ
if σ = β





,
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T∂z̄σ
=





∂z̄σ
if σ 6= α, β

ū∂z̄α
+ v̄∂z̄β

if σ = α

−v∂z̄α
+ u∂z̄β

if σ = β





. (4.a)

We may expand

T Ũ = f(u, v, ū, v̄)Ã+ other terms

where f is homogeneous of degree 2ν in {u, v, ū, v̄}; since T Ũ = Ũ and since Ã is
not a monomial of Ũ , f(u, v, ū, v̄) = 0 for |u|2 + |v|2 = 1. Since f is homoge-
neous, f(u, v, ū, v̄) vanishes for all (u, v) and thus is the trivial polynomial. We have
TA = nA,Ãvuν−1ūνÃ + · · · where nA,Ã is a positive integer which reflects the number
of ways that A can transform to Ã by changing a single holomorphic index α → β.
There must therefore be some monomial A1 of U which is different from A and which
transforms to Ã to create a term involving vuν−1ūνÃ + · · · and which helps to cancel
the corresponding term in TA. In view of Equation (4.a), this can only be by changing
a holomorphic index α → β or an anti-holomorphic index β̄ → ᾱ. Assertion (2) now
follows.

We now prove Assertions (3) and (4). We first introduce some additional notation.
Choose ν = ν(A) maximal among all possible rearrangements defining A so

degα(AAi ) = 0 for i < α and 1 ≤ i ≤ ν.

If ν(A) = `, go on to the next step. If ν < `, choose A to be a monomial of U so
that ν(A) is maximal. Amongst all such possibilities choose A so that degν+1(AAν+1) is
maximal. Since ν(A) < `, there is some index α > ν + 1 so degα(AAν+1) > 0. By making
a coordinate permutation, we may assume α = ν + 2. Let A = AAν+1A0. Define AÃν+1

by changing one holomorphic index ν + 2 to ν + 1 in AAν+1 and let Ã = AÃν+1A0. Apply
Assertion (2) to construct a monomial A1 6= A of U . There are two possibilities:

1. A1 transforms to Ã by changing a holomorphic index ν+2 → ν+1. Since degα(AA1 ) =
· · · = degα(AAν ) = 0 for α > ν, AA1

i = AAi for i ≤ ν. Since A1 6= A, AA1
ν+1 6= AAν+1.

Consequently, ν(A1) = ν and degν+1(A
A1
ν+1) > degν+1(AAν+1). This contradicts the

choice of A with ν(A) = ν and degν+1(AAν+1) maximal. Thus this possibility is
impossible.

2. A1 transforms to Ã by changing an anti-holomorphic index ν̄ → ν + 1. Then we have
AA1

i = AÃi for all i. Thus ν(A1) = ν and degν(AA1
ν ) > degν(AAν ) which is impossible.

The contradiction derived above shows we may choose A so degα(AAi ) = 0 for α > `

and i ≤ `. If U ∈ PU
m,k, then Assertion (3) follows. Suppose U ∈ QU

m,k. If αA ≤ ` + 1,
then we are done. If αA > ` + 1, we may interchange the index αA and the index ` + 1
to assume αA = ` + 1. This completes the proof of Assertion (4). ¤

The following technical Lemma is crucial to our study of the spaces of universal
curvature identities KP,m,k = ker(rm,k−1) ∩PU

m,k and KQ,m,k = ker(rm,k) ∩QU
m,k.
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Lemma 4.2. Let U ∈ KP,m,k or let U ∈ KQ,m,k. Let

A = g(AA1 ;BA
1 ) · · · g(AA` ;BA

` )∂zαA ◦ ∂z̄βA

be a monomial of U ; we omit the ∂zαA ◦ ∂z̄βA
variables if U ∈ KP,m,k.

1. We have that |AAi | = |BA
i | = 2 and ` = k.

2. There exists a monomial A of U satisfying :
(a) For 1 ≤ i ≤ k, there exists an index αi so that AAi = (αi, αi).
(b) αi = i for 1 ≤ i ≤ k.
(c) If U ∈ KQ,m,k, then αA = k + 1.
(d) For 1 ≤ i ≤ k, there exists an index βi so that BA

i = (βi, βi).
(e) The indices {β1, . . . , βk} are a permutation of the indices {1, . . . , k}.
(f) If U ∈ KQ,m,k, then βA = k + 1.

Proof. The length len(A) = ` of a monomial is unchanged by the action of U(m).
Decompose

U = U1 + U2 + · · · where U` :=
∑

len(A)=`

c(A,U)A.

