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Abstract. We give an overview of the recent approach to the integra-
tion of rough paths that reduces the problem to an inhomogeneous analogue
of the classical Young integration [13]. As an application, we extend an argu-
ment of Schwartz [11] to rough differential equations, and prove the existence,
uniqueness and continuity of the solution, which is applicable when the driving
path takes values in nilpotent Lie group or Butcher group.

1. Overview.

For each p ∈ [1,∞) Banach introduced a metric for measuring degrees of roughness
in paths with values in Banach spaces known as p-variation. The paths of finite 1-
variation are dense in the space of paths of finite p-variation for each p ≥ 1. Where when
p = 1 the paths are weakly differentiable almost surely and they engage with the classical
Newtonian calculus for example making sense of line integrals:

∫

t∈[0,T ]

τt ⊗ dσt.

Young [13] extended the integration so that if τ has finite q-variation and σ is continuous1

and has finite p-variation where p−1 + q−1 > 1 then

∫
τ ⊗ dσ

is well defined. In particular, if σ is of finite p-variation for p < 2 then the integral

∫
σ ⊗ dσ
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is meaningfully defined. Young’s original definition was directed towards definite inte-
grals. Lyons [6] considered the case of indefinite integrals and the related context of
controlled systems of differential equations:

dyt = f(yt)dσt, y0 = a, (1)

established the existence and uniqueness of the solution, and also the continuity of the
solution in the driving signal. Lyons’ integral requires the finite p-variation of σ, the
finite Lip(γ) norm of f , and p−1 + γp−1 > 1. The methods rely strongly on Young’s
approach, but a careful examination reveals that the arguments also rely critically on the
notion of the Lipschitz function and on the division lemma for them (Proposition 1.26
[8]).

Lemma 1 (Division Property). For Banach spaces U and W, suppose f : U → W
is Lip(γ) for some γ > 1. Then there exists h : U × U → L(U ,W) which is Lip(γ − 1)
such that

f(x)− f(y) = h(x, y)(x− y), ∀x, y ∈ U ,

and for some constant C depending only on γ and U ,

‖h‖Lip(γ−1) ≤ C‖f‖Lip(γ).

The bound p < 2 becomes an essential part of the thinking if one relies on Young’s
integral. Both p-variation paths and Lip(γ) functions form local algebras, and y in (1)
also has finite p-variation. From this it is clear that the space of integrals of σ, including
all spaces of solutions to differential equations driven by σ, is closed under addition, and
the pointwise multiplication is explicitly given by

for yt = a +
∫

s∈[0,t]

f(ys)dσs and ŷt = â +
∫

s∈[0,t]

f̂(ŷs)dσs,

ytŷt =
∫

s∈[0,t]

(f(ys)ŷs + ysf̂(ŷs))dσs + aâ.

This remark is implicit in establishing the existence, uniqueness and continuity theo-
rems since it underpins the operations used in Picard iteration and other approximation
strategies. In fact it is easy to show that composition of an integral of σ with a smooth
function is also an integral of σ (the chain rule).

In further work [7], Lyons extended the integral of Young to the case p ≥ 2, showed
how the notion of bounded variation paths naturally admits a generalization to p-rough
paths for any p ∈ [1,∞), and established an integral, existence, uniqueness and continuity
theorem for differential equations controlled by weak geometric p-rough paths when f is
Lip(γ) and γ > p. Young’s tricks, the division lemma and the algebraic manipulations
of Picard iteration were all important ingredients. The main surprise over the case p < 2
came from the essential nonlinear aspects of the metric imposed on bounded variation



Rough paths via one-forms 1683

functions that allowed the p-roughness. The space is quite different to that envisaged by
Banach.

In this short note we summarize a new approach to the case p ≥ 2, which could be
viewed as a proper extension of Lyons’ original approach, and is somewhere between the
original arguments which emphasized the rough paths and the perspective of Gubinelli
which emphasized more the space of possible integrands for a given path that (in his
context) are referred to as controlled rough paths. We explain how a clear perspective
about a Lipschitz function f which allows one to (quite simply) reduce the problem of
defining a rough line integral

∫

s∈[0,t]

f(σs)dσs

to the integral of a slowly varying one-form t → f̂(σt) against a rapidly varying path σt

in a way that satisfies Young’s conditions.
The key understanding comes from repositioning the integral so that σ is a path in

a nilpotent group and ht = f̂(σt) is a closed one-form on that group that varies more
slowly with time than σ. When looked at in the correct way, Young’s strategy applies
and

∫

s∈[0,t]

hsdσs

is well defined. Apart from the clarity this understanding gives, it captures the linearity
of the integral against a path in a convenient way, and actually leads to the introduction
of the integral of any q-variation path with values in the closed one-forms against σ. It is
not surprising that the class of these integrals is again closed under addition, pointwise
multiplication and composition with smooth functions. What is more surprising is that
it is (by construction) rich enough to include the original integral

∫

s∈[0,t]

f(σs)dσs.

As a result, differential equations against rough paths, etc. are easily deduced. It is
surprising because s 7→ f(σs) is certainly not in general of finite q-variation for any q

satisfying

1
p

+
1
q

> 1,

if p ≥ 2.
The key point is actually rooted in geometry that does not have anything (directly)

to do with rough paths but it positions one accurately to do the analysis of rough paths.
We need a number of separate ingredients to explain clearly the framework.
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Polynomial functions. A polynomial function of degree n is a globally defined
function whose (n + 1)th derivative exists and is identically zero. We intentionally avoid
the definition as a power series around a point, and we could choose different reference
points and have different representations of the same polynomial. More specifically, for
Banach spaces V and U , we say p : V → U is a polynomial function of degree (at most)
n if Dn+1p ≡ 0. For any y ∈ V, we can represent p as a power series around y:

p(x) =
n∑

k=0

(Dkp)(y)
(x− y)⊗k

k!
, ∀x ∈ V, ∀y ∈ V,

but the value of p does not vary with y. We would like to emphasize that p is a function
defined on the affine space V, it has no natural graded algebraic structure, there is no
particular choice of base point associated with it, and there does not exist a translation
invariant norm on the space of polynomial functions.

Just as in linear algebra, where one keeps the concept of linear map separated from
the matrix one gets after fixing a particular choice of basis, it is conceptually essential
that we distinguish the polynomial function as an object from any representation of it
via its Taylor series around a chosen point.

For Banach space U and integer n ≥ 0, let P (n)(U) denote the space of polynomial
functions of degree n taking values in U .

Lipschitz functions. By using the polynomial functions (rather than power se-
ries), we can shift the classical viewpoint of the Lipschitz function as a function taking
values in power series to a function taking values in polynomial functions. This modifica-
tion gives rise naturally to a way to compare the representations of polynomial functions,
and reduces a Lipschitz function to a “slowly-varying” polynomial function. The first
author would like to thank Youness Boutaib for sharing his understanding of Lipschitz
functions with him.

Definition 2 (Stein). Let V and U be two Banach spaces. For γ > 0, denote
n := bγc (the largest integer which is strictly less than γ). For a closed set K in V, we
say f is a Lipschitz function of degree γ on K, if

f : K → P (n)(U),

and for some constant M > 0,

sup
x∈K

‖f(x)x‖∞ + sup
x,y∈K

max
j=0,1,...,n

∥∥∥∥
(Dj(f(x)− f(y)))x

‖x− y‖γ−j

∥∥∥∥
∞
≤ M.

