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Abstract. In this paper, we give the Fourier coefficients of Siegel
Eisenstein series of degree 2, level p, in order to calculate the dimensions
of the space of Eisenstein series for low weights. The main methods of the cal-
culation is to compute the Siegel series of level p directly, following the similar
way to that of Kaufhold.

1. Introduction.

Let Z be an element of the Siegel upper half space Hg. For a congruence subgroup
Γ ⊂ Sp(g,Z), the Siegel Eisenstein series Ek(Z;Γ ) are defined by

Ek(Z;Γ ) =
∑

γ∈P0∩Γ\Γ
det(CγZ + Dγ)−k, (1.1)

here P0 is the subgroup of Sp(g,Z) consisting all the elements whose lower-left (g, g)-
block is the zero matrix. The infinite sum of the right-hand side converges uniformly
on Hg, when k > g + 1. For example let Γ = Γ g(N) be the principle congruence
subgroup of level N . Put Mk(Γ g(N)) the space of Siegel modular forms of weight
k and Lk(Γ g(N)) the subspace of Mk(Γ g(N)) consisting of the functions whose con-
stant term of the Fourier expansion vanishes at each 0-dimensional cusp. We set
Ek(Γ g(N)) = Mk(Γ g(N))/Lk(Γ g(N)). Then it is easy to show that Ek(Γ g(N)) is
spanned by {Ek(Z;Γ g(N))|kγ}γ∈Γ g if k > g + 1.

Now we consider the low weight cases. Since the right-hand side of (1.1) does not
converge, we use the “Hecke trick”. For s ∈ C, the non-holomorphic Siegel Eisenstein
series are defined by

Ek(Z, s;Γ ) =
∑

γ∈P0∩Γ\Γ
det(Cγ + Dγ)−k|det(Cγ + Dγ)|−2s,

which has an analytic continuation to whole s-plane. The famous paper of Shimura [Sh2]
starts from the following questions.

(1) For each Z ∈ Hg, Ek(Z, s;Γ ) is holomorphic at s = 0?
(2) If so, Ek(Z, 0;Γ ) is holomorphic in Z?
(3) If so, the Fourier coefficients of Ek(Z, 0, Γ ) are algebraic numbers?
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One of the main results of [Sh2] says that all of the above questions are affirmative when
k ≥ g + 1, that is we can construct Eisenstein series of 1 lower weight than before.

In the classical case of elliptic modular forms, stronger results are shown by Hecke.
Let Γ = Γ 1(N). Then for k = 1, 2, all the elements of Ek(Γ 1(N)) are constructed by
{Ek(Z, 0, Γ 1(N))|kγ | γ ∈ SL(2,Z)}.

In this paper we consider the following problem:

(4) Calculate the dimension spanned by Eisenstein series for low weight.

We mainly consider the case g = 2 and Γ = Γ 2(p) or Γ 2
0 (p) for an odd prime p. It suffices

to consider the case for Γ 2
0 (p), since the case of Γ 2(p) can be induced from the results

for the case of Γ 2
0 (p) using the representation theory of Sp(2,Fp). This natural question

(4) is not considered in [Sh2], because Shimura considered only the Fourier expansion
of Ek(Z, s;Γ 2

0 (N))|kJ2, and one has no information for other cusps. In order to get the
answer of (4), we have to consider the Fourier expansions at all cusps, in particular cusp
of infinity. The hardest part of the calculation is computing the Siegel series at p. In
Section 4 we compute the Siegel series directly. Recently Takemori [Ta] gives the explicit
formula of the Fourier expansion of E2

N,ψ (the definition is given below) for any natural
number N and primitive Dirichlet character ψ modulo N by a similar method.

Acknowledgements. The author thanks to Professor Takayuki Oda of the Uni-
versity of Tokyo for his constant support, also he thanks to Professor Hidenori Kat-
surada of Muroran Institute of Technology, who imformed him the work of Boecherer
and Schmidt [BS] and gave him quite useful discussions.

Notations. Let Γ g = Sp(g,Z) = {γ ∈ GL2g(Z) | tγJgγ = Jg} with Jg =( 0 1g

−1g 0

)
. For γ ∈ Γ g, square matrices Aγ , Bγ , Cγ , and Dγ of size g are defined by

γ =
( Aγ Bγ

Cγ Dγ

)
.

Throughout this paper p denotes an odd prime number. We put Γ g
0 (p) = {γ ∈ Γ g |

Cγ ≡ 0 mod p} and Γ g(p) = {γ ∈ Γ g | γ ≡ 1g mod p}. We define for g ≥ 2,

Mk(Γ g(p)) = {a holomorphic function f on Hg | f |kγ = f, ∀γ ∈ Γ g(p)},

with f |kγ(Z) = det(CγZ +Dγ)−kf(γ〈Z〉), γ〈Z〉 = (AγZ +Bγ)(CγZ +Dγ)−1. Moreover
we define

Mk(Γ g
0 (p), ψ) = {f ∈ Mk(Γ g(p)) | f |kγ = ψ(detDγ)f, ∀f ∈ Γ g

0 (p)}

for a Dirichlet character ψ modulo p. If g = 1 we also require the holomorphic condition
at each cusp.

In the following we consider the case g = 2. Let P0 = {γ ∈ Sp(2,Z) | Cγ = 0}. For
a Dirichlet character ψ modulo p such that ψ(−1) = (−1)k, we put

Ek
p,ψ(Z, s) =

∑

γ∈P0\Γ 2
0 (p)

ψ(detDγ) det(CγZ + Dγ)−k|det(CγZ + Dγ)|−2s.
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Then the infinite sum of the right hand side converges absolutely and uniformly on Hg

for Re(s) + k > 3. If k ≥ 4 then Ek
p,ψ(Z) := Ek

p,ψ(Z, 0) ∈ Mk(Γ 2
0 (p), ψ).

For a square matrix A ∈ Mn(R), we put e(A) = exp(2πi tr(A)).

2. Fourier expansion of the Siegel Eisenstein series.

In this section, we explain the Fourier expansion of Ek
p,ψ following [Ma]. All the

proofs of the facts below can be found in [Ma, Section 11, 12].

Lemma 2.1. For the pair (C, D) of integral (g, g)-matrices, the following conditions
are equivalent.

(1) There exist X, Y ∈ Mg(Z) such that CX + DY = 1g.
(2) For Q ∈ Mg(Q), QC, QD ∈ Mg(Z) if and only if Q ∈ Mg(Z).
(3) There exist U ∈ GLg(Z) and V ∈ GL2g(Z) such that U(C,D)V = (1g, 0).

Moreover theses conditions are stable under the left multiplication of the element of
GLg(Z).

Proof. (1) ⇒ (2) and (3) ⇒ (1) are obvious. For the proof of (2) ⇒ (3), by
the elementary divisor theorem, there exist U ∈ GLg(Z) and V ∈ GL2g(Z) such that
U(C, D)V = (T, 0) with T = diag(t1, . . . , tr, 0, . . . , 0), ti ∈ Z>0. If T 6= 1g one can find
a diagonal matrix R ∈ Mg(Q) rMg(Z) such that RT is integral. Put Q = RU , which
contradicts to (2). ¤

Definition 2.1. The pair of the matrices (C, D) ∈ Mg,2g(Z) is called co-prime if
it satisfies one of, hence all, the equivalent condition in Lemma 2.1. If (C, D) satisfies
C tD = D tC, then it is called symmetric.

