On the Siegel Eisenstein series of degree two for low weights

By Keiichi Gunji

(Received Mar. 29, 2013)
(Revised Oct. 23, 2013)

Abstract

In this paper, we give the Fourier coefficients of Siegel Eisenstein series of degree 2, level p, in order to calculate the dimensions of the space of Eisenstein series for low weights. The main methods of the calculation is to compute the Siegel series of level p directly, following the similar way to that of Kaufhold.

1. Introduction.

Let Z be an element of the Siegel upper half space \mathbb{H}_{g}. For a congruence subgroup $\Gamma \subset S p(g, \mathbb{Z})$, the Siegel Eisenstein series $E^{k}(Z ; \Gamma)$ are defined by

$$
\begin{equation*}
E^{k}(Z ; \Gamma)=\sum_{\gamma \in P_{0} \cap \Gamma \backslash \Gamma} \operatorname{det}\left(C_{\gamma} Z+D_{\gamma}\right)^{-k}, \tag{1.1}
\end{equation*}
$$

here P_{0} is the subgroup of $S p(g, \mathbb{Z})$ consisting all the elements whose lower-left (g, g) block is the zero matrix. The infinite sum of the right-hand side converges uniformly on \mathbb{H}_{g}, when $k>g+1$. For example let $\Gamma=\Gamma^{g}(N)$ be the principle congruence subgroup of level N. Put $M_{k}\left(\Gamma^{g}(N)\right)$ the space of Siegel modular forms of weight k and $L_{k}\left(\Gamma^{g}(N)\right)$ the subspace of $M_{k}\left(\Gamma^{g}(N)\right)$ consisting of the functions whose constant term of the Fourier expansion vanishes at each 0-dimensional cusp. We set $\mathcal{E}_{k}\left(\Gamma^{g}(N)\right)=M_{k}\left(\Gamma^{g}(N)\right) / L_{k}\left(\Gamma^{g}(N)\right)$. Then it is easy to show that $\mathcal{E}_{k}\left(\Gamma^{g}(N)\right)$ is spanned by $\left\{\left.E^{k}\left(Z ; \Gamma^{g}(N)\right)\right|_{k} \gamma\right\}_{\gamma \in \Gamma^{g}}$ if $k>g+1$.

Now we consider the low weight cases. Since the right-hand side of (1.1) does not converge, we use the "Hecke trick". For $s \in \mathbb{C}$, the non-holomorphic Siegel Eisenstein series are defined by

$$
E^{k}(Z, s ; \Gamma)=\sum_{\gamma \in P_{0} \cap \Gamma \backslash \Gamma} \operatorname{det}\left(C_{\gamma}+D_{\gamma}\right)^{-k}\left|\operatorname{det}\left(C_{\gamma}+D_{\gamma}\right)\right|^{-2 s},
$$

which has an analytic continuation to whole s-plane. The famous paper of Shimura [Sh2] starts from the following questions.
(1) For each $Z \in \mathbb{H}_{g}, E^{k}(Z, s ; \Gamma)$ is holomorphic at $s=0$?
(2) If so, $E^{k}(Z, 0 ; \Gamma)$ is holomorphic in Z ?
(3) If so, the Fourier coefficients of $E^{k}(Z, 0, \Gamma)$ are algebraic numbers?

[^0]One of the main results of [Sh2] says that all of the above questions are affirmative when $k \geq g+1$, that is we can construct Eisenstein series of 1 lower weight than before.

In the classical case of elliptic modular forms, stronger results are shown by Hecke. Let $\Gamma=\Gamma^{1}(N)$. Then for $k=1,2$, all the elements of $\mathcal{E}_{k}\left(\Gamma^{1}(N)\right)$ are constructed by $\left\{\left.E^{k}\left(Z, 0, \Gamma^{1}(N)\right)\right|_{k} \gamma \mid \gamma \in S L(2, \mathbb{Z})\right\}$.

In this paper we consider the following problem:
(4) Calculate the dimension spanned by Eisenstein series for low weight.

We mainly consider the case $g=2$ and $\Gamma=\Gamma^{2}(p)$ or $\Gamma_{0}^{2}(p)$ for an odd prime p. It suffices to consider the case for $\Gamma_{0}^{2}(p)$, since the case of $\Gamma^{2}(p)$ can be induced from the results for the case of $\Gamma_{0}^{2}(p)$ using the representation theory of $S p\left(2, \mathbb{F}_{p}\right)$. This natural question (4) is not considered in [Sh2], because Shimura considered only the Fourier expansion of $\left.E^{k}\left(Z, s ; \Gamma_{0}^{2}(N)\right)\right|_{k} J_{2}$, and one has no information for other cusps. In order to get the answer of (4), we have to consider the Fourier expansions at all cusps, in particular cusp of infinity. The hardest part of the calculation is computing the Siegel series at p. In Section 4 we compute the Siegel series directly. Recently Takemori [Ta] gives the explicit formula of the Fourier expansion of $E_{N, \psi}^{2}$ (the definition is given below) for any natural number N and primitive Dirichlet character ψ modulo N by a similar method.

Acknowledgements. The author thanks to Professor Takayuki Oda of the University of Tokyo for his constant support, also he thanks to Professor Hidenori Katsurada of Muroran Institute of Technology, who imformed him the work of Boecherer and Schmidt $[\mathbf{B S}]$ and gave him quite useful discussions.

Notations. Let $\Gamma^{g}=S p(g, \mathbb{Z})=\left\{\gamma \in G L_{2 g}(\mathbb{Z}) \mid{ }^{t} \gamma J_{g} \gamma=J_{g}\right\}$ with $J_{g}=$ $\left(\begin{array}{cc}0 & 1_{g} \\ -1_{g} & 0\end{array}\right)$. For $\gamma \in \Gamma^{g}$, square matrices $A_{\gamma}, B_{\gamma}, C_{\gamma}$, and D_{γ} of size g are defined by $\gamma=\left(\begin{array}{cc}A_{\gamma} & B_{\gamma} \\ C_{\gamma} & D_{\gamma}\end{array}\right)$.

Throughout this paper p denotes an odd prime number. We put $\Gamma_{0}^{g}(p)=\left\{\gamma \in \Gamma^{g} \mid\right.$ $\left.C_{\gamma} \equiv 0 \bmod p\right\}$ and $\Gamma^{g}(p)=\left\{\gamma \in \Gamma^{g} \mid \gamma \equiv 1_{g} \bmod p\right\}$. We define for $g \geq 2$,

$$
M_{k}\left(\Gamma^{g}(p)\right)=\left\{\text { a holomorphic function } f \text { on } \mathbb{H}_{g}|f|_{k} \gamma=f, \forall \gamma \in \Gamma^{g}(p)\right\}
$$

with $\left.f\right|_{k} \gamma(Z)=\operatorname{det}\left(C_{\gamma} Z+D_{\gamma}\right)^{-k} f(\gamma\langle Z\rangle), \gamma\langle Z\rangle=\left(A_{\gamma} Z+B_{\gamma}\right)\left(C_{\gamma} Z+D_{\gamma}\right)^{-1}$. Moreover we define

$$
M_{k}\left(\Gamma_{0}^{g}(p), \psi\right)=\left\{f \in M_{k}\left(\Gamma^{g}(p)\right)|f|_{k} \gamma=\psi\left(\operatorname{det} D_{\gamma}\right) f, \forall f \in \Gamma_{0}^{g}(p)\right\}
$$

for a Dirichlet character ψ modulo p. If $g=1$ we also require the holomorphic condition at each cusp.

In the following we consider the case $g=2$. Let $P_{0}=\left\{\gamma \in S p(2, \mathbb{Z}) \mid C_{\gamma}=0\right\}$. For a Dirichlet character ψ modulo p such that $\psi(-1)=(-1)^{k}$, we put

$$
E_{p, \psi}^{k}(Z, s)=\sum_{\gamma \in P_{0} \backslash \Gamma_{0}^{2}(p)} \psi\left(\operatorname{det} D_{\gamma}\right) \operatorname{det}\left(C_{\gamma} Z+D_{\gamma}\right)^{-k}\left|\operatorname{det}\left(C_{\gamma} Z+D_{\gamma}\right)\right|^{-2 s}
$$

Then the infinite sum of the right hand side converges absolutely and uniformly on \mathbb{H}_{g} for $\operatorname{Re}(s)+k>3$. If $k \geq 4$ then $E_{p, \psi}^{k}(Z):=E_{p, \psi}^{k}(Z, 0) \in M_{k}\left(\Gamma_{0}^{2}(p), \bar{\psi}\right)$.

For a square matrix $A \in M_{n}(\mathbb{R})$, we put $\boldsymbol{e}(A)=\exp (2 \pi i \operatorname{tr}(A))$.

2. Fourier expansion of the Siegel Eisenstein series.

In this section, we explain the Fourier expansion of $E_{p, \psi}^{k}$ following [Ma]. All the proofs of the facts below can be found in [Ma, Section 11, 12].

Lemma 2.1. For the pair (C, D) of integral (g, g)-matrices, the following conditions are equivalent.
(1) There exist $X, Y \in M_{g}(\mathbb{Z})$ such that $C X+D Y=1_{g}$.
(2) For $Q \in M_{g}(\mathbb{Q}), Q C, Q D \in M_{g}(\mathbb{Z})$ if and only if $Q \in M_{g}(\mathbb{Z})$.
(3) There exist $U \in G L_{g}(\mathbb{Z})$ and $V \in G L_{2 g}(\mathbb{Z})$ such that $U(C, D) V=\left(1_{g}, 0\right)$.

Moreover theses conditions are stable under the left multiplication of the element of $G L_{g}(\mathbb{Z})$.

Proof. $\quad(1) \Rightarrow(2)$ and $(3) \Rightarrow(1)$ are obvious. For the proof of $(2) \Rightarrow(3)$, by the elementary divisor theorem, there exist $U \in G L_{g}(\mathbb{Z})$ and $V \in G L_{2 g}(\mathbb{Z})$ such that $U(C, D) V=(T, 0)$ with $T=\operatorname{diag}\left(t_{1}, \ldots, t_{r}, 0, \ldots, 0\right), t_{i} \in \mathbb{Z}_{>0}$. If $T \neq 1_{g}$ one can find a diagonal matrix $R \in M_{g}(\mathbb{Q}) \backslash M_{g}(\mathbb{Z})$ such that $R T$ is integral. Put $Q=R U$, which contradicts to (2).

Definition 2.1. The pair of the matrices $(C, D) \in M_{g, 2 g}(\mathbb{Z})$ is called co-prime if it satisfies one of, hence all, the equivalent condition in Lemma 2.1. If (C, D) satisfies $C^{t} D=D^{t} C$, then it is called symmetric.

We put

$$
\mathcal{M}_{g}=\left\{(C, D) \in M_{g, 2 g}(\mathbb{Z}) \mid(C, D) \text { is symmetric and co-prime }\right\}
$$

and $\mathcal{M}_{g}^{r}=\left\{(C, D) \in \mathcal{M}_{g} \mid \operatorname{rank} C=r\right\}$.
Lemma 2.2. The pair $(C, D) \in \mathcal{M}_{g}$ if and only if $C=C_{\gamma}$ and $D=D_{\gamma}$ for some $\gamma \in S p(g, \mathbb{Z})$. In particular the representative set $P_{0} \backslash S p(g, \mathbb{Z})$ corresponds to $G L_{g}(\mathbb{Z}) \backslash \mathcal{M}_{g}$ bijectively.

Let $\Lambda_{g, r}$ be the set of (g, r)-matrices $Q \in M_{g, r}(\mathbb{Z})$ such that $(Q, R) \in G L_{g}(\mathbb{Z})$ with some $R \in M_{g, g-r}(\mathbb{Z})$.

