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Abstract. The notion of the weighted degree of a polynomial is a basic
tool in Affine Algebraic Geometry. In this paper, we study the properties of
the weighted multidegrees of polynomial automorphisms by a new approach
which focuses on stable coordinates. We also present some applications of the
generalized Shestakov-Umirbaev theory.

1. Introduction.

Throughout this paper, k denotes an arbitrary domain unless otherwise stated. Let
klx] = k[x1,...,x,] be the polynomial ring in n variables over k, where n is a positive
integer. The automorphism group Auty k[x] of the k-algebra k[x] is a central object in
Affine Algebraic Geometry. The purpose of this paper is to study the properties of the
weighted multidegrees of elements of Auty k[x].

Let T be a totally ordered additive group, i.e., an additive group equipped with a
total ordering such that @ < 3 implies aa + v < 3+ « for each «, 3,7 € I'. We denote
'y ={yeTl|y>0}and'so={y €T |~v >0} Let w= (wsq,...,wy,) be an n-tuple
of elements of I'. We define the w-weighted I'-grading

Kie) = Pkl

yel

by setting k[x], to be the k-submodule of k[x] generated by zi* .-z for a1,...,an €
Ny with Y7 | a;w; = 7 for each v € I'. Here, Ny denotes the set of nonnegative integers.
Write f € k[z]\ {0} as f =) . fy, where f, € k[z], for each v € I'. Then, we define
the w-weighted degree (w-degree, for short) of f by

deg,, f = max{y €T | f, #0}.

We define the w-weighted initial form (w-initial form, for short) of f by f* = fs5, where
0 :=deg,, f- When f =0, we define f* =0 and deg,, f = —oc0. Here, —c0 is a symbol
which is less than any element of I". To denote elements of Auty k[x], we often use the
notation F = (f1,...,fn), G = (¢1,-.-,9n), etc, where each f; and g; represent the
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images of x; by F' and G, respectively. We define the w-weighted degree and w-weighted
multidegree (w-degree and w-multidegree, for short) of F' by

deg,, F = Zdegw fi and mdeg,, F = (deg,, f1,-..,degy, fr),
i=1

i i

respectively. When I' = Z and w = (1,...,1), we denote “deg,,’ simply
by “deg” and “mdeg”, respectively.

This paper consists of three parts. In the first part (Sections 2 through 5), we prove
basic properties of the w-degrees and w-multidegrees of elements of Auty, k[x]. Take any
F e Autg k[z] and § # I C {1,...,n}, and define J to be the set of 1 < j < n such that
f; belongs to k[{z; | i € I}], and I, to be the set of ig € I such that deg,, f; belongs to
ZieI\{io} Now; for each j € J. Here, for N; C Z and d; € T fori =1,...r with r > 1,

we define

and “mdeg,,’

N1d1+~~+Nrdr:{a1d1+-~+ardr|ai€Ni fori:l,...,r}.

We note that J ={1,...,n}if I ={1,...,n},and Iy = I if J = 0.
With this notation, we have the following theorem.

THEOREM 1.1. Assume that n > 1 and k is a domain. Then, for any w € IT'™,
F € Autg k[z] and 0 #1 C {1,...,n}, the following assertions hold.

(i) We have either (a) or (b) as follows:
(a) There exists a bijection o : J — I such that deg,, f; = wy(;) for each j € J.
(b) We have ZjeJ deg,, f; > > ey wi or #1 > #J. For each v € ', there exists
i € Iy such that x; does not divide (f}°)* for any j € J.
(ii) Assume that #1 > #J. Then, for each f € k[{f; | 7 € J}]\{0} and v € T, there
exists i € Iy such that x; does not divide (f*).

For example, when n = 1, we have f; = axy + b for some a € k™ and b € k, and
I = J = {1}. Then, (a) of Theorem 1.1 (i) holds if and only if w; > 0 or b = 0. We
prove Theorem 1.1 in Sections 4 and 5 with the aid of a recent result of the author [15].
As will be shown in Theorem 3.3 (i), we have

deg,, FF > wy + -+ w, =: |w]

for each F' € Auty, k[z] and w € I'™. Detailed properties of the automorphisms satisfying
deg,, F' = |w| are given in Theorem 3.3 (ii). The following corollary is obtained by
applying Theorem 1.1 (i) with I = J = {1,...,n}, since deg,, F' > |w| implies (b), and
hence implies Iy # 0.

COROLLARY 1.2.  Assume that n > 1 and k is a domain. Let F € Auty k[x] and
w € I'™ be such that deg,, F' > |w|. Then, there exists 1 < i < n such that deg,, f;
belongs to 32, ,; Nowy for j=1,...,n.
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We call f € k[x] a coordinate of k[x] over k if f = f; for some F € Auty k[z] and
1 <4 < n, and a stable coordinate of k[x] over k if f is a coordinate of k[z1, ..., x| over
k for some m > n (cf. [18]). Clearly, a coordinate of k[x] over k is a stable coordinate
of k[x] over k. However, the converse does not hold in general (cf. [2, Example 4.1]; see
also [15, Section 3]).

In the situation of Theorem 1.1 (i), assume that #I > 2. Then, for each j € J,
there exists ¢ € I such that deg,, f; belongs to 3. (;3 Now; in both cases (a) and (b).
From this observation, we see that the following theorem holds.

THEOREM 1.3.  Assume thatn > 2 and k is a domain. Let f be a stable coordinate
of k[x] over k. Then, for each w € T™, there exists 1 < i < n such that deg,, f belongs

to Zl;ﬁi Nowl.

In fact, let m > n and F € Autyg k[x1,...,2,,] be such that f = f1, and J the
set of 1 < j < m such that f; belongs to k[xz]. Then, for each j € J, there exists
i € {1,...,n} =: I such that deg,, f; belongs to 3, (;; Now; by the remark.

Next, let C(w, k) be the set of the w-degrees of stable coordinates of k[x] over k,
and let C(w) be the set of d € T' for which there exist 1 <14 < n and a; € Ny for each
Jj # i such that d > w; and d =}, ; ajw;. Since

d = deg,, <9:1 + Hx;“>

i

holds for such d, we see that C(w) is contained in C(w, k). Clearly, {wq,...,w,} is
contained in C(w, k). Therefore, C(w) U {wy,...,w,} is contained in C(w, k).
With the notation above, we have the following theorem.

THEOREM 1.4.  Assume that n > 1 and k is a domain. Then, we have C(w, k) =
C(w)U{ws,...,w,} for any w € (I'sp)".

We can derive Theorem 1.4 from Theorem 1.3 as follows. First, note that deg,, f <
wj implies f € k[{x; | i # j}] for each f € k[x] and 1 < j < n by the choice of w.
Hence, f belongs to k[{z; | ¢ € I}], where I := {i | deg,, f > w;}. Now, assume that
f is a stable coordinate of k[x] over k. Then, f is a stable coordinate of k[{x; | i € I'}]
over k. If I = {i} for some 1 < i < n, then f is a linear polynomial in x; over k. Since
w; > 0, we have deg,, f = w;. If #I > 2, then we know by Theorem 1.3 that there exists
i € I for which deg,, f belongs to >, p\ 1;; Nowr, and hence to },,; Now;. Since i is an
element of I, we have deg,, f > w;. Thus, deg,, f belongs to C(w). Therefore, C(w, k)
is contained in C(w) U {w1,...,wp}.

Next, we discuss tameness of automorphisms. Recall that F' € Auty k[x] is said to
be affineif deg f; = 1 fori =1,...,n, and elementary if there exist 1 <1 <n, a € k* and
p € k[{z; | i # I}] such that f; = ax;+p and f; = z; for each i # I. The subgroup T,,(k)
of Auty, k[x] generated by all the affine automorphisms and elementary automorphisms of
k[x] is called the tame subgroup. Then, the Tame Generators Problem asks whether every
element of Auty k[x] is tame, i.e., belongs to T, (k). This is one of the difficult problems
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in Affine Algebraic Geometry. At present, it is known that the answer is affirmative if
n=1,orif n =2 and k is a field by Jung [6] and van der Kulk [10], while negative if
n = 2 and k is not a field by Nagata [21], or if n = 3 and k is of characteristic zero by
Shestakov-Umirbaev [24].

For each subset S of Auty k[x] and w € I'™, we define

mdeg,, S := {mdeg,, F'| F € S}.

The following result is due to Kara$ [7, Proposition 2.2], where N denotes the set of
positive integers throughout this paper.

PROPOSITION 1.5 (Karas’). Let dq,...,d, € N be such that di < --- < d,, where
n > 2. If d; belongs to Z;;ll Nod; for some 2 < i < n, then (di,...,d,) belongs to
mdeg T, (C).

The second part of this paper (Sections 6, 7 and 8) is aimed at generalizing this
proposition. For this purpose, we introduce the following notation. Let x be any com-
mutative ring. Here, a “commutative ring” means one with a nonzero identity element.
We remark that

deg,, fg = deg,, f +deg,, g and (fg)* = f*g" (L.1)

hold for each f,g € s[z] and w € ™ if f* or g% is a nonzero divisor of x[z]. Let
Aut? k[x] be the set of F' € Aut,, x[x] such that f1*,..., f% are nonzero divisors of x[x],
let E,,(x) be the subgroup of Aut, k[x] generated by all the elementary automorphisms
of k[z], and let E¥ (k) = E,, (k) N Auty s[x]. Then, we define

[E¥|:=()mdeg, E¥(x) = (| mdeg, E¥(Z/m2),
K meNo\{1}

where x runs through all the commutative rings.

As mentioned later, every stable coordinate of k[zy,xs] over k is a coordinate of
klx1, 2] over k if k is an integrally closed domain (Theorem 7.1). Using this fact, we
prove the following two theorems in Section 7.

THEOREM 1.6. Assume that n = 3 and k is a domain. Let w € (I'y)3 and
(d1,ds,ds) € mdeg,, (Auty k[z]) be such that at least two of d1, da and d3 are not greater
than max{wy,ws,ws}. Then, (di,ds,ds) belongs to |[EY|.

For each w € I'", and F € Aut,k[x] and F’ € Aut, «'[x] with x and &' any
commutative rings, we denote F' ~,, F’ if mdeg,, F = mdeg,, F’, for simplicity. Then,
Theorem 1.6 can be restated as follows: Let F' € Auty k[z] and w € (I';)? be such
that at least two of deg,, f1, deg,, fo and deg,, f5 are not greater than max{w;, ws, ws}.
Then, for any commutative ring &, there exists G € E¥ (k) such that G ~,, F.

We note that E,, (k) = T,,(k) when k is a field. In this case, we have the following
theorem.
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THEOREM 1.7.  Assume that n =3 and k is a field. If F € Auty, k[x] satisfies one
of the following conditions for some w € (I'y)3, then F belongs to T3(k):
(1) deg,, fi < max{w;,wq,ws} fori=1,2.
(2) deg,, fo — max{w;,wq, w3} < deg,, f1 < max{w;,ws,ws}.

In Section 8, we prove two kinds of sufficient conditions for elements of
mdeg,, (Auty k[z]) to belong to |E¥| which can be viewed as generalizations of Proposi-
tion 1.5.

The third part of this paper (Section 9) is devoted to applications of the generalized
Shestakov-Umirbaev theory. For F € Autgk[x] and w € T, we say that F' admits
an elementary reduction for the weight w if deg,, F' o E < deg,, F' for some elementary
automorphism FE of k[x]. Since deg,, F' > |w| as mentioned, F' admits no elementary
reduction for the weight w if deg,, F' = |w|.

Nagata [21] conjectured that a certain element of Auty k[z] for n = 3 does not
belong to Ts(k). Shestakov-Umirbaev solved this famous conjecture in the affirmative
using the following criterion [24, Corollary 8.