Some explanatory points are in order:

1. For x ∈ K, f(x) is a polynomial function of degree n, and we denote by f(x)x the
degree-n Taylor series of f(x) around x. Similarly, for j = 0, 1, . . . , n, (Dj(f(x)−f(y)))
is a polynomial function of degree n − j and (Dj(f(x) − f(y)))x denotes its degree-
(n− j) Taylor series around x.
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2. For each x ∈ K, f(y) 7→ ‖f(y)x‖∞ is a norm on P (n)(U). These norms are equivalent,
and if K is compact then they are uniformly equivalent.

3. The Lip(γ) norm ‖f‖Lip(γ) is defined to be the smallest M satisfying the inequality.
4. Suppose N is a neighborhood of x and N ⊆ K. Then F : N → U defined by

y 7→ (f(y))(y) for y ∈ N is a Cγ function (n times differentiable with the nth derivative
(γ−n)-Hölder) and f(x) is the polynomial function that matches F to degree n at x:

(
Dj(f(x)− F )

)
(x) = 0, j = 0, 1, . . . , n.

While in comparison with the notion of Cγ functions, Lipschitz functions make perfect
sense even when K is of finite cardinality.

5. The space of Lipschitz functions forms an algebra.
6. Whitney’s extension theorem was extended by Stein [12] to these generalized Lipschitz

functions. He proved that there is a constant Cd and a linear extension operator so
that any Lip(γ) function f on a closed set K in Rd can be extended to a Lip(γ) function
g on Rd where ‖g‖Lip(γ) ≤ Cd‖f‖Lip(γ).

The crucial and somewhat counter-intuitive remark associated with Lipschitz func-
tions is the following.

Remark 3. Suppose p is a polynomial function of degree m and γ > 0 is a real
number. When γ > m, p is associated with a constant Lip(γ) function f : K → P (m)(U)
defined by

f(x) := p, ∀x ∈ K.

When γ ≤ m, p gives rise to a non-constant Lip(γ) function

f(x)x(z) =
bγc∑

l=0

(Dlp)(x)
(z − x)⊗l

l!
, ∀z ∈ V, ∀x ∈ K,

since bγc < m.

Remark 4. This transformation of polynomials into constant functions in a differ-
ent function space, and more generally, smooth functions into slowly changing functions,
can be seen at the heart of the success of the rough path integral. Rough path integra-
tion traditionally integrates a Lip(p+ε−1) one-form against a (weak geometric) p-rough
path.

Lifting of polynomial one-forms to closed one-forms. For integer n ≥ 1,
the step-n nilpotent Lie group Gn has a natural graded algebraic structure, and accom-
modates weak geometric p-rough paths for p < n + 1. G1 is an abelian group which is
isomorphic to a Banach space, and fits naturally into the chain G0 = {e} π´ G1

π´ · · · π´
Gn

π´ · · · . If σ is a path of finite length taking values in G1, then there is a natural lift
σ 7→ σ̂ (the signature of σ), which takes a path in G1 into a horizontal path in Gn.

We have defined polynomial functions and Lipschitz functions. A polynomial one-
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form or a Lipschitz one-form is a polynomial function or Lipschitz function taking values
in one-forms.

Suppose p is a polynomial one-form on G1, and we would like to lift p to a one-form
p∗ on Gn so that

∫
p(σ)dσ =

∫
p∗(σ̂)dσ̂.

A simple choice is to let p∗ be the pullback of p through the projection π. Then the
equality holds because σ = πσ̂ and has nothing to do with the fact that σ̂ is the “hori-
zontal lift” of σ. Actually, being a “horizontal lift” adds an extra ingredient which we will
exploit in a crucial way. If ω is any one-form on Gn which has the horizontal directions
in its kernel, then

∫
p∗(σ̂)dσ̂ =

∫
(p∗ + ω)(σ̂)dσ̂.

The key point is that we can select ω such that p∗ + ω is a closed one-form, and the
selection only depends on p and not on σ̂.

Theorem 5. For n ≥ 1 and a polynomial one-form p of degree n− 1, there exists
a unique one-form ω on Gn, which is orthogonal to the horizontal directions and p∗ + ω

is a closed one-form on Gn.

The proof of this theorem is actually not hard: we can give one possible choice of
ω, and since p∗ + ω does not depend on σ̂, any two choices must coincide.

While we should specify what we mean by a closed one-form on a group. Roughly
speaking, closed one-forms are characterized by zero integral along closed curves, and a
one-form on a connected domain is closed if it can be integrated against any continuous
path on the domain, and the value of the integral only depends on the end points of
the path. A one-form is closed if equivalent to the exact equality between the one-step
and two-steps estimates. Integrals often correspond to closed one-forms because of the
property

∫
[s.t]

=
∫
[s,u]

+
∫
[u,t]

, and this property is actually behind the fact that the lifted
polynomial one-form is closed. In terms of mathematical expression, we say β on group
G taking values in another algebra is closed (or cocyclic), if

β(a, b)β(ab, c) = β(a, bc), ∀a, b, c ∈ G.

By lifting a path to a horizontal path and a polynomial one-form to a closed one-
form on the nilpotent Lie group, we replace a general integral by the integral of a closed
one-form. The integral of a closed one-form has the nice property that it does not depend
on the fine structure of the path but only on its end points. In particular, the integral
makes sense for any continuous path and has no (further) regularity assumption.

Integrating slowly-varying closed one-forms. Since the integral of a closed
one-form against any continuous path is well-defined, we could weaken the requirement
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on the one-form and strengthen the regularity assumption on the path in such a way
that the integral still makes sense. For example, in the case of classical integral, we
can integrate a constant one-form against any continuous path because constant one-
forms are closed. Then if we weaken the requirement on the one-form and strengthen
the requirement on the path in such a way that their regularities “compensate” each
other, then the integral still makes sense as Young integral [13]. In the case of Young
integral, we actually vary the constant one-form with time and get a path taking values
in constant one-forms, which is more clearly seen in the proof of the existence of the
integral where we keep comparing the constant one-forms from different times based on
their effect on the future increment of the driving path.

Constant one-form on Banach space is just a special example of closed one-forms.
More generally, suppose we have a family of closed one-forms on a differential manifold
or on a topological group. For a given path taking values in the manifold or group, if
the closed one-form varies with time in such a way that the one-form and the path have
compensated Young regularities, then the integral should still makes sense.

As we mentioned above, a Lipschitz one-form could be viewed as a slowly-varying
polynomial one-form, and that there exists a canonical lift of a polynomial one-form to a
closed one-form on the nilpotent Lie group. Hence we can lift a Lipschitz one-form to a
slowly-varying closed one-form on the nilpotent Lie group. More specifically, suppose α

is a Lipschitz one-form on G1. Then based on our argument above, α can be viewed as
a slowly-varying polynomial one-form. Suppose σ is an underlying reference path. Then
the evolution of σ gives a natural order (or say time), and α along σ is a “slowly-time-
varying” polynomial one-form with each ασt

a polynomial one-form. If we denote by
σ̂t ∈ Gn the horizontal lift of the path σt ∈ G1 and denote by βσ̂t

the closed one-form lift
of the polynomial one-form ασt , then we can rewrite the integral of a Lipschitz one-form
against σ as the integral of a time-varying closed one-form against σ̂:

∫
α(σt)dσt =

∫
ασt

(σt)dσt =
∫

βσ̂t
(σ̂t)dσ̂t.

When σ is of finite length, this algebraic/geometrical reformulation seems unneces-
sary. The point is that for general path σ̂ of finite p-variation taking values in G[p], the
integral

∫
βσ̂(σ̂)dσ̂ still makes sense (the rough integral) while the classical Riemann sum

integral
∫

α(σ)dσ does not have a proper meaning.