Lemma 2.3. For each $Q \in \Lambda_{g, r}, f i x \widetilde{Q}=(Q, *) \in G L_{g}(\mathbb{Z})$. Then a representative set of $G L_{g}(\mathbb{Z}) \backslash \mathcal{M}_{g}^{r}$ is given by

$$
\left\{\left.\left(\left(\begin{array}{cc}
C^{\prime} & 0 \\
0 & 0
\end{array}\right)^{t} \widetilde{Q},\left(\begin{array}{cc}
D^{\prime} & 0 \\
0 & 1_{g-r}
\end{array}\right) \widetilde{Q}^{-1}\right) \right\rvert\, \begin{array}{l}
\left(C^{\prime}, D^{\prime}\right) \in G L_{r}(\mathbb{Z}) \backslash \mathcal{M}_{r}^{r}, \\
Q \in \Lambda_{g, r} / G L_{r}(\mathbb{Z})
\end{array}\right\} .
$$

These lemmas induce

$$
\begin{align*}
E_{p, \psi}^{k}(Z, s)= & \sum_{\substack{(C, D) \in G L_{2}(\mathbb{Z}) \backslash \mathcal{M}_{2} \\
C \equiv 0 \bmod p}} \psi(\operatorname{det} D) \operatorname{det}(C Z+D)^{-k}|\operatorname{det}(C Z+D)|^{-2 s} \\
= & 1+\sum_{\substack{\left(q_{1}, q_{2}\right) \in \mathbb{Z}^{2} /\{ \pm 1\} \\
\left(q_{1}, q_{2}\right)=1}} \sum_{\substack{(c, d) \in\{ \pm 1\} \backslash \mathcal{M}_{1}^{1} \\
c \equiv 0 \bmod p}} \psi(d)\left(c Z\left[\binom{q_{1}}{q_{2}}\right]+d\right)^{-k}\left|\left(c Z\left[\binom{q_{1}}{q_{2}}\right]+d\right)\right|^{-2 s} \\
& +\sum_{\substack{(C, D) \in G L_{2}(\mathbb{Z}) \backslash \mathcal{M}_{2}^{2} \\
C \equiv 0 \bmod p}} \psi(\operatorname{det} D) \operatorname{det}(C Z+D)^{-k}|\operatorname{det}(C Z+D)|^{-2 s} . \tag{2.1}
\end{align*}
$$

There exists a bijective map

$$
G L_{g}(\mathbb{Z}) \backslash \mathcal{M}_{g}^{g} \longrightarrow \operatorname{Sym}^{g}(\mathbb{Q}), \quad(C, D) \longmapsto C^{-1} D
$$

The inverse map is given as follows. For all $T \in \operatorname{Sym}^{g}(\mathbb{Q})$, there exist $U, V \in S L_{g}(\mathbb{Z})$ such that

$$
U T V=\left(\begin{array}{ccc}
\nu_{1} / \delta_{1} & & \tag{2.2}\\
& \ddots & \\
& & \nu_{g} / \delta_{g}
\end{array}\right), \quad \delta_{i}>0,\left(\nu_{i}, \delta_{i}\right)=1
$$

by the elementary divisor theorem. Then

$$
\left(\begin{array}{lll}
\delta_{1} & & \\
& \ddots & \\
& & \delta_{1}
\end{array}\right) U, \quad\left(\begin{array}{lll}
\nu_{1} & & \\
& \ddots & \\
& & \nu_{g}
\end{array}\right) V^{-1}
$$

gives the corresponding element in \mathcal{M}_{g}^{g}. We put $\delta(T)=\prod_{i} \delta_{i}$ and $\nu(T)=\prod_{i} \nu_{i}=$ $\operatorname{det}(T) \delta(T)$ for $T \in \operatorname{Sym}^{g}(\mathbb{Q})$. Then $\delta(T)=|\operatorname{det} C|$ and $\nu(T)= \pm \operatorname{det} D$ for $T=C^{-1} D$ with $(C, D) \in \mathcal{M}_{g}^{g} . \quad \operatorname{Set} \operatorname{Sym}^{g}(\mathbb{Q})^{\prime} \subset \operatorname{Sym}^{g}(\mathbb{Q})$ the image of $\left\{(C, D) \in \mathcal{M}_{g}^{g} \mid C \equiv\right.$ $0 \bmod p\}$ under the above map.

The third line of (2.1) becomes

$$
\begin{aligned}
& \sum_{\substack{(C, D) \in G L_{2}(\mathbb{Z}) \backslash \mathcal{M}_{2}^{2} \\
C \equiv 0 \bmod p}} \psi(\operatorname{det} D) \operatorname{det} C^{-k}|\operatorname{det} C|^{-2 s} \operatorname{det}\left(Z+C^{-1} D\right)^{-k}\left|\operatorname{det}\left(Z+C^{-1} D\right)\right|^{-2 s} \\
= & \sum_{T \in \operatorname{Sym}^{2}(\mathbb{Q})^{\prime}} \psi(\nu(T)) \delta(T)^{-k-2 s} \operatorname{det}(Z+T)^{-k-s} \operatorname{det}(\bar{Z}+T)^{-s} \\
= & \sum_{\substack{T \in \operatorname{Sym}_{\begin{subarray}{c}{2 \\
\bmod 1} }}(\mathbb{Q})^{\prime}}\end{subarray}} \psi(\nu(T)) \delta(T)^{-k-2 s} \sum_{S \in \operatorname{Sym}^{g}(\mathbb{Z})} \operatorname{det}(Z+T+S)^{-k-s} \operatorname{det}(\bar{Z}+T+S)^{-s} .
\end{aligned}
$$

Here we use the fact $\delta(T+S)=\delta(T)$ and $\nu(T+S) \equiv \nu(T) \bmod p$; indeed for $T=C^{-1} D$, we have $T+S=C^{-1}(D+C S)$ and $(C, D+C S) \in \mathcal{M}_{2}^{2}$. Now for $\alpha, \beta \in \mathbb{C}$ we consider the Fourier expansion of $\sum_{S \in \operatorname{Sym}^{g}(\mathbb{Z})} \operatorname{det}(Z+S)^{-\alpha} \operatorname{det}(\bar{Z}+S)^{-\beta}$ (the branches of the complex powers are determined suitably as in [Sh1, (1.11)]). Let

$$
\operatorname{Sym}^{g}(\mathbb{Z})^{*}=\left\{h \in \operatorname{Sym}^{g}(\mathbb{Q}) \mid \operatorname{tr}(h A) \in \mathbb{Z} \text { for all } A \in \operatorname{Sym}^{g}(\mathbb{Z})\right\}
$$

be the set of half integral matrices of size g, whose elements consist of integral diagonal entries, and half integral off-diagonal entries. Put $\boldsymbol{e}(X)=e^{2 \pi i \operatorname{tr}(X)}$ for a square matrix X. Then the Fourier expansion is written by

$$
\sum_{S \in \operatorname{Sym}^{g}(\mathbb{Z})} \operatorname{det}(Z+S)^{-\alpha} \operatorname{det}(\bar{Z}+S)^{-\beta}=\sum_{h \in \operatorname{Sym}^{g}(\mathbb{Z})^{*}} \xi_{g}(Y, h, \alpha, \beta) \boldsymbol{e}(h X),
$$

with

$$
\begin{equation*}
\xi_{g}(Y, h, \alpha, \beta)=\int_{\operatorname{Sym}^{g}(\mathbb{R})} \operatorname{det}(X+i Y)^{-\alpha} \operatorname{det}(X-i Y)^{-\beta} \boldsymbol{e}(-h X) d X \tag{2.3}
\end{equation*}
$$

Thus the third line of (2.1) is given by

$$
\sum_{h \in \operatorname{Sym}^{g}(\mathbb{Z})^{*}} S_{2}(\psi, h, k+2 s) \xi_{2}(Y, h, \alpha, \beta),
$$

where for $s \in \mathbb{C}$, we set

$$
S_{g}(\psi, h, s)=\sum_{\substack{T \in \operatorname{Sym}^{g}(\mathbb{Q})^{\prime} \\ \bmod 1}} \psi(\nu(T)) \delta(T)^{-s} \boldsymbol{e}(h T),
$$

which is called the (generalised) Siegel series. As a consequence we get

$$
\begin{align*}
E_{p, \psi}^{k}(Z, s)= & 1+\sum_{m \in \mathbb{Z}} \sum_{\substack{\left(q_{1}, q_{2}\right) \in \mathbb{Z}^{2} /\{ \pm 1\} \\
\left(q_{1}, q_{2}\right)=1}} S_{1}(\psi, m, k+2 s) \xi_{1}\left(Y\left[\binom{q_{1}}{q_{2}}\right], m, k+s, s\right) \boldsymbol{e}\left(m X\left[\binom{q_{1}}{q_{2}}\right]\right) \\
& +\sum_{h \in \operatorname{Sym}^{2}(\mathbb{Z})^{*}} S_{2}(\psi, h, k+2 s) \xi_{2}(Y, h, k+s, s) \boldsymbol{e}(h X) \tag{2.4}
\end{align*}
$$

3. Known results.

There are some results for the computations of ξ_{g} and S_{g}. We collect them in this section.

Theorem 3.1 (Shimura [Sh1, (4.34.K), Theorem 4.2]). For $h \in \operatorname{Sym}^{g}(Q)^{*}$ with $\operatorname{sgn} h=(p, q, r)$,

$$
\begin{aligned}
\xi_{g}(Y, h ; \alpha, \beta)= & i^{g(\beta-\alpha)} 2^{u} \pi^{v} \Gamma_{r}\left(\alpha+\beta-\frac{g+1}{2}\right) \Gamma_{g-q}(\alpha)^{-1} \Gamma_{g-p}(\beta)^{-1} \\
& \times \operatorname{det}(Y)^{(g+1) / 2-\alpha-\beta} d_{+}(h Y)^{\alpha-(g+1) / 2+q / 4} d_{-}(h Y)^{\beta-(g+1) / 2+p / 4} \\
& \times \omega(2 \pi Y, h, \alpha, \beta)
\end{aligned}
$$

with

$$
\begin{aligned}
& u=(2 p-g) \alpha+(2 q-g) \beta+\frac{(g+r)(g+1)}{2}+\frac{p q}{2}-\frac{g(g-1)}{2}, \\
& v=p \alpha+q \beta+r+\frac{r(r-1)-p q}{2} .
\end{aligned}
$$

Here $d_{+}(x)$ (resp. $\left.d_{-}(x)\right)$ denotes the products of positive (resp. negative) eigenvalues of x and $\Gamma_{m}(s)=\pi^{m(m-1) / 4} \prod_{k=0}^{m-1} \Gamma(s-k / 2)$. Moreover $\omega(2 \pi Y, h, \alpha, \beta)$ is an entire function with respect to α and β.

The function ω_{g} can be written more explicitly in some special cases. We mainly use the following:

1. ([Sh1, (3.15), (4.7.K), (4.10)]). If $h>0$ then,

$$
\omega_{g}(2 \pi Y, h, \alpha, 0)=2^{-g(g+1) / 2} \boldsymbol{e}(h Y) .
$$

2. ([Sh1, (4.9)]).

$$
\omega_{g}(2 \pi Y, 0, \alpha, \beta)=1 .
$$

3. ([Sh1, (4.35.K)]). If the signature of h is $(p, 0, r)$ i.e. h is positive semi-definite then,

$$
\omega_{g}(2 \pi Y, h,(g+1) / 2, \beta)=2^{-p(g+1) / 2} \pi^{p r / 2} \boldsymbol{e}(-h Y) .
$$

Next we investigate the Siegel series $S_{g}(\psi, h, s)$. Let $\operatorname{Sym}^{g}(\mathbb{Q})_{q}$ be the set of $T \in$ $\operatorname{Sym}^{g}(\mathbb{Q})$ such that $\delta(T)$ is a q-power for prime numbers q, and $\operatorname{Sym}^{g}(\mathbb{Q})_{p}^{\prime}=\operatorname{Sym}^{g}(\mathbb{Q})^{\prime} \cap$ $\operatorname{Sym}^{g}(Q)_{p}$. For all $T \in \operatorname{Sym}^{g}(\mathbb{Q})$ there exists a decomposition $T=\sum_{i=0}^{r} T_{i} \in \operatorname{Sym}^{g}(\mathbb{Q})$ with $T_{i} \in \operatorname{Sym}^{g}(\mathbb{Q})_{q_{i}}$, which is unique modulo $\operatorname{Sym}^{g}(\mathbb{Z})$; indeed if we write $1 / \delta(T)=$ $\sum_{i=0}^{r} x_{i} / q_{i}^{e_{i}}$ with prime divisors q_{i} of $\delta(T)$, each T_{i} is given by $q_{i}^{-e_{i}} x_{i} \delta(T) T$. If $T \in$ $\operatorname{Sym}^{g}(\mathbb{Q})^{\prime}$, one of the q_{i}, say q_{0}, equals to p and we have

$$
\begin{equation*}
\delta(T)=\prod_{i=0}^{r} \delta\left(T_{i}\right), \quad \nu(T) \equiv \nu\left(T_{0}\right) \prod_{i=1}^{r} \delta\left(T_{i}\right) \bmod p . \tag{3.1}
\end{equation*}
$$