THEOREM 1.8 (Shestakov-Umirbaev). Let k be a field of characteristic zero. If
deg F' > 3 holds for F € T3(k) with f3 = x5, then F admits an elementary reduction.

Here, we simply say “elementary reduction” when I' = Z and w = (1,...,1). It is
natural to ask whether a similar statement holds for general weights. We define S(w, k)
to be the set of F' € Auty, k[x] for n = 3 such that deg,, F' > |w|, and f3 = axs + p for
some « € k\{0} and p € k[z1, o] with deg,, p < ws. By definition, we have deg,, f3 = ws
and f3 = axz + p’ for such F, where p’ := p» if deg,, p = ws, and p’ := 0 otherwise.

Recently, the author [12], [13] generalized the Shestakov-Umirbaev theory. By
means of this theory, we prove the following theorem in Section 9. This gives an af-
firmative answer to the question above.

THEOREM 1.9.  Assume that k is a field of characteristic zero, and w is an element
of (T4)3. Then, every element of S(w,k) N T3(k) admits an elementary reduction for
the weight w.

The following theorem is also proved in Section 9. Part (i) of this theorem is a
generalization of Proposition 1.5, while (ii) is a necessary condition for tameness of
automorphisms obtained from Theorem 1.9.

THEOREM 1.10. Assume that n = 3 and k is a domain. Then, the following
assertions hold for each w € (I'+)? and F € S(w, k) with mdeg,, F = (di,d2, d3), where
ds = w3 as mentioned:

(1) If d; belongs to 3>, ,; Nod; for some 1 < i <3, then there exists G € EY (k) such
that g3 = x3 and mdeg,, G = (d1,da,d3) for each commutative ring k.

(ii) Ifk is of characteristic zero and I belongs to Ts(k), then d; belongs to 3, _,; Nod,
for some 1 <4 < 3.

The author would like to thank Professors Amartya K. Dutta and Neena Gupta
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for helpful discussions on stable coordinates, and for pointing out that Theorem 7.1 is
implicit in [1]. He is grateful to the referee for careful reading of the paper.

2. Initial principle.

Throughout this section, let n € IN and w € I'™ be arbitrary. For given elements
of k[z], we know what are the w-degree and w-initial form of their product thanks to
(1.1), whereas those for the sum is unclear in general. The purpose of this section is to
introduce basic techniques for treating the w-degree and w-initial form of the sum of
polynomials.

The principle stated in the following lemma lies behind useful results proved in this
and the next section. We omit the proof of this lemma, since the statement is obvious.

LEMMA 2.1.  For (0,...,0) # (f1,..., fi) € k[z]" with | > 1, we set
0 =max{deg,, fi|i=1,...,1} and S ={i|deg, fi =3}

Then, the following assertions hold:

(1) degy, (fi+---+ fi) < 0.
(ii) degy, (fi+---+ fi) =0 if and only if 3, o f{* # 0.
(iii) If the equivalent conditions in (ii) are satisfied, then we have

(it )= fo
=

For an r-tuple F' = (f1,..., fr) of elements of k[x] with »r € N, we define the
substitution map

klx1,...,zr] D p(x1,. .. 20) — p(f1, ..., fr) € klz].

As in the case of automorphisms, we denote this map by the same symbol F. When
fi#0fori=1,...,r, we define

FY = (f,....f*) and wp = (deg,, fi,...,deg,, fr)-

As a consequence of Lemma 2.1, we obtain the following proposition.

PROPOSITION 2.2. For each F € (klz] \ {0})" and g € klx1,...,z,] \ {0}, the
following assertions hold:

(1) deg,, F(g) < degy,. g-
(ii) deg,, F(g) = deg,,,. g if and only if F*(g**) # 0.
(iii) If the equivalent conditions in (i) are satisfied, then we have F(g)¥ = F™(g™F).

PROOF. Write g =) iy, @0 -2l with a;, i €k, and set

T1yeenylp
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. = . . Zl DR /L . = - . 21 DY Z
G = Qiy,i Ty e and pi = agy, I

for each @ = (i1,...,%,). Then, we have ¢ = > ,¢; and F(g) = Y ,p;. Define 6 =
max{deg,, p; | i} and S = {i | deg,, p; = 6}. By applying Lemma 2.1 to (p;);, we obtain
the following statements:

(') deg,, F(g) <.

(ii") deg,, F(g) = ¢ if and only if h:= >, ¢ p}® is nonzero.

(iii’) If the equivalent conditions in (ii’) are satisfied, then we have F(g)* = h.

Hence, it suffices to show that deg,,,. g = d and F"*’(g*’F) = h. Note that

deg,, pi = Zil deg,, fi = Zil deg,,, 1 = deg,,, ¢ (2.1)
1=1 1=1
Fqi) = iy (F1) - (£ = @iy i S ) = bl (2.2)
for each i = (i1,...,4,) with a;, ;. # 0. Hence, we have

deg,,,. g = max{deg,, . ¢; | i} = max{deg,, p; | i} =9

by (2.1). Thus, i belongs to S if and only if deg,,,. ¢ = deg,,,. g. This implies that
g*¥F = .cg - Therefore, we conclude that

F*(g*T) ZF“'(Z%) =Y F¥(q)=)_p’=h

€S €S i€S
by (2.2). O

For each k-subalgebra A of k[x] and w € I', we define A" to be the k-submodule
of k[x] generated by {f* | f € A}. In view of (1.1), we see that A" is a k-subalgebra
of k[x]. We call A¥ the initial algebra of A for the weight w. For g1,...,g; € k[x], it is
clear that

k[gl7"'agl]w ) k[g}u7’glw]7

but the equality does not hold in general. We mention that the k-algebra A™ is not
always finitely generated even if A is finitely generated (see e.g. [11]).

We note that f1,..., f, are algebraically independent over k if and only if the substi-
tution map F : k[z1,..., x| — k[x] is injective. The following corollary is a consequence
of Proposition 2.2.

COROLLARY 2.3. Let F € (k[x] \ {0})" be such that F* is injective. Then, the
following assertions hold:

(i) deg,, F'(g9) = deg,,, g and F(g)¥ =F"(g*F) hold for each g€k[xy,...,z,].
(ii) F is injective.
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(111) k[fh-“af'r]w = k[fiwavf:v]

PROOF. (i) The assertion is obvious if g = 0. So assume that g # 0. Then, we
have g*F # 0, and so F*(¢g"F) # 0 by the injectivity of F**. Hence, we get deg,, F(g) =
deg,,, g and F(g)* = F*(g**) by Proposition 2.2 (ii) and (iii).

(ii) If F'(g) = 0 for g € k[z1,...,2,], then we have deg,,, g = deg,, F(g) = —oo by
(i). This implies that g = 0. Therefore, F is injective.

(ili) “D” is clear as mentioned above. To show “C”, it suffices to check that f®
belongs to k[f1’,..., f] for each f € k[fi1,..., fr]. Let g € klz1,...,2,] be such that
f = F(g). Then, f* is equal to F*(g™*) by (i), and hence belongs to k[f1*,..., f*].
This proves “C”. O

We remark that, if wq,...,w, are linearly independent over Z, then any distinct
monomials have distinct w-degrees. Hence, f* is a monomial for each f € k[x] \ {0}.
Therefore, we have the following corollary to Proposition 2.2.

COROLLARY 2.4. IfF € (k[z]\{0})" is such that deg,, f1,...,deg,, fr are linearly
independent over Z, then F™ is injective.

PROOF. Put G = F*. Take any p € k[z1,...,2,]\ {0}. Then, p*¢ is a monomial
by the remark, since wg = (deg,, f1,...,deg,, f-) and deg,, f1,...,deg,, f- are linearly
independent over Z. Since G¥(z;) = (f*)™ # 0 for each i, it follows that G* (p™*<) # 0.
Thus, we get G(p)* = G* (p™¢) # 0 by Proposition 2.2 (iii). This implies that G(p) # 0.
Therefore, G is injective. O

3. Degrees of polynomial automorphisms.

Throughout this section, let n € N be arbitrary. We prove basic properties of the
weighted degrees and multidegrees of elements of Auty, k[x].

LEMMA 3.1. Let F € Auty k[x] and w € T™ be such that

deg,, f1 < --- < degy, fn and wi <o < wy,. (3.1)

Then, the following assertions hold:

(1) If deg,, fi <w;j fori,j e {1,...,n}, then we have i < j.

(ii) Assume that wi > 0 and let 1 < i < n be an integer. If deg,, fi < wit1, then we
have k[f1,..., fi] = klz1,...,2;]. If furthermore deg,, fi+1 < wit2 ori+ 1 =n,
then fit1 = axiy1 +p for some o € k* and p € k[, ..., ;.

(iii) Assume that w1 > 0 and let i,j € {1,...,n} be such that deg,, fi = w;. Set
jo=min{l | w; = w;} and j1 = max{l | w; = w;}. Then, we have

fi=g+ajrj, +- - +aj )

for some g € klz1,...,xj,-1] and aj,,...,a;, € k.
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PrOOF. (i) Let f] be the linear part of f; for each I. Then, the Jacobian of
(f1,---, f}) is equal to that of F, and hence is an element of k*. Thus, fi,..., f] are
linearly independent over k. Note that deg,, f] < deg,, fi for each [, since the monomials
appearing in (f])" also appear in f;. Since deg,, f; < w; by assumption, it follows that
deg,, fl, < w; for each ' < ¢ and j° > j by (3.1). Thus, f1,..., f/ belong to the k-
module kzq + - -- + kx;_1. Since f{,..., f/ are linearly independent over k, we conclude
that i <j—1< j.

(ii) Since deg,, fi < w;4+1 by assumption, we have deg,, fir < wjs for each i < i
and j/ > i+ 1 by (3.1). Since w;’s are nonnegative, it follows that fi,..., f; belong
to klxg] := k[z1,...,2;]. This implies that k[fi,..., fi] = k[xg]. Next, assume that
deg,, fit1 < wiye or i + 1 = n. Then, we have k[xo|[x;11] = k[f1,..., fi+1] similarly.
Since k[f1,..., fi] = k[zo], it follows that k[zo][zi+1] = k[xo][fi+1]- Therefore, f;11 has
the required form.

(iii) By the maximality of ji, we have deg,, fi = w; < wj,4+1 or j1 = n. Since
wy’s are positive, f; belongs to k[zi,...,x; | in either case. Write f; = g + h, where
g €klzy,...,zj,—1]and h € Z{;jg xik[z1,...,2;]. It remains only to show that degh =
1 when h # 0. Let z;;m be any monomial appearing in h, where jo < j/ < j; and
m € k[z1,...,z;]. Then, we have deg,, z;;m < deg,, h < deg,, fi = w;. Since

deg,, r;;m = deg,, x;s + deg,, m > deg,, x; = wj» = wj,

it follows that deg,, m = 0. This implies that m belongs to &\ {0} by the positivity of
wy’s. Therefore, we conclude that degh =1 if h # 0. O

We say that F' € Auty, k[z] is triangularif f; belongs to k[zq,...,x;] fori=1,... n.
The following proposition can be proved similarly to Lemma 3.1 (ii).

PROPOSITION 3.2.  Assume that F € Auty k[x] and w € (I'>o)" satisfy (3.1). If
deg,, fi <wit1 fori=1,...,n—1, then F is triangular.

In the study of polynomial automorphisms, the notion of the w-degree of a differ-
ential form is important. Let Qy(4]/, be the module of differentials of k[x] over k, and w
an element of the r-th exterior power A" Qpz)/k of the k[x]-module Qg , for r € N.
Then, we can uniquely write

w= Z filv---adexil /\"'/\dﬂfiqﬂ,

1<i1 < <irn<n

,,,,, i. € k[x] for each 4y,...,4,.. Here, df denotes the differential of f for each
f € k[x]. We define the w-degree of w by

deg,, w = max{deg,, (fi ... i@y -~ 2i.) | 1 <ip <--- <ip <n}.