We put

Mg = {(C, D) ∈ Mg,2g(Z) | (C, D) is symmetric and co-prime}

and Mr
g = {(C, D) ∈Mg | rankC = r}.

Lemma 2.2. The pair (C, D) ∈ Mg if and only if C = Cγ and D = Dγ for some
γ ∈ Sp(g,Z). In particular the representative set P0\Sp(g,Z) corresponds to GLg(Z)\Mg

bijectively.

Let Λg,r be the set of (g, r)-matrices Q ∈ Mg,r(Z) such that (Q,R) ∈ GLg(Z) with
some R ∈ Mg,g−r(Z).

Lemma 2.3. For each Q ∈ Λg,r, fix Q̃ = (Q, ∗) ∈ GLg(Z). Then a representative
set of GLg(Z)\Mr

g is given by

{((
C ′ 0
0 0

)
tQ̃,

(
D′ 0
0 1g−r

)
Q̃−1

) ∣∣∣∣
(C ′, D′) ∈ GLr(Z)\Mr

r,

Q ∈ Λg,r/GLr(Z)

}
.



1046 K. Gunji

These lemmas induce

Ek
p,ψ(Z, s) =

∑

(C,D)∈GL2(Z)\M2
C≡0 mod p

ψ(detD) det(CZ + D)−k|det(CZ + D)|−2s

= 1 +
∑

(q1,q2)∈Z2/{±1}
(q1,q2)=1

∑

(c,d)∈{±1}\M1
1

c≡0 mod p

ψ(d)(cZ[
( q1

q2

)
] + d)−k|(cZ[

( q1
q2

)
] + d)|−2s

+
∑

(C,D)∈GL2(Z)\M2
2

C≡0 mod p

ψ(detD) det(CZ + D)−k|det(CZ + D)|−2s. (2.1)

There exists a bijective map

GLg(Z)\Mg
g −→ Symg(Q), (C, D) 7−→ C−1D.

The inverse map is given as follows. For all T ∈ Symg(Q), there exist U, V ∈ SLg(Z)
such that

UTV =




ν1/δ1

. . .
νg/δg


 , δi > 0, (νi, δi) = 1 (2.2)

by the elementary divisor theorem. Then




δ1

. . .
δ1


 U,




ν1

. . .
νg


 V −1

gives the corresponding element in Mg
g. We put δ(T ) =

∏
i δi and ν(T ) =

∏
i νi =

det(T )δ(T ) for T ∈ Symg(Q). Then δ(T ) = |det C| and ν(T ) = ±detD for T = C−1D

with (C, D) ∈ Mg
g. Set Symg(Q)′ ⊂ Symg(Q) the image of {(C, D) ∈ Mg

g | C ≡
0 mod p} under the above map.

The third line of (2.1) becomes

∑

(C,D)∈GL2(Z)\M2
2

C≡0 mod p

ψ(detD) det C−k|detC|−2s det(Z + C−1D)−k|det(Z + C−1D)|−2s

=
∑

T∈Sym2(Q)′

ψ(ν(T ))δ(T )−k−2s det(Z + T )−k−s det(Z + T )−s

=
∑

T∈Sym2(Q)′

mod 1

ψ(ν(T ))δ(T )−k−2s
∑

S∈Symg(Z)
det(Z + T + S)−k−s det(Z + T + S)−s.
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Here we use the fact δ(T +S) = δ(T ) and ν(T +S) ≡ ν(T ) mod p; indeed for T = C−1D,
we have T + S = C−1(D + CS) and (C, D + CS) ∈ M2

2. Now for α, β ∈ C we consider
the Fourier expansion of

∑
S∈Symg(Z) det(Z + S)−α det(Z + S)−β (the branches of the

complex powers are determined suitably as in [Sh1, (1.11)]). Let

Symg(Z)∗ = {h ∈ Symg(Q) | tr(hA) ∈ Z for all A ∈ Symg(Z)},

be the set of half integral matrices of size g, whose elements consist of integral diagonal
entries, and half integral off-diagonal entries. Put e(X) = e2πi tr(X) for a square matrix
X. Then the Fourier expansion is written by

∑

S∈Symg(Z)
det(Z + S)−α det(Z + S)−β =

∑

h∈Symg(Z)∗
ξg(Y, h, α, β)e(hX),

with

ξg(Y, h, α, β) =
∫

Symg(R)

det(X + iY )−α det(X − iY )−βe(−hX) dX. (2.3)

Thus the third line of (2.1) is given by

∑

h∈Symg(Z)∗
S2(ψ, h, k + 2s)ξ2(Y, h, α, β),

where for s ∈ C, we set

Sg(ψ, h, s) =
∑

T∈Symg(Q)′

mod 1

ψ(ν(T ))δ(T )−se(hT ),

which is called the (generalised) Siegel series. As a consequence we get

Ek
p,ψ(Z, s) = 1 +

∑

m∈Z

∑

(q1,q2)∈Z2/{±1}
(q1,q2)=1

S1(ψ, m, k + 2s)ξ1(Y [
( q1

q2

)
],m, k + s, s)e(mX[( q1

q2 )])

+
∑

h∈Sym2(Z)∗
S2(ψ, h, k + 2s)ξ2(Y, h, k + s, s)e(hX). (2.4)

3. Known results.

There are some results for the computations of ξg and Sg. We collect them in this
section.

Theorem 3.1 (Shimura [Sh1, (4.34.K), Theorem 4.2]). For h ∈ Symg(Q)∗ with
sgn h = (p, q, r),
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ξg(Y, h;α, β) = ig(β−α)2uπvΓr

(
α + β − g + 1

2

)
Γg−q(α)−1Γg−p(β)−1

× det(Y )(g+1)/2−α−βd+(hY )α−(g+1)/2+q/4d−(hY )β−(g+1)/2+p/4

× ω(2πY, h, α, β),

with

u = (2p− g)α + (2q − g)β +
(g + r)(g + 1)

2
+

pq

2
− g(g − 1)

2
,

v = pα + qβ + r +
r(r − 1)− pq

2
.

Here d+(x) (resp. d−(x)) denotes the products of positive (resp. negative) eigenvalues
of x and Γm(s) = πm(m−1)/4

∏m−1
k=0 Γ(s − k/2). Moreover ω(2πY, h, α, β) is an entire

function with respect to α and β.

The function ωg can be written more explicitly in some special cases. We mainly
use the following:

1. ([Sh1, (3.15), (4.7.K), (4.10)]). If h > 0 then,

ωg(2πY, h, α, 0) = 2−g(g+1)/2e(hY ).

2. ([Sh1, (4.9)]).

ωg(2πY, 0, α, β) = 1.

3. ([Sh1, (4.35.K)]). If the signature of h is (p, 0, r) i.e. h is positive semi-definite then,

ωg(2πY, h, (g + 1)/2, β) = 2−p(g+1)/2πpr/2e(−hY ).