Theorem 6. Suppose α is a Lip(p + ε− 1) one-form for some ε > 0. Then there
exists β taking values in closed (or say cocyclic) one-forms on G[p], such that for any
σt ∈ G1 of finite length with horizontal lift σ̂t ∈ G[p], we have

∫
α(σt)dσt =

∫
βσ̂t

(σ̂t)dσ̂t,

Moreover, the integral
∫

βσ̂t
(σ̂t)dσ̂t is well-defined for any continuous path σ̂ of finite

p-variation taking values in G[p] and the integral is continuous with respect to σ̂ in p-
variation metric.
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Conclusion. Based on our formulation, to make sense of the rough integral, all we
need is the compensated regularity between two paths: one takes values in the group and
the other takes values in the closed (cocyclic) one-forms on the group. By viewing the
Lipschitz functions as slowly-varying polynomial functions and by lifting the polynomial
one-forms to closed one-forms, we encapsulate the nonlinearity of the integral to the
structure of the group and to the closed one-forms on the group so that the idea behind
the generalized integral is clearer and bears a similar form to the classical Young integral.

2. Definitions and properties.

Suppose U , V and W are Banach spaces and p ≥ 1 a real number. We restate the
definition of the cocyclic one-form and the dominated path as in [9].

Suppose A and B are Banach algebras and G is a topological group in A. We
denote by L(A,B) the set of continuous linear mappings from A to B, and we denote by
C(G, L(A,B)) the set of continuous mappings from G to L(A,B).

Definition 7 (Cocyclic One-Form). We say β ∈ C(G, L(A,B)) is a cocyclic one-
form, if there exists a topological group H in B such that β(a, b) ∈ H for all a, b ∈ G
and

β(a, b)β(ab, c) = β(a, bc), ∀a, b, c ∈ G.

We denote the set of cocyclic one-forms by B(G,H) (or B(G)).

Since a Banach space U is canonically embedded in the Banach algebra {(c, u)|c ∈
R, u ∈ U} with multiplication (c, u)(r, v) = (cr, ru + cv), we denote by B(G,U) the set of
cocyclic one-forms taking values in U satisfying β(a, b) + β(ab, c) = β(a, bc) for all a, b, c

in G.
For p ≥ 1, we denote by [p] the integer part of p. As in [9], we equip the tensor

powers of V with admissible norms and assume T ([p])(V) = R ⊕ V ⊕ · · · ⊕ V⊗[p] is a
graded Banach algebra equipped with the norm ‖ · ‖ :=

∑[p]
k=0 ‖πk(·)‖ (πk denotes the

projection to V⊗k), and the multiplication on T ([p])(V) is induced by a finite family of
linear projective mappings denoted by P[p]; G[p] is a closed topological group in T ([p])(V)
whose linear span is T ([p])(V) and whose projection to R is 1.

When G[p] is the nilpotent Lie group over V, P[p] = {πk}[p]
k=0 with πk(ab) =∑k

j=0 πj(a) ⊗ πk−j(b) for k = 0, 1, . . . , [p] and for a, b ∈ T ([p])(V). When G[p] is the
Butcher group over Rd, P[p] is the set of labelled forests of degree less or equal to [p] and
σ(ab) =

∑
c P c(σ)(a)Rc(σ)(b) for σ ∈ P[p] and for a, b ∈ T ([p])(Rd) where the sum is over

all admissible cuts of the forest σ. For more details see [10], [7], [1], [2], [4].
We equip G[p] with the norm | · | := ∑[p]

k=1 ‖πk(·)‖1/k and define the p-variation of a
continuous path g : [0, T ] → G[p] by

‖g‖p−var,[0,T ] := sup
D,D⊂[0,T ]

( ∑

k,tk∈D

∣∣g−1
tk

gtk+1

∣∣p
)1/p

.
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We denote by Cp−var([0, T ],G[p]) the set of continuous paths of finite p-variation on
[0, T ] taking values in G[p]. (The exact form of norm on G[p] is not important, and the
integral can be defined as long as the norm on the group and the norm on the one-form
“compensate” each other.)

For α ∈ L(T [p](V),U), we denote

‖α(·)‖ := sup
v∈T [p](V),‖v‖=1

‖α(v)‖, ‖α(·)‖k := sup
v∈V⊗k,‖v‖=1

‖α(v)‖, k = 1, 2, . . . , [p].

We say ω : {(s, t)|0 ≤ s ≤ t ≤ T} → R+ is a control, if ω is continuous, non-negative,
vanishes on the diagonal and satisfies ω(s, u) + ω(u, t) ≤ ω(s, t) for 0 ≤ s ≤ u ≤ t ≤ T .
As in [9], for g ∈ C([0, T ],G[p]) and β : [0, T ] → B(G[p],U), if the limit exists

lim
|D|→0,D={tk}n

k=0⊂[0,T ]
β0(g0, g0,t1)βt1(gt1 , gt1,t2) · · ·βtn−1(gtn−1 , gtn−1,T )

with gs,t := g−1
s gt,

then we define the limit to be the integral
∫ T

0
βu(gu)dgu.

Definition 8 (Dominated Path). For g ∈ Cp−var([0, T ],G[p]) and Banach space
U , we say a continuous path ρ : [0, T ] → U is dominated by g, if there exists β : [0, T ] →
B(G[p],U) which satisfies, for some M > 0, control ω and θ > 1,

‖βt(gt, ·)‖ ≤ M, ∀t ∈ [0, T ],

‖(βt − βs)(gt, ·)‖k ≤ ω(s, t)θ−k/p, ∀0 ≤ s ≤ t ≤ T, k = 1, 2, . . . , [p],

such that ρt = ρ0 +
∫ t

0
βu(gu)dgu for t ∈ [0, T ].

Based on the definition of dominated paths, we introduce an operator norm on the
space of one-forms to quantify the convergence of one-forms (associated with Picard
iterations).

For g ∈ Cp−var([0, T ],G[p]) and control ω, we say g is controlled by ω if
‖g‖p

p−var,[s,t] ≤ ω(s, t) for all s < t.

Definition 9 (Operator Norm). For g ∈ Cp−var([0, T ],G[p]) controlled by ω and
β : [0, T ] → B(G[p],U), we define, for γ > 1,

‖β‖γ := sup
t∈[0,T ]

‖βt(gt, ·)‖+ max
k=1,...,bγc

sup
0≤s≤t≤T

‖(βt − βs)(gt, ·)‖k

ω(s, t)(γ−k)/p
.

Suppose ‖β‖γ < ∞. When γ increases, the integrability of β increases. In the
extreme case that γ tends to infinity, β is compelled to be a constant cocyclic one-
form, so is integrable against any continuous path. If γ > p − 1 and if there exists
σ : [0, T ] → U such that ‖σt−σs−βs(gs, gs,t)‖ ≤ C‖g‖γ

p−var,[s,t] for all s < t, then σ is a
weakly controlled path introduced by Gubinelli [3]. When γ > p, β is integrable against
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g and t 7→ ∫ t

0
β(gu)dgu is a dominated path.

Definition 10. Suppose there exists a mapping I ′ ∈ L(T ([p])(V), T ([p])(V)⊗2)
which satisfies

I ′(1) = I ′(V) = 0, I ′(V⊗k) ⊆ V⊗(k−1) ⊗ V, k = 2, . . . , [p],

and (with 1′n,2 denoting the projection of T ([p])(V)⊗2 to
∑[p]−1

k=1 V⊗k ⊗ V)

I ′(ab) = I ′(a) + 1′n,2((a⊗ a)I ′(b)) + 1′n,2((a− 1)⊗ (a(b− 1))), ∀a, b ∈ G[p].