Let f1,..., fr be elements of k[z]\ {0}. Then, df; A --- Adf. # 0 implies that fi,..., f.
are algebraically independent over k (cf. [19, Section 26]). By definition, we have
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degwdfl/\"'/\dfr

max { aeg, (| gl t)

Iil"'IiT) ‘1§Z1<<ZTSTL}

< Zdegw fis (3.2)
i=1
in which the equality holds if and only if df{” A --- A df # 0.
Now, let &,, be the symmetric group of {1,...,n}. Then,

Wo = (wa(l)7 ) wo(n))

belongs to |E¥| for each o € &,,. Hence, mdeg,,, F belongs to |E¥| for each F' € Auty, k[x]
with deg,, F' = |w| by (ii) of the following theorem.

THEOREM 3.3.  For each F' € Auty k[x] and w € T, the following assertions hold:

(i) There exists 0 € &, such that deg,, fi > wyy fori=1,...,n. Hence, we have
deg,, F' > |w]|.
(ii) The following conditions are equivalent:
(a) mdeg,, F' = w, for some o € &,;
(b) deg,, F = [w];
(c) F™ is injective, i.e., f1%,..., f¥ are algebraically independent over k;
(d) F“ belongs to Auty, k[z].
(iii) If mdeg,, F' = w, then we have mdeg,, F~! = w.

Proor. (i) Let 7,p € &,, be such that
degy, fr(1) < -+ < degy, frny and wpa) < S wp(n)-

Then, we have deg,, f;) > w,(;) for each i by Lemma 3.1 (i). Put o = po 77!, Then,
deg,, fi > w,(;y holds for each i. The last statement is clear.

(ii) Clearly, (a) implies (b). By (i), we see that (b) implies (a). So we show that (b),
(c) and (d) are equivalent. Let JF be the Jacobi matrix of F. Then, det JF belongs to
k*. Hence, we know by (3.2) that

deg,, F' > deg,, dfi A -+ Adf,, = deg,, (det JF)dx1 A -+ A dx,, = |w|,
in which the equality holds if and only if  := df{* A-- - Adf* # 0. Thus, (b) is equivalent
to n # 0. Since n # 0 implies that f{*,..., f¥¥ are algebraically independent over k, we
see that (b) implies (c). By Corollary 2.3 (iii), (c) implies

k[ffﬂvvf#} :k[fla”-ufn]w :k[w]w Zk[:l?],

and hence implies (d). Since n = (det JF¥)dxy A - -+ Adzy, (d) implies  # 0, and hence
implies (b). Therefore, (b), (c) and (d) are equivalent.
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(iii) Set g; = F~(x;) for i = 1,...,n. Then, we have F(g;) = ;, and hence
deg,, F'(g;) = w;. Since mdeg,, F = w by assumption, F'* is injective by (ii). Thus,
we get deg,, . g; = deg,, ['(9;) = w; by Corollary 2.3 (i). Since wr = mdeg,, F' = w, it
follows that deg,, g; = deg,,,. 9 = w;, proving mdeg,, F~1=w. O

We note that Theorem 3.3 (ii) and Corollary 2.4 imply the following statement:
For any w € I'™ and (dy,...,d,) € mdeg,,(Auty k[x]) such that di,...,d, are linearly
independent over Z, we have dy + -+ + d,, = |w|.

THEOREM 3.4. Let F be an element of Auty k[z]. If deg,, F = |w| holds for some
w € (T';)", then F belongs to Ty (k).

Proor. Without loss of generality, we may assume that F' and w satisfy (3.1).
Since deg,,, F' = |w| by assumption, we have mdeg,, F' = w, for some o € &,, by Theorem
3.3 (ii). Because of (3.1), this implies that deg,, f; = w; for i = 1,...,n. We prove the
assertion by induction on r := #{wy,...,w,}. When r = 1, we have w = (w,...,w)
for some w € I' ;.. Since wdeg f; = deg,, fi = w; = w, we know that deg f; = 1 for each
i. Thus, F is an affine automorphism. Therefore, F' belongs to T, (k). Assume that

r > 2. Then, there exists 1 <! < n such that w;_1 < w; = --- = w,,. Since deg,, fi—-1 =
wj—1 < wy, we know by Lemma 3.1 (ii) that Fy := (f1,..., fi—1) is an automorphism
of k[z1,...,21-1]. Set v = (wq,...,w;—1). Then, we have deg, f; = deg,, fi = w;

fori =1,...,1—1, and so deg, Fy = |v|. Hence, Fy belongs to T;_1(k) by induction
assumption. For i =1[,... n, we have

w1 < deg,, fi=w; =+ = wy.

Hence, we may write f; = E?:z a; jT; + ¢; by Lemma 3.1 (iii), where a; ; € k for each j,
and g; € k[zq,...,2;_1]. Define H € T, (k) by

H = (Fofl,xl — Fofl(gl), ey Ty — Fofl(gn)).

Then, Fo H = (z1,...,21—1, fi — g1, - - fn — gn) is an affine automorphism. Therefore,
F belongs to T,,(k). O

Clearly, F' does not necessary belong to T, (k) even if deg,, F = |w| for some w €
™\ (I'y)", since deg,, F' = |w| holds for any F' for w = (0,...,0).

4. Proof of Theorem 1.1.

In this and the next section, we prove Theorem 1.1. The following theorem is due
to the author.

THEOREM 4.1 ([15, Corollary 1.7]). Let m > n and fi,..., fm € klx1,...,Zm]
be such that k[f1,..., fm] = k[z1,...,2m] and k[x] = k[z1,...,2,] is not contained in
Elfa,..., fm], and let S C k[x] \ {0} be such that trans. degy k[S] = n. Then, for each
w € I'", there exists g € S which satisfies the following condition: g does not divide f*

for any f € k{fz,.... fu] NE[2]\ {0}.
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Clearly, the conclusion of Theorem 4.1 holds for S = {x1,...,2,}. We mention that
the case m = n of Theorem 4.1 is implicit in [3]. When m = n, Theorem 4.1 implies
that, for each coordinate f of k[x] over k and w € I'", there exists 1 < i < n such that
z; does not divide f%.

The following lemma seems to be well known to the experts, but we give a proof in
the next section for lack of a suitable reference.

LEMMA 4.2.  For any f1,...,fr € k[z] \ {0} with r > 1, and any totally ordered
additive group T' # {0}, the following assertions hold:

(i) There exists w € '™ such that f}* is a monomial fori=1,...,n.
(ii) For any wy,...,ws € I'™ with s > 1, there exists w € I'™ such that

O T e

fori=1,....r. If wy belongs to (I';.)", then we can take w from (I'y)™.

Now, we prove Theorem 1.1. Without loss of generality, we may assume that I" #
{0}. First, we show (ii). Set fo = f. By Lemma 4.2 (i) and (ii), there exist v',w’ € T"
such that ((f;")”)”/ is a monomial and is equal to f;"/ for each j € J U {0}. In the
next paragraph, we show that there exists iy € I for which z;, does not divide f;-”/ for
any j € JU{0}. Then, it follows that z;, does not divide (f§")”. Moreover, deg,, f; =
degw((f;")”)”' belongs t0 >, 1\ (.3 Now; for each j € J. Hence, ig belongs to Ip. Thus,
the proof of (ii) will be completed.

Set Ay = k[{f; | j # 1}] for each I € J° := {1,...,n} \ J. Since #I > #J
by assumption, k[x;] := k[{x; | i € I}] is not contained in k[{f; | j € J}] = ;e A1
Hence, k[z;] is not contained in A, for some jo € J¢. By Theorem 4.1, there exists ig € I
such that x;, does not divide f*" for any f € Aj;, N k[z;]\ {0}. Since k[{f; | j € J}]
is contained in Aj, by the choice of jy, and in klx;] by the definition of J, we have
E{f; | j € J} C Aj, Nk[xr]. Thus, f; belongs to Aj, N k[x;] for each j € J U {0}.
Therefore, x;, does not divide f;"/ for any j € JU{0}.

Next, we show (i). First, we prove (b) when #I > #.J. Since [[,.; f; is an element
of k[{f; | 7 € J}\ {0}, there exists i € Iy such that z; does not divide ((I[;c; f;)*)” =
[L;e,(f")? by (ii). Then, z; does not divide (f}*)” for each j € J, proving (b). It
remains only to consider the case where #1 = #J. Since k[x] = k[{f; | j € J}], we may
assume that I = J = {1,...,n}. Thanks to Theorem 3.3 (i) and (ii), it suffices to show
that (b) holds when deg,, F' > |w|. By Lemma 4.2 (i) and (ii), there exist v',w’ € T
such that ((f;-")")”/ is a monomial and is equal to f]‘-”, for each j € J. In the next
paragraph, we show that there exists 1 < %9 < n for which z;, does not divide f;"' for
each j € J. Then, it follows that 7o belongs to Iy, and z;, does not divide (f;*)” for each
j € J as in the proof of (ii). Thus, the proof will be completed.

Suppose the contrary. Then, f}"' e ffl"l is divisible by z1,...,z,. We claim that
there exists o € &,, for which f}“/ = ajxgj('j) for j =1,...,n, where o; € k\ {0} and u; >
1. In fact, if not, there exists jo such that f;-:]’/ belongs to k\ {0}, or f;-:]’/ is divisible by x;,
and x;, for some i1 # i>. In either case, there exists [ such that (][], )Y = [T;4 f}”/



Weighted multidegrees of polynomial automorphisms over a domain 131

is divisible by 1, ..., x,, contradicting Theorem 4.1 when m = n. Since deg,, F > |w|
by assumption, f1’,..., f* are algebraically dependent over k by Theorem 3.3 (ii). By
Corollary 2.3 (ii), it follows that (f}”)"’s are also algebraically dependent over k, and

hence so are ((f}“)”)”/’s. This contradicts that ((f}“)”)”/ = f;"/ = ajxg'éj) for each j.

5. Approximation of a weight.

The goal of this section is to prove Lemma 4.2. For each a = (ay,...,a,) € Z™ and
w € I'", we define a - w = aqwy + -+ + apw, €.

LEMMA 5.1.  Let S be a finite subset of Z™ for which there exists w € I'™ such that
a-w >0 for each a € S. Then, there exists v € Z™ such that a-v > 0 for each a € S.

PrOOF. Let C be the set of v € R" such that a-v > 0 for each a € S. We show that
C # . Then, it follows that CNQ™ # (), since C is an open subset of R™ for the Euclidean
topology. Since C is a cone, this implies that C' N Z™ # (. Thus, the proof is completed.
We define P = {3}, cgXaa | (A\a)a € (R>0)%}, where R>g := {\ € R | A > 0}. Then,
F:=Pn{—a|aec P}isa face of P, ie., there exists v € R" such that a-v = 0 and
b-v >0 foreacha € F and b € P\ F (cf. [22, Proposition A5]). We show that v belongs
to C. By the choice of v, it suffices to check that S is contained in P\ F. Suppose the
contrary. Then, we have S N F # (), since S is contained in P. Hence, there exist a € S
and (M), € (R>0)¥ such that a = — )", _¢ Apb. Since S is a subset of Z", we may take
(Ap)p from (Q N Rxq)°. Choose [ € N so that (L)), belongs to (INp)®. Then, we have
0<l(a-w)=—>1cglM(b-w) <0 by the assumption that b-w > 0 for each b € S.
This is a contradiction. Therefore, v belongs to C. ]

Let T' and TV be totally ordered additive groups. For w € T'"*, w’ € (I')" and
S C Z"™, we define w ~g w' if, for each a,b € S, we have a - w > b- w if and only if
a-w >b-w'. For

F= 3 i gt xl € Kl
7

1yeeesln

with «;, . ; € k, we define supp f to be the set of (i1,...,i,) € (INp)" such that
ai,,..i, 7 0. Then, we have f¥ = f“’/ if w~g w' for S = supp f. More generally,
set S = \JI_, supp f; for fi,..., f, € k[z] with r > 1. Then, we have f®* = f' for
i=1,...,rifw~gw.