The first equation is obvious. For the second, write $T=C^{-1} D$ with $(C, D) \in \mathcal{M}_{g}^{g}$ so that $\operatorname{det} C=\delta(T)$. Then for the decomposition

$$
D=C T_{0}+C T_{1}+\cdots+C T_{r},
$$

each $C T_{i} \in M_{g}(\mathbb{Z})$ and $C T_{i} \equiv 0 \bmod p$ for $i \geq 1$. Thus

$$
\nu(T)=\operatorname{det}(D) \equiv \operatorname{det}\left(C T_{0}\right) \bmod p=\nu\left(T_{0}\right) \prod_{i=1}^{r} \delta\left(T_{i}\right)
$$

Notice that for the decomposition $T=\sum_{i=0}^{r} T_{i}, T \in \operatorname{Sym}^{g}(Q)^{\prime}$ if and only if $T_{0} \in$ $\operatorname{Sym}^{g}(\mathbb{Q})_{p}^{\prime}$. As a consequence we have

$$
S_{g}(\psi, h, s)=\prod_{q: \operatorname{prime}} S_{g}^{q}(\psi, h, s),
$$

with

$$
S_{g}^{q}(\psi, h, s)=\left\{\begin{array}{cc}
\sum_{T \in \operatorname{Sym}^{g}(\mathbb{Q})_{q} \bmod 1} \psi(\delta(T)) \delta(T)^{-s} \boldsymbol{e}(h T) & q \neq p \\
\sum_{T \in \operatorname{Sym}^{g}(\mathbb{Q})_{p}^{\prime} \bmod 1} \psi(\nu(T)) \delta(T)^{-s} \boldsymbol{e}(h T) & q=p
\end{array}\right.
$$

If $g=1$, the Siegel series are easy to compute as follows.
Proposition 3.2. Let ψ be a Dirichlet character modulo p and $q \neq p$ a prime.
(1) If $m=0$, the local Siegel series is given by

$$
S_{1}^{q}(\psi, 0, s)=\frac{1-\psi(q) q^{-s}}{1-\psi(q) q^{1-s}} .
$$

(2) If $m=q^{t} m^{\prime}$ with $\left(m^{\prime}, q\right)=1$, we have

$$
S_{1}^{q}(\psi, m, s)=\left(1-\psi(q) q^{-s}\right) F_{q, m}\left(\psi(q) q^{-s}\right), \quad \text { with } F_{q, m}(X)=\sum_{k=0}^{t}(q X)^{k}
$$

Proposition 3.3. Let ψ be a Dirichlet character modulo p.
(1) If $m=0$, the Siegel series are given by

$$
S_{1}^{p}(\psi, 0, s)= \begin{cases}0 & \psi \not \equiv 1 \\ \frac{p^{-s}(p-1)}{\left(1-p^{1-s}\right)} & \psi \equiv 1\end{cases}
$$

(2) If $m=p^{t} m^{\prime}$ with $\left(m^{\prime}, p\right)=1$, then

$$
S_{1}^{p}(\psi, m, s)= \begin{cases}\bar{\psi}\left(m^{\prime}\right) G(\psi) p^{(1-s) t-s} & \psi \not \equiv 1 \\ \left(1-q^{-s}\right) F_{q, m}\left(q^{-s}\right)-1 & \psi \equiv 1\end{cases}
$$

Here $G(\psi)$ is the Gaussian sum.
For $g \geq 2, S_{g}^{q}(\psi, h, s)(q \neq p)$ are studied by many Mathematicians, for example Kaufhold, Siegel, Feit, Shimura, Kitaoka and finally Katsurada gave the explicit formula [Kat]. Our case $g=2$ is the Kaufhold's result.

Theorem 3.4 (Kaufhold [Kau, (2,10), Hilfsatzs 10]).

$$
\prod_{q \neq p} S_{2}^{q}(\psi, h, s)= \begin{cases}\frac{L(s-2, \psi) L\left(2 s-3, \psi^{2}\right)}{L(s, \psi) L\left(2 s-2, \psi^{2}\right)} & h=0 \\ \frac{L\left(2 s-3, \psi^{2}\right)}{L(s, \psi) L\left(2 s-2, \psi^{2}\right)} \prod_{q \neq p} F_{h}^{(q)}\left(\psi(q) q^{-s}\right) & \operatorname{rank} h=1 \\ \frac{L\left(s-1, \psi \chi_{h}\right)}{L(s, \psi) L\left(2 s-2, \psi^{2}\right)} \prod_{q \neq p} G_{h}^{(q)}\left(\psi(q) q^{-s}\right) & \operatorname{rank} h=2\end{cases}
$$

Here $\chi_{h}, F_{h}^{(q)}$ and $G_{h}^{(q)}$ are defined as follows. For the discriminant D_{h} of quadratic extension $\mathbb{Q}(\sqrt{-\operatorname{det}(2 h)}) / \mathbb{Q}$, the quadratic character χ_{h} is given by $\chi_{h}(q)=\left(D_{h} / q\right)$ for prime numbers q. Let $\alpha_{1}=\operatorname{ord}_{p}\left(\operatorname{g.c.d}\left(h_{1}, 2 h_{2}, h_{3}\right)\right)$ for $h=\left(\begin{array}{c}h_{1} \\ h_{1} \\ h_{2}\end{array} h_{3}\right)$ and $\alpha=$ $(1 / 2) \operatorname{ord}_{p}\left(\operatorname{det}(2 h) / D_{h}\right)$. Then the polynomials F_{h} and G_{h} are defined by

$$
\begin{aligned}
& F_{h}^{(q)}(X)=\sum_{l=0}^{\alpha_{1}}(q X)^{2 l} \\
& G_{h}^{(q)}(X)=\sum_{l=0}^{\alpha_{1}}(q X)^{2 l}\left\{\sum_{m=0}^{\alpha-l}\left(q^{3} X^{2}\right)^{m}-\chi_{h}(q) q X \sum_{m=0}^{\alpha-l-1}\left(q^{3} X^{2}\right)^{m}\right\}
\end{aligned}
$$

Note that $F_{h}^{(q)}=G_{h}^{(q)}=1$ for all but finite primes q.

4. Terms corresponding to p.

In this section we calculate the Siegel series $S^{p}(\psi, h, s)$. For our problem of the dimension of the space of Eisenstein series, it suffices to compute the constant term of $E_{p, \psi}^{k}$. However the Fourier expansion of $E_{p, \psi}^{k}$ itself is interesting problem, so we calculate $S^{p}(\psi, h, s)$ for all h.

First we consider the case $h=0$.
Lemma 4.1. Let ψ be a non-trivial Dirichlet character modulo p.

$$
S_{2}^{p}(\psi, 0, s)= \begin{cases}0 & \psi^{2} \not \equiv 1 \\ \psi(-1) \frac{(p-1) p^{1-2 s}}{1-p^{3-2 s}} & \psi^{2} \equiv 1, \psi \not \equiv 1\end{cases}
$$

Proof. Before the calculation, we rewrite the set of summation. Let

$$
\mathcal{M}(p)=\left\{(C, D) \in \mathcal{M}_{2}^{2} \mid C^{-1} D \in \operatorname{Sym}^{2}(\mathbb{Q})_{p}^{\prime}\right\}
$$

and

$$
\widetilde{\mathcal{M}}(p)=\left\{(C, D) \in M_{2,4}(\mathbb{Z}) \mid \operatorname{det} C \text { is a } p \text {-power, } C \equiv 0 \bmod p,(C, D) \text { is symmetric }\right\} .
$$

Property (3) of the co-prime condition in Lemma 2.1 shows that
$(*)$ if (C, D) is symmetric, there exists $M \in M_{g}(\mathbb{Z})$ such that $C^{\prime}=M C, D^{\prime}=M D$ with $\left(C^{\prime}, D^{\prime}\right) \in \mathcal{M}_{2}^{2}$.

Then

$$
\begin{aligned}
S_{2}^{p}(\psi, h, s)= & \sum_{\substack{C \\
(C, D) \in S L(2, \mathbb{Z}) \backslash \mathcal{M}(p)}} \psi(\operatorname{det} D)(\operatorname{det} C)^{-s} \boldsymbol{e}\left(C^{-1} D h\right) \\
= & \sum_{\substack{C \\
(C, D) \in S L(2, \mathbb{Z}) \backslash \widetilde{\mathcal{M}}(p)}} \sum_{\substack{\bmod C}} \psi(\operatorname{det} D)(\operatorname{det} C)^{-s} \boldsymbol{e}\left(C^{-1} D h\right),
\end{aligned}
$$

by $(*)$. For each $(C, D) \in \widetilde{\mathcal{M}}(p)$, there exists $U, V \in S L(2, \mathbb{Z})$ such that

$$
U C V=\left(\begin{array}{cc}
p^{k} & 0 \\
0 & p^{k+l}
\end{array}\right)=T(k, l), \quad k \geq 1, l \geq 0
$$

Then $C^{-1} D=V^{-1} T(k, l)^{-1} U^{-1} D^{t} V^{t} V^{-1}$. Put $U^{-1} D^{t} V=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. The pair (C, D) is symmetric if and only if $c=p^{l} b$. Now C runs through the representative set $S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{Z}) T(k, l) S L(2, \mathbb{Z})$. If $l \geq 1$, it is given by

$$
\left\{T(k, l) W \left\lvert\, W=\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\right., u \in \mathbb{Z} / p^{l} \mathbb{Z}\right\} \cup\left\{T(k, l) W \left\lvert\, W=\left(\begin{array}{cc}
p u & 1 \\
-1 & 0
\end{array}\right)\right., u \in \mathbb{Z} / p^{l-1} \mathbb{Z}\right\}
$$

while it is given by a single element $T(k, k)$ if $l=0$. For such $C=T(k, l) W, D$ runs through the set

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
p^{l} b & d
\end{array}\right)^{t} W^{-1} \right\rvert\, a, b \in \mathbb{Z} / p^{k} \mathbb{Z}, d \in \mathbb{Z} / p^{k+l} \mathbb{Z}\right\}
$$

Now we shall compute $S_{2}^{p}(\psi, 0, s)$. Assume that $\psi \not \equiv 1$. For a fixed $C=T(k, l) W$,

$$
\begin{equation*}
\sum_{D \bmod C} \psi(\operatorname{det} D)(\operatorname{det} C)^{-s}=\frac{1}{p^{(2 k+l) s}} \sum_{\substack{a, b \in \mathbb{Z} / p^{k} \mathbb{Z} \\ d \in \mathbb{Z} / p^{k+l} \mathbb{Z}}} \psi\left(a d-p^{l} b^{2}\right) \tag{4.1}
\end{equation*}
$$

Put $\Lambda(m)=\#\left\{(a, b, d) \in \mathbb{Z} / p^{k} \mathbb{Z} \times \mathbb{Z} / p^{k} \mathbb{Z} \times \mathbb{Z} / p^{k+l} \mathbb{Z} \mid a d-p^{l} b^{2} \equiv m \bmod p\right\}$. We calculate $\Lambda(m)$ for each $m \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
case 1) $l \geq 1$. In this case $\Lambda(m)=\#\{a, b, d \mid a d \equiv m \bmod p\}$. Since $\mathbb{Z} / p^{k} \mathbb{Z} \times \mathbb{Z} / p^{k+l} \ni$ $(a, d) \mapsto a d \in \mathbb{Z} / p \mathbb{Z}$ is a homomorphism, $\Lambda\left(m_{1}\right)=\Lambda\left(m_{2}\right)$ for all $m_{1}, m_{2} \in \mathbb{Z} / p \mathbb{Z}$. Thus values of (4.1) is 0 in this case.
case 2) $l=0$. Then

$$
\begin{aligned}
\Lambda(m) & =\#\left\{(a, b, d) \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\oplus 3} \mid a d-b^{2} \equiv m \bmod p\right\} \\
& = \begin{cases}p^{3 k-2}(p+1) & \text { if }-m \in\left(\mathbb{F}_{p}^{\times}\right)^{2} ; \\
p^{3 k-2}(p-1) & \text { if }-m \notin\left(\mathbb{F}_{p}^{\times}\right)^{2} .\end{cases}
\end{aligned}
$$

Thus the values of (4.1) is

$$
\psi(-1) p^{-2 k s} \sum_{m \in\left(\mathbb{F}_{p}^{\times}\right)^{2}} \psi(m) 2 p^{3 k-2}
$$

As a consequence

$$
S_{2}^{p}(\psi, 0, s)=2 \psi(-1) \sum_{m \in\left(\mathbb{F}_{p}^{\times}\right)^{2}} \psi(m) \sum_{k=1}^{\infty} p^{(3-2 s) k-2}
$$

which induces our lemma.
Next we consider $h \in \operatorname{Sym}^{2}(\mathbb{Z})^{*}$ with $\operatorname{rank} h=1$. There exists $U \in S L(2, \mathbb{Z})$ such that $h[U]=\operatorname{diag}(t, 0)$, which shows that we only consider the diagonal case.