Thus in proving Assertion (1), we may suppose U = U` for some `. Let A be any
monomial of U .

1. Suppose U ∈ KP,m,k = ker(rm,k−1) ∩ PU
m,k. By Lemma 4.1 (3), we can choose a

monomial A of U so that no index other than {1, . . . , `} appears in A. As rm,k−1(U) =
0, there exists an index α ≥ k so that degα(A) > 0. Consequently, ` ≥ k.

2. Suppose U ∈ KQ,m,k = ker(rm,k)∩QU
m,k. By Lemma 4.1 (4), we can choose a monomial

A of U so that no index other than {1, . . . , ` + 1} appears in A. Since rm,k,Q(U) = 0,

there exists an index α ≥ k + 1 so that degα(A) > 0. This once again implies ` ≥ k.

Since |AAi | ≥ 2 and |BA
i | ≥ 2, we may estimate:

2k = ord(A) =
∑̀

i=1

{|AAi |+ |BA
i | − 2} ≥ 2` ≥ 2k.

Consequently, all these inequalities must have been equalities so |AAi | = |BA
i | = 2 and

therefore that U only involves the 2-jets of the metric; the covariant derivatives of the
curvature tensor play no role. It also shows that ` = k so len(A) = k. Assertion (1) now
follows.

We shall assume that U = Q ∈ KQ,m,k = ker(rm,k) ∩ QU
m,k as the case in which

U ∈ KP,m,k = ker(rm,k−1) ∩PU
m,k is similar. We define

Qk+1,k =
∑

degα(A)=0 for α>k+1

c(U ,A)A.
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This is invariant under the action of U(k + 1) and the argument given above shows
Qk+1,k 6= 0. Furthermore, every index {1, . . . , k + 1} appears in every monomial of
Qk+1,k and thus Qk+1,k ∈ KU

Q,k+1,k. Finally, every monomial of Qk+1,k is a monomial of
U . This shows that we may assume that the complex dimension is m = k+1 in the proof
of Assertion (2); this is the crucial case. Thus every monomial A of Qk+1,k contains
as holomorphic indices exactly the indices {1, . . . , k + 1} and also contains exactly these
indices as anti-holmorphic indices.

We say that a holomorphic index α touches itself in A if we have AAi = (α, α) for
some i. Choose a monomial A of Qk+1,k so the number of holomorphic indices which
touch themselves in A is maximal. By making a coordinate permutation, we may assume
without loss of generality the indices which touch themselves holomorphically inA are the
indices {1, . . . , ν}. Consequently AAi = (i, i) for i ≤ ν. Suppose ν < k. Both the indices
ν + 1 and ν + 2 appear holomorphically in A since every index {1, . . . , k + 1} appears
in A. Since only one index can appear in ∂zαA , we may assume that AAν+1 = (ν + 1, σ).
Furthermore, by the maximality of ν, we have ν + 1 6= σ. Express

A = g(1, 1; ?, ?) · · · g(ν, ν; ?, ?)g(ν + 1, σ; ?, ?)A0

where “?” indicates indices not of interest and where A0 is a suitably chosen monomial.
We apply Lemma 4.1 (2) to construct Ã by changing a single holomorphic index σ → ν+1:

Ã = g(1, 1; ?, ?) · · · g(ν, ν; ?, ?)g(ν + 1, ν + 1; ?, ?)A0.

We apply Lemma 4.1 (2) to choose a monomial A1 6= A of Qk+1,k. There are two
possibilities:

1. If A1 transforms to Ã by changing an anti-holomorphic index ν + 1 to σ̄, then the
holomorphic indices are unchanged and we have found a monomial A1 of Qk+1,k where
one more index touches itself holomorphically. This contradicts the choice of A such
that the number of indices touching themselves holomorphically is maximal.

2. If A1 transforms to Ã by changing a holomorphic index σ to ν + 1, then we can not
have changed AAi for i ≤ ν since the index ν + 1 does not appear here. Furthermore,
since AÃ

ν+1 = (ν + 1, ν + 1), and since A1 6= A, that variable was not changed. Thus

A1 = g(1, 1; ?, ?) · · · g(ν, ν; ?, ?)g(ν + 1, ν + 1; ?, ?)Ã0

and again, one more index touches itself holomorphically. This contradicts the choice
of A such that the number of indices touching themselves holomorphically is maximal.

We have shown ν = k. This establishes Assertion (2a). Since every index must in
fact appear in A, no index can touch itself holomorphically in A in two different variables.
Thus after permuting the indices appropriately, we have that

A = g(1, 1; ?, ?) · · · g(k, k; ?, ?)∂zk+1 ◦ ∂z̄?
.