PROPOSITION 5.2 (Approximation of a weight).  For any finite subset S of Z™ and
w € ', there exists v € Z™ such that w ~g v.

PROOF. Let Ty (resp. T1) be the set of a — b for a,b € S such that - w =b-w
(resp. a-w > b-w). It suffices to construct v € Z™ such that a-v =0and b-v >0
for each a € Ty and b € T;. Since T' is torsion-free, the Z-submodule I of T generated
by w1, ..., w, is a free Z-module of finite rank. Take a Z-basis u1,...,u, of IV, and put
u = (u1,...,u-). Then, we may write w = ulU, where U is an r X n matrix with integer
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entries. Let U’ be the transposition of U. Then, we have (aU’)-u=a-(ulU) =a-w =0
for each a € Ty. Since uq, ..., u, are linearly independent over Z, it follows that aU’ = 0
for each a € Ty. Since (aU’) -u = a-w > 0 for each a € Ty, and {aU’ | a € T1} is
a finite subset of Z", there exists v’ € Z" such that (aU’) - v’ > 0 for each a € T} by
Lemma 5.1. Then, v := v'U is an element of Z™ such that ¢ - v = (aU’) - v’ = 0 and
b-v = (bU") -v" >0 for each a € Ty and b € Ty. Therefore, v satisfies the required
condition. O

Under the assumption of Proposition 5.2, there exists v = (v1,...,v,) € Z™ with
w ~g v such that v; > 0 (resp. v; = 0, v; < 0) if and only if w; > 0 (resp. w; = 0, w; < 0)
for i =1,...,n for the following reason. Let ey, ..., e, be the coordinate unit vectors of
R", and let S"=SU{0,ey,...,e,}. By Proposition 5.2, there exists v € Z™ such that
w ~g v. Then, this v has the property stated above, since v; = e; - v is greater (resp.
less) than or equal to 0 = 0 - v if and only if w; = e; - w is greater (resp. less) than or
equal to 0 = 0w for each 4. In particular, if w is an element of (I'; )", then we can take
v from N™.

Now, let us prove Lemma 4.2. To show (i), take any u € R™ whose components are
linearly independent over . Then, f* is a monomial for each ¢. Set S = U:Zl supp fi.
Then, there exists v = (v1,...,v,) € Z™ such that v ~g u by Proposition 5.2. Since
I' # {0} by assumption, we may find w € I';.. Then, w := (nyw,...,v,w) is an element
of I' such that w ~z» v. Since v ~g u, we get w ~g u. Therefore, f¥ = f* is a
monomial for each 4, proving (i).

Next, we prove (ii) by induction on s. When s = 1, the assertion is clear. As-
sume that s > 2. Then, by induction assumption, there exists w’ € I'™ such that
(e ()2 )wet = f®' fori=1,...,r. By Proposition 5.2, there exist v’,v” € Z"
such that w’ ~g v’ and ws ~g v”. Then, we have

"

hivim (e () )t = () = ()
fori=1,...,r. We define v(t) = v’ + tv"” € R"™ for each ¢t € R. Then, we have
(a=b)-v(t) = (a— ) - v/ + (a—b)- (t0") = t((a — b) - ")

for each a,b € T; := supp fl-”/7 since a - v’ = b-v' = deg,, f;. Hence, if ¢t > 0, then we
have v(t) ~p, v”, and so (f2')*® = (f2)*". Since degy 4 f¥" and deg, ) (fi — f¥') are
continuous functions in ¢ satisfying

’

deg, o) ¥ = deg,, [ > deg, (fi — ) = degy) (fi — [7),

there exists tg > 0 such that deg, > degy ) (fi — f¥') for i = 1,...,r for any
0 <t <to. Here, we regard deg, (fi — fl”l) as a constant function with value —oo if
fi”' = f;. Then, for any 0 < t < g, we have

"

PP = (1 = )" = )0 = () =
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fori=1,...,r. Now, take any w € I'y and t € Q with 0 < ¢ < ty. Let u € N be such
that (u1,...,un) := uv(t) belongs to Z™. Then, w := (vjw,...,u,w) is an element of
'™ such that w ~z» v(t), and hence f* = f;’(t) =h;fori=1,...,r.

If wy is an element of (I'y)™, then we can take w’ from (I'})™ by induction as-
sumption. Then, v’ can be taken from N™ as mentioned after Proposition 5.2. In this
case, all the components of v(t) become positive for sufficiently small ¢ > 0. For such ¢,
the element w of T'™ constructed above belongs to (I';)™. This completes the proof of
Lemma 4.2.

6. Van der Kulk’s theorem.

Assume that n = 2 and k is a field. Then, deg f; | deg fo or deg f> | deg f1 holds
for each F' € Auty, k[z] by van der Kulk [10]. If d; := deg,, f > 0 for i = 1,2 for a
coordinate f of k[x] over k, then the following statements hold by Makar-Limanov [17]
(see also Dicks [4]):

(i) dl ‘dg OI‘d2|d1.
(ii) (d1,0) and (0, ds) belong to supp f.
(iii) supp f is contained in the convex hull of (0,0), (d1,0) and (0,d2) in R

In this section, we revisit the well-known results stated above. For each fi, fo € k[x],
we denote f; = fo if f; and fy are linearly dependent over k. Clearly, fi ~ fo implies
deg,, f1 = deg,, fo for any w € I'".

The following lemma is a weighted version of van der Kulk’s theorem, which is proved
by using Makar-Limanov’s theorem.

LEMMA 6.1.  Assume thatn = 2 and k is a field. Let F € Auty k[z] and w € (T'>0)?
be such that deg,, F' > |w|. Then, deg,, f1 and deg,, fo are positive, and fi* =~ (f3*)* or
2 & (fi°)* holds for some u > 1.

PROOF. Since deg,, ' > |w|, we have w; > 0 and wy > 0, or w; > 0 and
wg > 0. First, assume that f; and fo do not belong to k[z1] U k[x2]. Then, deg,, f1 and
deg,, f2 are positive. Since deg,, F' > |w|, we know by Theorem 3.3 (ii) that f{* and f3"
are algebraically dependent over k. Hence, deg,, f1 and deg,, f2 are linearly dependent
over Z by Corollary 2.4. Since deg,, f; > 0 for ¢« = 1,2, there exist uj,us € IN such
that ged(uy,us) = 1 and wy deg,, f1 = usdeg,, fo. We show that (f{)*r =~ (f3v)%2.
Consider the I'-grading k[z][1/f3"] = @, cr k[z][1/f3°], induced from the w-weighted
I-grading of k[z]. Since h := (f1*)“*/(f3*)"2 belongs to k[x][1/f3"]o, and deg,, f3* > 0,
we see that k[h][f3"] is the polynomial ring in f3¥ over k[h]. Because h and f3¥ are
algebraically dependent over k, it follows that h is algebraic over k. Thus, h belongs
to k, since k is algebraically closed in the field of fractions of k[x]. Therefore, we get
(fiyur = p(f)%2 ~ (f3¥)“2. It remains only to show that u; = 1 or ug = 1. Set
gi = F~1(x;) for i = 1,2. Then, we have

deg,,, 91 + deg,,, g2 = deg,, . F1> |lwp| = deg,, F > |w| = wy + ws

by Theorem 3.3 (i). Hence, deg,,,. g > w; = deg,, x; = deg,, F(g;) holds for some
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l € {1,2}. Then, we have F*(g;"") = 0 by Proposition 2.2 (ii). This implies that g;°”
is not a monomial. We claim that g; does not belong to k[zi] U k[xz2]. In fact, if so,
x; = F(g;) belongs to k[f1]Uk[f2]. Then, fi or fo must be a linear polynomial in z;, and
thus belongs to k[z1] U k[x2], a contradiction. Consequently, we have d; := deg, g > 0
for ¢ = 1,2. Therefore, the statements (i), (i) and (iii) above hold for f = g;. Since wp
belongs to (I'y)?, and g;°" is not a monomial, we see from (i) and (iii) that (d1,0) - wp
and (0,ds) - wp are both equal to deg,,, g;. Hence, we have d; deg,, fi = dadeg,, fo.
Since u; deg,, f1 = us deg,, f2 and ged(ui,ug) = 1, we conclude from (i) that u; =1 or
Ug = 1.

Next, assume that f;, belongs to k[xj,] for some i1, j; € {1,2}. Then, we may write
fi, = a1zy, + 0 and f;, = awxj, +p. Here, ar,a0 € k>, B € k and p € k[z;,], and ia, jo €
{1,2} are such that i3 # i; and js # ji. If w;, = 0, then deg,, F' = deg,, fi, = w;, = |w|,
a contradiction. Hence, we have w;, > 0, and so f = aiz;,. Since deg,, fi;, = w;, and

deg,, I > |w|, we know that deg,, fi, > w;,. This implies that f} =p* ~ z% for some

12

u > 1. Since f}¥ ~ x;,, it follows that f* ~ (f)". O

1

We mention that the author [12, Corollary 4.4] proved a statement similar to Lemma
6.1 as an application of the generalized Shestakov-Umirbaev inequality when I' = Z and
k is a field of characteristic zero.

Now, assume that n > 2 and k is a domain. Let us consider the following conditions
for F € Auty k[z] and w € (I's)™

(a) f1¥ and f3* belong to k[z1,za].
(b) deg,, f1 + deg,, fo > w1 + ws.
(c) deg,, fi =w; fori=3,...,n.
(d) klx1, 2, f3,. .., fo] = k[z].

Then, we have the following theorem. Here, we recall that G ~,, F denotes that
mdeg,, G = mdeg,, F'.

THEOREM 6.2. Assume that n > 2 and k is a domain. If F € Autyk[x] and
w € (I'>o)" satisfy (a) through (d), then the following assertions hold:

(1) f2 ~ (F2)" or 3 = (f1°)" for some u> 1.

(ii) deg,, fi >0 forl=1,2.

(i) For any commutative ring Kk, there exists G € E¥ (k) such that g; = x; for i =
3,...,n and G ~y, F. In particular, mdeg,, F' belongs to |E¥|.

PROOF. By replacing k with the field of fractions of k, we may assume that k is a
field. We may also assume that f; = z; for each ¢ > 3 for the following reason. By (d),

we can define an element of Auty k[x]| by (21, z2, f3,- .., fn), whose multidegree is equal
to w by (c). The inverse of this automorphism has the form H = (x1,x2, hs, ..., hy,) for
some hg, ..., h, € k[x], and satisfies

HoF = (H(fl)’H(fQ)a‘xBa'-wxn)'

By Theorem 3.3 (iii), we have wy = mdeg,, H = w. Hence, we know by Theorem 3.3
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(ii) and Corollary 2.3 (i) that H(f)* = HY(f*“#) = H¥(f") for each f € k[x]. Since
HY = (z1,22,hY, ..., hY) fixes 1 and z3, we have HY(f) = f for i = 1,2 by (a).
Thus, H(f;)” = f* holds for i = 1,2. Therefore, by replacing F' with H o F', we may
assume that f; = x; for each i > 3.

Set w = (wy,ws), w = (wy,ws,0,...,0) and K = k(xs3,...,2,). Then, degg f
and f%¥ can be defined for each f € k[x] as an element of K[z1,7s]. We note that
degg f = deg,, f and f¥ = f*" by definition. Since w; > 0 for each i, we have
= fl“’/ and deg,, fi = deg,, fi for [ = 1,2 in view of (a). Hence, f = f* and
deg, fi = deg,, fi hold for [ = 1,2. Since f; = x; for ¢ = 3,...,n by assumption, we can
define F' € Autg K[z, 22] by F= (f1, f2). Then, we have

degy F = degy, f1 + degy fo = deg,, fi + degy, fo > wy + wy = ||

by (b). Thus, we obtain the following statements by virtue of Lemma 6.1:

b).
(i") f = c(fiP)" for some (i,7) € {(1,2),(2,1)}, c€ K* and u > 1.
(it') degg fi >0 for I =1,2.