Next we investigate the Siegel series Sg(ψ, h, s). Let Symg(Q)q be the set of T ∈
Symg(Q) such that δ(T ) is a q-power for prime numbers q, and Symg(Q)′p = Symg(Q)′ ∩
Symg(Q)p. For all T ∈ Symg(Q) there exists a decomposition T =

∑r
i=0 Ti ∈ Symg(Q)

with Ti ∈ Symg(Q)qi
, which is unique modulo Symg(Z); indeed if we write 1/δ(T ) =∑r

i=0 xi/qei
i with prime divisors qi of δ(T ), each Ti is given by q−ei

i xiδ(T )T . If T ∈
Symg(Q)′, one of the qi, say q0, equals to p and we have

δ(T ) =
r∏

i=0

δ(Ti), ν(T ) ≡ ν(T0)
r∏

i=1

δ(Ti) mod p. (3.1)

The first equation is obvious. For the second, write T = C−1D with (C, D) ∈ Mg
g so

that detC = δ(T ). Then for the decomposition

D = CT0 + CT1 + · · ·+ CTr,



On the Siegel Eisenstein series of degree two for low weights 1049

each CTi ∈ Mg(Z) and CTi ≡ 0 mod p for i ≥ 1. Thus

ν(T ) = det(D) ≡ det(CT0) mod p = ν(T0)
r∏

i=1

δ(Ti).

Notice that for the decomposition T =
∑r

i=0 Ti, T ∈ Symg(Q)′ if and only if T0 ∈
Symg(Q)′p. As a consequence we have

Sg(ψ, h, s) =
∏

q: prime

Sq
g(ψ, h, s),

with

Sq
g(ψ, h, s) =





∑

T∈Symg(Q)q mod 1

ψ(δ(T ))δ(T )−se(hT ) q 6= p;

∑

T∈Symg(Q)′p mod 1

ψ(ν(T ))δ(T )−se(hT ) q = p.

If g = 1, the Siegel series are easy to compute as follows.

Proposition 3.2. Let ψ be a Dirichlet character modulo p and q 6= p a prime.

(1) If m = 0, the local Siegel series is given by

Sq
1(ψ, 0, s) =

1− ψ(q)q−s

1− ψ(q)q1−s
.

(2) If m = qtm′ with (m′, q) = 1, we have

Sq
1(ψ, m, s) = (1− ψ(q)q−s)Fq,m(ψ(q)q−s), with Fq,m(X) =

t∑

k=0

(qX)k.

Proposition 3.3. Let ψ be a Dirichlet character modulo p.

(1) If m = 0, the Siegel series are given by

Sp
1 (ψ, 0, s) =





0 ψ 6≡ 1;

p−s(p− 1)
(1− p1−s)

ψ ≡ 1.

(2) If m = ptm′ with (m′, p) = 1, then

Sp
1 (ψ, m, s) =

{
ψ(m′)G(ψ)p(1−s)t−s ψ 6≡ 1;

(1− q−s)Fq,m(q−s)− 1 ψ ≡ 1.
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Here G(ψ) is the Gaussian sum.

For g ≥ 2, Sq
g(ψ, h, s) (q 6= p) are studied by many Mathematicians, for example

Kaufhold, Siegel, Feit, Shimura, Kitaoka and finally Katsurada gave the explicit formula
[Kat]. Our case g = 2 is the Kaufhold’s result.

Theorem 3.4 (Kaufhold [Kau, (2,10), Hilfsatzs 10]).

∏

q 6=p

Sq
2(ψ, h, s) =





L(s− 2, ψ)L(2s− 3, ψ2)
L(s, ψ)L(2s− 2, ψ2)

h = 0;

L(2s− 3, ψ2)
L(s, ψ)L(2s− 2, ψ2)

∏

q 6=p

F
(q)
h (ψ(q)q−s) rankh = 1;

L(s− 1, ψχh)
L(s, ψ)L(2s− 2, ψ2)

∏

q 6=p

G
(q)
h (ψ(q)q−s) rankh = 2.

Here χh, F
(q)
h and G

(q)
h are defined as follows. For the discriminant Dh of quadratic

extension Q(
√
−det(2h))/Q, the quadratic character χh is given by χh(q) = (Dh/q)

for prime numbers q. Let α1 = ordp(g.c.d(h1, 2h2, h3)) for h =
(

h1 h2
h2 h3

)
and α =

(1/2) ordp(det(2h)/Dh). Then the polynomials Fh and Gh are defined by

F
(q)
h (X) =

α1∑

l=0

(qX)2l,

G
(q)
h (X) =

α1∑

l=0

(qX)2l

{ α−l∑
m=0

(q3X2)m − χh(q)qX
α−l−1∑
m=0

(q3X2)m

}
.

Note that F
(q)
h = G

(q)
h = 1 for all but finite primes q.

4. Terms corresponding to p.

In this section we calculate the Siegel series Sp(ψ, h, s). For our problem of the
dimension of the space of Eisenstein series, it suffices to compute the constant term of
Ek

p,ψ. However the Fourier expansion of Ek
p,ψ itself is interesting problem, so we calculate

Sp(ψ, h, s) for all h.
First we consider the case h = 0.

Lemma 4.1. Let ψ be a non-trivial Dirichlet character modulo p.

Sp
2 (ψ, 0, s) =





0 ψ2 6≡ 1;

ψ(−1)
(p− 1)p1−2s

1− p3−2s
ψ2 ≡ 1, ψ 6≡ 1.
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Proof. Before the calculation, we rewrite the set of summation. Let

M(p) = {(C,D) ∈M2
2 | C−1D ∈ Sym2(Q)′p}

and

M̃(p) = {(C, D) ∈ M2,4(Z) | det C is a p-power, C ≡ 0 mod p, (C, D) is symmetric}.

Property (3) of the co-prime condition in Lemma 2.1 shows that

(∗) if (C, D) is symmetric, there exists M ∈ Mg(Z) such that C ′ = MC, D′ = MD with
(C ′, D′) ∈M2

2.

Then

Sp
2 (ψ, h, s) =

∑

C

∑

D mod C
(C,D)∈SL(2,Z)\M(p)

ψ(detD)(detC)−se(C−1Dh)

=
∑

C

∑

D mod C

(C,D)∈SL(2,Z)\fM(p)

ψ(detD)(detC)−se(C−1Dh),

by (∗). For each (C, D) ∈ M̃(p), there exists U, V ∈ SL(2,Z) such that

UCV =
(

pk 0
0 pk+l

)
= T (k, l), k ≥ 1, l ≥ 0.

Then C−1D = V −1T (k, l)−1U−1D tV tV −1. Put U−1D tV =
(

a b
c d

)
. The pair (C, D)

is symmetric if and only if c = plb. Now C runs through the representative set
SL(2,Z)\SL(2,Z)T (k, l)SL(2,Z). If l ≥ 1, it is given by

{
T (k, l)W

∣∣∣∣ W =
(

1 u
0 1

)
, u ∈ Z/plZ

}
∪

{
T (k, l)W

∣∣∣∣ W =
(

pu 1
−1 0

)
, u ∈ Z/pl−1Z

}
,

while it is given by a single element T (k, k) if l = 0. For such C = T (k, l)W , D runs
through the set

{(
a b

plb d

)
tW−1

∣∣∣∣ a, b ∈ Z/pkZ, d ∈ Z/pk+lZ
}

.