Lemma 4.2. Assume that ψ is a non-trivial character. Then for $h=\left(\begin{array}{ll}t & 0 \\ 0 & 0\end{array}\right)$ with $\operatorname{ord}_{p} t=m$,

$$
S_{2}(\psi, h, s)= \begin{cases}0 & \psi^{2} \not \equiv 1 \\ a\left(p^{-s}\right)+\frac{b\left(p^{-s}\right)}{1-p^{3-2 s}} & \psi^{2} \equiv 1\end{cases}
$$

with

$$
\begin{aligned}
& a\left(p^{-s}\right)=\psi(-1)\left(\frac{p-1}{p^{2}} \sum_{k=1}^{m+1} p^{(3-2 s) k}\right), \\
& b\left(p^{-s}\right)=\psi(-1)(p-1) p^{(3-2 s) m+4-4 s} .
\end{aligned}
$$

Proof. We use the same notation as in the proof of Lemma 4.1. We have
$S_{2}^{p}(\psi, h, s)=\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} \sum_{W} p^{-(2 k+l) s} \sum_{\substack{a, b \in \mathbb{Z} / p^{k} \mathbb{Z} \\ d \in \mathbb{Z} / p^{k+l} \mathbb{Z}}} \psi\left(a d-p^{l} b^{2}\right) \boldsymbol{e}\left(\frac{1}{p^{k-m}}\left(\begin{array}{ll}a & b \\ b & d p^{-l}\end{array}\right)\left(h^{\prime}\left[W^{-1}\right]\right)\right)$,
here $h^{\prime}=\operatorname{diag}\left(t^{\prime}, 0\right)$.
In the calculation below, we put $a=a_{2} p+a_{1}, b=b_{2} p+b_{1}$ and $d=d_{2} p+d_{1}$ with $a_{1}, b_{1}, d_{1} \in \mathbb{Z} / p \mathbb{Z}, a_{2}, b_{2} \in \mathbb{Z} / p^{k-1} \mathbb{Z}$ and $d_{2} \in \mathbb{Z} / p^{k+l-1} \mathbb{Z}$. First we consider the summation for $l=0$, which we put S_{1}.

$$
\begin{aligned}
S_{1} & =\sum_{k=1}^{\infty} p^{-2 k s} \sum_{a, b, d \in \mathbb{Z} / p^{k} \mathbb{Z}} \psi\left(a d-b^{2}\right) \boldsymbol{e}\left(\frac{t^{\prime} a}{p^{k-m}}\right) \\
& =\sum_{k=1}^{\infty} p^{-2 k s} \sum_{a_{2}, b_{2}, d_{2} \in \mathbb{Z} / p^{k-1} \mathbb{Z}} e\left(\frac{t^{\prime} a_{2}}{p^{k-m-1}}\right) \sum_{a_{1}, b_{1}, d_{1} \in \mathbb{Z} / p \mathbb{Z}} \psi\left(a_{1} d_{1}-b_{1}^{2}\right) e\left(\frac{t^{\prime} a_{1}}{p^{k-m}}\right) .
\end{aligned}
$$

If $k>m+1$, the first summation vanishes. Let $k \leq m+1$ and consider the second summation. If $a_{1}=0$ then

$$
\sum_{b_{1}, d_{1} \in \mathbb{Z} / p \mathbb{Z}} \psi\left(-b_{1}^{2}\right)= \begin{cases}0 & \psi^{2} \not \equiv 1 \\ \psi(-1) p(p-1) & \psi^{2} \equiv 1\end{cases}
$$

If $a_{1} \neq 0$, then we exchange the variable $d_{1} \mapsto d_{1}+b_{1}^{2} a_{1}^{-1}$, and

$$
\sum_{a_{1} \neq 0, b_{1}, d_{1}} \psi\left(a_{1} d_{1}\right) e\left(\frac{t^{\prime} a_{1}}{p^{k-m}}\right)=0 .
$$

As a consequence,

$$
S_{1}= \begin{cases}0 & \psi^{2} \not \equiv 1 \tag{4.2}\\ \psi(-1)(p-1) \sum_{k=1}^{m+1} p^{(1-2 s) k} & \psi^{2} \equiv 1\end{cases}
$$

Next consider the case $l \geq 1$ and $C=T(k, l) W$ with $W=\left(\begin{array}{cc}1 & u \\ 0 & 1\end{array}\right)$, this summation is written by S_{2}. Then

$$
S_{2}=\sum_{k, l=1}^{\infty} p^{-(2 k+l) s} \sum_{u \in \mathbb{Z} / p^{l} \mathbb{Z}} \sum_{\substack{a, b \in \mathbb{Z} / p^{k} \mathbb{Z} \\ d \in \mathbb{Z} / p^{k+}}} \psi(a d) \boldsymbol{e}\left(\frac{t^{\prime}}{p^{k-m}}\left(a-2 u b+\frac{u^{2} d}{p^{l}}\right)\right) .
$$

By looking at the summation for a, we have

$$
\sum_{a \in \mathbb{Z} / p^{k} \mathbb{Z}} \psi(a) \boldsymbol{e}\left(\frac{t^{\prime} a_{1}}{p^{k-m}}\right)= \begin{cases}0 & k \neq m+1 ; \\ p^{m} \bar{\psi}\left(t^{\prime}\right) G(\psi) & k=m+1,\end{cases}
$$

here $G(\psi)$ denotes the Gaussian sum. Thus we only consider the term for $k=m+1$. Thanks to the summation for b we can put $u=u_{1} p$ with $u_{1} \in \mathbb{Z} / p^{l-1} \mathbb{Z}$ and

$$
S_{2}=\psi\left(t^{\prime}\right) G(\psi) \sum_{l=1}^{\infty} p^{-(2 m+2+l) s+2 m+1} \sum_{u_{1} \in \mathbb{Z} / p^{l-1}} \sum_{d \in \mathbb{Z} / p^{m+1+l}} \psi(d) e\left(\frac{t^{\prime} u_{1}^{2} d}{p^{l-1}}\right)
$$

We know

$$
\sum_{u_{1} \in \mathbb{Z} / p^{l-1}} e\left(\frac{t^{\prime} u_{1}^{2} d}{p^{l-1}}\right)= \begin{cases}\chi_{p}\left(t^{\prime} d\right) p^{(l-2) / 2} G\left(\chi_{p}\right) & l \text { is even } ; \\ p^{(l-1) / 2} & l \text { is odd }\end{cases}
$$

here χ_{p} is the unique non-trivial quadratic Dirichlet character modulo p. It suffices to consider the case for even l and

$$
\begin{aligned}
S_{2} & =\psi\left(t^{\prime}\right) \chi_{p}\left(t^{\prime}\right) G(\psi) G\left(\chi_{p}\right) \sum_{l=1}^{\infty} p^{-2(m+1+l) s+2 m+l} \sum_{d \in \mathbb{Z} / p^{m+2 l+1}} \chi_{p} \psi(d) \\
& = \begin{cases}0 & \psi \neq \chi_{p} \\
\psi(-1)(p-1) \sum_{l} p^{-2(m+l+1) s+3 m+3 l+1} & \psi=\chi_{p}\end{cases}
\end{aligned}
$$

which coincides with $b\left(p^{-s}\right) /\left(1-p^{3-2 s}\right)$.
Finally for the term of $C=T(k, l) W$ with $W=\left(\begin{array}{cc}p a & 1 \\ -1 & 0\end{array}\right)$, one sees easily that it vanishes. This complete the proof.

Finally we consider the case for $\operatorname{rank} h=2$. Note that there is a bijection $\operatorname{Sym}^{g}(\mathbb{Q})_{p} \bmod 1 \simeq \operatorname{Sym}^{g}\left(\mathbb{Q}_{p}\right) \bmod \mathbb{Z}_{p}$. Put $\operatorname{Sym}^{g}\left(\mathbb{Q}_{p}\right)^{\prime}$ the image of $\operatorname{Sym}^{g}(\mathbb{Q})_{p}^{\prime}$ then

$$
S_{2}^{p}(\psi, h, s)=\sum_{T \in \operatorname{Sym}^{2}\left(\mathbb{Q}_{p}\right)^{\prime} \bmod \mathbb{Z}_{p}} \psi(\nu(T)) \delta(T)^{-s} \boldsymbol{e}(h T)
$$

Since each $h \in \operatorname{Sym}^{2}(\mathbb{Q})$ can be diagonalised by the element of $\operatorname{Sym}^{2}\left(\mathbb{Z}_{p}\right)$, it suffices to consider the diagonal h.

Lemma 4.3. Let $h=p^{m}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta p^{t}\end{array}\right)$ with $(\alpha, p)=(\beta, p)=1$. Then for a non-trivial Dirichlet character ψ modulo p we have

$$
S_{2}^{p}(\psi, h, s)=S_{1}+S_{2},
$$

where S_{1} and S_{2} are given in (4.4) and (4.5) respectively.
Proof. We use the same notation as above. First we calculate the term $l=0$. This term equals to

$$
\begin{aligned}
S_{1}= & \sum_{k} p^{-2 k s} \sum_{a, b, d \in \mathbb{Z} / p^{k} \mathbb{Z}} \psi\left(a d-b^{2}\right) e\left(\frac{1}{p^{k-m}}\left(\alpha a+\beta d p^{t}\right)\right) \\
= & \sum_{k} p^{-2 k s} \sum_{a^{\prime \prime}, b^{\prime \prime}, d^{\prime \prime} \in \mathbb{Z} / p^{k-1}} e\left(\frac{1}{p^{k-m-1}}\left(\alpha a^{\prime \prime}+\beta d^{\prime \prime} p^{t}\right)\right) \\
& \times \sum_{a^{\prime}, b^{\prime}, d^{\prime} \in \mathbb{Z} / p \mathbb{Z}} \psi\left(a^{\prime} d^{\prime}-\left(b^{\prime}\right)^{2}\right) \boldsymbol{e}\left(\frac{1}{p^{k-m}}\left(\alpha a^{\prime}+\beta d p^{t}\right)\right) .
\end{aligned}
$$

By looking at the first term, this summation is 0 for $k-m-1 \geq 0$, and we have

$$
S_{1}=\sum_{k=1}^{m+1} p^{-2 k s+3 k-3} \sum_{a, b, d \in \mathbb{Z} / p \mathbb{Z}} \psi\left(a d-b^{2}\right) \boldsymbol{e}\left(\frac{1}{p^{k-m}}\left(\alpha a+\beta d p^{t}\right)\right) .
$$

For the term $d=0, \sum_{a, b \in \mathbb{Z} / p \mathbb{Z}} \psi\left(-b^{2}\right) e\left(\alpha a p^{m-k}\right)$ is 0 if $\psi^{2} \not \equiv 1$, while if $\psi^{2} \equiv 1$, this term becomes

$$
p \sum_{a \in \mathbb{Z} / p \mathbb{Z}} \boldsymbol{e}\left(\alpha a p^{m-k}\right)= \begin{cases}p & k \leq m ; \\ 0 & k=m+1 .\end{cases}
$$