Since f¥ = f for I = 1,2, we know by (i) that f* = c(f})". Hence, c belongs
to k(z1,z2) by (a), and thus to k(z1,z2) N K* = k*. Therefore, we get (i). Similarly,
(ii) follows from (ii’). We show (iii). By Lemma 4.2 (i) and (ii), there exist v,w’ € I'"
such that (f7¥)” is a monomial and is equal to f}”/. Because of (a), we may write
(fir)e = arltzh?, where o € k% and Iy,ly € Np. Since (I1,ls) - w = deg,, f; > 0
by (ii), we have (I1,l2) # (0,0). We claim that [; = 0 or l; = 0. In fact, if not,
(fjxs-- -acn)wl = aaclfxlfacg ---x, is divisible by z1,...,z,, contradicting Theorem 4.1.
Let r,s € {1,2} be such that I, > 1 and [, = 0. Then, we have deg,, f; = l,w,, and so

deg,, fi = udeg,, f; = ul,w, > w,

by (i). First, assume that deg,, f; > w,. Then, we have deg,, f; = deg,,(zs + z!) and
deg,, f; = deg,, (s + xi)*. When deg,, f; > w,., we define G € E,, () by

gi = Tr + ($s+x§r’r)uv gj :.’ES—I—(E?'

and g = x; for | = 3,...,n. Then, G belongs to E¥ (k) and satisfies G ~,, F. If
deg,, fi = w,, then G ~,, F holds for G € E¥ (k) defined by g; = ,, g; = x5 + alr
and g; = z; for [ = 3,...,n. Next, assume that deg,, f; < w,. Then, f; belongs to
Klz,]. Since f; is a coordinate of K[xi,xs] over K, this implies that deg, f; = 1.
Since f{* belongs to K[z,| N k[z1, 73] = k[z,], we get deg,, f; = deg,, f* = w,, and
so deg,, fi = uw,. In view of (b), we have deg,, f; > ws. Hence, G ~,, F holds for
G € EY (k) defined by g; =z + 2}, gj =2, and gy = a; for [ =3,... ,n. O

In the case of n = 2, the conditions (a), (¢) and (d) are obvious. Hence, if
deg,, F' > |w| for F € Autyklz] and w € (I'>¢)?, then deg,, F belongs to |[EY| by
Theorem 6.2 (iii). The same holds when deg,, F' = |w| as remarked before Theorem 3.3.
Therefore, mdeg,, (Auty k[x]) is contained in |E¥|. Since |EY| is contained in the subset
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mdeg,, Eo(k) of mdeg,, (Auty, k[x]), we conclude that mdeg,, (Auty k[z]) = |EY|.

COROLLARY 6.3.  Assume that n = 3 and k is a domain. Then, the following
assertions hold for each F € Auty, k[z]:

(1) If fi, and f;, belong to klz;,,x;,] for some 1 < i1 <is <3 and 1 < ji < jo <3,
then mdeg,, F belongs to |EY| for any w € (I'so)>.

(ii) Assume that f; belongs to k[z;] for somei,j € {1,2,3}. Then, for any commutative
ring k and w € (U>o)® with w; = 0, there exists G € E¥ (k) such that g; = x; and
G~y F.

Proor. (i) We may assume that (i1,i2) = (j1,J2) = (1,2). Then, we have
k[f1, f2] = k[z1,z2]. Hence, we get klx1,x2][fs] = k[z1,z2][z3], and so f3 = ax3z +p
for some « € k* and p € k[z1,x2]. Set v = (w1, ws) and take any commutative ring .
Then, there exists (g1,92) € E¥(x) such that (g1, g2) ~+ (f1, f2) by the discussion above.
Define ¢q € klz1,22] by ¢ =0if p=0, and ¢ = sr:lllxl; if p £ 0, where l1,l> € Ny are such
that deg,, p = ljwy + laws. Then, G := (g1, g2, 23 + ¢) is an element of EY (k) such that
G ~y F. Therefore, mdeg,, F' belongs to |EY|.

(ii) We may assume that i = j = 3. Set v = (w1, wz). Then, deg,, f; is equal to the
v-degree of f; as a polynomial in x; and x5 over k' := k[x3] for each I. Since f3 belongs
to k' by assumption, we have k'[f1, fa] = k'[x1, x2]. Hence, there exists (g1, g2) € E¥ (k)
such that (g1,92) ~w» (f1,f2) by the discussion above. Then, G = (g1,92,%3) is an
element of EY (k) such that G ~,, F. O

7. Proofs of Theorems 1.6 and 1.7.

The goal of this section is to prove Theorems 1.6 and 1.7. For this purpose, we use
the following theorem which is implicit in Asanuma [1] (cf. [15, Section 3]).

THEOREM 7.1. If k is an integrally closed domain, then every stable coordinate of
klx1,x9] over k is a coordinate of k[x1,xs] over k.

We mention that Shpilrain-Yu [20] showed Theorem 7.1 when £ is a field of charac-
teristic zero in a different manner.
We use the following proposition to prove Theorems 1.6, 1.7 and 1.10 (i).

PROPOSITION 7.2.  Assume that n = 3 and k is a domain. Let F € Auty k[x] be
such that fi belongs to k[x1, 2], and f3 = axs+p for some a € k\{0} and p € k[x1, z2].

(1) Ifk is a field, then F belongs to Ts(k).

(ii) Let w € (I'sq)® be such that deg,,p < ws. Then, for any commutative ring ,
there exists G € E¥ (k) such that g5 = x3 and G ~q F. In particular, mdeg,, F
belongs to |EY|.

PrROOF. By replacing k with the field of fractions of k, we may assume that k is a
field. Then, we can define ¢ € T3(k) by (z;) = x; for i = 1,2 and ¢(x3) = f3. Since f;
belongs to k[z1,x2] by assumption, there exists ¢ € Auty k[z1, x2] such that ¢(z1) = f1
by Theorem 7.1. By Jung [6] and van der Kulk [10], we have Auty k[z1,x2] = Ta(k).
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Hence, we can extend ¢ to an element of T3(k) by setting ¢(x3) = x3. Then, we have
Y(p(x;)) = fi for i = 1,3, and so

¢ oy o F = (21, (¢ o) (f2), a3) (7.1)

is elementary. Since ¢ and ) are elements of T3(k), it follows that F' belongs to Ts(k).
This proves (i).

Next, we show (ii). Since a # 0 and deg,, p < ws, we have deg,, f3 = w3, and
fa¥ depends on z3. If deg,, F' = |w|, then mdeg,, F = w, holds for some 0 € &3 by
Theorem 3.3 (ii). Since w3 = deg,, f3 = wy(3), we may assume that o(3) = 3. Then,
G = (Z5(1), To(2), T3) satisfies the required conditions. Assume that deg,, F' > |w|. Then,
we have deg,, f1 + deg,, fo > w1 + we. If f3* belongs to k[xy,xs], then the conditions
(a) through (d) before Theorem 6.2 are fulfilled. In this case, the assertion follows from
Theorem 6.2 (iii). Hence, we may assume that f3¥ does not belong to k[z1, z3]. By (7.1),
we have

(¢~ o™ )(f2) = baa + g(21, 3)
for some b € k* and q(x1,x3) € k[x1,z3]. Write
q(z1,23) = q1(21) + v392(21, 73),
where q1(z1) € klz1] and ga(z1,23) € k[z1, 23]. Set
hy = bp(x2) + q1(f1),  he = f3q2(f1, f3)-

Then, h; belongs to k[z1,x2], ha belongs to k[f1, f3], and
f2 = (Y 0 @) (b + q(x1,23)) = bd(x2) + q(f1, f3) = h1 + ha.

Since k[f1, f2, fg} = k‘[fh f2 — hQ, f3] = k‘[fl, hl, f3]7 and f1 and h1 belong to k‘[l‘l,ﬂfg], we
know that k[f1, h1] = k[z1, x2]. By the remark before Corollary 6.3, there exists (g1, g2) €
EY(k) such that (g1,92) ~» (f1,h1), where v := (w1, w2). If deg,, hy = deg,, f2, then
G ~y F holds for G := (g1,92,23) € E¥ (k). Assume that deg,, h1 # deg,, f2. Then,
we have hy # 0. Hence, hY = f3°q2(f1, f3)™ depends on x3. Since f3” does not belong
to k[z1,x2] by assumption, and h;i is an element of k[z1, 2] with deg,, h1 # deg,, f2,
it follows that deg,, fo = deg,, ho and deg,, fo > deg,, h1 = deg,, go. We claim that
deg,, h2 belongs to Nydeg,, fi + Nodeg,, f3. In fact, since fi* € k[ri,x2] \ k and
¥ € k[x]\ k[x1, z2] are algebraically independent over k, we have k[f1, f3]* = k[f1, f3*]
by Corollary 2.3 (iii). Hence, we may write

deg,, f2 = deg,, he = l1 deg,, f1 + l3deg,, f3 = {1 deg,, f1 + l3ws,

where [1,l3 € Ny. Define G € E3(k) by G = (¢1,92 + gllle{’,:cg). Then, G belongs to
E¥ (k) and satisfies G ~,, F, since deg,, fo > deg,, g2. This proves (ii). O
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We note that Proposition 7.2 can be proved without using Theorem 7.1, since we
can directly verify that f; is a coordinate of k[x1, 3] over k as follows. Write F =1 o) =
(91,92, 93). Then, we have

zi =9 (Fg:) = g (W™ (1), 0 (f2), 07 (fs)) = gi(fr, 07 (f2), @3)

fori =1,2,3. Let f} be the element of k[z1, 23] obtained from ¢ ~1( f2) by the substitution
23 — 0. Then, we have z; = g;(f1, f4,0) for ¢ = 1,2. Hence, we get k[f1, f§] = k[x1, z2].

Now, let us prove Theorems 1.6 and 1.7. First, we show Theorem 1.6 and the case
(1) of Theorem 1.7. By replacing k with the field of fractions of k, we may assume that
k is a field. Take any F' € Auty k[x] such that at least two of deg,, f;’s are not greater
than max{wi, ws, ws}. We show that F' belongs to T5(k) and mdeg,, F' belongs to |EY|.
By changing the indices of f;’s, w;’s and x;’s if necessary, we may assume that F and w
satisfy (3.1). Then, we have

deg,, f1 < deg,, fo < ws. (7.2)

When f; and fo belong to k[z1,z2], we have k[f1, fa] = k[x1,x2], and so f3 = ax3 + p
for some a € k* and p € k[z1,x2]. Since Auty k[z1,22] = Ta(k), this implies that
F belongs to T3(k). Moreover, mdeg,, F' belongs to |E¥| by Corollary 6.3 (i). Thus,
we may assume that f; or fo does not belong to k[zq,zs]. If deg,, f1 < ws, then f;
belongs to k[z1, 23], since wy, we and wy are positive by assumption. Hence, fs does not
belong to k[z1,z3]. Because of (7.2), we may write fo = axs + p, where a € k>, and
p € k[x1,x2] is such that deg,, p < ws. Thus, the assertion follows from Proposition 7.2
(i) and (ii). So assume that deg,, f1 > ws. Then, we have deg,, f; = w3 for i = 1,2 by
(7.2). Write f; = a;x3 + p; for i = 1,2, where a; € k, and p; € k[zr1,x2] is such that
deg,, pi < ws. Since fi or fo does not belong to k[z1, 23], we may assume that as # 0.
Then, ' := f; — alaglfg =p; — alaglpg belongs to k[z1, z2]. Hence, F' := (f', f3, f2)
belongs to T3(k) by Proposition 7.2 (i), and thus so does F. Take any commutative ring
k. Then, there exists (g1,92,23) € EY (k) such that (g1, 92,%3) ~w F’ by Proposition
7.2 (ii). By the choice of p; and py, we have deg,, g1 = deg,, f' < ws. Define G € E3(k)
by G = (g1 + 73,73, g2) if deg,, g1 < w3, and by G = (g1, 23, g2) if deg,, g1 = w3. Then,
G is an element of EY (k) such that G ~,, F. Therefore, deg,, F' belongs to |E¥|. This
completes the proof of Theorem 1.6 and the case (1) of Theorem 1.7.