Due to the special form of the dominated paths in Picard iterations, we only need
the mapping I ′ (instead of I as in [9]) for the recursive integrals to make sense. Roughly
speaking, the mapping I is used to define the iterated integral of two dominated (con-
trolled) paths, and corresponds to a universal continuous linear mapping which has the
“formal” expression:

I(a) =
∫ T

0

(g0,u − 1)⊗ δg0,u, g ∈ C([0, T ],G[p]), a = g0,T , ∀a ∈ G[p].

The mapping I ′ encodes part of the information of I, is used to define the integral of a
dominated (controlled) path against the first level of the given group-valued path, and
corresponds to a universal continuous linear mapping with the formal expression:

I ′(a) =
∫ T

0

(g0,u − 1)⊗ δxu, x := π1(g), g ∈ C([0, T ],G[p]), a = g0,T , ∀a ∈ G[p].

In particular, I ′ is well-defined for degree-[p] nilpotent Lie group and degree-[p]
Butcher group for any p ≥ 1 (see [9] for more explanation).

The lemma below proves that one can integrate a weakly controlled path [3], [4] and
get a dominated path. We made the dependence of the coefficients explicit to suit the
special needs of our proof.

Lemma 11. Suppose g ∈ Cp−var([0, T ],G[p]) is controlled by ω, β : [0, T ] →
B(G[p], L(V,W)) satisfies

‖β‖γ < ∞ for some γ ∈ (p− 1, [p]],

and there exists ϕ : [0, T ] → L(V,W) which satisfies for some M > 0,

‖ϕt − ϕs − βs(gs, gs,t)‖ ≤ M‖β‖γω(s, t)γ/p, ∀0 ≤ s < t ≤ T. (2)

If we define η : [0, T ] → B(G[p],W) by

ηt(a, b) := ϕtπ1

(
g−1

t a(b− 1)
)

+ βt(gt, ·)π1(·)I ′(g−1
t a(b− 1)), ∀a, b ∈ G[p], ∀t ∈ [0, T ],
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then for some structural constant c (depending on the mapping I ′),

sup
0≤t≤T

‖ηt(gt, ·)‖ ≤ sup
0≤t≤T

‖ϕt‖+ c‖β‖γ ,

and there exists a constant C = C(M, p, ω(0, T )) such that

‖(ηt − ηs)(gt, ·)‖k ≤ C‖β‖γω(s, t)(γ+1−k)/p, ∀s < t, k = 1, 2, . . . , [p].

As a consequence, ‖η‖γ+1 < ∞ and t 7→ ∫ t

0
ηu(gu)dgu is a dominated path.

Proof. It is clear that for some constant c depending on I ′,

‖ηt(gt, ·)‖ ≤ ‖ϕt‖+ c‖βt(gt, ·)‖ ≤ sup
0≤t≤T

‖ϕt‖+ c‖β‖γ , ∀t ∈ [0, T ].

For s < t and v ∈ R⊕ V ⊕ · · · ⊕ V⊗[p] (calculation or based on the proof in [9]), we
have

(ηt − ηs)(gt, v) = (ϕt − ϕs − βs(gs, gs,t))π1(v) + (βt − βs)(gt, ·)π1(·)I ′(v)

+
∑

σ∈P[p],|σ|=[p]

βs(gs, σ(gs,t))π1(v)

+
[p]∑

k=2

∑

σ∈P[p],|σ|≥[p]+1−k

βs(gs, σ(gs,t)·)π1(·)I ′(πk(v)). (3)

Since ‖β‖γ < ∞ and I ′(V⊗k) ⊆ V⊗(k−1)⊗V, k = 2, . . . , [p], we have, for some structural
constant C depending on the norm of the mapping I ′,

sup
v∈V⊗k,‖v‖=1

‖(βt − βs)(gt, ·)π1(·)I ′(v)‖ ≤ C‖β‖γω(s, t)(γ+1−k)/p, k = 1, 2, . . . , [p].

Moreover, for s < t,

‖βs(gs, σ(gs,t))‖ ≤ ‖β‖γω(s, t)[p]/p, ∀σ ∈ P[p], |σ| = [p],

‖βs(gs, σ(gs,t)·)π1(·)I ′(πk(·))‖ ≤ ‖β‖γ(1 ∨ ω(0, T ))ω(s, t)([p]+1−k)/p,

∀σ ∈ P[p], |σ| ≥ [p] + 1− k.

Hence, since γ ≤ [p], combined with (3) and (2), for some C = C(M, p, ω(0, T )), we have

‖(ηt − ηs)(gt, ·)‖k ≤ C‖β‖γω(s, t)(γ+1−k)/p, ∀s < t, k = 1, 2, . . . , [p]. ¤

For γ ≥ 1, bγc denotes the largest integer which is strictly less than γ. For σi ∈ P[p],
i = 1, . . . , l, |σ1|+ · · ·+ |σl| ≤ [p], we denote by σ1 ∗ · · · ∗σl the continuous linear mapping
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from V⊗(|σ1|+···+|σl|) to V⊗|σ1|⊗· · ·⊗V⊗|σl| satisfying (σ1∗· · ·∗σl)(a) = σ1(a)⊗· · ·⊗σl(a)
for all a ∈ G[p] (see [9] for more details).

Definition 12 (β(f(ρ))). Let ρ· = ρ0 +
∫ ·
0
β(g)dg : [0, T ] → U be a dominated

path and f : U → W be a Lip(γ) function for some γ > p − 1. We define β(f(ρ)) :
[0, T ] → B(G[p],W) by, for a, b ∈ G[p] and s ∈ [0, T ],

β(f(ρ))s(a, b)

=
bγc∑

l=1

1
l!

(Dlf)(f(ρs))βs(gs, ·)⊗l
∑

σi∈P[p],|σ1|+···+|σl|≤[p]

(σ1 ∗ · · · ∗ σl)
(
g−1

s a(b− 1)
)
.

Definition 13 (Integral). Suppose ρ : [0, T ] → U is a path dominated by g ∈
Cp−var([0, T ],G[p]) and f : U → L(V,W) is a Lip(γ) function for some γ > p− 1. With
β(f(ρ)) in Definition 12, if we define β : [0, T ] → B(G[p],W) by

βs(a, b) = f(ρs)π1

(
g−1

s a(b− 1)
)

+ β(f(ρ))s(gs, ·)π1(·)I ′
(
g−1

s a(b− 1)
)
,

∀a, b ∈ G[p], ∀s, (4)

then β is integrable against g and we define the integral
∫

f(ρ)dx : [0, T ] →W by

∫ t

0

f(ρu)dxu :=
∫ t

0

βu(gu)dgu, ∀t ∈ [0, T ].

That β is integrable against g follows from Lemma 11. When G[p] is the nilpotent
Lie group, the integral coincides with the first level of the rough integral in [7]. When
G[p] is the Butcher group the integral coincides with the integral in [4].

Definition 14 (Solution). For γ +1 > p ≥ 1, suppose g ∈ Cp−var([0, T ],G[p]) and
f : U → L(V,U) is a Lip(γ) function. We say y is a solution to the rough differential
equation (with x := π1(g))

dy = f(y)dx, y0 = ξ ∈ U , (5)

if y is a path dominated by g, and y· = ξ +
∫ ·
0
f(yu)dxu with the integral defined in

Definition 13.