Therefore, the term $d=0$ is given by

$$
\begin{cases}\sum_{k=1}^{m} p^{(3-2 s) k-1} & \psi^{2} \equiv 1 \tag{4.3}\\ 0 & \psi^{2} \not \equiv 1\end{cases}
$$

For the term $d \neq 0$, we may exchange the variable $a \mapsto a+d^{-1} b^{2}$, and

$$
\begin{aligned}
& \sum_{a, b, d} \psi(a d) \boldsymbol{e}\left(\left(a \alpha+d^{-1} b^{2} \alpha+d \beta p^{t}\right) p^{m-k}\right) \\
& \quad=\sum_{a} \psi(a) \boldsymbol{e}\left(\frac{\alpha a}{p^{k-m}}\right) \sum_{d} \sum_{b} e\left(\frac{\alpha d^{-1} b^{2}}{p^{k-m}}\right) \psi(d) \boldsymbol{e}\left(\frac{\beta d}{p^{k-m-t}}\right) .
\end{aligned}
$$

If $k-m \leq 0$, then the first term is 0 . Thus we put $k=m+1$, and this term becomes

$$
\begin{gathered}
\sum_{a} \psi(a) \boldsymbol{e}\left(\frac{\alpha a}{p}\right) \sum_{d} \sum_{b} \boldsymbol{e}\left(\frac{\alpha d^{-1} b^{2}}{p}\right) \psi(d) \boldsymbol{e}\left(\frac{\beta d}{p^{1-t}}\right) \\
=\bar{\psi}(\alpha) G(\psi) \chi_{p}(\alpha) \varepsilon_{p} \sqrt{p} \sum_{d \in \mathbb{Z} / p \mathbb{Z}} \psi \chi_{p}(d) \boldsymbol{e}\left(\frac{d \beta}{p^{1-t}}\right) .
\end{gathered}
$$

Here

$$
\varepsilon_{p}= \begin{cases}1 & p \equiv 1 \bmod 4 \\ i & p \equiv 3 \bmod 4\end{cases}
$$

If $\psi=\chi_{p}$ then the last summation is -1 or $p-1$ according as $t=0$ or $t \geq 1$, while if $\psi \neq \chi_{p}$ then the last summation is $\bar{\psi} \chi_{p}(\beta) G\left(\psi \chi_{p}\right)$ or 0 according as $t=0$ or $t \geq 1$. As a consequence,

$$
S_{1}= \begin{cases}\sum_{k=1}^{m} p^{(3-2 s) k-1}-\varepsilon_{p}^{2} p & \text { if } \psi=\chi_{p} \text { and } t=0 \tag{4.4}\\ \sum_{k=1}^{m} p^{(3-2 s) k-1}+(p-1) \varepsilon_{p}^{2} p & \text { if } \psi=\chi_{p} \text { and } t \geq 1 \\ \bar{\psi} \chi_{p}(\alpha \beta) G\left(\psi \chi_{p}\right) \varepsilon_{p} \sqrt{p} & \text { if } \psi \neq \chi_{p} \text { and } t=0 \\ 0 & \text { if } \psi \neq \chi_{p} \text { and } t \geq 1\end{cases}
$$

Next we consider the term $l \geq 1$ and $W=\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right)$ with $u \in \mathbb{Z} / p^{l} \mathbb{Z}$. Then

$$
\begin{aligned}
S_{2} & =\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} p^{-(2 k+l) s} \sum_{u \in \mathbb{Z} / p^{l} \mathbb{Z}} \sum_{\substack{a, b \in \mathbb{Z} / p^{k} \mathbb{Z} \\
d \in \mathbb{Z} / p^{k+l} \mathbb{Z}}} \psi(a d) e\left(\frac{1}{p^{k-m}}\left(\alpha a-2 u \alpha b+d p^{-l}\left(a u^{2}+\beta p^{t}\right)\right)\right) \\
& =\sum_{k, l} p^{-(2 k+l) s} \sum_{u} \sum_{a} \psi(a) e\left(\frac{\alpha a}{p^{k-m}}\right) \sum_{b} e\left(-\frac{2 u \alpha b}{p^{k-m}}\right) \sum_{d} \psi(d) e\left(\frac{\left(\alpha u^{2}+\beta p^{t}\right) d}{p^{k+l-m}}\right) .
\end{aligned}
$$

Now

$$
\sum_{a \in \mathbb{Z} / p^{k} \mathbb{Z}} \psi(a) \boldsymbol{e}\left(\frac{\alpha a}{p^{k-m}}\right)= \begin{cases}p^{m} \bar{\psi}(\alpha) G(\psi) & k=m+1 \\ 0 & \text { otherwise }\end{cases}
$$

thus we put $k=m+1$. Then the summation for b is 0 if $(u, p)=1$, and we replace u by $p u$ with $u \in \mathbb{Z} / p^{l-1} \mathbb{Z}$. Hence

$$
S_{2}=\sum_{l=1}^{\infty} p^{-(2 m+2+l) s} \bar{\psi}(\alpha) G(\psi) p^{2 m+1} \sum_{d \in\left(\mathbb{Z} / p^{m+1+l} \mathbb{Z}\right)^{\times}} \sum_{u \in \mathbb{Z} / p^{l-1} \mathbb{Z}} \boldsymbol{e}\left(\frac{\alpha d u^{2}}{p^{l-1}}\right) \psi(d) \boldsymbol{e}\left(\frac{\beta d}{p^{l+1-t}}\right) .
$$

Since

$$
\sum_{a \in \mathbb{Z} / p^{r} \mathbb{Z}} e\left(\frac{x a^{2}}{p^{r}}\right)=p \sum_{a \in \mathbb{Z} / p^{r-2} \mathbb{Z}} e\left(\frac{x a^{2}}{p^{r-2}}\right), \quad r \geq 2, \quad(p, x)=1,
$$

we have

$$
\sum_{u \in \mathbb{Z} / p^{l-1} \mathbb{Z}} e\left(\frac{\alpha d u^{2}}{p^{l-1}}\right)= \begin{cases}p^{(l-1) / 2} & l \text { is odd } \\ \varepsilon_{p} \chi_{p}(\alpha d) p^{(l-1) / 2} & l \text { is even } .\end{cases}
$$

Thus

$$
\begin{aligned}
S_{2}= & \sum_{n=0}^{\infty} p^{-(2 m+2+2 n+1) s+2 m+n+1} \bar{\psi}(\alpha) G(\psi) \sum_{d \in \mathbb{Z} / p^{m+2 n+2} \mathbb{Z}} \psi(d) \boldsymbol{e}\left(\frac{\beta d}{p^{2 n+2-t}}\right) \\
& +\sum_{n=1}^{\infty} p^{-(2 m+2+2 n) s+2 m+n+1 / 2}\left(\chi_{p} \bar{\psi}\right)(\alpha) G(\psi) \varepsilon_{p} \sum_{d \in \mathbb{Z} / p^{m+2 n+1} \mathbb{Z}}\left(\chi_{p} \psi\right)(d) \boldsymbol{e}\left(\frac{\beta d}{p^{2 n+1-t}}\right) .
\end{aligned}
$$

The first summation remains only when $t=2 n+1$, which equals to

$$
\begin{cases}p^{-(2 m+2+t) s+3 m+(3 t+1) / 2} \bar{\psi}(\alpha \beta) G(\psi)^{2} & t \text { is odd } \\ 0 & t \text { is even. }\end{cases}
$$

For the second term, if $\psi \neq \chi_{p}$ then it remains only when $t=2 n$ and

$$
\begin{cases}p^{-(2 m+2+t) s+3 m+(3 t+1) / 2} \varepsilon_{p}\left(\chi_{p} \bar{\psi}\right)(\alpha \beta) G(\psi) G\left(\psi \chi_{p}\right) & t \geq 2 \text { is even } \\ 0 & t \text { is odd or } t=0\end{cases}
$$

On the other hand if $\psi=\chi_{p}$, then the second term is

$$
\begin{cases}0 & t=0 \\ \left(\chi_{p} \bar{\psi}\right)(\alpha) G(\psi) \varepsilon_{p} p^{-(2 m+2) s+3 m+1 / 2} \\ \quad \times\left\{(p-1) \sum_{n=1}^{(t-2) / 2} p^{(3-2 s) n}-p^{(3-2 s) t / 2}\right\} & t \geq 2 \text { is even; } \\ \left(\chi_{p} \bar{\psi}\right)(\alpha) G(\psi) \varepsilon_{p}(p-1) \sum_{n=1}^{(t-1) / 2} p^{-(2 m+2 n+2) s+3 m+3 n+1 / 2} & t \text { is odd. }\end{cases}
$$

As a consequence,

$$
S_{2}= \begin{cases}0 & \text { if } t=0 ; \tag{4.5}\\
\quad \begin{array}{ll}
\varepsilon_{p}^{2} p^{-(2 m+2) s+3 m+1} \\
& \text { (p-1) } \left.\sum_{n=1}^{(t-2) / 2} p^{(3-2 s) n}-p^{(3-2 s) t / 2}\right\}
\end{array} & \text { if } \psi=\chi_{p} \text { and } t \geq 2 \text { is even; } \\
\varepsilon_{p} p^{-(2 m+2) s+3 m+1} & \\
\quad \times\left\{p^{(3-2 s) t+1 / 2} \bar{\psi}(\alpha \beta)+\varepsilon_{p}(p-1) \sum_{n=1}^{(t-1) / 2} p^{(3-2 s) n}\right\} & \text { if } \psi=\chi_{p} \text { and } t \text { is odd; } \\
p^{-(2 m+2+t) s+3 m+(3 t+3) / 2} \varepsilon_{p}\left(\chi_{p} \bar{\psi}\right)(\alpha \beta) G(\psi) G\left(\psi \chi_{p}\right) & \text { if } \psi \neq \chi_{p} \text { and } t \geq 2 \text { is even; } \\
p^{-(2 m+2+t) s+3 m+(3 t+1) / 2 \bar{\psi}(\alpha \beta) G(\psi)^{2}} & \text { if } \psi \neq \chi_{p} \text { and } t \text { is odd. }\end{cases}
$$

Finally we calculate the term for $C=T(k, l) W$ and $W=\left(\begin{array}{cc}p u & 1 \\ -1 & 0\end{array}\right), u \in \mathbb{Z} / p^{l-1} \mathbb{Z}$.

$$
\begin{aligned}
S_{3}= & \sum_{k, l=1}^{\infty} \sum_{u \in \mathbb{Z} / p^{l-1} \mathbb{Z}} p^{-(2 k+l) s} \sum_{a \in \mathbb{Z} / p^{k} \mathbb{Z}} \psi(a) \boldsymbol{e}\left(\frac{a \beta}{p^{k-m-t}}\right) \\
& \times \sum_{b \in \mathbb{Z} / p^{k} \mathbb{Z}} e\left(\frac{2 b \beta u}{p^{k-m-t-1}}\right) \sum_{d} \psi(d) \boldsymbol{e}\left(\frac{\left(\alpha+\beta u^{2} p^{t+2}\right) d}{p^{k+l-m}}\right) .
\end{aligned}
$$

By looking at the first term, this summations remains only when $k=m+t+1$, and

$$
S_{3}=p^{-(2 k+l) s+2 m+2 t} \bar{\psi}(\beta) G(\psi) \sum_{u \in \mathbb{Z} / p^{m+t} \mathbb{Z}} \sum_{d \in \mathbb{Z} / p^{m+t+l+1} \mathbb{Z}} \psi(d) \boldsymbol{e}\left(\frac{\left(\alpha+\beta u^{2} p^{t+2}\right) d}{p^{t+l+1}}\right)
$$

Since $\left(\alpha+\beta u^{2} p^{t+2}, p\right)=1$, the last term remains only when $t+l=0$, but this does not happen. Thus $S_{3}=0$ and we conclude the proof.

Remark. One should notice that $S_{2}^{p}(\psi, h, s)$ depends only on $\operatorname{det} h=\alpha \beta p^{2 m+t}$ and ord_{p} (g.c.d. $\left.\left(h_{1}, 2 h_{2}, h_{3}\right)\right)=m$ for $h=\left(\begin{array}{c}h_{1} h_{2} \\ h_{2}\end{array} h_{3}\right)$ (i.e. not depend on α, β).