Next, we prove the case (2) of Theorem 1.7. Without loss of generality, we may
assume that wy; < wy < ws as before. Then, the conditions in (2) implies that

deg,, f1 <ws and deg,, f2 < ws + deg,, f1 < 2ws. (7.3)

Hence, f1 belongs to k[x1,x2]. Thus, if f5 belongs to k[x1,z2], then F belongs to T3(k)
as before. Assume that fo does not belong to k[z1,x2]. Since f; is a coordinate of
k[x1, z2] over k by Theorem 7.1, there exists g € k[z1, z2] such that k[f1, g] = k[z1, z2].
Then, we have k'[g, x3] = K'[f2, f3], where k' := k[f1]. Hence, there exists a coordinate
p = p(y, z) of the polynomial ring ¥'[y, 2] over k' such that fo = p(g,z3). Since g is an
element of k[x1, xs], and since fy does not belong to k[x1,x2] by assumption, we see that
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deg,p = deg,, fo > 1. On the other hand, we have wsdeg,. fo < deg,, fo < 2ws by
(7.3), and hence deg,, fo < 2. Thus, we conclude that deg, p = 1. Write p = hyz + ho,
where ho, h1 € K'[y] with hy # 0. Then, (7.3) yields that

w3 + deg,, f1 > deg,, fo = deg,, (h1(g)z3 + ho(g)) > deg,, h1(g)z3,

and so deg,, h1(g) < deg,, fi. We show that h; belongs to &'. Put d = deg, hi. Take
any integer [ > deg,, ho —d, and define v = (1,1) € Z*. Then, we have deg, h1z = d+1 >
deg,, ho, and so

p? = (hiz 4+ ho)? = (h12)” = ¥z = ay’z,

where a € k' \ {0} is the leading coefficient of h;. Since p is a coordinate of k'[y, 2] over
k', we know that d = 0 by the remark after Theorem 4.1. Thus, hy belongs to k&’ = k[f1].
Since deg,, h1 = deg,, h1(g) is less than deg,, f1 as mentioned, it follows that h; belongs
to k. Therefore, fo = hixs + ho(g) has the same form as f5 in Proposition 7.2. Since
f1 belong to k[z1,x2], we conclude that I belongs to Ts(k) by Proposition 7.2 (i). This
completes the proof of the case (2) of Theorem 1.7.

8. Tameness of weighted multidegrees.

In this section, we give two kinds of sufficient conditions for elements of
mdeg,, (Auty k[x]) to belong to |E¥|, which can be viewed as generalizations of Proposi-
tion 1.5.

LEMMA 8.1. Let k be any commutative ring, and let w € T™ and d;,e; € T for

i1=1,...,n. Assume that there exist o,7 € &, and 0 < r < n such that
1—1 n
do—(i) S ZNOdo(j) + Z NoeT(j) and do—(i) > €r(i) (8.1)
j=1 j=i+1

fori = 1,...,7, and d,;y = e;) fori =r+1,...,n. If mdeg,, ¢ = (e1,...,e,) for
some ¢ € Auty kx|, then there exists ¢ € E, (k) such that ¥ o ¢ belongs to Aut)’ k[x]
and mdeg,, ¥ o ¢ = (dy,...,dy).

PROOF. Set s = (Zo(1),---sTo(n))- Then, it suffices to show that ¥ o (¢ o s 1)
belongs to Aut” k[x] and mdeg,, ¥ o (pos™!) = (dy,...,d,) for some ¢ € E,(k), since
¢ belongs to E, (k) if and only if so does ¢ o s~1. Note that 1) o ¢ o s belongs to
Aut? k[z] if and only if so does 1 o ¢, and mdeg,, ¥ o pos~! = (dy,...,d,) if and only
if mdeg,, ¥ 0 ¢ = (dy(1), - -, do(n)). Hence, we are reduced to proving that ¢ o ¢ belongs
to Aut)’ x[z] and mdeg,, 1 0 ¢ = (dy1),...,dy(n)) for some ¢ € E, (k). Therefore, we
may assume that ¢ = id by changing the indices of dy,...,d, if necessary. Next, set
t = (Tr1),--,Tr(n)). Then, it suffices to show that v o (t o ) belongs to Auty’ k[x]
and mdeg,, ¥ o (t o ¢) = (dy,...,d,) for some ¢ € E, (k) similarly. Since mdeg,, 9 ot =
(€r(1)s -+ +»€r(n)), We may assume that 7 = id by replacing ¢ with 1) ot and changing the
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indices of eq, ..., e, if necessary.

We prove the lemma by induction on r. When r = 0, we have d; = ¢; for each
i. Since ¢ is an element of Aut;’ x[x], the assertion holds for ¢ = id,[y). Assume that
r > 1. Then, the assumption of the lemma is satisfied even if (dy,...,d,) is replaced by
(di,...,dr_1,€p,...,€p), since (8.1) holds for any i < r, and d; = e; for ¢ > r. Since r is
reduced by one in this case, there exists ¢’ € E,, (k) such that 1o’ belongs to Aut}’ k[x]
and

mdeg,, o @ = (d1,...,dr_1,€r,...,€) (8.2)
by induction assumption. By (8.1) with ¢ = r, we have d, > e, and
dr =aidy + -+ ar_1dr_1 + Qp41€p41 + -+ + apen

for some a; € Ny for each j. Set f = (Yo ¢')(2]" - x%) and g = (¢ 0 ¢')(z,), where
ar = 0. Then, we have deg,, f = d, and deg,, g = e, in view of (8.2). Since ¥ o ¢’ is
an element of Aut} k[x]|, we see that f* and g% are nonzero divisors of k[z]. Define
¢" € En(k) by ¢"(x,) = 2 + ax{* - - 2% and ¢"(x;) = x; for each i # r, where o = 1
if d. > e,, and @ = 0 if d, = e,. Then, we have (¢ o ¢’ 0 ¢")(z,) = g + af. Since
deg,, g = e, and deg,, f = d,, we get deg,, (¢ o ¢’ 0 ¢")(x,) = d, by the definition of «.
Moreover, (o ¢’ 0@ )(z,)™ is equal to f* or g*, and hence is a nonzero divisor of x[z].
If i # r, then we have (Yo ¢’ 0@”)(z;) = (v 0 ¢')(x;), for which (o @')(z;)™ is a nonzero
divisor of k[x]. Thus, ¥ o ¢’ 0 ¢" belongs to Aut}, k[x]. Moreover, we have

Indegww © ¢/ o ¢H = (dla c 'adraerJrlv cee 7671)

by (8.2). Therefore, the assertion holds for ¢ = ¢’ o ¢”. O

Let us discuss the case of n = 3. For w € I'3, dy,ds,ds € T and 0,7 € &3, consider
the following conditions:

(1) dg(i) 2 Wr(j) fori=1,2,3.

(2) dg(l), da(g) and da(g) belong to NowT(g) +N0w.,-(3), Noda(l) +N0w.,-(3) and Nodg(l) +
Nodgy(2), respectively.

(3) do(iy = wryy for i = 1,2 and dy(3) = w(3)-

(4) dy(1) and d,(2) belong to Now,(2) + Now,(3) and Nody (1) + Now,(3), respectively.

If (1) and (2) are satisfied, then the assumption of Lemma 8.1 holds for ¢ = id,[4
and r = 3. Hence, for any commutative ring &, there exists ¢ € E¥(x) such that
mdeg,, ¢ = (di1,dz2,ds) by Lemma 8.1. Therefore, (d1, dz, d3) belongs to |E¥|. The same
holds when (3) and (4) are satisfied, since the assumption of Lemma 8.1 is fulfilled for
1/1 = 1dn[w] and r = 2.

With the aid of Theorems 1.4 and 1.6, we can derive the following theorem from
Lemma 8.1.

THEOREM 8.2. Let w € (I'y)3 and (dy,ds,ds3) € mdeg,, (Auty k[z]) for n = 3 be
such that
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dy € Nows + Nows, ds € Nody + Nows, dz € Nody + Nods. (83)

If one of the following conditions holds, then (di,ds,d3) belongs to |EY|:
(a) dl S d2. (b) d2 Z wa. (C) d2 = Ws. (d) d1 € (Nowg) @] (N0w2 +N0d2)

PrROOF. Thanks to Theorem 1.6, we may assume that two of di, ds and d3 are
greater than w := max{wy, wq,ws}. Since d3 # 0 belongs to Nyd; + Nydz by (8.3), we
have d3 > d; or d3 > do. Hence, we may assume that ds > w. Similarly, we may assume
that do > w if (a) holds, and d; > w otherwise. In the following, we check that (1) and
(2), or (3) and (4) hold for some 0,7 € G3. We note that (2) and (4) are clear from (8.3)
if o =7 =1id.

First, assume that (a) holds. Then, we have

di>w>w; for i=2,3 and j=1,2,3. (8.4)

Hence, if d; > wi, then (1) holds for ¢ = 7 = id. Since (2) holds for 0 = 7 = id
as mentioned, we may assume that d; < w;. By Theorem 1.4, d; belongs to C(w) or
{wy,ws,ws}. Hence, there exists 1 < ¢ < 3 such that dy > w; and d; € Z#i Now;,
or di = w;. Since d; < ws, it follows that dy > Wpy(2) and d; € Now,(3y, or dy = Wpy(3)
for some p € {id,(2,3)}. We show that (1) and (2) hold for ¢ = (1,2) and 7 = p
when di > w2y and di € Now,s). Since dy2) > wy(2), we have (1) due to (8.4). By
(8.3), dy(1) belongs to Nody + Nows. Since dy € Now,s) and 3 € {p(2),p(3)}, we have
Nody + Nows C Nowp(2y + Nowyzy. Thus, we get d,1) € Nowp2) + Nowysy. Since
dy € Nowp(3), we have da-(z) € NOda(l) + Nowp(g). Since d3 € Nyd; + Nody by (83),
and o = (1,2), we have dy(3) € Nody(1) + Nodg(2). Therefore, (2) is satisfied. Next,
we show that (3) and (4) hold for o = (1,2,3) and 7 = p when d; = w,3). Since
dy(3)y = wp(3), we have (3) due to (8.4). Since Nodi + Nows C Now,(2) + Now,s) and
Nody + Nods = Now 3y + Nody(1y, (4) follows from (8.3).

Next, assume that (a) does not hold. Then, we have d; > w > w; for ¢ = 1,3 and
j =1,2,3 as remarked. Hence, if (b) is satisfied, then (1) and (2) hold for ¢ =7 =id as
before. In the case of (c), (3) and (4) hold for o = (2,3) and 7 = id, since d,(2) belongs
to Nody + Nods = Nod; + Nows. Finally, we consider the case (d). In view of (b) and
(¢), we may assume that do < wo and ds # ws. We claim that do > wy. In fact, if not,
we have do < w; for i = 1,2. This implies that do = deg,, f for a coordinate f of k[x]
over k belonging to k[z3], and so da = w3, a contradiction. Hence, (1) holds for ¢ = id
and 7 = (1,2), and for 0 = (1,2) and 7 = (2,3). If d; belongs to Nyws, then (2) holds
for o0 =id and 7 = (1,2) by (8.3). We check that (2) holds for ¢ = (1,2) and 7 = (2, 3)
when d; ¢ Nows. Since d, (1) belongs to Nod; + Nows by (8.3), and (a) does not hold by
assumption, dy (1) belongs to Nows, and hence to Now,(2) + Now, (3. Since di ¢ Nows,
we know by (d) that d, () = di belongs to Nowz 4+ Noda = Nodg(1) + Nowy(3). Since
d3 € Nodi+Nods by (8.3), and o = (1, 2), we have dg(g) S N0d0(1)+N0dg'(2)~ Therefore,
(2) is satisfied. O

Next, we give another kind of generalization of Proposition 1.5. Assume that n > 2.
Take any dy,...,d, € Ty and w € (['y)". Ford e Ty, 1 <l <nmand 2 <m <n,
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consider the following conditions:

(a) dy,...,d, belong to Nd.

