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Abstract. We show that every connected graph can be realized as the
cut locus of some point on some Riemannian surface S which, in some cases,
has constant curvature. We study the stability of such realizations, and their
generic behavior.

1. Introduction.

Unless explicitly stated otherwise, by a Riemannian manifold here we always mean
a complete, compact and connected manifold without boundary. We shall work most
of the time with surfaces (2-dimensional manifolds) S, and let M denote manifolds of
arbitrary dimension d.

All graphs we consider in the following are finite, connected, and may have loops
and multiple edges. For the simplicity of our exposition, we see every graph G as a 1-
dimensional CW-complex. The cyclic part of G is the minimal (with respect to inclusion)
subset Gcp of G, to which G is contractible; i.e., Gcp is the minimal subset of G obtained
by repeatedly contracting edges incident to degree one vertices, and for each remaining
vertex of degree two (if any) merging its incident edges. Gcp thus inherits a natural
structure of simplicial complex. A graph is called cyclic if it is equal to its cyclic part,
and it is called regular if all its vertices have the same degree. A length graph is a weighted
graph with positive weights; i.e., each edge is endowed with a positive number (also called
length). Seen as a 1-dimensional CW-complex, a graph becomes a metric space after its
edges get lengths.

The notion of cut locus was introduced by H. Poincaré [27] in 1905, and gained
since then an important place in global Riemannian geometry. The cut locus C(x) of the
point x in the Riemannian manifold M is the set of all extremities (different from x) of
maximal (with respect to inclusion) segments (i.e., shortest geodesics) starting at x; for
basic properties and equivalent definitions refer, for example, to [22] or [29].

For Riemannian surfaces S is known that C(x), if not a single point, is a local tree
(i.e., each of its points z has a neighborhood V in S such that the component Kz(V ) of
z in C(x)∩V is a tree), even a tree if S is homeomorphic to the sphere. A tree is a set T

any two points of which can be joined by a unique Jordan arc included in T . The degree
of a point y of a local tree is the number of components of Ky(V ) \ {y} if V is chosen
such that Ky(V ) is a tree.
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S. B. Myers [24] for d = 2, and M. Buchner [5] for arbitrary d, established that the
cut locus of a real analytic Riemannian manifold of dimension d is homeomorphic to a
finite simplicial complex of dimension at most d − 1. For a class of Liouville manifolds,
in particular for hyperellipsoids in the Euclidean space Rd+1, the cut locus is reduced to
a disc of dimension at most d− 1, see [13] and [14].

For non-analytic Riemannian metrics on S, cut loci may be quite large sets. However,
J. Hebda [9] showed, for any C∞ metric on S, that the Hausdorff 1-measure of any
compact subset of the cut locus of any point is finite. Independently and using different
techniques, the first author [12] proved the same result under the weaker assumption of
a C2 metric. The differentiability of the metric cannot be lowered anymore; for example,
the main result in [32] states that on most (in the sense of Baire category) convex surfaces
(known to be of differentiability class C1\C2), most points are endpoints of any cut locus.

The problem of constructing a Riemannian metric with preassigned cut locus on a
given manifold also received a certain attention. H. Gluck and D. Singer [8] constructed
a Riemannian metric such that a non triangulable set, consisting of infinitely many arcs
with a common extremity, becomes a cut locus. Other example of infinite length cut
locus was provided by J. Hebda [10], while the case of a submanifold as preassigned cut
locus was considered by L. Bérard-Bergery [3]. The first author [11] showed that for any
Morse function on a differentiable surface S, with only one critical point of index 0 and
no saddle connection, there exists a Riemannian metric on S with respect to which Cf ,
the union of all unstable manifolds of critical points of f with positive index, becomes
a cut locus. Independently but in the same direction as [11], M. Y. Park showed that,
under some sufficient conditions, for any smoothly embedded, connected, finite cubic
graph G in the surface S, there exists a Riemannian metric α on S and a point x in
S such that the cut locus of x with respect to α is G [25], and that this cut locus is
stable with respect to the metric [26]. All these results assume the manifold be given,
and search for a metric with respect to which some subset of the manifold becomes a cut
locus.

A different approach was considered in [16], where the authors showed that any
combinatorial type of finite tree can be realized as a cut locus on some, initially unknown,
doubly covered convex polygon.