Remark. In [Miz], Mizuno gives the explicit form of the Fourier expansion of $E_{p, \psi}^{k}$, by using the Maass lift of the Eisenstein series of Jacobi forms. The above lemma will give an another proof of that.

5. Application -the dimension of the space of Eisenstein series-.

In this section we shall compute the dimension of the space of Eisenstein series for low weights. Let $C_{0}(f)$ be the constant term of the Fourier expansion of $f \in M_{k}\left(\Gamma^{g}(N)\right)$ and

$$
\mathcal{E}_{k}\left(\Gamma^{g}(N)\right)=M_{k}\left(\Gamma^{g}(N)\right) /\left\{f \in M_{k}\left(\Gamma^{g}(N)\right) \mid C_{0}\left(\left.f\right|_{k} \gamma\right)=0, \forall \gamma \in S p(g, \mathbb{Z})\right\}
$$

We denote $\mathcal{E}_{k}\left(\Gamma_{0}^{g}(N), \psi\right)$ the image of $M_{k}\left(\Gamma_{0}^{g}(N), \psi\right)$.
The aim of this section is to calculate the dimension of $\mathcal{E}_{k}\left(\Gamma^{2}(p)\right)$. The classical theory says that for $k \geq 4$,

$$
\operatorname{dim} \mathcal{E}_{k}\left(\Gamma^{2}(p)\right)=\frac{1}{2}\left(p^{4}-1\right)
$$

Moreover it is shown that
Proposition 5.1 ([Gu, Theorem 3.1]).

$$
\operatorname{dim} \mathcal{E}_{1}\left(\Gamma^{2}(p)\right)= \begin{cases}0 & p \equiv 1 \bmod 4 \\ \frac{1}{2}\left(p^{2}+1\right) & p \equiv 3 \bmod 4\end{cases}
$$

Thus it suffices to consider the case $k=2$ or 3 . Before considering these cases, we explain how one can induce the results for $\Gamma^{2}(p)$ from that of $\Gamma_{0}^{2}(p)$.

Let $G=S p\left(2, \mathbb{F}_{p}\right)=\Gamma^{2} / \Gamma^{2}(p)$. Then G acts on $M_{k}\left(\Gamma^{2}(p)\right)$ (or $\mathcal{E}_{k}\left(\Gamma^{2}(p)\right)$) from the left via $\left.(f, g) \mapsto f\right|_{k} \tilde{g}^{-1}$, with $f \in M_{k}\left(\Gamma^{2}(p)\right), g \in G$ and a lift \tilde{g} of g to Γ^{2}.

Recall that $P_{0}=\left\{\gamma \in \Gamma^{g} \mid C_{\gamma}=0\right\}$, which corresponds to the Siegel parabolic subgroups. Put $\bar{P}_{0}=\left\{g \in G \mid C_{g}=0\right.$, $\left.\operatorname{det} D_{g} \in\{ \pm 1\}\right\}$, and u_{0} the character of P_{0} or \bar{P}_{0} defined by $u_{0}(\gamma)=\operatorname{det} D_{\gamma}$. Notice that \bar{P}_{0} is the image of P_{0} under the canonical map $\Gamma^{2} \rightarrow G$. Then we have

$$
\begin{equation*}
C_{0}\left(\left.f\right|_{k} \gamma\right)=u_{0}(\gamma)^{k} C_{0}(f) \quad \text { for } \gamma \in P_{0} \tag{5.1}
\end{equation*}
$$

(cf. [Gu, Lemma 3.2]).
Let $H=\left\{h \in G \mid C_{h}=0\right\}$ be a subgroup of G. Notice that H is the image of $\Gamma_{0}^{2}(p)$ under the canonical map $\Gamma^{2} \rightarrow G$. The character $\widetilde{\psi}$ of H is defined by $\widetilde{\psi}(h)=\psi\left(\operatorname{det} D_{h}\right)$ for a Dirichlet character ψ modulo p.

Lemma 5.2 ([$\mathbf{G u}$, Lemma 3.3, 3.4]). The representation of G on $\mathcal{E}_{k}\left(\Gamma^{2}(p)\right)$ is isomorphic to a sub-representation of

$$
\operatorname{Ind} \frac{G}{P_{0}}\left(u_{0}^{k}\right)=\bigoplus_{\psi(-1)=(-1)^{k}} \operatorname{Ind}_{H}^{G}(\widetilde{\psi})
$$

From the Frobenius reciprocity law

$$
\begin{equation*}
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G}(\widetilde{\psi}), \mathcal{E}_{k}\left(\Gamma^{2}(p)\right)\right) \simeq \operatorname{Hom}_{H}\left(\widetilde{\psi}, \mathcal{E}_{k}\left(\Gamma^{2}(p)\right)\right) \simeq \mathcal{E}_{k}\left(\Gamma_{0}^{2}(p), \bar{\psi}\right) \tag{5.2}
\end{equation*}
$$

Recall that $\Gamma_{0}^{2}(p) \backslash \mathbb{H}_{2}$ has three 0 -dimensional cusps, that is a representative set of $\Gamma_{2}^{0}(p) \backslash S p(2, \mathbb{Z}) / P_{0}$ is give by three elements

$$
1_{4}, J_{2}, \text { and } M=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The structure of the boundary of the Satake compactification of $\Gamma_{0}^{2}(p) \backslash \mathbb{H}_{2}$ is given by the following figure.

The meaning of the above figure is as follows. For $f \in M_{k}\left(\Gamma_{0}^{2}(p)\right)$, put

$$
\Phi(f)(z)=\lim _{\lambda \rightarrow \infty} f\left(\left(\begin{array}{cc}
z & 0 \\
0 & i \lambda
\end{array}\right)\right), \quad z \in \mathbb{H}_{1},
$$

which is called the Siegel operator. Then

$$
\begin{equation*}
C_{0}\left(\left.f\right|_{k} M\right)=C_{0}\left(\left.\Phi(f)\right|_{k} J_{1}\right)=C_{0}\left(\left.\Phi\left(\left.f\right|_{k} J_{2}\right)\right|_{k} J_{1}\right) . \tag{5.3}
\end{equation*}
$$

We use the following Lemma.
Lemma 5.3 ([Gu, Lemma 3.7]). If $\psi^{2} \not \equiv 1$, then $C_{0}\left(\left.f\right|_{k} M\right)=0$ for all $f \in$ $M_{k}\left(\Gamma_{0}^{2}(p), \psi\right)$.

In particular

$$
\begin{equation*}
\operatorname{dim} \mathcal{E}_{k}\left(\Gamma^{2}(p), \psi\right) \leq 2 \quad \text { if } \quad \psi^{2} \not \equiv 1 \tag{5.4}
\end{equation*}
$$

Finally we quote the result of Srinivasan $[\mathbf{S r}]$, which classified all the irreducible characters of $S p\left(2, \mathbb{F}_{p}\right)$. Fix a generator ξ of \mathbb{F}_{p}^{\times}and define the Dirichlet character ψ_{l} by $\psi_{l}\left(\xi^{a}\right)=\boldsymbol{e}(a l /(p-1))$. Then

$$
\operatorname{Ind}_{H}^{G}\left(\widetilde{\psi}_{l}\right)= \begin{cases}1_{G} \oplus \underbrace{\theta_{9}}_{p(p+1)^{2} / 2} \oplus \underbrace{\theta_{11}}_{p\left(p^{2}+1\right) / 2} & l=0 \tag{5.5}\\ \underbrace{\theta_{3}}_{\left(p^{2}+1\right) / 2} \oplus \underbrace{\theta_{4}}_{\left(p^{2}+1\right) / 2} \oplus \underbrace{\Phi_{9}}_{p\left(p^{2}+1\right)} & l=\frac{p-1}{2} ; \\ \underbrace{\chi_{8}(|l|)}_{(p+1)\left(p^{2}+1\right)} & -\frac{p-3}{2} \leq l \leq \frac{p-3}{2}, l \neq 0\end{cases}
$$

5.1. The case of weight 3 .

Let $g=2$ and $k=3$. We prove the following theorem.
Theorem 5.4.

$$
\operatorname{dim} \mathcal{E}_{3}\left(\Gamma^{2}(p)\right)=\frac{1}{2}\left(p^{4}-1\right)
$$

To prove this theorem, we show the following.
Theorem 5.5. For $\psi(-1)=-1$, we have

$$
\operatorname{dim} \mathcal{E}_{3}\left(\Gamma_{0}^{2}(p), \psi\right)= \begin{cases}3 & \psi^{2} \equiv 1 \\ 2 & \psi^{2} \not \equiv 1\end{cases}
$$

Proof of Theorem 5.4 under Theorem 5.5. By Lemma 5.2 and (5.2), we
know that $\operatorname{dim} \mathcal{E}_{3}\left(\Gamma_{0}^{2}(p), \psi\right)$ is the number of the irreducible component of $\operatorname{Ind}_{H}^{G}(\widetilde{\psi})$ contained in $\mathcal{E}_{3}\left(\Gamma^{2}(p)\right)$. Then Theorem 5.5 and (5.5) shows that $\operatorname{Ind} \frac{G}{P_{0}} u_{0}=\mathcal{E}_{3}\left(\Gamma^{2}(p)\right)$, whose dimension is $\left(p^{4}-1\right) / 2$.

Let us start to prove Theorem 5.5. Shimura proved the holomorphy of $E_{p, \psi}^{3}(Z)=$ $E_{p, \psi}^{3}(Z, 0)$ in [Sh2, Theorem 7.1], by considering the Fourier expansion of $\left.E_{p, \psi}^{3}\right|_{3} J_{2}(Z)$. Moreover one can write down the Fourier expansion of $E_{p, \psi}^{3}(Z, s)$ explicitly by the result of Section 3-Section 5. From (2.4), the constant term of $E_{p, \psi}^{3}(Z, s)$ is given by

$$
1+S_{1}(\psi, 0,3+2 s) \sum_{\left(q_{1}, q_{2}\right)=1} \xi_{1}\left(Y\left[\binom{q_{1}}{q_{2}}\right], 0,3+s, s\right)+S_{2}(\psi, 0,3+2 s) \xi_{2}(Y, 0,3+s, s) .
$$

By Proposition 3.3 the second term is 0 for any odd character ψ. For the third term, by Theorem 3.1 we have

$$
\xi_{2}(Y, 0,3+s, s)=(\text { const. }) \times \frac{\Gamma(2 s+1 / 2) \Gamma(2 s)}{\Gamma(s+3) \Gamma(s+1 / 2) \Gamma(s) \Gamma(s-1 / 2)}
$$

which has a zero at $s=0$, while $S_{2}(\psi, 0,3+2 s)$ is 0 or at least finite at $s=0$ by Theorem 3.4 and Lemma 4.1 (note that $L(1, \psi)$ is finite since $\psi \not \equiv 1$). Hence the constant term is 1. Similarly one can check that, for h with $\operatorname{rank} h=1, \xi_{2}(Y, h, s+3, s) S_{2}(\psi, h, 2 s+3)=0$ at $s=0$. As a consequence we have

$$
\begin{align*}
E^{3}(Z, s)= & 1+\sum_{m=1}^{\infty} \sum_{\substack{\left(q_{1}, q_{2}\right) \in \mathbb{Z}^{2} /\{ \pm 1\} \\
\left(q_{1}, q_{2}\right)=1}} \frac{6 \psi\left(m^{\prime}\right) \sigma_{2}^{\psi}(m)}{B_{3, \bar{\psi}} p^{2} \operatorname{ord} d_{p} m} \boldsymbol{e}\left(m\left(\begin{array}{cc}
q_{1}^{2} & q_{1} q_{2} \\
q_{1} q_{2} & q_{2}^{2}
\end{array}\right) Z\right) \\
& -(2 \pi)^{5} \sum_{\substack{h \in \operatorname{Sym}^{2}(Z)^{*} \\
h>0}}(\operatorname{det} h)^{3 / 2} S_{2}(\psi, h, 3) \boldsymbol{e}(h Z), \tag{5.6}
\end{align*}
$$

here $\sigma_{k}^{\psi}(m)=\sum_{d \mid m} \psi(d) d^{k}$ and $m^{\prime}=m / p^{\operatorname{ord}_{p} m}$ for each m. Also this formula shows the holomorphy of $E_{p, \psi}^{3}(Z)$.