Now we shall compute Sp
2 (ψ, 0, s). Assume that ψ 6≡ 1. For a fixed C = T (k, l)W ,

∑

D mod C

ψ(detD)(detC)−s =
1

p(2k+l)s

∑

a,b∈Z/pkZ
d∈Z/pk+lZ

ψ(ad− plb2). (4.1)



1052 K. Gunji

Put Λ(m) = #{(a, b, d) ∈ Z/pkZ × Z/pkZ × Z/pk+lZ | ad − plb2 ≡ m mod p}. We
calculate Λ(m) for each m ∈ (Z/pZ)×.

case 1) l ≥ 1. In this case Λ(m) = #{a, b, d | ad ≡ m mod p}. Since Z/pkZ× Z/pk+l 3
(a, d) 7→ ad ∈ Z/pZ is a homomorphism, Λ(m1) = Λ(m2) for all m1,m2 ∈ Z/pZ.
Thus values of (4.1) is 0 in this case.

case 2) l = 0. Then

Λ(m) = #{(a, b, d) ∈ (Z/pkZ)⊕3 | ad− b2 ≡ m mod p}

=

{
p3k−2(p + 1) if −m ∈ (F×p )2;

p3k−2(p− 1) if −m /∈ (F×p )2.

Thus the values of (4.1) is

ψ(−1)p−2ks
∑

m∈(F×p )2

ψ(m)2p3k−2.

As a consequence

Sp
2 (ψ, 0, s) = 2ψ(−1)

∑

m∈(F×p )2

ψ(m)
∞∑

k=1

p(3−2s)k−2,

which induces our lemma. ¤

Next we consider h ∈ Sym2(Z)∗ with rankh = 1. There exists U ∈ SL(2,Z) such
that h[U ] = diag(t, 0), which shows that we only consider the diagonal case.

Lemma 4.2. Assume that ψ is a non-trivial character. Then for h =
(

t 0
0 0

)
with

ordp t = m,

S2(ψ, h, s) =





0 ψ2 6≡ 1;

a(p−s) +
b(p−s)

1− p3−2s
ψ2 ≡ 1,

with

a(p−s) = ψ(−1)
(

p− 1
p2

m+1∑

k=1

p(3−2s)k

)
,

b(p−s) = ψ(−1)(p− 1)p(3−2s)m+4−4s.

Proof. We use the same notation as in the proof of Lemma 4.1. We have
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Sp
2 (ψ, h, s) =

∞∑

k=1

∞∑

l=0

∑

W

p−(2k+l)s
∑

a,b∈Z/pkZ
d∈Z/pk+lZ

ψ(ad− plb2)e
(

1
pk−m

(
a b
b dp−l

)
(h′[W−1])

)
,

here h′ = diag(t′, 0).
In the calculation below, we put a = a2p + a1, b = b2p + b1 and d = d2p + d1

with a1, b1, d1 ∈ Z/pZ, a2, b2 ∈ Z/pk−1Z and d2 ∈ Z/pk+l−1Z. First we consider the
summation for l = 0, which we put S1.

S1 =
∞∑

k=1

p−2ks
∑

a,b,d∈Z/pkZ
ψ(ad− b2)e

(
t′a

pk−m

)

=
∞∑

k=1

p−2ks
∑

a2,b2,d2∈Z/pk−1Z
e

(
t′a2

pk−m−1

) ∑

a1,b1,d1∈Z/pZ
ψ(a1d1 − b2

1)e
(

t′a1

pk−m

)
.

If k > m + 1, the first summation vanishes. Let k ≤ m + 1 and consider the second
summation. If a1 = 0 then

∑

b1,d1∈Z/pZ
ψ(−b2

1) =

{
0 ψ2 6≡ 1;

ψ(−1)p(p− 1) ψ2 ≡ 1.

If a1 6= 0, then we exchange the variable d1 7→ d1 + b2
1a
−1
1 , and

∑

a1 6=0,b1,d1

ψ(a1d1)e
(

t′a1

pk−m

)
= 0.

As a consequence,

S1 =





0 ψ2 6≡ 1;

ψ(−1)(p− 1)
m+1∑

k=1

p(1−2s)k ψ2 ≡ 1.
(4.2)

Next consider the case l ≥ 1 and C = T (k, l)W with W =
(

1 u
0 1

)
, this summation is

written by S2. Then

S2 =
∞∑

k,l=1

p−(2k+l)s
∑

u∈Z/plZ

∑

a,b∈Z/pkZ
d∈Z/pk+lZ

ψ(ad)e
(

t′

pk−m

(
a− 2ub +

u2d

pl

))
.

By looking at the summation for a, we have

∑

a∈Z/pkZ
ψ(a)e

(
t′a1

pk−m

)
=

{
0 k 6= m + 1;

pmψ(t′)G(ψ) k = m + 1,
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here G(ψ) denotes the Gaussian sum. Thus we only consider the term for k = m + 1.
Thanks to the summation for b we can put u = u1p with u1 ∈ Z/pl−1Z and

S2 = ψ(t′)G(ψ)
∞∑

l=1

p−(2m+2+l)s+2m+1
∑

u1∈Z/pl−1

∑

d∈Z/pm+1+l

ψ(d)e
(

t′u2
1d

pl−1

)
.

We know

∑

u1∈Z/pl−1

e

(
t′u2

1d

pl−1

)
=

{
χp(t′d)p(l−2)/2G(χp) l is even;

p(l−1)/2 l is odd,

here χp is the unique non-trivial quadratic Dirichlet character modulo p. It suffices to
consider the case for even l and

S2 = ψ(t′)χp(t′)G(ψ)G(χp)
∞∑

l=1

p−2(m+1+l)s+2m+l
∑

d∈Z/pm+2l+1

χpψ(d)

=





0 ψ 6= χp;

ψ(−1)(p− 1)
∑

l

p−2(m+l+1)s+3m+3l+1 ψ = χp,

which coincides with b(p−s)/(1− p3−2s).
Finally for the term of C = T (k, l)W with W =

(
pa 1
−1 0

)
, one sees easily that it

vanishes. This complete the proof. ¤

Finally we consider the case for rankh = 2. Note that there is a bijection
Symg(Q)p mod 1 ' Symg(Qp) mod Zp. Put Symg(Qp)′ the image of Symg(Q)′p then

Sp
2 (ψ, h, s) =

∑

T∈Sym2(Qp)′ mod Zp

ψ(ν(T ))δ(T )−se(hT ).

Since each h ∈ Sym2(Q) can be diagonalised by the element of Sym2(Zp), it suffices to
consider the diagonal h.

Lemma 4.3. Let h = pm
( α 0

0 βpt

)
with (α, p) = (β, p) = 1. Then for a non-trivial

Dirichlet character ψ modulo p we have

Sp
2 (ψ, h, s) = S1 + S2,

where S1 and S2 are given in (4.4) and (4.5) respectively.

Proof. We use the same notation as above. First we calculate the term l = 0.
This term equals to
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S1 =
∑

k

p−2ks
∑

a,b,d∈Z/pkZ
ψ(ad− b2)e

(
1

pk−m
(αa + βdpt)

)

=
∑

k

p−2ks
∑

a′′,b′′,d′′∈Z/pk−1

e

(
1

pk−m−1
(αa′′ + βd′′pt)

)

×
∑

a′,b′,d′∈Z/pZ
ψ(a′d′ − (b′)2)e

(
1

pk−m
(αa′ + βdpt)

)
.