This establishes Assertion (2b) and Assertion (2c).
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We will use the same argument to establish the remaining assertions; the analysis is
slightly more tricky since we do not want to destroy the normalizations of Assertions (2a)
and (2b). Let A be a monomial of Qk+1,k which satisfies the normalizations of Asser-
tions (2a) and (2b). Let σ ≤ k. Then σ appears twice holomorphically in A and hence by
Lemma 4.1 (1) also appears anti-holomorpically in A twice. The index σ = k+1 appears
once holomorphically in A and once anti-holomorphically in A. Choose A so the number
ν of indices which touch themselves anti-holomorphically in A is maximal. If ν = k,
then we are done. So we assume ν < k and argue for a contradiction. By permuting the
indices, we may assume the indices 1, . . . , ν touch themselves anti-holomorphically in A
and that the index ν + 1 does not touch itself anti-holomorphically in A. Since ν + 1 ap-
pears twice anti-holomorphically, it must touch some other index x̄ anti-holomorphically.
Express:

A = g(?, ?; ν + 1, x̄)A0.

Change the anti-holomorphic index x̄ to an anti-holomorphic index ν + 1 to form:

Ã = g(?, ?; ν + 1, ν + 1)A0.

We use Lemma 4.1 (2) to construct a monomial A1 of Qk+1,k different from A. If A1

transforms to Ã by changing an anti-holomorphic index x̄ to the anti-holomorphic index
ν + 1, then the fact that i touches itself anti-holomorphically for i ≤ ν is not spoiled
and since A 6= A1, ν + 1 touches itself anti-holomorphically in A1. Since only the anti-
holomorphic indices are changed, the normalizations of Assertions (2a) and (2b) are not
affected. Thus one more index would touch itself anti-holomorphically in A1 than is the
case in A and this would contradict the maximality of ν. Thus A1 transforms to Ã by
changing a holomorphic index ν + 1 to x. This destroys the normalizations of Assertion
(2a). There are several possibilities which we examine seriatim; we shall list the generic
case but if the variables collapse, this plays no role. In what follows, we permit x = y.

Case I: The index x appears once in A. Let ? indicate a term not of interest. Let ε be
either a ∂zα

◦ ∂z̄β
variable or a g(−,−;−,−) variable to have a uniform notation and

to avoid multiplying the cases unduly; we shall not fuss about the number of indices in
ε and thus the second ? could be the empty symbol if ε(?; β̄, ?) indicates the ∂zα ◦ ∂z̄β

variable whereas the first ? could indicate two indices if ε(?; β̄, ?) denotes a g(?, ?; β̄, ?)
variable. Let A0 be an auxiliary monomial. We may express

A = g(ν + 1, ν + 1; ?, ?)g(?, ?; ν + 1, x̄)ε(?; ν + 1, ?)ε(x, ?; ?)A0, where

degν+1(A) = 2, degν+1(A) = 2, degx(A) = 1, degx̄(A) = 1.

We change an anti-holomorphic index x̄ to an anti-holomorphic index ν + 1 to construct:

Ã = g(ν + 1, ν + 1; ?, ?)g(?, ?; ν + 1, ν + 1)ε(?; ν + 1, ?)ε(x, ?; ?)A0, where

degν+1(Ã) = 2, degν+1(Ã) = 3, degx(Ã) = 1, degx̄(Ã) = 0.
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Since A1 transforms to Ã by changing a holomorphic index ν +1 to a holomorphic index
x, degx̄(A1) = 0 which is impossible since every index from 1 to k + 1 appears in every
monomial of Qk+1,k.

Case II: The index x appears twice in A and does not appear in ∂z̄β
. Then

A = g(ν + 1, ν + 1; ?, ?)g(x, x; ?, ?)g(?, ?; ν + 1, x̄)g(?, ?; x̄, z̄)

× ε(?; ν + 1, ?)ε(?; z̄, ?)A0, where

degν+1(A) = 2, degν+1(A) = 2, degx(A) = 2, degx̄(A) = 2,

Ã = g(ν + 1, ν + 1; ?, ?)g(x, x; ?, ?)g(?, ?; ν + 1, ν + 1)g(?, ?; x̄, z̄)

× ε(?; ν + 1, ?)ε(?; z̄, ?)A0, where

degν+1(Ã) = 2, degν+1(Ã) = 3, degx(Ã) = 2, degx̄(Ã) = 1, and

A1 = g(ν + 1, ν + 1; ?, ?)g(ν + 1, x; ?, ?)g(?, ?; ν + 1, ν + 1)g(?, ?; x̄, z̄)

× ε(?; ν + 1, ?)ε(?; z̄, ?)A0, where

degν+1(A1) = 3, degν+1(A1) = 3, degx(A1) = 1, degx̄(A1) = 1.