Our results here give that approach much more generality, by showing (see Theorem
2.6) that every connected length graph can be realized as a cut locus; i.e., there exist a
Riemannian surface SG = (SG, h) and a point x ∈ SG such that C(x) is isomorphic to G.
This is a partial converse to Myers’ theorem mentioned above. If moreover G is cyclic
and regular then it can be realized on a surface of constant curvature (Theorem 3.1).
In the second part of this paper we show that –roughly speaking– stability is a generic
property of cut locus realizations.

In a forthcoming paper [18] we are concerned about the orientability of the surfaces
SG realizing the graph G as a cut locus.

Employing the notion of cut locus structure [17], one can also regard our results as
completing with additional information the surface case in the results of Buchner [4], [5],
[6].

Recently, and from a viewpoint different from ours, cut loci and infinite graphs were
studied by O. Baues and N. Peyerimhoff [1], [2], and by M. Keller [21], while in discrete



Every graph is a cut locus 1229

group theory a similar notion, dead-end depth, was studied by S. Cleary and T. R. Riley
[7], and by T. R. Riley and A. D. Warshall [28].

2. Every graph is a cut locus.

Recall that a segment between a point x and a closed set K not containing x is a
segment from x to a point in K, not longer than any other such segment; the cut locus

C(K) of the closed set K ⊂ S is the set of all points y ∈ S such that there is a segment
from y to K not extendable as a segment beyond y.

Definition 2.1. Let G be a graph. A strip on G (in short, a G-strip) is a topo-
logical surface PG with boundary, such that:

(i) the boundary of PG is homeomorphic to a circle, and
(ii) PG contains a graph (isomorphic to) G, to which it is contractible.

A Riemannian G-strip is a G-strip PG endowed with a Riemannian metric such that
the cut locus of bd(PG) in PG is precisely G. If G is a length graph, we replace above
“isomorphic” by “isometric”, and ask in addition that the induced lengths on the edges
of G by the metric of PG coincide to the corresponding original weights.

The condition (ii) above is necessary, as one can easily see on a cylinder.

Definition 2.2. We say that a graph (or a length graph) G can be realized as a
cut locus if there exist a Riemannian surface SG = (SG, h) and a point x in SG such that
G is isomorphic (respectively isometric) to C(x).

A. D. Weinstein (Proposition C in [31]) proved the following.

Lemma 2.3. Let M be a d-dimensional Riemannian manifold and D a d-disc
embedded in M . There exists a new metric on M agreeing with the original metric on
a neighborhood of M \ (interior of D) such that, for some point p in D, the exponential
mapping at p is a diffeomorphism of the unit disc about the origin in the tangent space
at p to M , onto D.

Proposition 2.4. The following statements are equivalent :

(i) the length graph G can be realized as a cut locus;
(ii) there exists a G-strip;
(iii) there exists a Riemannian G-strip.

Proof. (i) → (ii) Consider a point x on a Riemannian surface (S, g), and a seg-
ment γ : [0, lγ ] → S parametrized by arclength, with γ(0) = x and γ(lγ) ∈ C(x). For
ε > 0 strictly smaller than the injectivity radius inj(x) at x, the point γ(lγ − ε) is well
defined because inj(x) ≤ lγ . Since S \C(x) is contractible to x along segments, and thus
homeomorphic to an open disk, the union over all segments γ of those points γ(lγ − ε)
is homeomorphic to the unit circle. Moreover, this simple closed curve bounds a surface
which contains C(x) and is contractible to it along segments.

(ii) → (iii) An explicit construction of a Riemannian G-strip from a given G-strip
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was provided by the first author in [11].
(iii) → (i) Consider a Riemannian G-strip P̄G, an open distance disc Dε and a

distance circle Sε, of radius ε and centered at the boundary ∂P̄G of P̄G. Since ∂P̄G is
compact, inj(∂P̄G) = infx∈∂P̄G

inj(x) > 0. For 0 < ε < inj(∂P̄G), Sε is still a topological
circle and PG = P̄G \Dε is still a Riemannian G-strip.

One can glue to P̄G a disc D̄ to obtain a differentiable surface SG. Notice that
D = D̄ ∪Dε is a topological disc, too.

Denote by ḡ the metric of P̄G and by gD an arbitrary metric on D; standard inter-
polation produces a metric g′ on SG which coincides to ḡ on PG, and to gD on D̄. A.
D. Weinstein’s result above (Lemma 2.3) shows now that there exists a metric g on SG

agreeing with g′ on PG, and a point x in SG such that C(x) = C(x, g) = G. ¤

We need one more result, well known in the graph theory.

Lemma 2.5. For every graph with m edges, n vertices, and q generating cycles
holds q = m− n + 1.