By looking at the first term, this summation is 0 for k −m− 1 ≥ 0, and we have

S1 =
m+1∑

k=1

p−2ks+3k−3
∑

a,b,d∈Z/pZ
ψ(ad− b2)e

(
1

pk−m
(αa + βdpt)

)
.

For the term d = 0,
∑

a,b∈Z/pZ ψ(−b2)e(αapm−k) is 0 if ψ2 6≡ 1, while if ψ2 ≡ 1, this
term becomes

p
∑

a∈Z/pZ
e(αapm−k) =

{
p k ≤ m;

0 k = m + 1.

Therefore, the term d = 0 is given by





m∑

k=1

p(3−2s)k−1 ψ2 ≡ 1;

0 ψ2 6≡ 1.

(4.3)

For the term d 6= 0, we may exchange the variable a 7→ a + d−1b2, and

∑

a,b,d

ψ(ad)e
(
(aα + d−1b2α + dβpt)pm−k

)

=
∑

a

ψ(a)e
(

αa

pk−m

) ∑

d

∑

b

e

(
αd−1b2

pk−m

)
ψ(d)e

(
βd

pk−m−t

)
.

If k −m ≤ 0, then the first term is 0. Thus we put k = m + 1, and this term becomes

∑
a

ψ(a)e
(

αa

p

) ∑

d

∑

b

e

(
αd−1b2

p

)
ψ(d)e

(
βd

p1−t

)

= ψ(α)G(ψ)χp(α)εp
√

p
∑

d∈Z/pZ
ψχp(d)e

(
dβ

p1−t

)
.

Here

εp =

{
1 p ≡ 1 mod 4;

i p ≡ 3 mod 4.
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If ψ = χp then the last summation is −1 or p − 1 according as t = 0 or t ≥ 1, while if
ψ 6= χp then the last summation is ψχp(β)G(ψχp) or 0 according as t = 0 or t ≥ 1. As
a consequence,

S1 =





m∑

k=1

p(3−2s)k−1 − ε2
pp if ψ = χp and t = 0;

m∑

k=1

p(3−2s)k−1 + (p− 1)ε2
pp if ψ = χp and t ≥ 1;

ψχp(αβ)G(ψχp)εp
√

p if ψ 6= χp and t = 0;

0 if ψ 6= χp and t ≥ 1.

(4.4)

Next we consider the term l ≥ 1 and W =
(

1 u
0 1

)
with u ∈ Z/plZ. Then

S2 =
∞∑

k=1

∞∑

l=1

p−(2k+l)s
∑

u∈Z/plZ

∑

a,b∈Z/pkZ
d∈Z/pk+lZ

ψ(ad)e
(

1
pk−m

(αa− 2uαb + dp−l(au2 + βpt))
)

=
∑

k,l

p−(2k+l)s
∑

u

∑
a

ψ(a)e
(

αa

pk−m

) ∑

b

e

(
− 2uαb

pk−m

) ∑

d

ψ(d)e
(

(αu2 + βpt)d
pk+l−m

)
.

Now

∑

a∈Z/pkZ
ψ(a)e

(
αa

pk−m

)
=

{
pmψ(α)G(ψ) k = m + 1;

0 otherwise,

thus we put k = m + 1. Then the summation for b is 0 if (u, p) = 1, and we replace u by
pu with u ∈ Z/pl−1Z. Hence

S2 =
∞∑

l=1

p−(2m+2+l)sψ(α)G(ψ)p2m+1
∑

d∈(Z/pm+1+lZ)×

∑

u∈Z/pl−1Z
e

(
αdu2

pl−1

)
ψ(d)e

(
βd

pl+1−t

)
.

Since

∑

a∈Z/prZ
e

(
xa2

pr

)
= p

∑

a∈Z/pr−2Z
e

(
xa2

pr−2

)
, r ≥ 2, (p, x) = 1,

we have

∑

u∈Z/pl−1Z
e

(
αdu2

pl−1

)
=

{
p(l−1)/2 l is odd;

εpχp(αd)p(l−1)/2 l is even.

Thus
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S2 =
∞∑

n=0

p−(2m+2+2n+1)s+2m+n+1ψ(α)G(ψ)
∑

d∈Z/pm+2n+2Z
ψ(d)e

(
βd

p2n+2−t

)

+
∞∑

n=1

p−(2m+2+2n)s+2m+n+1/2(χpψ)(α)G(ψ)εp

∑

d∈Z/pm+2n+1Z
(χpψ)(d)e

(
βd

p2n+1−t

)
.

The first summation remains only when t = 2n + 1, which equals to

{
p−(2m+2+t)s+3m+(3t+1)/2ψ(αβ)G(ψ)2 t is odd;

0 t is even.

For the second term, if ψ 6= χp then it remains only when t = 2n and

{
p−(2m+2+t)s+3m+(3t+1)/2εp(χpψ)(αβ)G(ψ)G(ψχp) t ≥ 2 is even;

0 t is odd or t = 0.

On the other hand if ψ = χp, then the second term is





0 t = 0;

(χpψ)(α)G(ψ)εpp
−(2m+2)s+3m+1/2

×
{

(p− 1)
(t−2)/2∑

n=1

p(3−2s)n − p(3−2s)t/2

}
t ≥ 2 is even;

(χpψ)(α)G(ψ)εp(p− 1)
(t−1)/2∑

n=1

p−(2m+2n+2)s+3m+3n+1/2 t is odd.

As a consequence,

S2 =





0 if t = 0;

ε2
pp
−(2m+2)s+3m+1

×
{

(p− 1)
(t−2)/2∑

n=1

p(3−2s)n − p(3−2s)t/2

}
if ψ = χp and t ≥ 2 is even;

εpp
−(2m+2)s+3m+1

×
{

p(3−2s)t+1/2ψ(αβ) + εp(p− 1)
(t−1)/2∑

n=1

p(3−2s)n

}
if ψ = χp and t is odd;

p−(2m+2+t)s+3m+(3t+3)/2εp(χpψ)(αβ)G(ψ)G(ψχp) if ψ 6= χp and t ≥ 2 is even;

p−(2m+2+t)s+3m+(3t+1)/2ψ(αβ)G(ψ)2 if ψ 6= χp and t is odd.
(4.5)
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Finally we calculate the term for C = T (k, l)W and W =
(

pu 1
−1 0

)
, u ∈ Z/pl−1Z.

S3 =
∞∑

k,l=1

∑

u∈Z/pl−1Z
p−(2k+l)s

∑

a∈Z/pkZ
ψ(a)e

(
aβ

pk−m−t

)

×
∑

b∈Z/pkZ
e

(
2bβu

pk−m−t−1

) ∑

d

ψ(d)e
(

(α + βu2pt+2)d
pk+l−m

)
.

By looking at the first term, this summations remains only when k = m + t + 1, and

S3 = p−(2k+l)s+2m+2tψ(β)G(ψ)
∑

u∈Z/pm+tZ

∑

d∈Z/pm+t+l+1Z
ψ(d)e

(
(α + βu2pt+2)d

pt+l+1

)
.