Since dominated paths are defined through integrable one-forms, instead of formu-
lating the fixed-point problem in the space of paths as in Definition 14, we could also
formulate the fixed-point problem in the space of integrable one-forms, and y is called a
solution to (5) if the one-form associated with y is a fixed point of the mapping β 7→ β̂

where β̂ is the one-form associated with
∫

f(y)dx.
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3. Existence, uniqueness and continuity of the solution.

Schwartz gave a beautiful proof in [11] of the convergence of the series of Picard
iterations for SDEs. Instead of working with contraction mapping on small intervals and
pasting the local solutions together, he used the iterative expression of the differences
between the nth and (n + 1)th Picard iterations and proved that the sequence of differ-
ences decay factorially on the whole interval. Put in the simplest form, his argument can
be summarized as follows. Suppose f is Lip(1) and consider the SDE:

dXt = f(Xt)dBt, X0 = ξ.

We define the series of Picard iterations by Xn+1
t = ξ+

∫ t

0
f(Xn

u )dBu with X0
t ≡ ξ. Then

by using Itô’s isometry and the Lipschitz property of f , we have

E
(|Xn+1

t −Xn
t |2

)
= E

∫ t

0

∣∣f(Xn
u )− f(Xn−1

u )
∣∣2du ≤ ‖f‖2Lip(1)

∫ t

0

E
(|Xn

u −Xn−1
u |2)du.

By iterating this process, we obtain a factorial decay and the global convergence of the
Picard series.

We will try to extend his argument to RDEs. However, there are several points to
pay attention to: generally, Lip(1) is insufficient for rough integral to be well-defined and
it is illegitimate to take modulus inside the rough integral; there is no L2 space and no
Itô’s isometry for general rough paths, so the factorial decay can not be obtained in a
similar way. We will rely critically on the Division Property of Lipschitz functions, and
rely critically on the factorial decay of the Signature of a rough path [7]. In particular,
we prove that the one-forms associated with the differences between the nth and (n +
1)th Picard iterations decay factorially in operator norm as n tends to infinity on the
whole interval. As a consequence, the one-forms associated with the Picard iterations
converge in operator norm, which implies the convergence of the Picard iterations and
the convergence of their group-valued enhancements. By using the factorial decay of the
iterated integrals, we can prove the solution is unique. The continuity of the solution
with respect to the driving noise follows from the uniform convergence of the Picard
iterations for the rough differential equations whose driving rough paths are uniformly
bounded in p-variation.

Let U and V be two Banach spaces.

Definition 15 (Picard Iterations). For γ + 1 > p ≥ 1, suppose g ∈
Cp−var([0, T ],G[p]), f : U → L(V,U) is a Lip(γ) function and ξ ∈ U . We define the
series of Picard iterations associated with the rough differential equation dy = f(y)dx,
y0 = ξ, by

yn
t := ξ +

∫ t

0

f
(
yn−1

u

)
dxu, ∀t ∈ [0, T ], with y0

t ≡ ξ.

Definition 16. We define ζn : [0, T ] → B(G[p],U), n ≥ 1, by
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ζn
s (a, b) = f

(
yn−1

s

)
π1

(
g−1

s a(b− 1)
)

+ β(f(yn−1))s(gs, ·)π1(·)I ′
(
g−1

s a(b− 1)
)
,

∀a, b ∈ G[p], ∀s,

where β(f(yn−1)) is defined in terms of yn−1
· = ξ +

∫ ·
0
ζn−1(g)dg as in Definition 12 with

ζ0 ≡ 0.

Then based on the definition of the integral in Definition 13, yn
· = ξ +

∫ ·
0
ζn(g)dg,

n ≥ 0, and {yn}∞n=0 are paths dominated by g.

Lemma 17. Suppose g ∈ Cp−var([0, T ],G[p]) is controlled by ω, and f : U →
L(V,U) is a Lip(γ) function for some γ ∈ (p − 1, [p]]. Then there exists a constant
C = C(p, γ, ‖f‖Lip(γ), ω(0, T )) such that

sup
n≥0

‖ζn‖γ+1 ≤ C.

Proof. We first suppose ω(0, T ) ≤ 1, and prove that there exists λp,γ > 0 which
only depends on p and γ such that when ‖f‖Lip(γ) ≤ λp,γ we have supn≥0 ‖ζn‖γ+1 ≤
2λp,γ . We prove it by using mathematical induction. Suppose for some constant λn ∈
(0, 1),

‖ζn‖γ+1 ≤ λn,

which holds when n = 0 since ζ0 ≡ 0. We want to prove that there exists a constant
Cp,γ ≥ 1 such that

‖ζn+1‖γ+1 ≤ ‖f‖Lip(γ)(1 + Cp,γλn) := λ(1 + Cp,γλn).

Then when λ ∈ (0, (2Cp,γ)−1), if λn ≤ λ/(1−Cp,γλ) then λ(1+Cp,γλn) ≤ λ/(1−Cp,γλ).
Since λ0 = 0 ≤ λ/(1 − Cp,γλ), we have λn ≤ λ/(1 − Cp,γλ) ≤ 2λ for all n ≥ 0. It can
be checked that ζn+1 is linear with respect to scalar multiplication of f , so we assume
‖f‖Lip(γ) = 1, and want to prove

‖ζn+1‖γ+1 ≤ 1 + Cp,γλn when ‖ζn‖λ+1 ≤ λn. (6)

By following similar proof as in [9] of the stability of dominated paths under composition
with regular functions and by using ‖f‖Lip(γ) = 1, ω(0, T ) ≤ 1 and ‖ζn‖γ+1 ≤ λn ∈ (0, 1),
we have that there exists Cp,γ > 0 such that for any s < t,

‖(β(f(yn))t − β(f(yn))s)(gt, ·)‖k ≤ Cp,γλnω(s, t)(γ−k)/p, k = 1, 2, . . . , [p]− 1,

‖f(yn
t )− f(yn

s )− β(f(yn))s(gs, gs,t)‖ ≤ Cp,γλnω(s, t)γ/p.

Since yn+1
· = ξ +

∫ ·
0
f(yn)dx, by using Lemma 11, we have
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∥∥(ζn+1
t − ζn+1

s )(gt, ·)
∥∥

k
≤ Cp,γλnω(s, t)(γ+1−k)/p, ∀s < t, k = 1, 2, . . . , [p],

∥∥ζn+1
t (gt, ·)

∥∥ ≤ 1 + Cp,γλn, ∀t,

which implies (6).
For the general case, we rescale the differential equation and consider dy = f̂(y)dx̂,

y0 = ξ, with c := λ−1
p,γ‖f‖Lip(γ), f̂ := c−1f and ĝ :=

∑[p]
k=0 ckπk(g) with x̂ := π1(ĝ). Then

the solution path stays unchanged, and we have ‖f̂‖Lip(γ) ≤ λp,γ . If we denote by {βn}n

the one-forms (as in Definition 16) associated with the Picard iterations of dy = f̂(y)dx̂,
y0 = ξ, then it can be proved inductively that,

ζn
s (gt, v) = βn

s (ĝt, v̂),

∀v ∈ R⊕ V ⊕ · · · ⊕ V⊗[p] with v̂ :=
[p]∑

k=0

ckπk(v), ∀s < t, ∀n ≥ 1.