Theorem 2.6. Every length graph can be realized as a cut locus.

Proof. By Proposition 2.4, it suffices to provide, for every length graph G, at
least one G-strip.

We proceed by induction over the number k of generating cycles of G.
For k = 0 the strip is elementary.
For k = 1 our strip is the flat compact Möbius band.
Assume now that there exist strips for all graphs with k generating cycles, for some

k ≥ 1.
Let Gk+1 be a length graph with k + 1 generating cycles, and e an edge of Gk+1 in

some generating cycle of Gk+1. Cut e at its mid-point m. Denote by Gk the resulting
length graph, and by m1,m2 the images of m in Gk; see Figure 1(a)–(b).

Figure 1. Construction of a strip by mathematical induction.

Since Gk has two vertices and one edge more than Gk+1, it has k generating cycles
(see Lemma 2.5), and by the induction assumption there exists a Gk-strip PGk

. Consider
a planar representation of the boundary of PGk

as a simple closed curve (illustrated in
Figure 1(c)), and attach it as in Figure 1(c)–(d) to obtain a Gk+1-strip. ¤

Disconnected graphs can as well be realized as cut loci, but on non-complete surfaces.
To see this, consider a disconnected graph G′ as a subgraph of a connected graph G and
realize G as a cut locus on a surface S; i.e., G = C(x) for some point x in S. With
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T = G \G′, we have C(x) = G′ on S \ T .
Theorem 2.6 shows, in particular, that for every connected graph G there exists a

2-cell embedding with just one face onto some surface SG. This result is well known in
the topological graph theory, see e.g. [23].

Question 2.7. Several open questions naturally arise from Theorem 2.6.

(i) Can the metric of the surface SG, realizing G as a cut locus, be chosen analytic?
See the result of S. B. Myers [24] mentioned in the introduction.

(ii) Cut loci on Riemannian surfaces may be quite large sets, see the introduction.
Can Theorem 2.6 be extended to infinite graphs?

(iii) Can Theorem 2.6 be extended to higher dimensions?

There usually are many strips on the same graph; we formalized this by several
concepts [16], that we briefly present next.

Definition 2.8. A cut locus structure (in short, a CL-structure) on the graph G

is a strip on the cyclic part Gcp of G.

Definition 2.9. Consider, for a point x on a Riemannian surface (S, g) and for
some ε > 0 small enough, the neighbourhood of C(x) bounded by the set of points
γ(lγ−ε), for all segments γ starting at x and parametrized by arclength; it is a C(x)-strip.
We call the CL-structure constructed in this way the cut locus natural structure defined
by x, and denote it by CLNS(x), or by CLNS(x, g) if to point out the dependence on
the metric g.

With these notions, Theorem 2.6 simply states that each graph possesses at least

one CL-structure, while Proposition 2.4 and Lemma 2.3 say that each CL-structure can

be realized in a natural way.
In order to easier handle a CL-structure, we associate to it an object of combinatorial

nature.
An elementary strip of a G-strip PG is an edge-strip (a strip on an edge of G) or a

point-strip (a strip on a vertex of G), included in PG. So we can think about a G-strip
as union of elementary strips corresponding to all edges and vertices in G. Denote by
P and A the set of the point-strips, respectively edge-strips, of a CL-structure C on the
graph G.

Below, V denotes the vertex set of G, E the edge set of G, while 0̄ and 1̄ are the
elements of the 2-element group (Z2,⊕).

Definition 2.10. Consider a G-strip PG as union of elementary strips, each of
which has a distinguished face labeled 0̄. The face opposite to the distinguished face will
be labeled 1̄.

To each pair (v, e) ∈ V × E consisting of a vertex v and an edge e incident to v,
we associate the Z2-sum s̄(v, e) of the labels of the elementary strips ν ∈ P, ε ∈ A
associated to v and e; i.e., s̄(v, e) = 0̄ if the distinguished faces of ν and ε agree to
each other, and 1̄ otherwise. Therefore, to any cut locus structure C we can associate a
function sC : E → Z2,
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sC(e) = s̄(v, e)⊕ s̄(v′, e), (1)

where v and v′ are the vertices incident to the edge e ∈ E.
We call the function sC defined by (1) the companion function of C.

Definition 2.11. Consider two CL-structures C, C′ on the graph G.
The companion functions sC and sC′ are called equivalent on a 2-connected compo-

nent G2c of G if they are equal, up to a simultaneous change of the distinguished face
for all elementary strips in G2c: either sC = sC′ , or sC = 1̄⊕ sC′ , on G2c.