Since (α + βu2pt+2, p) = 1, the last term remains only when t + l = 0, but this does not
happen. Thus S3 = 0 and we conclude the proof. ¤

Remark. One should notice that Sp
2 (ψ, h, s) depends only on deth = αβp2m+t

and ordp(g.c.d.(h1, 2h2, h3)) = m for h =
(

h1 h2
h2 h3

)
(i.e. not depend on α, β).

Remark. In [Miz], Mizuno gives the explicit form of the Fourier expansion of
Ek

p,ψ, by using the Maass lift of the Eisenstein series of Jacobi forms. The above lemma
will give an another proof of that.

5. Application –the dimension of the space of Eisenstein series–.

In this section we shall compute the dimension of the space of Eisenstein series for
low weights. Let C0(f) be the constant term of the Fourier expansion of f ∈ Mk(Γ g(N))
and

Ek(Γ g(N)) = Mk(Γ g(N))/{f ∈ Mk(Γ g(N)) | C0(f |kγ) = 0, ∀γ ∈ Sp(g,Z)}.

We denote Ek(Γ g
0 (N), ψ) the image of Mk(Γ g

0 (N), ψ).
The aim of this section is to calculate the dimension of Ek(Γ 2(p)). The classical

theory says that for k ≥ 4,

dim Ek(Γ 2(p)) =
1
2
(p4 − 1).

Moreover it is shown that

Proposition 5.1 ([Gu, Theorem 3.1]).

dim E1(Γ 2(p)) =





0 p ≡ 1 mod 4;

1
2
(p2 + 1) p ≡ 3 mod 4.
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Thus it suffices to consider the case k = 2 or 3. Before considering these cases, we
explain how one can induce the results for Γ 2(p) from that of Γ 2

0 (p).
Let G = Sp(2,Fp) = Γ 2/Γ 2(p). Then G acts on Mk(Γ 2(p)) (or Ek(Γ 2(p))) from the

left via (f, g) 7→ f |kg̃−1, with f ∈ Mk(Γ 2(p)), g ∈ G and a lift g̃ of g to Γ 2.
Recall that P0 = {γ ∈ Γ g | Cγ = 0}, which corresponds to the Siegel parabolic

subgroups. Put P 0 = {g ∈ G | Cg = 0, det Dg ∈ {±1}}, and u0 the character of P0 or
P 0 defined by u0(γ) = det Dγ . Notice that P 0 is the image of P0 under the canonical
map Γ 2 → G. Then we have

C0(f |kγ) = u0(γ)kC0(f) for γ ∈ P0 (5.1)

(cf. [Gu, Lemma 3.2]).
Let H = {h ∈ G | Ch = 0} be a subgroup of G. Notice that H is the image of Γ 2

0 (p)
under the canonical map Γ 2 → G. The character ψ̃ of H is defined by ψ̃(h) = ψ(detDh)
for a Dirichlet character ψ modulo p.

Lemma 5.2 ([Gu, Lemma 3.3, 3.4]). The representation of G on Ek(Γ 2(p)) is
isomorphic to a sub-representation of

IndG
P 0

(uk
0) =

⊕

ψ(−1)=(−1)k

IndG
H(ψ̃).

From the Frobenius reciprocity law

HomG

(
IndG

H(ψ̃), Ek(Γ 2(p))
) ' HomH

(
ψ̃, Ek(Γ 2(p))

) ' Ek(Γ 2
0 (p), ψ). (5.2)

Recall that Γ 2
0 (p)\H2 has three 0-dimensional cusps, that is a representative set of

Γ 0
2 (p)\Sp(2,Z)/P0 is give by three elements

14, J2, and M =




0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1


 .

The structure of the boundary of the Satake compactification of Γ 2
0 (p)\H2 is given by

the following figure.
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The meaning of the above figure is as follows. For f ∈ Mk(Γ 2
0 (p)), put

Φ(f)(z) = lim
λ→∞

f

((
z 0
0 iλ

))
, z ∈ H1,

which is called the Siegel operator. Then

C0(f |kM) = C0(Φ(f)|kJ1) = C0(Φ(f |kJ2)|kJ1). (5.3)

We use the following Lemma.

Lemma 5.3 ([Gu, Lemma 3.7]). If ψ2 6≡ 1, then C0(f |kM) = 0 for all f ∈
Mk(Γ 2

0 (p), ψ).

In particular

dim Ek(Γ 2(p), ψ) ≤ 2 if ψ2 6≡ 1. (5.4)

Finally we quote the result of Srinivasan [Sr], which classified all the irreducible
characters of Sp(2,Fp). Fix a generator ξ of F×p and define the Dirichlet character ψl by
ψl(ξa) = e(al/(p− 1)). Then

IndG
H(ψ̃l) =





1G ⊕ θ9︸︷︷︸
p(p+1)2/2

⊕ θ11︸︷︷︸
p(p2+1)/2

l = 0;

θ3︸︷︷︸
(p2+1)/2

⊕ θ4︸︷︷︸
(p2+1)/2

⊕ Φ9︸︷︷︸
p(p2+1)

l =
p− 1

2
;

χ8(|l|)︸ ︷︷ ︸
(p+1)(p2+1)

−p− 3
2

≤ l ≤ p− 3
2

, l 6= 0.

(5.5)

5.1. The case of weight 3.
Let g = 2 and k = 3. We prove the following theorem.

Theorem 5.4.

dim E3(Γ 2(p)) =
1
2
(p4 − 1).

To prove this theorem, we show the following.

Theorem 5.5. For ψ(−1) = −1, we have

dim E3(Γ 2
0 (p), ψ) =

{
3 ψ2 ≡ 1;

2 ψ2 6≡ 1.

Proof of Theorem 5.4 under Theorem 5.5. By Lemma 5.2 and (5.2), we
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know that dim E3(Γ 2
0 (p), ψ) is the number of the irreducible component of IndG

H(ψ̃) con-
tained in E3(Γ 2(p)). Then Theorem 5.5 and (5.5) shows that IndG

P 0
u0 = E3(Γ 2(p)),

whose dimension is (p4 − 1)/2. ¤

Let us start to prove Theorem 5.5. Shimura proved the holomorphy of E3
p,ψ(Z) =

E3
p,ψ(Z, 0) in [Sh2, Theorem 7.1], by considering the Fourier expansion of E3

p,ψ|3J2(Z).
Moreover one can write down the Fourier expansion of E3

p,ψ(Z, s) explicitly by the result
of Section 3–Section 5. From (2.4), the constant term of E3

p,ψ(Z, s) is given by

1 + S1(ψ, 0, 3 + 2s)
∑

(q1,q2)=1

ξ1(Y [
( q1

q2

)
], 0, 3 + s, s) + S2(ψ, 0, 3 + 2s)ξ2(Y, 0, 3 + s, s).