Hence, if we can prove supn≥0 ‖βn‖γ+1 < ∞ then supn≥0 ‖ζn‖γ+1 < ∞. Denote
ω̂(s, t) := cpω(s, t) for s < t. We divide the interval [0, T ] into the union of finitely
many overlapping subintervals ∪[si, ti] such that ω̂(si, ti) ≤ 1 for all i. Because these
subintervals overlap, we can paste their estimates together. Indeed, by using the cocyclic
property, for s < u < t,

(βn
t − βn

s )(gt, v) = (βn
t − βn

u )(gt, v) + (βn
u − βn

s )(gu, gu,tv), ∀v ∈ V ⊕ · · · ⊕ V⊗[p],

which implies

∥∥(βn
t − βn

s )(ĝt, ·)
∥∥

k
≤ ∥∥(βn

t − βn
u )(ĝt, ·)

∥∥
k

+
[p]∑

j=k

∥∥(βn
u − βn

s )(ĝu, ·)∥∥
j

≤ c1ω̂(u, t)(γ+1−k)/p + c2

[p]∑

j=k

ω̂(s, u)(γ+1−j)/p ≤ c3ω̂(s, t)(γ+1−k)/p,

where ci may depend on ω̂(0, T ). ¤

Definition 18. With the Picard iterations {yn}n in Definition 15, we define zn :
[0, T ] → U , n ≥ 1, by

zn
t = yn

t − yn−1
t , t ∈ [0, T ].

Since {yn}n are Picard iterations which satisfy yn+1
· = ξ +

∫ ·
0
f(yn

u)dxu with y0
· ≡ ξ,

by using the division property of f (i.e. f(x)− f(y) = h(x, y)(x− y) for all x, y ∈ U and
‖h‖Lip(γ−1) ≤ C‖f‖Lip(γ)), we have the recursive expression of {zn}n:

zn+1
t =

∫ t

0

h
(
yn

u , yn−1
u

)
zn
udxu, with z1

t = f(ξ)(xt − x0), ∀t ∈ [0, T ].
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By iteration, we have

zn+1
t =

∫
· · ·

∫

0<u1<···<un<t

h
(
yn

un
, yn−1

un

) · · ·h(
y1

u1
, y0

u1

)
z1
u1

dxu1 · · · dxun

=
∫
· · ·

∫

0<u0<u1<···<un<t

h
(
yn

un
, yn−1

un

) · · ·h(
y1

u1
, y0

u1

)
f(ξ)dxu0dxu1 · · · dxun ,

∀t ∈ [0, T ].

Then when n ≥ [p], the increment of zn on a small interval [s, t] can be approximated
by a linear combination of [p] time-varying cocyclic one-forms, and the “coefficients”
of the cocyclic one-forms are in the form of high-ordered iterated integrals so decay
factorially as n tends to infinity. Hence, by relying on the factorial decay of the iterated
integrals, we can prove inductively that the one-forms associated with {zn}n decays
factorially in operator norm, which in turn implies the convergence in operator norm of
the one-forms associated with the Picard iterations.

Definition 19. For γ > p ≥ 1, suppose g ∈ Cp−var([0, T ],G[p]) with x := π1(g)
and f : U → L(V,U) is a Lip(γ) function. Let h be the function obtained in the division
property of f as in Lemma 1. For integers n ≥ l ≥ 0 and 0 ≤ s ≤ t ≤ T , we define
ηl,n

s,t ∈ L(U ,U), l ≥ 1, and η0,n
s,t ∈ U , recursively by

ηl,n+1
s,t :=

∫ t

s

h
(
yn+1

u , yn
u

)
ηl,n

s,udxu,

with ηl,l
s,t :=

∫ t

s

h
(
yl

u, yl−1
u

)
dxu, l ≥ 1, and η0,0

s,t := f(ξ)(xt − xs).

The integrals are well-defined based on Lemma 11 and inductive arguments. In
particular, we have

zn+1
t = η0,n

0,t , ∀t ∈ [0, T ].

We define ηl,n
s,t for general l and s to make the induction work.

Then we define the integrable one-form βl,n
s,· associated with the dominated path ηl,n

s,·
and prove that βl,n

s,· decay factorially in operator norm as (n − l) tends to infinity. For
σ1, σ2 ∈ P[p], |σ1|+ |σ2| ≤ [p], we denote by σ1 ∗ σ2 the continuous linear mapping from
V⊗(|σ1|+|σ2|) to V⊗|σ1|⊗V⊗|σ2| satisfying (σ1 ∗σ2)(a) = σ1(a)⊗σ2(a) for all a ∈ G[p] (see
[9] for more details).

Definition 20. With ηl,n
s,t in Definition 19, for integers n ≥ l ≥ 0 and s ∈ [0, T ), we

define the integrable one-form βl,n
s,· : [s, T ] → B(G[p], L(U ,U)), l ≥ 1, and β0,n

s,· : [s, T ] →
B(G[p],U) (associated with ηl,n

s,· and η0,n
s,· respectively) recursively by, for t ∈ (s, T ] and

a, b ∈ G[p],
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βl,n+1
s,t (a, b) = βn+1,n+1

t,t (a, b)ηl,n
s,t + h

(
yn+1

t , yn
t

)
βl,n

s,t (gt, ·)π1(·)I ′
(
g−1

t a(b− 1)
)

+ β
(
h(yn+1, yn)

)
t
(gt, ·)βl,n

s,t (gt, ·)

×
∑

σi∈P[p],|σ1|+|σ2|≤[p]

(σ1 ∗ σ2)(·)π1(·)I ′
(
g−1

t a(b− 1)
)
,

βl,l
s,t(a, b) = h

(
yl

t, y
l−1
t

)
π1

(
g−1

t a(b− 1)
)

+ β
(
h(yl, yl−1)

)
t
(gt, ·)π1(·)I ′

(
g−1

t a(b− 1)
)
,

l ≥ 1,

β0,0
s,t (a, b) = f(ξ)π1

(
g−1

t a(b− 1)
)
,

where β(h(yn+1, yn)) is defined from (yn+1, yn)t = (ξ, ξ) +
∫ t

0
(ζn+1

u , ζn
u )(gu)dgu as in

Definition 12.

The notation in the definition of βl,n+1 may need some explanations. For k =
1, . . . , [p]− 1 and v ∈ V⊗(k+1), we have I ′(v) ∈ V⊗k ⊗ V. Since σ1 ∗ σ2 : V⊗(|σ1|+|σ2|) →
V⊗|σ1| ⊗ V⊗|σ2| and π1 : V → V, we have (σ1 ∗ σ2)(·)π1(·)I ′(v) ∈ V⊗|σ1| ⊗ V⊗|σ2| ⊗ V for
any v ∈ V⊗(|σ1|+|σ2|+1). Then in the expression

β
(
h(yn+1, yn)

)
t
(gt, ·)βl,n

s,t (gt, ·)(σ1 ∗ σ2)(·)π1(·)I ′(v) for v ∈ V⊗(|σ1|+|σ2|+1),

we treat β(h(yn+1, yn))t(gt, ·) as a continuous linear mapping on V⊗|σ1| and treat
βl,n

s,t (gt, ·) as a continuous linear mapping on V⊗|σ2|.
Based on the definition of integral in Definition 13, we have ηl,n

s,t =
∫ t

s
βl,n

s,u(gu)dgu.
In particular,

zn+1
t =

∫ t

0

β0,n
0,u (gu)dgu, ∀t ∈ [0, T ].