C and C′ are called equivalent if their companion functions are equivalent on every
2-connected component of G.

The next sections are related to the following.

Question 2.12. What can be said about the Riemannian surface S if CLNS(x)
and CLNS(y) are equivalent, for any points x, y ∈ S?

From now on, all CL-structures will be considered up to equivalence. This will allow
us, whenever we consider surfaces realizing the graph G as a cut locus, to actually think
about CL-structures and their companion functions on G.

3. Constant curvature realizations.

In this short section we present a direct way to realize some graphs as cut loci,
different from that provided by Theorem 2.6.

Theorem 3.1. Every CL-structure on a regular graph can be realized on a surface
of constant curvature.

Proof. Denote by G a k-regular cyclic graph, and by C a CL-structure on G.
If G is a point then the unique CL-structure on G can be realized as CLNS(x) for

any point x on the unit 2-dimensional sphere.
Assume that G is a cycle. Then again we have a unique CL-structure on G, and it

can be realized as CLNS(x) for any point x on the standard projective plane.
Consider now a graph G with q ≥ 2 generating cycles; by Lemma 2.5, we get m ≥ 2.
For m = 2, let F2m = F4 denote the square in the Euclidean plane Π.
For m = 3, let F2m = F6 denote the regular hexagon in Π.
For m ≥ 4, consider a regular 2m-gon F2m = z̄1 · · · z̄2m in the hyperbolic plane H2 of

constant curvature −1, such that ∠z̄iz̄i+1z̄i+2 = 2π/k (all indices are taken (mod 2m)).
We view the CL-structure C on G as a closed path D in G containing all edges of G

precisely twice, hence every vertex of G appears precisely k times in D. Identify the path
D with (the boundary of) F2m, such that each image in D of an edge of G corresponds
to precisely one edge in F2m, each image in D of a vertex of G corresponds to precisely
one vertex in F2m, and the order of edges and vertices along D is preserved. It remains
to identify, for every edge e in G, its two images in F2m, to obtain a differentiable surface
SG of constant curvature −1. By construction, the natural cut locus structure of the
image x in SG of the center of F2m is precisely C. ¤
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With a similar proof, one can show than every CL-structure on an arbitrary graph
can be realized on a surface of constant curvature with at most (n − p)-singular points
(i.e., on an Alexandrov surface with curvature bounded below, see [30] for the definition).
Here, p is the number of vertices in G of maximal degree.

Example 3.2. The complete graphs Kr and the multipartite graphs Kp1,...,pr
can

be realized as cut loci on surfaces of constant curvature (r, p1, . . . , pr ∈ IN).
To obtain one realization of the Petersen graph as a cut locus, consider a regular

30-gon P in the hyperbolic plane H2 of constant curvature −1, with angles 2π/3. Label
the vertices of P , in circular order, by: 1, 2, 7, 9, 6, 1, 2, 3, 8, 10, 7, 2, 3, 4, 9, 6, 8, 3, 4,
5, 10, 7, 9, 4, 5, 1, 6, 8, 10, 5. Now identify the edges having the same extremity labels,
and get the desired surface S. Notice that S is non-orientable.

4. Stability.

In this section we propose a notion of stability for cut locus structures, while in
the next section we show that –roughly speaking– stability is a generic property of CL-
structures. For our goal, we need to further investigate the cyclic part of the cut locus;
it was introduced and first studied by J. Itoh and T. Zamfirescu [20].

The following result seems to be of some interest in its own right.

Proposition 4.1. The cyclic part of the cut locus depends continuously on the
point ; i.e.,

(i) if xn ∈ S, xn → x, and yn ∈ Ccp(xn), yn → y, then y ∈ Ccp(x), and
(ii) if xn ∈ S, xn → x, and y ∈ Ccp(x), then there exist points yn ∈ Ccp(xn) such that

yn → y.

Proof. (i) It is well known that each limit of a sequence of geodesic segments
is still a geodesic segment. Assume we have two such sequences, say {γn}n and {δn}n,
such that γn and δn are both joining xn ∈ S to yn ∈ Ccp(xn). Put xn → x, yn → y,
and assume γn → γ, δn → δ. Notice that γn and δn determine a loop which is non
null-homotopic, because yn ∈ Ccp(xn). So γ 6= δ, and they also determine a loop which
is non null-homotopic; i.e., y ∈ Ccp(x).