By Proposition 3.3 the second term is 0 for any odd character ψ. For the third term, by
Theorem 3.1 we have

ξ2(Y, 0, 3 + s, s) = (const.)× Γ(2s + 1/2)Γ(2s)
Γ(s + 3)Γ(s + 1/2)Γ(s)Γ(s− 1/2)

,

which has a zero at s = 0, while S2(ψ, 0, 3+2s) is 0 or at least finite at s = 0 by Theorem
3.4 and Lemma 4.1 (note that L(1, ψ) is finite since ψ 6≡ 1). Hence the constant term is
1. Similarly one can check that, for h with rankh = 1, ξ2(Y, h, s+3, s)S2(ψ, h, 2s+3) = 0
at s = 0. As a consequence we have

E3(Z, s) = 1 +
∞∑

m=1

∑

(q1,q2)∈Z2/{±1}
(q1,q2)=1

6ψ(m′)σψ
2 (m)

B3,ψp2 ordp m
e

(
m

(
q2
1 q1q2

q1q2 q2
2

)
Z

)

− (2π)5
∑

h∈Sym2(Z)∗

h>0

(deth)3/2S2(ψ, h, 3)e(hZ), (5.6)

here σψ
k (m) =

∑
d|m ψ(d)dk and m′ = m/pordp m for each m. Also this formula shows

the holomorphy of E3
p,ψ(Z).

We shall compute the value of E3
p,ψ

(Z) ∈ E2(Γ 2
0 (p), ψ) at each 0-dimensional cusp

of Γ 2
0 (p)\H2. By (5.6) we have

C0

(
E3

p,ψ
(Z)

)
= 1.

For the value at J2, as is calculated in [Sh2], one can write

(
(detY )sEk

p,ψ

)|kJ2(Z, s)

= det(Y )s
∑

(C,D)∈M2, D≡0 mod p

ψ(detC) det(CZ + D)−k|det(CZ + D)|−2s
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=
det(Y )s

p2(k+2s)

∑

h∈Sym2(Z)∗

∏

q 6=p

Sq
2(ψ, h, k + 2s)ξ2

(
1
p
Y, h, k + s, s

)
e

(
1
p
hX

)
. (5.7)

If rankh < 2,
∏

q 6=p Sq
2 is finite at s = 0, while ξ2 has a zero at s = 0 thanks to the term

“Γg−q(β)−1” in Theorem 3.1. Thus we have

E3
p,ψ
|3J2(Z) = 0.

Finally we compute the value at M . It is hard to write down the Fourier expansion of
E3

p,ψ
|3M(Z), since at the cusp M , the “Siegel series” does not have an Euler product. In

order to compute C0(E3
p,ψ
|3M(Z)), we use the relation (5.3). The formula (5.6) shows

that

Φ
(
E3

p,ψ
(Z)

)
= e3

p,ψ
(z) :=

∑
( ∗ ∗

c d

)
∈P0\Γ 1

0 (p)

ψ(d)(cz + d)−3,

whose infinite sum converges uniformly. Thus C0(E3
p,ψ|kM(Z)) = C0(e3

p,ψ
|kJ1(z)) = 0.

As a consequence

C0(E3
p,ψ
|3γ) =

{
1 γ = 14;

0 γ = M, J2.
(5.8)

We shall construct other functions. For T ∈ Sym2(Fp), put δ(T ) =
(

0 12
−12 T

)
. Then

{δ(T ) | T ∈ Fp} is a representative set of Γ 2
0 (p)\Γ 2

0 (p)J2Γ
2
0 (p). Fix γ ∈ Γ 2

0 (p). Since
{δ(T )γ}T∈Sym2(Fp) is also a representative set of Γ 2

0 (p)\Γ 2
0 (p)J2Γ

2
0 (p), for Ti ∈ Sym2(Fp),

there exist u ∈ Γ 2
0 (p) and Tj ∈ Sym2(Fp) such that δ(Ti)γ = uδ(Tj). By a direct

computation we have ψ̃(u) = ψ̃(γ)−1. Thus if we put

F 3
p,ψ =

∑

T∈Sym2(Fp)

E3
p,ψ|2δ(T ), (5.9)

then we have F 3
p,ψ ∈ M2(Γ 2

0 (p), ψ). Using (5.1) and (5.8), an easy calculation shows

Φ0(F |kγ) =

{
1 γ = J2;

0 γ = 1 or M .

Thus we have dim E3(Γ 2
0 (p), ψ) = 2 by (5.4) for ψ2 6≡ 1. If ψ2 ≡ 1, put

G3 :=
∑

c1,d2∈Z/p

E3
p,ψ|3α(c1, d2) +

∑

d1∈Z/p

E3
p,ψ|3β(d1) (5.10)

with



On the Siegel Eisenstein series of degree two for low weights 1063

α(c1, d2) =




0 0 0 −1
−1 0 0 0
c1 1 0 d2

0 0 −1 c1


 , β(d1) =




0 0 −1 0
0 1 0 0
1 0 d1 0
0 0 0 1


 .

Here {α(c1, d2), β(d1) | c1, d2, d1 ∈ Z/p} is a representative set of Γ 2
0 (p)\Γ 2

0 (p)MΓ 2
0 (p).

Similarly one can show G3 ∈ M3(Γ 2
0 (p), ψ) and

C0(G3|3γ) =

{
1 γ = M ;

0 γ = 14, J2.

Thus E3
p,ψ

, F 3
p,ψ and G3 form a basis of E3(Γ 2

0 (p), ψ), which completes the proof of
Theorem 5.5. ¤

5.2. The case of weight 2.
In this section we consider the case of weight 2. First assume that ψ2 6≡ 1. By using

the explicit formula, one can check that E2
p,ψ(Z) = E2

p,ψ(Z, 0) ∈ M2(Γ 2
0 (p), ψ) (cf. [Sh2,

Theorem 10.4]) and C0(E2
p,ψ(Z)) = 1. Moreover (5.7) shows C0(E2

p,ψ|2J2) = 0. Thus we
have dim E2(Γ 2

0 (p), ψ) = 2, whose basis is given by {E2
p,ψ

, F 2
p,ψ}, where F 2

p,ψ is defined as
in (5.9).

Next we consider the case ψ2 ≡ 1. For such a character ψ, one can check that
E2

p,ψ(Z, s) is finite at s = 0, but not holomorphic in Z. Instead of considering E2
p,ψ(Z, 0),

we consider

Ẽp,ψ(Z, s) = L(2 + 2s, ψ)L(2 + 4s, ψ2) det(Y )sE2
p,ψ(Z, s),

following [BS]. As is shown in [BS, Proposition 5.2. b)],

E2
p,ψ(Z) := E2

(
Z,−1

2

)
∈ M2(Γ 2

0 (p), ψ)

for all even Dirichlet character ψ. This fact can also be shown by using our Fourier
expansion.

We have the following two cases.

Case 1) ψ = 1p is the trivial character modulo p. It is known that the space of elliptic
Eisenstein series E2(Γ 1

0 (p)) is one-dimensional, and a basis is given by e2
p,1p

(z, 0), whose
value at each cusp ∞ and 0 is 1 and −1/p2, respectively. Thus the figure of the boundary
shows that E2(Γ 2

0 (p)) = 1.