We permit z = ν + 1. We change an anti-holomorphic index x̄ to z̄ to create:

Ã1 = g(ν + 1, ν + 1; ?, ?)g(ν + 1, x; ?, ?)g(?, ?; ν + 1, ν + 1)g(?, ?; z̄, z̄)

× ε(?; ν + 1, ?)ε(?; z̄, ?)A0, where

degν+1(Ã1) = 3, degν+1(Ã1) = 3, degx(Ã1) = 1, degx̄(Ã1) = 0.

Again, we construct A2. If we transform A2 to Ã1 by changing a holomorphic index z

to a holomorphic index x, then

degν+1(A2) = 3, degν+1(A2) = 3, degx(A2) = 0, degx̄(A2) = 0.

This contradicts the fact that degx(A2) > 0. Consequently A2 transforms to Ã1 by
changing an anti-holomorphic index x̄ to an anti-holmorphic index z̄. Since A2 6= A1,

A2 = g(ν + 1, ν + 1; ?, ?)g(ν + 1, x; ?, ?)g(?, ?; ν + 1, ν + 1)g(?, ?; z̄, z̄)

× ε(?; ν + 1, ?)ε(?; x̄, ?)A0, where

degν+1(A2) = 3, degν+1(A2) = 3, degx(A2) = 1, degx̄(A2) = 1.

We have simply interchanged the anti-holomorphic indices x̄ and z̄ to construct A2 from
A1. We construct Ã2 by changing a holomorphic index ν + 1 to x to create:
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Ã2 = g(ν + 1, ν + 1; ?, ?)g(x, x; ?, ?)g(?, ?; ν + 1, ν + 1)g(?, ?; z̄, z̄)

× ε(?; ν + 1, ?)ε(?; x̄, ?)A0, where

degν+1(Ã2) = 2, degν+1(Ã2) = 3, degx(Ã2) = 2, degx̄(Ã2) = 1.

We consider A3. Since A3 6= A2, A3 does not transform to Ã2 by changing a
holomorphic index ν + 1 to x. Instead, A3 transforms to Ã2 by transforming an anti-
holomorphic index x̄ to an anti-holomorphic index ν + 1. There are two possibilities

A3 = g(ν + 1, ν + 1; ?, ?)g(x, x; ?, ?)g(?, ?; ν + 1, ν + 1)g(?, ?; z̄, z̄)
× ε(?; x̄, ?)ε(?; x̄, ?)A0, or

A3 = g(ν + 1, ν + 1; ?, ?)g(x, x; ?, ?)g(?, ?; ν + 1, x̄)g(?, ?; z̄, z̄)

× ε(?; ν + 1, ?)ε(?; x̄, ?)A0.

Both these possibilities satisfy the normalization of Assertion (2a). And there is either
one more anti-holomorphic or two more anti-holomorphic indices which touch themselves.
This is impossible by the maximality of A.

Case III: The index x appears twice in A and appears in ∂z̄β
. Then ν +1 does not appear

in ∂z̄β
and hence some other variable g(?, ?; ν + 1, ȳ) appears in A. If degy(A) = 1,

then Case I pertains. If degy(A) = 2, then Case II pertains. This final contradiction
establishes the Lemma. ¤

4.1. The crucial estimate.
Let ρ(k) be the number of partitions of k as described in Definition 1.1.

Lemma 4.3. If m > k, then dim{KQ,m,k} ≤ ρ(k) and dim{KP,m,k} ≤ ρ(k).

Proof. Let 0 6= Qm,k ∈ KQ,m,k. Apply Lemma 4.2 to find a monomial A of Qm,k

so that

Aσ = g(1, 1; σ̄(1), σ̄(1))g(2, 2; σ̄(2), σ̄(2)) · · · g(k, k; σ̄(k), σ̄(k))∂zk+1 ◦ ∂z̄k+1

where σ ∈ Perm(k) is a suitably chosen permutation. Thus Qm,k 6= 0 implies
c(Aσ,Qm,k) 6= 0 for some σ. Only the conjugacy class of σ in Perm(k) is important and,
writing the permutation σ in terms of cycles, we see that there are ρ(k) such conjugacy
classes; ordering the lengths of these cycles in decreasing order determines a partition π.
Thus there are ρ(k) monomials Aπ so that Qm,k 6= 0 implies c(Aπ) 6= 0; the inequality
dim{KQ,m,k} ≤ ρ(k) now follows. The proof of the inequality dim{KP,m,k} ≤ ρ(k) is
analogous and is therefore omitted. ¤