Lemma 21. Suppose g ∈ Cp−var([0, T ],G[p]) is controlled by ω, and f : U →
L(V,U) is a Lip(γ) function for some γ ∈ (p, [p] + 1]. Then there exist a constant
C = C(p, γ, ‖f‖Lip(γ), ω(0, T )) such that

∥∥βl,n
s,·

∥∥
γ
≤ Cn−[p]−l

((n− [p]− l)/p)!
, ∀n ≥ l + [p] + 1, ∀l ≥ 0, ∀s ∈ [0, T ), (7)

where βl,n
s,· denotes t 7→ βl,n

s,t introduced in Definition 20 for t ∈ [s, T ].

Proof. The constants in this proof may depend on p, γ, ‖f‖Lip(γ) and ω(0, T ).
Firstly, we prove that, for integers n ≥ l ≥ 0 and 0 ≤ s ≤ u ≤ t ≤ T ,

βl,n
s,t (gt, v) = βl,n

u,t(gt, v) +
n∑

j=l+1

βj,n
u,t (gt, v)ηl,j−1

s,u , ∀v ∈ V ⊕ · · · ⊕ V⊗[p]. (8)

The equality holds when n = l based on the definition of βl,l
s,t. Suppose it holds when
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n− l ≤ s. Then by combining the definition of βl,n+1 in Definition 20 with the inductive
hypothesis (8) and by using ηl,n

s,t =
∑n

j=l+1 ηj,n
u,tη

l,j−1
s,u + ηl,n

s,u + ηl,n
u,t, it can be proved that

(8) holds when n− l = s + 1.
Without loss of generality we assume γ ∈ (p, [p] + 1]. Based on Lemma 17,

supn≥0 ‖ζn‖[p]+1 < ∞. Then since ‖h‖Lip(γ−1) ≤ C‖f‖Lip(γ), by using Lemma 11, it
can be proved inductively that, for some K0 ≥ 1,

sup
l≥0

max
n=l,...,l+[p]

∥∥βl,n
s,·

∥∥
γ
≤ K0. (9)

Then combined with ηl,n
s,t =

∫ t

s
βl,n

s,u(gu)dgu, we have, for some constant M0 > 0,

∥∥ηl,n
s,t

∥∥ ≤ M0ω(s, t)(n−l+1)/p, ∀s < t, n− l + 1 = 1, 2, . . . , [p], ∀l ≥ 0.

Since

ηl,n
s,t =

n∑

j=l+1

ηj,n
u,tη

l,j−1
s,u + ηl,n

s,u + ηl,n
u,t, ∀0 ≤ s < u < t ≤ T, ∀n ≥ l ≥ 0,

by following similar proof as the factorial decay of the signature of a rough path as in
Theorem 3.7 [8], we have that, for β = 3p and some constant M ≥ 1, (we choose β = 3p

to make the induction work)

∥∥ηl,n
s,t

∥∥ ≤ M (n−l+1)/pω(s, t)(n−l+1)/p

β((n− l + 1)/p)!
, ∀s < t, ∀n ≥ l ≥ 0. (10)

Then we prove by induction on n− l that, for some constants K ≥ 1 and C ≥ 1 (we
will chose them in the inductive step),

∥∥(
βl,n

s,t − βl,n
s,u

)
(gt, ·)

∥∥
k
≤ K

C(n−[p]−l)/pω(s, t)(n−[p]−l)/p

β((n− [p]− l)/p)!
ω(u, t)(γ−k)/p,

∀s < u < t, ∀n ≥ l + [p], ∀l ≥ 0, (11)

which holds when n − l = [p] with K = K0β based on (9). Suppose (11) holds when
n − l = [p], . . . , s for some s ≥ [p]. Then when n − l = s + 1 (so n − l ≥ [p] + 1), for
s < u < t, based on (8), we have, for any v ∈ V ⊕ · · · ⊕ V⊗[p],

(
βl,n

s,t − βl,n
s,u

)
(gt, v) =

(
βl,n

u,t − βl,n
u,u

)
(gt, v) +

n∑

j=n−[p]

(
βj,n

u,t − βj,n
u,u

)
(gt, v)ηl,j−1

s,u

+
n−[p]−1∑

j=l+1

(
βj,n

u,t − βj,n
u,u

)
(gt, v)ηl,j−1

s,u

=: I(v) + II(v) + III(v). (12)
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For I(v), by using (8), we have

(
βl,n

u,t − βl,n
u,u

)
(gt, v) =

(
βl,n

t,t − βl,n
u,u

)
(gt, v) +

n∑

j=l+1

βj,n
t,t (gt, v)ηl,j−1

u,t

=
n∑

j=n−[p]+1

βj,n
t,t (gt, v)ηl,j−1

u,t ,

where we used βj,n
t,t ≡ 0 for n ≥ [p] + j which can be proved inductively based on the

definition of βl,n
s,t in Definition 20. Hence, for k = 1, . . . , [p], by using that ‖βj,n

t,t (gt, ·)‖k =
0, j ≤ n − k, and the factorial decay of ηl,n

s,t in (10), we have, for some C0 ≥ 1, (since
γ ≤ [p] + 1)

‖I(·)‖k =
∥∥∥∥

n∑

j=n−[p]+1

βj,n
t,t (gt, ·)ηl,j−1

u,t

∥∥∥∥
k

≤
n∑

j=n−k+1

∥∥βj,n
t,t (gt, ·)

∥∥
k

M (j−l)/pω(u, t)(j−l)/p

β((j − l)/p)!

≤ K0C0
M (n−[p]−l)/pω(u, t)(n−[p]−l)/p

β((n− [p]− l)/p)!
ω(u, t)(γ−k)/p. (13)

For II(v), by using (9) and (10), we have

‖II(·)‖k =
∥∥∥∥

n∑

j=n−[p]

(
βj,n

u,t − βj,n
u,u

)
(gt, ·)ηl,j−1

s,u

∥∥∥∥
k

≤
n∑

j=n−[p]

∥∥(
βj,n

u,t − βj,n
u,u

)
(gt, ·)

∥∥
k

M (j−l)/pω(s, u)(j−l)/p

β((j − l)/p)!

≤ K0C0
M (n−[p]−l)/pω(s, u)(n−[p]−l)/p

β((n− [p]− l)/p)!
ω(u, t)(γ−k)/p. (14)

For III(v), since [p] < n− j ≤ n− l− 1 = s when j = l + 1, . . . , n− [p]− 1, by using the
inductive hypothesis (11) and neo-classical inequality [8], [5], we have

‖III(·)‖k =
∥∥∥∥

n−[p]−1∑

j=l+1

(
βj,n

u,t − βj,n
u,u

)
(gt, ·)ηl,j−1

s,u

∥∥∥∥
k

≤
n−[p]−1∑

j=l+1

K
C(n−[p]−j)/pω(u, t)(n−[p]−j)/p

β((n− [p]− j)/p)!
M (j−l)/pω(s, u)(j−l)/p

β((j − l)/p)!
ω(u, t)(γ−k)/p
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≤ K
p

β

(C ∨M)(n−[p]−l)/pω(s, t)(n−[p]−l)/p

β((n− [p]− l)/p)!
ω(u, t)(γ−k)/p. (15)

Hence, based on (12), (13), (14) and (15), since n− [p]− l ≥ 1 and β = 3p, by choosing
K = K0(C0 ∨ β) (β to take into account of n = l + [p]) and C = 3M , we have (11) holds
when n− l = s + 1, and the induction is complete.

On the other hand, when n − l ≥ [p], based on (8) and by using βj,n
t,t ≡ 0 for

n ≥ [p] + j, we have

βl,n
s,t (gt, ·) = βl,n

t,t (gt, ·) +
n∑

j=l+1

βj,n
t,t (gt, ·)ηl,j−1

s,t =
n∑

j=n−[p]+1

βj,n
t,t (gt, ·)ηl,j−1

s,t .