(b) d=wy, or d > w; and d belongs to . ; Now;.
-1

(¢) dp, belongs to Z;’;l Noyd;.

(d) If I < m, then d; > w;41 for each I <i < m.

Then, we have the following lemma.

LEMMA 8.3. Let w € (I'y)” and (dy,...,dn) € mdeg,, (Auty k[x]) for n > 2 be
such that wy < -+ < wy and dy < -+ < d,. If there ezist d €e 'y, 1 <1 < n and
2 <m < n which satisfy (a) through (d), then (di,...,d,) belongs to |E¥|.

PrROOF. We remark that d; > w; for i = 1,...,n by Theorem 3.3 (i). Take any
commutative ring k. We define g € k[x] by ¢ = z; if d = w;. If d # w;, then we
have d > w; and d = )., ajw; for some a; € No by (b). In this case, we define
g=z+][[4 a3’. Then, ¢g* is a nonzero divisor of x[x] and deg,, g = d in either case.
By (a), we may write d; = e;d for i = 1,...,n, where e; € N. We define ¢ € E,, () by

g ifi=m

x; + a;g® if i < min{l,m} or i > max{l, m}

P(w;) =

Ti—1+ ﬂigei iftm<i<l
Tip1 +79c  HI<i<m,

where a; = 1 if d; > w;, and «; = 0 otherwise, where 5; = 1if d; > w;_1, and 3; = 0
otherwise, and where 7; = 1 if d; > w;4+1, and «; = 0 otherwise. Then, each ¢(x;)™ is a
power of g% or one of x;, x;—1 and x; 1. Hence, ¢(z;)™ is a nonzero divisor of k[x] for
each i. We show that deg,, ¢(z;) = d; for each ¢ # m. This is clear in the cases where
a; =1, B = 1 and ; = 1, since deg,, g* = d; is greater than w;, w;—1 and w;4+1 in
the respective cases. If @; = 0, then we have ¢(z;) = z; and d; < w;. Since d; > w; as
remarked, it follows that deg,, ¢(z;) = w; = d;. If 8; = 0, then we have ¢(z;) = ;1 and
d; < w;—1. Since d; > w; > w;_1, we get deg,, ¢(x;) = w;—1 = d;. If 4, = 0, then we have
o(x;) = xip1 and d; < wiqq1. Since d; > w;q by (d), we get deg,, ¢(x;) = wir1 = d;.
Thus, deg,, ¢(z;) = d; holds for each ¢ # m. By (c), we may write d,, = Z;’;l c;idj,

where ¢; € Ny for each j. Set f = ¢(x{* -- -z, ). Then, f* is a nonzero divisor of x[z]

and deg,, f = d;, = ed > d. Define ¢ € E,, (k) by ¥(z,) = @y + 625 -+ -2, and
Y(x;) = z; for each ¢ # m, where 6 = 1 if d,,, > d, and 6 =0 if d,,, = d. Then, we have
(pot)(xm) = g+0f. Since deg,, g = d and deg,, f = d,, we get deg,, (o) (xm) = dpm
by the definition of §. Moreover, (¢ o ¥)(z,,)" is equal to f* or g%, and hence is a
nonzero divisor of [x]. If i # m, then we have (¢ o ¥)(x;) = ¢(z;), for which ¢(z;)™ is
a nonzero divisor of k[x]| and deg,, ¢(x;) = d;. Thus, ¢ o1 is an element of E¥(x) and
satisfies mdeg,, ¢ o = (d,...,dy). Therefore, (dy,...,d,) belongs to |[E¥|. O

w

Let us discuss the case of n = 3. For dy,ds,d3,d € 'y and w € (I'y)?, consider the
following conditions:
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(A) di, dy and d3 belong to Nd.
(B) d belongs to Now; + Nows for some i € {1,2}, or d > w3 and d belongs to Nw; +
N’lUQ.

The following theorem is a refinement of Lemma 8.3 in the case of n = 3. In fact,
(a) is equivalent to (A). If (b) holds for some 1 < < 3, then we have (B). We have (c)
for some 2 < m < 3 if and only if dy € Nd; or d3 € Nyd; + Nods.

THEOREM 8.4. Let w € (I'4)? and (di,ds,ds) € mdeg,, (Auty k[z]) for n = 3 be
such that wy < wse < ws, dy < dy < ds, and da € Ndy or ds € Nody + Nods. If (A) and
(B) hold for some d € T4, then (di,ds,ds) belongs to |E¥|.

ProoOF. Thanks to Theorem 1.6, we may assume that two of d;, d2 and d3 are
greater than max{w, ws,ws}. Then, we have d3 > dy > w3 > we > wy. Since d # 0, we
have d > w; by (B).

First, assume that d; < wy. Then, we have d; = deg,, f for some coordinate f of
k[x] over k belonging to k[z1]. Hence, we know that d; = w;. By (A), we may write
d; = e;d for 1 = 1,2,3, where e; € IN. Since d > w; as mentioned, we get d; = d = w;.
Take any commutative ring k, and define ¢ € E¥ (k) by ¢(z1) = 21 and ¢(z;) = z; + z{"
for i = 2,3. Then, we have mdeg,, ¢ = (d1,ds, ds), since d; > w; for i = 2,3. Therefore,
(d1,ds,ds) belongs to |[EY|.

Next, assume that d; > ws. We show that (dy, da, d3) belongs to |EY| using Lemma
8.3. Since do € Nd; or d3 € Nydy + Nydz by assumption, (c) holds for some 2 < m < 3.
Since d; > wy and dy > ws, (d) holds for any 1 < < 3. If d belongs to Nwy, then dy,
dy and d3 belong to Nw;. When this is the case, (a) and (b) are satisfied if we take d
to be wy. Assume that d does not belong to Nwj. If the first part of (B) holds, then d
belongs to Now; + Nws or Nows + Nows. In the first case, we have d > ws > ws, and
so (b) holds for I = 2. Since d > w; as mentioned, (b) holds for | = 1 in the second case.
The last part of (B) implies that (b) holds for I = 3. Thus, (B) implies (b). Clearly, (A)
implies (a). Therefore, we conclude that (dy,ds,ds) belongs to |EY¥| by Lemma 8.3. O

9. Shestakov-Umirbaev reductions.

The goal of this section is to prove Theorems 1.9 and 1.10. To prove Theorem
1.9, we use the generalized Shestakov-Umirbaev theory [12], [13]. For the convenience
of the reader, we give a short introduction to this theory. Assume that n = 3. For
F,G € Auty, k[z], we say that the pair (F, G) satisfies the Shestakov-Umirbaev condition
for the weight w if the following conditions hold (cf. [13]).

(SU1) g1 = f1 +af? +cfs and go = fo + bfs for some a,b,c € k, and g3 — f3 belongs to
klg1, g2

(SU2) deg,, f1 < deg,, g1 and deg,, fo = deg,, ga.

(SU3) (g%)? ~ (g¥)* for some odd number s > 3.

(SU4) deg,, f3 < deg,, 91, and f3¥ does not belong to k[g}’, g%].

(SU5) deg,, g3 < deg,, fs.

(SUG) deg,, g3 < deg,, g1 — deg,, g2 + deg,, dg1 A dgs.
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Here, we recall that f; ~ fo denotes that f; and f, are linearly dependent
over k for each f1,fo € k[x]. For each F € Autyklz] and 0 € &3, we define
Fs = (fo)s fo2), fo3)). We say that I' € Auty kx| admits a Shestakov-Umirbaev
reduction for the weight w if there exist o € &3 and G € Auty, k[x] such that (F,,G,)
satisfies the Shestakov-Umirbaev condition for the weight w.

The following theorem is the main result of [13].

THEOREM 9.1 ([13, Theorem 2.1]).  Assume that k is a field of characteristic zero.
If deg,, ' > |w| holds for F € T3(k) and w € (T'4)3, then F admits an elementary
reduction or a Shestakov-Umirbaev reduction for the weight w.

Thanks to Theorem 9.1, the proof of Theorem 1.9 is reduced to the proof of the
following lemma.

LEMMA 9.2.  Assume that k is a field of characteristic zero, and w is an element
of (T4)3. Then, no element of S(w, k) admits a Shestakov-Umirbaev reduction for the
weight w.

We note that, if (F,G) satisfies the Shestakov-Umirbaev condition for the weight
w, then (F, G) satisfies the “weak Shestakov-Umirbaev condition” for the weight w, and
has the following properties (cf. [13, Theorem 4.2]). Here, we regard I' as a subgroup of
Q ®z I" which has a structure of totally ordered additive group induced from I

(P1) (g%)2 =~ (g&)* for some odd number s > 3, and so § := (1/2) deg,, g2 belongs to T.
(P5) If deg,, fi < deg,, g1, then s =3, g’ ~ (f3)?, deg,, f3 = (3/2)d and

5
deg,, f1 > 55 + deg,, dg1 A dga.

(P6) deg,, G < deg,, F.
(P7) deg,, fo < deg,, f1, deg,, f3 < deg,, f1, and ¢ < deg,, f; < sd for i =1,2,3.

Now, let us prove Lemma 9.2 by contradiction. Suppose that F' admits a Shestakov-
Umirbaev reduction for the weight w for some F € S(w, k). Then, there exist o € &3
and G € Auty, k[x] such that (F,, G,) satisfies the Shestakov-Umirbaev condition for the
weight w. Moreover, we have f3 = axz + p for some a € k* and p € k[z1, z2] with
deg,, p < ws, and so deg,, f3 = ws.

First, assume that o(1) = 3. Then, we have deg,, f,(1) = deg,, f3 = ws. Since
deg,, fo1) > degy, for2) by (P7), and deg,, fo2) = deg,, go(2) by (SU2), it follows that
deg,, fo(2) and deg,, g,(2) are less than ws. Hence, fy(2) and g,(2) belong to k[zy, x2].