5. The proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3.

5.1. The proof of Theorem 1.1 and of Theorem 1.2.
Let m ≥ k. By Lemma 3.2, ΞP,m,k is a 1-1 map from Sm,k to KP,m,k. By Equation

(1.d), we have that dim{Sm,k} = ρ(k) By Lemma 4.3, dim{KP,m,k} ≤ ρ(k). Conse-
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quently

dim{KP,m,k} = dim{Sm,k} = ρ(k)

and ΞP,m,k is an isomorphism. This proves Theorem 1.1. The same line of argument
shows that ΞQ,m,k is an isomorphism from Sm,k to KQ,m,k; this establishes Theorem 1.2.

5.2. The proof of Theorem 1.3.
We must show ΘQ,m,k = ΞQ,m,k. We argue for a contradiction. Suppose to the

contrary that ΘQ,m,kSm,k 6= ΞQ,m,kSm,k for some Sm,k ∈ Sm,k. We apply Lemma 3.2
and Lemma 3.3 to see

0 6= rm,k+1{ΘQ,m,k − ΞQ,m,k}Sm,k = {ΘQ,m,k − ΞQ,m,k}(rm,k+1Sm,k).

Thus we may suppose without loss of generality that m = k +1. We apply the argument
used to establish Lemma 3.3 (3). Let Mk+1

ε := N k × T 1
ε where the metric on T 1

ε is
(1 + ε)dw ◦ dw̄. Since the metric on N k is unchanged and only the volume element on
M is changing,

1
k!

gε(Sk+1,k(RMε
),Ωk

ε ) =
1
k!

g(rk+1,kSk+1,k(RN ),Ωk
N ),

∂ε{gε(Sk+1,k(RMε
),Ωk

ε )} = 0, (5.a)

∂ε{dνMε
} = dνM = dνNdνT .

Since T 1 has volume 1, we may use Equation (5.a) to compute:

∂ε

{
1
k!

∫

M

gε(Sk+1,k(RMε
),Ωk

ε )dνMε

}∣∣∣∣
ε=0

=
1
k!

∫

N

g(rk+1,kSk+1,k(RN ),Ωk)dνN . (5.b)

Since N has complex dimension k, we have

1
k!

∫

N

g(rk+1,kSk+1,k(RN ),Ωk)dνN =
∫

N

rk+1,kSk+1,k(RN ). (5.c)

By Lemma 3.3, ΘQ,k+1,kSk+1,k ∈ KQ,k+1,k. By Theorem 1.2, ΞQ,k+1,k is an iso-
morphism from Sk+1,k to KQ,k+1,k. Thus we may find S̃k+1,k ∈ Sk+1,k so that we have
ΞQ,k+1,kS̃k+1,k = ΘQ,k+1,kSk+1,k. Consequently:

∂ε

{
1
k!

∫

M

g(Sk+1,k(RMε),Ω
k
ε )dνMε

}∣∣∣∣
ε=0

=
∫

M

〈ΘQ,k+1,kSk+1,k(RM), h〉dνg

=
∫

M

〈ΞQ,k+1,kS̃k+1,k(RM), h〉dνg. (5.d)
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We use the definition and the argument used to establish Equation (5.c) to compute:

∫

M

〈ΞQ,k+1,kS̃k+1,k(RM), h〉dνg

=
1

(k + 1)!

∫

M

g(S̃k+1,k(RM) ∧ eα ∧ ēβ ,Ωk+1
M )〈eα ◦ ēβ , h〉dνg

=
1
k!

∫

M

g(rk+1,kS̃k+1,k(RN ),Ωk
N )dνNdνT

=
∫

N

rk+1,kS̃k+1,k(RN ). (5.e)

We use Equation (5.b), Equation (5.c), Equation (5.d), and Equation (5.e) to see

∫

N

rk+1,k{Sk+1,k − S̃k+1,k}(RN ) = 0.

Since N k was an arbitrary Kähler manifold of complex dimension k, we may apply
Lemma 1.1 to see rk+1,k{Sk+1,k − S̃k+1,k} = 0. By Remark 1.1, Sk+1,k = S̃k+1,k and
consequently ΞQ,k+1,kSk+1,k = ΘQ,k+1,kSk+1,k. This completes the proof of Theorem
1.3. ¤
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