We shall compute the value of $E_{p, \bar{\psi}}^{3}(Z) \in \mathcal{E}_{2}\left(\Gamma_{0}^{2}(p), \psi\right)$ at each 0-dimensional cusp of $\Gamma_{0}^{2}(p) \backslash \mathbb{H}_{2}$. By (5.6) we have

$$
C_{0}\left(E_{p, \bar{\psi}}^{3}(Z)\right)=1
$$

For the value at J_{2}, as is calculated in [Sh2], one can write

$$
\begin{aligned}
& \left.\left((\operatorname{det} Y)^{s} E_{p, \bar{\psi}}^{k}\right)\right|_{k} J_{2}(Z, s) \\
& \quad=\operatorname{det}(Y)^{s} \sum_{(C, D) \in \mathcal{M}_{2}, D \equiv 0 \bmod p} \psi(\operatorname{det} C) \operatorname{det}(C Z+D)^{-k}|\operatorname{det}(C Z+D)|^{-2 s}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{\operatorname{det}(Y)^{s}}{p^{2(k+2 s)}} \sum_{h \in \operatorname{Sym}^{2}(\mathbb{Z})^{*}} \prod_{q \neq p} S_{2}^{q}(\psi, h, k+2 s) \xi_{2}\left(\frac{1}{p} Y, h, k+s, s\right) \boldsymbol{e}\left(\frac{1}{p} h X\right) \tag{5.7}
\end{equation*}
$$

If rank $h<2, \prod_{q \neq p} S_{2}^{q}$ is finite at $s=0$, while ξ_{2} has a zero at $s=0$ thanks to the term " $\Gamma_{g-q}(\beta)^{-1}$ " in Theorem 3.1. Thus we have

$$
\left.E_{p, \bar{\psi}}^{3}\right|_{3} J_{2}(Z)=0 .
$$

Finally we compute the value at M. It is hard to write down the Fourier expansion of $\left.E_{p, \bar{\psi}}^{3}\right|_{3} M(Z)$, since at the cusp M, the "Siegel series" does not have an Euler product. In order to compute $C_{0}\left(\left.E_{p, \bar{\psi}}^{3}\right|_{3} M(Z)\right)$, we use the relation (5.3). The formula (5.6) shows that

$$
\Phi\left(E_{p, \bar{\psi}}^{3}(Z)\right)=e_{p, \bar{\psi}}^{3}(z):=\sum_{\left(\begin{array}{c}
* \\
c \\
c
\end{array}\right) \in P_{0} \backslash \Gamma_{0}^{1}(p)} \bar{\psi}(d)(c z+d)^{-3},
$$

whose infinite sum converges uniformly. Thus $C_{0}\left(\left.E_{p, \psi}^{3}\right|_{k} M(Z)\right)=C_{0}\left(\left.e_{p, \bar{\psi}}^{3}\right|_{k} J_{1}(z)\right)=0$. As a consequence

$$
C_{0}\left(\left.E_{p, \bar{\psi}}^{3}\right|_{3} \gamma\right)= \begin{cases}1 & \gamma=1_{4} \tag{5.8}\\ 0 & \gamma=M, \\ \end{cases}
$$

We shall construct other functions. For $T \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)$, put $\delta(T)=\left(\begin{array}{cc}0 & 1_{2} \\ -1_{2} & T\end{array}\right)$. Then $\left\{\delta(T) \mid T \in \mathbb{F}_{p}\right\}$ is a representative set of $\Gamma_{0}^{2}(p) \backslash \Gamma_{0}^{2}(p) J_{2} \Gamma_{0}^{2}(p)$. Fix $\gamma \in \Gamma_{0}^{2}(p)$. Since $\{\delta(T) \gamma\}_{T \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)}$ is also a representative set of $\Gamma_{0}^{2}(p) \backslash \Gamma_{0}^{2}(p) J_{2} \Gamma_{0}^{2}(p)$, for $T_{i} \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)$, there exist $u \in \Gamma_{0}^{2}(p)_{\sim}$ and $T_{j} \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)$ such that $\delta\left(T_{i}\right) \gamma=u \delta\left(T_{j}\right)$. By a direct computation we have $\widetilde{\psi}(u)=\widetilde{\psi}(\gamma)^{-1}$. Thus if we put

$$
\begin{equation*}
F_{p, \psi}^{3}=\left.\sum_{T \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)} E_{p, \psi}^{3}\right|_{2} \delta(T), \tag{5.9}
\end{equation*}
$$

then we have $F_{p, \psi}^{3} \in M_{2}\left(\Gamma_{0}^{2}(p), \psi\right)$. Using (5.1) and (5.8), an easy calculation shows

$$
\Phi^{0}\left(\left.F\right|_{k} \gamma\right)= \begin{cases}1 & \gamma=J_{2} \\ 0 & \gamma=1 \text { or } M\end{cases}
$$

Thus we have $\operatorname{dim} \mathcal{E}_{3}\left(\Gamma_{0}^{2}(p), \psi\right)=2$ by (5.4) for $\psi^{2} \not \equiv 1$. If $\psi^{2} \equiv 1$, put

$$
\begin{equation*}
G^{3}:=\left.\sum_{c_{1}, d_{2} \in \mathbb{Z} / p} E_{p, \psi}^{3}\right|_{3} \alpha\left(c_{1}, d_{2}\right)+\left.\sum_{d_{1} \in \mathbb{Z} / p} E_{p, \psi}^{3}\right|_{3} \beta\left(d_{1}\right) \tag{5.10}
\end{equation*}
$$

with

$$
\alpha\left(c_{1}, d_{2}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
c_{1} & 1 & 0 & d_{2} \\
0 & 0 & -1 & c_{1}
\end{array}\right), \quad \beta\left(d_{1}\right)=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & d_{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Here $\left\{\alpha\left(c_{1}, d_{2}\right), \beta\left(d_{1}\right) \mid c_{1}, d_{2}, d_{1} \in \mathbb{Z} / p\right\}$ is a representative set of $\Gamma_{0}^{2}(p) \backslash \Gamma_{0}^{2}(p) M \Gamma_{0}^{2}(p)$. Similarly one can show $G^{3} \in M_{3}\left(\Gamma_{0}^{2}(p), \psi\right)$ and

$$
C_{0}\left(\left.G^{3}\right|_{3} \gamma\right)= \begin{cases}1 & \gamma=M \\ 0 & \gamma=1_{4}, J_{2}\end{cases}
$$

Thus $E_{p, \bar{\psi}}^{3}, F_{p, \psi}^{3}$ and G^{3} form a basis of $\mathcal{E}_{3}\left(\Gamma_{0}^{2}(p), \psi\right)$, which completes the proof of Theorem 5.5.

5.2. The case of weight 2 .

In this section we consider the case of weight 2 . First assume that $\psi^{2} \not \equiv 1$. By using the explicit formula, one can check that $E_{p, \psi}^{2}(Z)=E_{p, \psi}^{2}(Z, 0) \in M_{2}\left(\Gamma_{0}^{2}(p), \psi\right)(c f .[\mathbf{S h 2}$, Theorem 10.4]) and $C_{0}\left(E_{p, \psi}^{2}(Z)\right)=1$. Moreover (5.7) shows $C_{0}\left(\left.E_{p, \psi}^{2}\right|_{2} J_{2}\right)=0$. Thus we have $\operatorname{dim} \mathcal{E}_{2}\left(\Gamma_{0}^{2}(p), \psi\right)=2$, whose basis is given by $\left\{E_{p, \bar{\psi}}^{2}, F_{p, \psi}^{2}\right\}$, where $F_{p, \psi}^{2}$ is defined as in (5.9).

Next we consider the case $\psi^{2} \equiv 1$. For such a character ψ, one can check that $E_{p, \psi}^{2}(Z, s)$ is finite at $s=0$, but not holomorphic in Z. Instead of considering $E_{p, \psi}^{2}(Z, 0)$, we consider

$$
\widetilde{E}_{p, \psi}(Z, s)=L(2+2 s, \psi) L\left(2+4 s, \psi^{2}\right) \operatorname{det}(Y)^{s} E_{p, \psi}^{2}(Z, s)
$$

following $[\mathbf{B S}]$. As is shown in [BS, Proposition 5.2. b)],

$$
E_{p, \psi}^{2}(Z):=E^{2}\left(Z,-\frac{1}{2}\right) \in M_{2}\left(\Gamma_{0}^{2}(p), \psi\right)
$$

for all even Dirichlet character ψ. This fact can also be shown by using our Fourier expansion.

We have the following two cases.
Case 1) $\psi=1_{p}$ is the trivial character modulo p. It is known that the space of elliptic Eisenstein series $\mathcal{E}_{2}\left(\Gamma_{0}^{1}(p)\right)$ is one-dimensional, and a basis is given by $e_{p, 1_{p}}^{2}(z, 0)$, whose value at each cusp ∞ and 0 is 1 and $-1 / p^{2}$, respectively. Thus the figure of the boundary shows that $\mathcal{E}_{2}\left(\Gamma_{0}^{2}(p)\right)=1$.
Case 2) $\psi=\chi_{p}$ is the non-trivial quadratic character modulo p. Note that this case happens only when $p \equiv 1 \bmod 4$. Using $E_{p, \chi_{p}}^{2}$, we can construct $F_{p, \chi_{p}}^{2}$ and $G_{p, \chi_{p}}^{2}$ similar to (5.9) and (5.10) respectively. Then the values of these functions at the cusps are

$$
C_{0}\left(\left.E_{p, \chi_{p}}^{2}\right|_{2} \gamma\right)=\left\{\begin{array}{ll}
1 & \gamma=1_{4} ; \\
0 & \gamma=M ; \\
-\frac{1}{p^{2}} & \gamma=J_{4},
\end{array} \quad C_{0}\left(\left.F_{p, \chi_{p}}^{2}\right|_{2} \gamma\right)= \begin{cases}-p & \gamma=1_{4} \\
0 & \gamma=M \\
\frac{1}{p} & \gamma=J_{4}\end{cases}\right.
$$

and

$$
C_{0}\left(\left.G_{p, \chi_{p}}^{2}\right|_{2} \gamma\right)=0 \text { for all } \gamma
$$

Thus we can get only one dimensional subspace in $\mathcal{E}^{2}\left(\Gamma_{0}^{2}(p), \chi_{p}\right)$. In order to get other elements, we use the theta series. Let $Q \in M_{4}(\mathbb{Z})$ be an even symmetric positive definite matrix of determinant p, and set $Q^{\prime}=p Q^{-1}$. Put

$$
\theta^{Q}(Z)=\sum_{N \in M_{4,2}(\mathbb{Z})} e\left(\frac{1}{2} t^{t} N Q N Z\right), \quad \theta^{Q^{\prime}}(Z)=\sum_{N \in M_{4,2}(\mathbb{Z})} e\left(\frac{1}{2} t^{t} N Q^{\prime} N Z\right)
$$

then it is known that $\theta^{Q}, \theta^{Q^{\prime}} \in M_{2}\left(\Gamma_{0}^{2}(p), \chi_{p}\right)$ (cf. [An]). The values of θ^{Q} and $\theta^{Q^{\prime}}$ at each cusp are given by

$$
C_{0}\left(\left.\theta^{Q}\right|_{2} \gamma\right)=\left\{\begin{array}{ll}
1 & \gamma=1_{4} \\
-\frac{1}{\sqrt{p}} & \gamma=M ; \\
\frac{1}{p} & \gamma=J_{2}
\end{array} \quad C_{0}\left(\left.\theta^{Q^{\prime}}\right|_{2} \gamma\right)= \begin{cases}1 & \gamma=1_{4} \\
-\frac{1}{p \sqrt{p}} & \gamma=M \\
\frac{1}{p^{3}} & \gamma=J_{2}\end{cases}\right.
$$

However since

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -\frac{1}{\sqrt{p}} & -\frac{1}{p \sqrt{p}} \\
-\frac{1}{p^{2}} & \frac{1}{p} & \frac{1}{p^{3}}
\end{array}\right)=0
$$

$\widetilde{E}_{p, \chi_{p}}^{2}, \theta^{Q}$ and $\theta^{Q^{\prime}}$ are linearly dependent in $\mathcal{E}^{2}\left(\Gamma_{0}^{2}(p), \chi_{p}\right)$. As a consequence we have the following.