(ii) For the second part, consider xn ∈ S, xn → x. The number q of generating
cycles in the cyclic part of a cut locus equals the first Betti number of S [29], hence it
does not depend on the point in S. Therefore,

q(Ccp(xn)) = q(Ccp(x)).

Assume now that (ii) doesn’t hold. Then there exist a point y ∈ Ccp(x) and a
neighborhood Ny ⊂ S such that Ny ∩ Ccp(xn) = ∅, for any n sufficiently large. Denote
by C− the set of all such points y, and notice that C− is an open subset of Ccp(x), with
respect to the induced topology from S.

Notice that Ccp(xn) is a compact subset of S, hence limn Ccp(xn) exists in the space
of compact subsets of S, endowed with the usual topology induced by the Pompeiu-
Hausdorff metric.
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Lemma 2.5 and (i) show now that

q(Ccp(x)) = lim
n

q(Ccp(xn)) = q
(

lim
n

Ccp(xn)
)

= q(Ccp(x) \ C−) < q(Ccp(x)),

and a contradiction is obtained. ¤

Definition 4.2. Consider a CL-structure C on the graph G, a Riemannian surface
(S, g) and a point x ∈ S. C is called stable with respect to x in S if

(i) CLNS(x) = C, and
(ii) there exists a neighborhood of x in S, for all points y of which CLNS(y) = C

holds.

Definition 4.3. The CL-structure C is called globally stable if it is stable on all
surfaces where it can be realized as a CLNS.

Assume we have distinct pairs (S, x) and (S′, x′) of Riemannian surfaces S, S′ and
points x ∈ S, x′ ∈ S′ such that CLNS(x) = CLNS(x′) = C. If C is stable with respect
to (S, x), it is not necessarily stable with respect to (S′, x′), as the following example
shows.

Figure 2. Unstable cut locus structure.

Example 4.4. (i) Any CL-structure on a k-regular graph with k > 3 is stable
with respect to the natural realization given by Theorem 3.1.

(ii) We roughly explain here how to produce unstable CL-structures from those
stable CL-structures at (i).

Consider, for example, a square fundamental domain of a flat torus T with a bump,
see Figure 2 left. The cut locus of the point x ∈ T , represented at the corners of the
square, is the 4-regular graph with one vertex y, as indicated by the thick line. The four
segments from x to y, indicated by thin lines, are not affected by the bump. We choose
x such that one segment is tangent to the bump’s boundary.

Now consider a point x′ arbitrarily close to x, to “the right” side of x, see Figure
2 right. There we have only three segments from x′ to y′ (the center of figure with
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vertices at x′), those in the upper-left half-domain; they are all shorter than the geodesic
joining x′ to y′ that crosses the bump, so y′ is a degree three vertex in C(x′). There is
another vertex of degree three in C(x′), also indicated in the figure together with the
segments joining it to x′. In this case, C(x′) is a 3-regular graph with two vertices and
two generating cycles. J. Itoh and T. Sakai describe into details a similar procedure, see
Remark 2.7 in [15].

In conclusion, the 4-regular graph with one vertex is not stable with respect to x in
T .

Theorem 4.5. A cut locus structure on the graph G is globally stable if and only
if G is a 3-regular graph.

Proof. Let C be a locus structure on G.
Assume first that G is a 3-regular graph; then its cyclic part is itself a 3-regular

graph. Assume, moreover, that C is realized as C = CLNS(x), for some point x on some
Riemannian surface S.

Now, for points xn ∈ S, xn → x, Proposition 4.1 gives limn Ccp(xn) = Ccp(x).
Assume that, for our sequence {xn}n, we have vertices zn in Ccp(xn) of degree d

larger than 3, say d = 4 (the case d > 4 is similar).
Denote by Bi

n the branches of Ccp(xn) incident to zn; there exist segments γi
n, γ

′i
n

from xn to zn, possibly with γi+1
n = γ

′i
n (i = 1, . . . , 4, γ5

n = γ1
n) and a neighborhood Vn

of zn in S, such that one of the sectors around zn determined by γi
n, γ

′i
n and Vn contains

Bi
n ∩ Vn but no other subsegment of a segment from xn to zn.