Case 2) ψ = χp is the non-trivial quadratic character modulo p. Note that this case
happens only when p ≡ 1 mod 4. Using E2

p,χp
, we can construct F 2

p,χp
and G2

p,χp
similar

to (5.9) and (5.10) respectively. Then the values of these functions at the cusps are
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C0

(
E2

p,χp
|2γ

)
=





1 γ = 14;

0 γ = M ;

− 1
p2

γ = J4,

C0(F 2
p,χp

|2γ) =





−p γ = 14;

0 γ = M ;

1
p

γ = J4,

and

C0(G2
p,χp

|2γ) = 0 for all γ.

Thus we can get only one dimensional subspace in E2(Γ 2
0 (p), χp). In order to get other

elements, we use the theta series. Let Q ∈ M4(Z) be an even symmetric positive definite
matrix of determinant p, and set Q′ = pQ−1. Put

θQ(Z) =
∑

N∈M4,2(Z)
e

(
1
2

tNQNZ

)
, θQ′(Z) =

∑

N∈M4,2(Z)
e

(
1
2

tNQ′NZ

)
,

then it is known that θQ, θQ′ ∈ M2(Γ 2
0 (p), χp) (cf. [An]). The values of θQ and θQ′ at

each cusp are given by

C0(θQ|2γ) =





1 γ = 14;

− 1√
p

γ = M ;

1
p

γ = J2,

C0(θQ′ |2γ) =





1 γ = 14;

− 1
p
√

p
γ = M ;

1
p3

γ = J2.

However since

det




1 1 1

0 − 1√
p

− 1
p
√

p

− 1
p2

1
p

1
p3




= 0,

Ẽ2
p,χp

, θQ and θQ′ are linearly dependent in E2(Γ 2
0 (p), χp). As a consequence we have

the following.

Theorem 5.6. Let ψ be the even Dirichlet character modulo p.

dim E2(Γ 2
0 (p), ψ) =





2 ψ2 6= 1;

1 ψ = 1p;

2 or 3 ψ = χp.

Note that ψ = χp will occur only when p ≡ 1 mod 4.
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Finally we consider the case of Γ 2(p). First we study G-subspace in E2(Γ 2(p))
generated by {E2

p,1p
} or {E2

p,χp
}.

Lemma 5.7. (1) The subspace in E2(Γ 2(p)) spanned by {E2
p,1p

|2γ | γ ∈ Γ 2} is
p(p2 + 1)/2 dimensional.
(2) The subspace in E2(Γ 2(p)) spanned by {E2

p,χp
|2γ | γ ∈ Γ 2} is p3 + p dimensional.

Proof. We only show (1), for (2) can be shown similarly. Since E2
p,1p

(Z) ∈
M2(Γ 2

0 (p)), it suffices to consider the functions E2
p,1p

|2γ with γ ∈ Γ 2
0 (p)\Γ 2. The repre-

sentative set of Γ 2
0 (p)\Γ 2 is given by

{
γ(T ) =

(
0 −12

12 T

) ∣∣∣∣ T ∈ Sym2(Fp)
}
q





δ(s, t) =




0 0 −1 0
0 1 0 0
1 s t 0
0 0 −s 1




∣∣∣∣∣∣∣∣∣
s, t ∈ Fp





q





ξ(u) =




0 0 0 −1
1 0 0 0
0 1 0 u

0 0 1 0




∣∣∣∣∣∣∣∣∣
u ∈ Fp




q {14}.

For A ∈ Sym2(Fp) we put FA(Z) =
∑

T∈Sym2(Fp) e(−AT/p) E2
p,1p

|2γ(T ) and X =
{A ∈ Sym2(Fp) | FA(Z) 6= 0}. Then 〈E2

p,1p
|2γ(T ) | T ∈ Sym2(Fp)〉C = 〈FA | A ∈

X〉C and {FA}A∈X are linearly independent since each FA belongs to relatively distinct
simultaneous eigen-space under the action of U =

{(
12 T
0 12

) ∈ Γ 2
}
. Now looking at the

value at each 0-dimensional cusp of Γ 2(p)\H2, we have ]X = p(p2 + 1)/2.
Next we consider the set {γ(s, t)}. Put Gα,s =

∑
t∈Fp

e(−αt/p)E2
p,1p

|2γ(s, t), then
〈E2

p,1p
|2γ(s, t) | s, t ∈ Fp〉C = 〈Gα,s | α, s ∈ Fp〉C. Moreover by looking at the value at

0-dimensional cusps, we can check that Gα,s coincides to constant multiple of FA with
A = α

(
1 s
s s2

)
.

For the set of {ξ(u)}, let Hα =
∑

u∈Fp
e(−αu)E2

p,1p
|2ξ(u). Also we can show that

Hα equals to the constant multiple of FA with A =
(

0 0
0 u

)
.

Finally one can check that F(
0 0
0 0

) = pE2
p,1p

. As a consequence we have

dim〈E2
p,1p

|2γ | γ ∈ Γ 2
0 (p)\Γ 2(p)〉C = ]X = p(p2 + 1)/2. This proves the lemma. ¤

Now we decompose the space E2(Γ 2(p)) into the irreducible representation of G. If
p ≡ 1 mod 4, it is the sub-representation of

1G ⊕ θ9 ⊕ θ11︸ ︷︷ ︸
IndG

H 1G

⊕ θ3 ⊕ θ4 ⊕ Φ9︸ ︷︷ ︸
IndG

H χp

⊕
⊕

0<l≤(p−3)/2
l: even

2χ8(l),

if p ≡ 3 mod 4, it is the sub-representation of
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1G ⊕ θ9 ⊕ θ11︸ ︷︷ ︸
IndG

H 1G

⊕
⊕

0<l≤(p−3)/2
l: even

2χ8(l).

The formula (5.2) says that the number of the irreducible components appearing in
IndG

H ψ̃ ∩ E2(Γ 2(p)) equals to dim E2(Γ 2
0 (p), ψ). If ψ2 6= 1, then IndG

H ψ̃ = IndG
H ψ̃−1 =

χ8(l) for some l, thus every χ8(l) appears 2 times in E2(Γ 2(p)). For the contribution
of IndG

H 1G, Theorem 5.6 shows that only one of {1G, θ9, θ11} appears in E2(Γ 2(p)), it
must be θ11 by the above lemma. Finally for the contribution of IndG

H χp (it occurs only
when p ≡ 1 mod 4), all or two of {θ3, θ4,Φ9} appears in E2(Γ 2(p)). The above lemma
shows that E2(Γ 2(p)) contains Φ9, thus dim(E2(Γ 2(p)) ∩ IndG

H(χp)) = (p + 1)(p2 + 1) or
(p + 1/2)(p2 + 1). As a consequence we have the following.

Theorem 5.8. (1) If p ≡ 3 mod 4, then

dim E2(Γ 2(p)) =
1
2
(p2 + 1)(p2 − p− 3).

(2) If p ≡ 1 mod 4, then

dim E2(Γ 2(p)) =
1
2
(p2 + 1)(p2 − p− 3) or

1
2
(p2 + 1)(p2 − p− 4).

Open Problems. At present, the author cannot determine whether
dim E2(Γ 2

0 (p), χp) is 2 or 3. If dim E2(Γ 2
0 (p), χp) were 3, we need to construct a func-

tion by another method. On the other hand if dim E2(Γ 2
0 (p), χp) were 2, it seems difficult

to show that, since we can only show dim E2(Γ 2
0 (p), χp) ≤ 3 by the structure of the cusp.
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