Hence, by using the factorial decay of ηl,n
s,t in (10), we have

∥∥βl,n
s,t (gt, ·)

∥∥ ≤
n∑

j=n−[p]+1

∥∥βj,n
t,t (gt, ·)

∥∥
k

∥∥ηl,j−1
s,t

∥∥

≤ K0C0
M (n−[p]−l)/pω(s, t)(n−[p]−l)/p

((n− [p]− l)/p)!
. (16)

Then for s ∈ [0, T ) since

∥∥βl,n
s,·

∥∥
γ

:= sup
s≤t≤T

∥∥βl,n
s,t (gt, ·)

∥∥ + max
k=1,...,[p]

sup
s≤u≤t≤T

ω(u, t)−(γ−(k/p))
∥∥(

βl,n
s,t − βl,n

s,u

)
(gt, ·)

∥∥
k
,

we have the lemma holds based on (11) and (16). ¤

Theorem 22 (Existence, Uniqueness and Continuity of the Solution). For [p]+1 ≥
γ > p ≥ 1, suppose g ∈ Cp−var([0, T ],G[p]) is controlled by ω, f : U → L(V,U) is a
Lip(γ) function and ξ ∈ U . Then the Picard iterations {yn}∞n=0 in Definition 15 converge
uniformly on [0, T ] to the unique solution to the rough differential equation

dy = f(y)dx, y0 = ξ,

and the solution is continuous with respect to g in p-variation norm. Moreover,
there exist integrable one-forms βn : [0, T ] → B(G[p],U), n ≥ 0, and a constant
C = C(p, γ, ‖f‖Lip(γ), ω(0, T )) > 0 such that

yn
t = ξ +

∫ t

0

βn
u (gu)dgu, ∀t ∈ [0, T ],

and ‖βn+1 − βn‖γ ≤ Cn−[p]

((n− [p])/p)!
, ∀n ≥ [p] + 1. (17)

There are some remarks.
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1. In proving the convergence of the Picard iterations, we proved the convergence in
operator norm of their associated one-forms. In particular, we proved that the one-
form associated with the difference between the nth and (n + 1)th Picard iterations
decays factorially on [0, T ] as n tends to infinity.

2. Let ρ : [0, T ] → W be a path dominated by g. Then the integral of ρ against yn is
well defined:

∫ t

0

ρu ⊗ dyn
u =

∫ t

0

ρu ⊗ f
(
yn−1

u

)
dxu, ∀t ∈ [0, T ].

In particular, since yn is a dominated path, there exists a canonical enhancement of
yn to a group-valued path, which could take values in nilpotent Lie group or Butcher
group.

3. When treated as a Banach space-valued path, the group-valued enhancement is again
a dominated path. Since the one-form associated with the enhancement is continuous
with respect to the one-form associated with the base dominated path, the one-forms
of the enhancement of yn also converge in operator norm, which implies the uniform
convergence of the group-valued enhancements.

4. When f is Lip(γ) for γ > p−1, the one-forms associated with the Picard iterations are
uniformly bounded. When the dimension is finite, based on Arzelà–Ascoli theorem,
there exists a subsequence of the one-forms which converges, so the associated paths
(and their enhancements) converge to a solution.

5. When f is locally Lipschitz and the dimension is finite, the solution exists (uniquely)
up to explosion. Indeed, by Whitney’s extension theorem, the restriction of f to
any compact set can be extended to a global Lipschitz function without increasing
its Lipschitz norm, so the solution exists up to exit time of that compact set. For
similar reason, when f is locally Lip(γ) for γ > p, any two solutions must agree on
any compact set, so the solution exists uniquely up to explosion.

Proof. Suppose {yn}n are the Picard iterations in Definition 15. Since zi+1 =
yi+1 − yi and β0,i is the integrable one-form associated with zi+1, if we define βn :
[0, T ] → B(G[p],U), n ≥ 1, by

βn
s (a, b) =

n−1∑

i=0

β0,i
s (a, b), ∀a, b ∈ G[p], ∀s ∈ [0, T ],

then βn is integrable and

yn
t = ξ +

∫ t

0

βn
u (gu)dgu, ∀t ∈ [0, T ], ∀n ≥ 1.

(Since y0 ≡ ξ, we set β0 ≡ 0 so y0
· = ξ +

∫ ·
0
β0(g)dg.) Based on Lemma 21, we have

(17) holds and βn converge in operator norm as n tends to infinity (denote the limit
by β), so yn

· = ξ +
∫ ·
0
βn(g)dg converge uniformly to y· := ξ +

∫ ·
0
β(g)dg. Moreover, by

using the division property of f (i.e. f(x) − f(y) = h(x, y)(x − y) for all x, y in U and
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‖h‖Lip(γ−1) ≤ C‖f‖Lip(γ)), we have

yn+1
t − yn

t = zn+1
t =

∫ t

0

h
(
yn

u , yn−1
u

)
zn
udxu

=
∫ t

0

h
(
yn

u , yn−1
u

)(
yn

u − yn−1
u

)
dxu =

∫ t

0

(
f(yn

u)− f(yn−1
u )

)
dxu, ∀t ∈ [0, T ].

Hence,

yn+1
t = ξ +

∫ t

0

f(yn
u)dxu, ∀t ∈ [0, T ], ∀n ≥ 0, with y0 ≡ ξ.

Since both yn and yn+1 are dominated paths and their associated one-forms converge to
β as n tends to infinity, by letting n → ∞ on both sides, we have β is the fixed point
of the mapping β 7→ β̂ where β̂ is the one-form associated with the dominated path
t 7→ ∫ t

0
f(y)dx. Hence, y is a dominated path satisfying the integral equation and y is a

solution.
Then we prove that the solution is unique. Suppose ŷ is another solution. By using

the division property of f , we have

yt − ŷt =
∫ t

0

(f(yu)− f(ŷu))dxu =
∫ t

0

h(yu, ŷu)(yu − ŷu)dxu, ∀t ∈ [0, T ].

By iterating this process, we have, for any integer n ≥ 1,

yt − ŷt =
∫
· · ·

∫

0<u1<···<un<t

h(yun , ŷun) · · ·h(yu1 , ŷu1)(yu1 − ŷu1)dxu1 · · · dxun ,

∀t ∈ [0, T ].

Since (y, ŷ) is a dominated path and h is a Lip(γ − 1) function, we can define based on
Lemma 11 the dominated paths ρn : [0, T ] → L(U ,U), n ≥ 1, recursively by

ρn+1
t =

∫ t

0

h(yu, ŷu)ρn
udxu with ρ1

t =
∫ t

0

h(yu, ŷu)dxu, ∀t ∈ [0, T ],

and we have

yt − ŷt =
∫ t

0

ρn
u(yu − ŷu)dxu, ∀t ∈ [0, T ], ∀n ≥ 1.

Then by following similar proof to that of Lemma 21, the one-form associated with ρn

decays factorially. Since y − ŷ is another dominated path, the one-form associated with
the dominated path

∫ ·
0
ρn

u(yu − ŷu)dxu also decays factorially, which implies that y = ŷ.
It is clear that for any integer n ≥ 1, the mapping g 7→ βn is continuous. Suppose

gm → g in p-variation norm, then by uniform convergence of the mapping βn 7→ β with
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respect to the p-variation of g (based on Lemma 21), we have g 7→ β is continuous, which
implies that the mapping g 7→ y is continuous with respect to g in p-variation norm. ¤
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