Take some limit point z of zn; then z ∈ Ccp(x), because limn Ccp(xn) = Ccp(x), and
z has degree 3 in Ccp(x), by our assumption that Ccp(x) is a cubic graph. Therefore,
there exists 1 ≤ i ≤ 4 such that the segments γi

n and γ
′i
n have a common limit γi, which

is a segment from x to z. Then, for n large enough, γi
n ∪ γ

′i
n bounds a region of S

contractible to a point and intersecting Bi
n ∩ Vn \ {zn}. Since Ccp(xn) intersects γi

n ∪ γ
′i
n

only at zn, it follows that Ccp(xn) contains a tree with the root at zn, and a contradiction
is obtained.

Concluding, the graph Ccp(xn) has to be cubic, and now limn Ccp(xn) = Ccp(x)
implies that the cyclic parts of C(x) and C(xn) are isomorphic, and thus G is stable.

Assume now that G is stable and it has a vertex y of degree strictly larger than 3,
and consider a point x in the Riemannian surface S such that C = CLNS(x). Then,
by “putting” a bump tangent to one of the segments from x to y (i.e., modifying the
metric on S accordingly) we obtain a new metric on S with respect to which we still have
C = CLNS(x), but we have points x′ arbitrarily close to x such that CLNS(x′) 6= C,
see Example 4.4 or Theorem 5.2. ¤

The following is, in some sense, opposite to Question 2.12.

Question 4.6. How many stable CL-structures can exist on a given surface?

Upper bounds on the number of cut locus structures on a graph are obtained in [19].
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5. Generic behavior.

We shall make use of the main result in [6], given in the following as a lemma. For,
denote by G the space of all Riemannian metrics on the surface S; i.e., it is viewed as the
space of sections of the bundle of positive definite symmetric matrices over S, endowed
with the C∞ Whitney topology [6].

Recall that a metric g on the surface S is called cut locus stable [6] if for any metric
h close to g there is a diffeomorphism φ of the surface, depending continuously on h,
such that φ(C(x, g)) = C(x, h); here, C(x, g) denotes the cut locus of x with respect to
g.

Lemma 5.1 ([6]). For every point x in S there exists an open and dense subset
Bx of G, consisting of C(x) stable metrics on S. Moreover, for any g in Bx, every
ramification point of C(x, g) is joined to x by precisely three segments.

In virtue of Definition 2.11 and the remark following it, we can regard a CL-structure
on the graph G as a companion function G → Z2.

A CL-structure is called cubic if its underlying graph is cubic.

Theorem 5.2. There exists an open and dense set in S × G, for every element
(x, g) of which the naturally defined cut locus structure CLNS(x, g) is cubic and locally
constant.

Proof. Consider the subset O of S × G, containing all pairs (x, g) for which the
naturally defined cut locus structure CLNS(x, g) is cubic.

The density of O in S × G follows directly from Lemma 5.1.
We show next that O is open in S × G. Assume this is not the case, hence there

exist (x, g) ∈ O and a sequence of pairs (xn, gn) ∈ S × G convergent to (x, g), such that
Ccp(x, g) is a cubic graph but Ccp(xn, gn) are not cubic graphs.

For n sufficiently large, the graphs Ccp(x, gn) are still cubic, by Lemma 5.1. More-
over, an argument similar to the first part in the proof of Theorem 4.5 shows now that,
for gn close enough to g, Ccp(x, gn) is a cubic graph isomorphic to Ccp(x, g).

Now, Theorem 4.5 shows that Ccp(xn, gn) is a cubic graph isomorphic to Ccp(x, gn),
hence isomorphic to Ccp(x, g), and a contradiction is obtained.

Therefore, O is open in S×G and, moreover, for every pair (x, g) in O the naturally
defined cut locus structure CLNS(x, g) is locally constant. ¤

The following result is well-known.

Lemma 5.3. Every graph can be obtained from some cubic graph by edge contrac-
tions.

Moving from a point with stable CL-structure to a point with another stable CL-
structure, one has to pass through a point with non-stable CL-structure, a CL-structure
that –in particular– lives on a non-cubic graph (see Theorems 5.2, 4.5 and Lemma 5.3).
At the level of CL-structures, one sees at a first step contraction(s) of one (or several)
edge-strip(s), and at a second step “blowing(s) up” of all vertices of degree larger than 3
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to trees of order 3. (A formal description is given in [17].)
Non-isometric surfaces realizing the same graph G as a cut locus (Theorem 2.6) are

homeomorphic to each other, since topologically they can be distinguished only by their
genus, which is a function on the number of generating cycles of G. Therefore, all distinct
CL-structures on G “live” on homeomorphic surfaces. On the other hand, Theorem 5.2
shows in particular that equivalent CL-structures on G can be realized on non-isometric
surfaces.
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