When deg,,, fo(1) = deg,, 9-(1), we have deg,, g,(1) = w3. Hence, gg(l)—g;"(l) belongs
to k[z1, z2], since degy, (95(1) — 9571)) < ws. By (SU3), (g;"(l))2 R (ga(2))° holds for some
odd number s > 3. Since g, () belongs to k[z1, 2], it follows that 930(1) also belongs to
klz1,x5]. Thus, g,y belongs to k[zy,xs]. Therefore, we can define G’ € Auty k[, 2]
by G' = (95(1), 9o (2))- Since 9;"(1) and g;"(Q) are algebraically dependent over k, we have
deg, G’ > |v| by Theorem 3.3 (ii), where v := (wy,w2). Hence, we have 9oy = (9572))"

S

or g;"@) =) (g;"(l))“ for some u > 1 by Lemma 6.1. This contradicts that (g;"(l))2 ~ (g;"@))
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with s > 3 an odd number.
When deg,, fo1) # deg,, 9o(1), we have deg,, fo1) < deg,, go(1) in view of (SU2).
From (P5) and (SU2), it follows that

3 31 3
deg,, fo(3) = 55 =35 deg,, 9o(2) = 1 deg,, fo(2),

and hence 4deg,, f,(3) = 3deg,, fo(2)- Thus, we get deg,, fo(3) < deg,, fs(2)- Since
deg,, fr(2) < w3 as mentioned, it follows that f, 3y belongs to k[z1,z2]. Hence, we can
define F' € Auty k[xy,22] by F' = (fo(2), fo(3))- Since

w3 +deg'u F/ = degw fo’(l) +degv F, = degw FO’ > degw GO‘ > ‘U)| = |'U| + w3

by (P6) and Theorem 3.3 (i), we have deg,, F’ > |v|. Thus, we know by Lemma 6.1 that
foia) & (f;‘zg))" or fols) & (f;‘zz))“ for some u > 1. This contradicts that 4 deg,, fy(3) =
3degy, fo(2)-

Next, assume that o(1) # 3. Due to (SU1), we can define H € Auty k[x] by
H = (95(1), 9o(2), fo(3))- In the following, we show that H and w satisfy the conditions (a)
through (d) before Theorem 6.2. Then, it follows that 9oty X (g;"@))“ or gifig) A (gg’(l))“
for some u > 1 by Theorem 6.2 (i). Since (g;"(l))2 ~ (9o2))” with s = 3 an odd number,
we are led to a contradiction.

Since (1/2)deg,, go(2) = 0 < deg,, f3 = ws by (P7), we have deg,, go2) < 2ws.
This implies that deg, Io2) < 1. Since (g;"(l))2 R~ (g;"(z))s with s > 3 an odd number,
it follows that deg,, g77,) = deg,, g5 = 0. Hence, g%,y and g7, belong to klxy, za],
proving (a). We show that f,3) = Bx3 + ¢ for some 3 € k* and ¢ € k[xy, 23] with
deg,, ¢ < wsz. Then, we get (c) and (d) immediately. Since deg,, go(3) < deg,, fs(3) by
(SU5), and deg,, fo(3) = w3 by (c), we have

degy, 9o(1) + degy, go(2) = deg,, G — degy, go(s)
> degw G— degw fU(3) > |’LU| - degw fa(3) = w; + wa.

Hence, (b) is also proved.

Since (1) # 3, we have o(2) = 3 or 0(3) = 3. Recall that f3 = azs + p for some
a € k* and p € k[xy, 2] with deg,, p < ws. Hence, the assertion is clear if o(3) = 3.
Assume that 0(2) = 3. Then, we have deg,, g,(2) = deg,, fr(2) = deg,, fs = w3 by
(SU2). Since 93—0(2) belongs to k[z1, 2] as shown above, this implies that g, () belongs to
klx1,x2). By (SU1), there exists b € k such that

9o2) = Jo(2) T 0foz) = azs +p+bfs).

Since g,(2) and p belong to k[xy,z2] and o # 0, it follows that b # 0 and

Jo3) = —ab”as + b_l(gcr(2) - D).
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Since g, (2y and p are elements of k[z1, z5] with deg,, go(2) = w3 and deg,, p < w3, we see
that f,(3) has the required form. This completes the proof of Lemma 9.2, and thereby
completing the proof of Theorem 1.9.

The rest of this section is devoted to the proof of Theorem 1.10. To prove (ii)
of this theorem, we need the following version of the Shestakov-Umirbaev inequality
(see [13, Section 3] for detail). Let S = {f,g} be a subset of k[x] such that f and g
are algebraically independent over k, and p a nonzero element of k[S]. Then, we can
uniquely express p = Z” cijf'g’, where ¢; ; € k for each i,j € Ny. We define degﬁ,p
to be the maximum among deg,, f'g’ for i,j € Ny with ¢; ; # 0. We note that, if p*
does not belong to k[f*, g*], then degfvp is greater than deg,, p.

With the notation and assumption above, the following lemma holds (see [13, Lem-
mas 3.2 (i) and 3.3 (ii)] for the proof).

LEMMA 9.3.  Assume that k is a field of characteristic zero. If deg,, p < degi D,
then there exist ,m € N with ged(l,m) = 1 such that (¢%)! =~ (f¥)™ and

Now, let us prove Theorem 1.10. Let ko be the field of fractions of k. Then, we
may regard F as an element of S(w,kp). Hence, in proving (i), we may assume that
k is a field by replacing k with kg if necessary. Similarly, since T3(k) is regarded as a
subset of T5(ko), we may assume that k is a field in proving (ii). In both (i) and (ii),
we may also assume that f3 = z3 for the following reason. Since k is a field, we can
define H € T3(k) by H = (71,22, f3). Put G = H~'. Then, we have mdeg,, G = w
by Theorem 3.3 (iii), since mdeg,, H = w. By Theorem 3.3 (ii) and Corollary 2.3 (i),
this implies that deg,, G(f) = deg,,, f for each f € k[z]. Since wg = mdeg,, G = w, it
follows that deg,, G(f) = deg,, f for each f € k[x]. Thus, we get GoF' ~,, F. Therefore,
by replacing F' with G o F' if necessary, we may assume that f3 = z3.

First, we show (i). It suffices to construct G € E¥ (k) such that g3 = 3 and G ~,, F.
Assume that fi or f2 belongs to k[z;,z;] for some 1 < i < j < 3. Since both cases are
similar, we only consider the case of fi. If (,5) = (1,2), then the assertion follows from
Proposition 7.2 (ii). Assume that (z,) # (1,2). Then, we have j = 3. Since f; belongs
to k[z;,x3] and f3 = x3, we get k[f1, f3] = k[z;, 3], and so

klzs][f1] = k[fs, f1] = klzs][zi] and  klz;, x3][f2] = k[f1, f3, f2] = klzi, z3][z1],

where [ € {1, 2} is such that | # i. Hence, we may write f; = ay2;+p; and fo = asz;+pa,
where a1,0 € k%, p1 € k[zs] and ps € k[z;,z3]. Define pj € klzs] by pj = 0 if
p1 =0, and pj = 24 if d := deg,, p1 > 0, and py € k[z;,x3] by py = 0 if pp = 0, and
ph = x; ws® if po # 0, where u;, ug € Ny are such that deg,, po = w;w; + uzws. Then,
G := (x; + p, 21 + ph, x3) is an element of EY (k) such that G ~,, F.

Assume that f; and fo do not belong to k[x;,z;] for any 1 < i < j < 3. Then,
d; = deg,, fi is not less than max{wy,wy, w3} for i = 1,2. By assumption, d; belongs to
ZJ—# Nod; for some 1 <4 < 3. If ¢ = 3, then it follows that d; < ds for il =1 orl = 2.
Since both cases are similar, we assume that [ = 1. Then, we have max{w;, ws, w3} <
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dy < ds = ws, and so d; = ws. Hence, we may write f; = ajx3 + p1, where a; € k™,
and p; € k[z1, 2] is such that deg,, p1 < ws. Then, we have k[f1, f2, f3] = k[p1, fo, f3]
since f3 = x3. By Proposition 7.2 (ii), there exists G’ = (g1, g2, 23) € E¥ () such that
G’ ~w (p1, f2, f3). Then, we have deg,, g1 = deg,, p1 < w3 = d;. Define G € E3(k) by
G = G if deg,, g1 = d1, and by G = (g1 + w3, g2, x3) if deg,, g1 < di. Then, G is an
element of E¥ (k) such that G ~,, F. Next, assume that ¢ = 1 or i = 2. Since both cases
are similar, we assume that ¢ = 1. Write d; = lads +13d3 = lods +13w3, where I, l3 € Np.
Recall that deg,, F' > |w| by the definition of S(w, k). Hence, (b) of Theorem 1.1 (i)
holds for I = J = {1,2,3}. Since (f3*)” = x5 is divisible by z3 for v = 0, it follows
that Io N {1,2} # (. Hence, there exists s € {1,2} such that d> belongs to >, Now.
Write do = aw, + bws, where a,b € Ny and r € {1,2}\ {s}. Since d; and ds are at least
max{wy, ws, w3}, we have dy > w, and ds > w,. Define G € E3(k) by

1
G = (gcr + a(zs + ﬁx?w?’)lzm;,xs + ﬁx?a:g,xg),

where o = 1 if d; > w,, and o = 0 if d; = w,, and where 8 =1 if dy > w,, and 3 =0 if
dy = ws. Then, G is an element of EY (x) such that G ~,, F'. This completes the proof
of (i).

Finally, we show (ii). By Theorem 1.9, F' admits an elementary reduction for the
weight w. Hence, we have deg,,(f; —h) < deg,, fi for some 1 <4 <3 and h € k[f;,, fi,],
where i1,12 € {1,2,3} \ {¢} are such that i; < 3. Then, f belongs to k[f,, fi,]*, since
[0 = h¥. If f{ belongs to k[f”, f], then d; belongs to Nod;, + Nod;,. Assume that
fi¥ does not belong to k[f{, f]. Then, we have k[f;,, fi,|* # k[f{, fi¥]. Hence, f*
and f% are algebraically dependent over k by Corollary 2.3 (iii). If i # 3, then we have
ia = 3. Since f3 = w3, it follows that f belongs to k[f¥] = k[f3"] = k[z3]. Hence,
d;, belongs to Nod;,. Assume that ¢ = 3. Then, there exists h € k[f1, f2] such that
h® = f@_ Since f2 does not belong to k[f{*, f&] by assumption, deg® h > deg,, h holds
for S = {f1, f2} as remarked before Lemma 9.3. By Lemma 9.3, there exist l1,l3 € N

with ged(ly,l2) = 1 such that (f2)h ~ (f)!2 and

L

w3 = deg,, h > lady — dy — da + deg,, dfi Adfy > (lila — 1 — lz)ll

d17

where the last inequality is because do = (l2/l1)dy and deg,, dfi A dfs > 0. Assume
that f1” or f3” does not belong to k[r1,x3]. Then, we have deg,, f}* = [;d for j = 1,2
for some d € N, since [y deg,, f3’ = ladeg,, f{’ and ged(ly,l2) = 1. Hence, we get
dy = deg,, f1 > lidws > l[yws. By the preceding inequality, it follows that l1lo—11 -1y < 1.
Since ged(ly, o) = 1, this implies that [; = 1 or Iy = 1. Thus, we know that f¥ ~ (fw)!
or (f@)h ~ f. Therefore, dy belongs to Nod; or d; belongs to Nodo. If f¥ and f
belong to k[x1,xs], then the conditions (a) through (d) before Theorem 6.2 are fulfilled,
since deg,, F' > |w| and f35 = z3. Hence, we have f{* =~ (f3*)" or f3’ ~ (ft*)* for some
u > 1 by Theorem 6.2 (i). Therefore, d; belongs to Nods or da belongs to Nod;. This
completes the proof of (ii).

To conclude this paper, we mention Takurou Kanehira’s master’s thesis [8], where
he generalized Karas-Zygadlo [9, Theorem 2.1] by means of the generalized Shestakov—
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Umirbaev theory as follows (cf. [5, Theorem 3.1]; see also [14] for further generalizations,
and [25] and [16] for related results).

THEOREM 9.4 (Kanehira). Assume that k is a field of characteristic zero. Let
ds > do > dy > 3 be integers such that di and do are mutually prime odd numbers. If
there exist w € N3 and F € T3(k) such that mdeg,, F = (d1,ds,d3) and deg,, F > |w|,
then ds belongs to Nody + Nods.

Because of this result, Kanehira studied the following problem and gave some partial
results.

PROBLEM 9.5 (Kanehira). Assume that k is a field of characteristic zero. Find
sufficient conditions on w € N3 under which the following statement holds: (dy,ds,d3)
belongs to mdeg,, T3(k) for any mutually prime odd numbers

dl,dz S U (’wiNo —|—ij0),
1<i<j<3

and d3 € Nody + Nods such that 3 < dy < dy < d3 and di + do + d3 > "U)|

The results presented in this paper may be applicable to such a problem.
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