Theorem 5.6. Let ψ be the even Dirichlet character modulo p.

$$
\operatorname{dim} \mathcal{E}^{2}\left(\Gamma_{0}^{2}(p), \psi\right)= \begin{cases}2 & \psi^{2} \neq 1 \\ 1 & \psi=1_{p} \\ 2 \text { or } 3 & \psi=\chi_{p}\end{cases}
$$

Note that $\psi=\chi_{p}$ will occur only when $p \equiv 1 \bmod 4$.

Finally we consider the case of $\Gamma^{2}(p)$. First we study G-subspace in $\mathcal{E}^{2}\left(\Gamma^{2}(p)\right)$ generated by $\left\{E_{p, 1_{p}}^{2}\right\}$ or $\left\{E_{p, \chi_{p}}^{2}\right\}$.

Lemma 5.7. (1) The subspace in $\mathcal{E}^{2}\left(\Gamma^{2}(p)\right)$ spanned by $\left\{E_{p, 1_{p}}^{2}\left|{ }_{2} \gamma\right| \gamma \in \Gamma^{2}\right\}$ is $p\left(p^{2}+1\right) / 2$ dimensional.
(2) The subspace in $\mathcal{E}^{2}\left(\Gamma^{2}(p)\right)$ spanned by $\left\{E_{p, \chi_{p}}^{2}|2 \gamma| \gamma \in \Gamma^{2}\right\}$ is $p^{3}+p$ dimensional.

Proof. We only show (1), for (2) can be shown similarly. Since $E_{p, 1_{p}}^{2}(Z) \in$ $M_{2}\left(\Gamma_{0}^{2}(p)\right)$, it suffices to consider the functions $E_{p, 1_{p}}^{2} \mid{ }_{2} \gamma$ with $\gamma \in \Gamma_{0}^{2}(p) \backslash \Gamma^{2}$. The representative set of $\Gamma_{0}^{2}(p) \backslash \Gamma^{2}$ is given by

$$
\begin{gathered}
\left\{\left.\gamma(T)=\left(\begin{array}{cc}
0 & -1_{2} \\
1_{2} & T
\end{array}\right) \right\rvert\, T \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)\right\} \amalg\left\{\left.\delta(s, t)=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & s & t & 0 \\
0 & 0 & -s & 1
\end{array}\right) \right\rvert\, s, t \in \mathbb{F}_{p}\right\} \\
\amalg\left\{\left.\xi(u)=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & u \\
0 & 0 & 1 & 0
\end{array}\right) \right\rvert\, u \in \mathbb{F}_{p}\right\} \amalg\left\{1_{4}\right\} .
\end{gathered}
$$

For $A \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)$ we put $F_{A}(Z)=\left.\sum_{T \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)} \boldsymbol{e}(-A T / p) E_{p, 1_{p}}^{2}\right|_{2} \gamma(T)$ and $X=$ $\left\{A \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right) \mid F_{A}(Z) \neq 0\right\}$. Then $\left\langle\left. E_{p, 1_{p}}^{2}\right|_{2} \gamma(T) \mid T \in \operatorname{Sym}^{2}\left(\mathbb{F}_{p}\right)\right\rangle_{\mathbb{C}}=\left\langle F_{A}\right| A \in$ $X\rangle_{\mathbb{C}}$ and $\left\{F_{A}\right\}_{A \in X}$ are linearly independent since each F_{A} belongs to relatively distinct simultaneous eigen-space under the action of $U=\left\{\left(\begin{array}{cc}1_{2} & T \\ 0 & 1_{2}\end{array}\right) \in \Gamma^{2}\right\}$. Now looking at the value at each 0 -dimensional cusp of $\Gamma^{2}(p) \backslash \mathbb{H}_{2}$, we have $\sharp X=p\left(p^{2}+1\right) / 2$.

Next we consider the set $\{\gamma(s, t)\}$. Put $G_{\alpha, s}=\left.\sum_{t \in \mathbb{F}_{p}} \boldsymbol{e}(-\alpha t / p) E_{p, 1_{p}}^{2}\right|_{2} \gamma(s, t)$, then $\left\langle\left. E_{p, 1_{p}}^{2}\right|_{2} \gamma(s, t) \mid s, t \in \mathbb{F}_{p}\right\rangle_{\mathbb{C}}=\left\langle G_{\alpha, s} \mid \alpha, s \in \mathbb{F}_{p}\right\rangle_{\mathbb{C}}$. Moreover by looking at the value at 0 -dimensional cusps, we can check that $G_{\alpha, s}$ coincides to constant multiple of F_{A} with $A=\alpha\left(\begin{array}{ll}1 & s \\ s & s^{2}\end{array}\right)$.

For the set of $\{\xi(u)\}$, let $H_{\alpha}=\left.\sum_{u \in \mathbb{F}_{p}} \boldsymbol{e}(-\alpha u) E_{p, 1_{p}}^{2}\right|_{2} \xi(u)$. Also we can show that H_{α} equals to the constant multiple of F_{A} with $A=\left(\begin{array}{ll}0 & 0 \\ 0 & u\end{array}\right)$.

Finally one can check that $F_{\left(\begin{array}{ll}0 & 0 \\ 0\end{array}\right)}$ ($)=p E_{p, 1_{p}}^{2}$. As a consequence we have $\operatorname{dim}\left\langle\left. E_{p, 1_{p}}^{2}\right|_{2} \gamma \mid \gamma \in \Gamma_{0}^{2}(p) \backslash \Gamma^{2}(p)\right\rangle_{\mathbb{C}}=\sharp X=p\left(p^{2}+1\right) / 2$. This proves the lemma.

Now we decompose the space $\mathcal{E}_{2}\left(\Gamma^{2}(p)\right)$ into the irreducible representation of G. If $p \equiv 1 \bmod 4$, it is the sub-representation of

$$
\underbrace{1_{G} \oplus \theta_{9} \oplus \theta_{11}}_{\operatorname{Ind}_{H}^{G} 1_{G}} \oplus \underbrace{\theta_{3} \oplus \theta_{4} \oplus \Phi_{9}}_{\operatorname{Ind}_{H}^{G} \chi_{p}} \oplus \underbrace{\bigoplus}_{\substack{0<l \leq(p-3) / 2 \\ l: \text { even }}} 2 \chi_{8}(l)
$$

if $p \equiv 3 \bmod 4$, it is the sub-representation of

$$
\underbrace{1_{G} \oplus \theta_{9} \oplus \theta_{11}}_{\operatorname{Ind}_{H}^{G} 1_{G}} \oplus \bigoplus_{\substack{0<l \leq(p-3) / 2 \\ l: \text { even }}} 2 \chi_{8}(l)
$$

The formula (5.2) says that the number of the irreducible components appearing in $\operatorname{Ind}_{H}^{G} \widetilde{\psi} \cap \mathcal{E}_{2}\left(\Gamma^{2}(p)\right)$ equals to $\operatorname{dim} \mathcal{E}_{2}\left(\Gamma_{0}^{2}(p), \psi\right)$. If $\psi^{2} \neq 1$, then $\operatorname{Ind}_{H}^{G} \widetilde{\psi}=\operatorname{Ind}_{H}^{G} \widetilde{\psi}^{-1}=$ $\chi_{8}(l)$ for some l, thus every $\chi_{8}(l)$ appears 2 times in $\mathcal{E}_{2}\left(\Gamma^{2}(p)\right)$. For the contribution of $\operatorname{Ind}_{H}^{G} 1_{G}$, Theorem 5.6 shows that only one of $\left\{1_{G}, \theta_{9}, \theta_{11}\right\}$ appears in $\mathcal{E}_{2}\left(\Gamma^{2}(p)\right)$, it must be θ_{11} by the above lemma. Finally for the contribution of $\operatorname{Ind}_{H}^{G} \chi_{p}$ (it occurs only when $p \equiv 1 \bmod 4$), all or two of $\left\{\theta_{3}, \theta_{4}, \Phi_{9}\right\}$ appears in $\mathcal{E}_{2}\left(\Gamma^{2}(p)\right)$. The above lemma shows that $\mathcal{E}_{2}\left(\Gamma^{2}(p)\right)$ contains Φ_{9}, thus $\operatorname{dim}\left(\mathcal{E}_{2}\left(\Gamma^{2}(p)\right) \cap \operatorname{Ind}_{H}^{G}\left(\chi_{p}\right)\right)=(p+1)\left(p^{2}+1\right)$ or $(p+1 / 2)\left(p^{2}+1\right)$. As a consequence we have the following.

Theorem 5.8. (1) If $p \equiv 3 \bmod 4$, then

$$
\operatorname{dim} \mathcal{E}_{2}\left(\Gamma^{2}(p)\right)=\frac{1}{2}\left(p^{2}+1\right)\left(p^{2}-p-3\right)
$$

(2) If $p \equiv 1 \bmod 4$, then

$$
\operatorname{dim} \mathcal{E}_{2}\left(\Gamma^{2}(p)\right)=\frac{1}{2}\left(p^{2}+1\right)\left(p^{2}-p-3\right) \text { or } \frac{1}{2}\left(p^{2}+1\right)\left(p^{2}-p-4\right) .
$$

Open Problems. At present, the author cannot determine whether $\operatorname{dim} \mathcal{E}_{2}\left(\Gamma_{0}^{2}(p), \chi_{p}\right)$ is 2 or 3 . If $\operatorname{dim} \mathcal{E}_{2}\left(\Gamma_{0}^{2}(p), \chi_{p}\right)$ were 3 , we need to construct a function by another method. On the other hand if $\operatorname{dim} \mathcal{E}_{2}\left(\Gamma_{0}^{2}(p), \chi_{p}\right)$ were 2 , it seems difficult to show that, since we can only show $\operatorname{dim} \mathcal{E}_{2}\left(\Gamma_{0}^{2}(p), \chi_{p}\right) \leq 3$ by the structure of the cusp.

References

[An] A. N. Andrianov, Quadratic forms and Hecke operators, Grundl. math. Wiss., 286, SpringerVerlag, 1987.
[BS] S. Böcherer and C.-G. Schmidt, p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier (Grenoble), 50 (2000), 1375-1443.
[Gu] K. Gunji, The dimension of the space of Siegel Eisenstein series of weight one, Math. Z., 260 (2008), 187-201.
[He] E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Univ. Hamburg, 5 (1927), 199-224; Mathematische Werke, Göttingen Vandenhoeck \& Ruprecht, 1970, 461-486.
[Kat] H. Katsurada, An explicit formula for Siegel series, Amer. J. Math., 121 (1999), 415-452.
[Kau] G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades, Math. Ann., 137 (1959), 454-476.
[Ma] H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., 216, SpringerVerlag, Berlin-New York, 1971.
[Mi] T. Miyake, Modular forms, Springer-Verlag, Berlin, 1989.
[Miz] Y. Mizuno, An explicit arithmetic formula for the Fourier coefficients of Siegel-Eisenstein series of degree two and square-free odd levels, preprint.
[Sc] B. Schoeneberg, Elliptic Modular Functions, Grundle. math. Wiss., 203, Springer-Verlag, 1974.
[Sh1] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302.
[Sh2] G. Shimura, On Eisenstein series, Duke Math. J., 50 (1983), 417-476.
[Sr] B. Srinivasan, The character of the finite symplectic group $S p(4, q)$, Trans. Amer. Math. Soc., 131 (1968), 488-525.
[Ta] S. Takemori, p-adic Siegel Eisenstein series of degree two, J. Number Theory, 132 (2012), 12031264.

Keiichi Gunji
Department of Mathematics Chiba Institute of Technology 2-1-1 Shibazono, Narashino Chiba 275-0023, Japan
E-mail: keiichi.gunji@it-chiba.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 11F46; Secondary 11F30.
 Key Words and Phrases. Siegel modular forms, Eisenstein series.
 This research was supported in part by Grant-in-Aid for Young Scientists (B).

