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Abstract. In this paper we study fundamental directional properties of
sets under the assumption of condition (SSP) (introduced in [3]). We show
several transversality theorems in the singular case and an (SSP)-structure
preserving theorem. As a geometric illustration, our transversality results are
used to prove several facts concerning complex analytic varieties in 3.3. Also,
using our results on sets with condition (SSP), we give a classification of spirals
in the appendix 5.

The (SSP)-property is most suitable for understanding transversality in
the Lipschitz category. This property is shared by a large class of sets, in
particular by subanalytic sets or by definable sets in an o-minimal structure.

1. Introduction.

The notions of tangent cone and direction set have taken a very important role in
the study of several equisingularity type problems, in particular, after the pioneering
works of H. Whitney [8], [9], to the topological equisingularity problem. For instance, I.
Nakai discussed and used directional properties in [6] in order to show the appearance
of topological moduli in a family of polynomial map-germs : (Rn, 0) → (Rp, 0) for n ≥ 3,
p ≥ 2. On the other hand, the authors showed in [3] that the dimension of the common
direction set of two subanalytic subsets, called the directional dimension, is preserved by
a bi-Lipschitz homeomorphism provided that their images are also subanalytic. In order
to prove this result we introduced and employed in an essential way the notion of sequence
selection property ((SSP) for short). (SSP) is a notion based on the direction set. It takes
an important role in the study of Lipschitz equisingularity. Using the aforementioned
theorem in [3], we can see that the Oka family [7] is not Lipschitz trivial as a family
of zero-sets of real polynomial function germs. Our aim in this paper is to study the
geometry of sets satisfying (SSP), their behaviour under bi-Lipschitz transformations
and to point out applications to complex singularities and also other fields.

In order to do this, we introduce the notions of transversality and weak transversal-
ity, using the real cone (half-cone) of the direction set, essential tools for understanding
the sets satisfying condition (SSP). Our main concern is to decide under which conditions
the transversality of sets is preserved by (bi-Lipschitz) homeomorphisms. In particular
we show that the transversality for complex analytic sets is preserved by bi-Lipschitz
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homeomorphisms (Theorem 3.2), provided that their images are also complex analytic
sets, and that the weak transversality for general sets is preserved by bi-Lipschitz home-
omorphisms, provided that one of them and its image satisfy the sequence selection
property (Theorems 3.5 and 3.11). In fact the weak transversality is preserved for ar-
bitrary sets if the bi-Lipschitz homeomorphism satisfies the condition semiline-(SSP),
simply a corollary of Theorem 2.25.

In addition, we introduce and study the notion of (SSP) mappings. We show that
the (SSP) structure is preserved by (SSP) bi-Lipschitz homeomorphisms (Theorem 4.7).
In general the behaviour of a merely bi-Lipschitz homeomorphism can be very wild in
respect to the direction sets. We show that whenever a bi-Lipschitz homeomorphism
is also an (SSP) mapping, this is no longer the case. Indeed, we are able to control
this behaviour by either considering it in regard to sets satisfying condition (SSP) or by
considering bi-Lipschitz homeomorphisms endowed with extra properties. In particular,
we look for those homeomorphisms with a good directional behaviour and we single out
two large classes of examples.

2. Directional properties of sets.

Let us recall our notion of direction set. For simplicity in this paper we only consider
the direction sets at the origin.

Definition 2.1. Let A be a set-germ at 0 ∈ Rn such that 0 ∈ A. We define the
direction set D(A) of A at 0 ∈ Rn by

D(A) :=
{

a ∈ Sn−1

∣∣∣∣ ∃{xi} ⊂ A \ {0}, xi → 0 ∈ Rn s.t.
xi

‖xi‖ → a, i →∞
}

.

Here Sn−1 denotes the unit sphere centred at 0 ∈ Rn.

For a subset A ⊂ Sn−1, we denote by L(A) a half-cone of A with the origin 0 ∈ Rn

as the vertex:

L(A) := {ta ∈ Rn | a ∈ A, t ≥ 0}.

In the case A is a point (not the origin) we call L(A) a semiline. For a set-germ A at
0 ∈ Rn such that 0 ∈ A, we put LD(A) := L(D(A)), and call it the real tangent cone at
0 ∈ Rn.

Let U, V ⊂ Rn such that 0 ∈ U ∩ V . The following are true:

(1) D(U) = D(U).
(2) D(U ∪ V ) = D(U) ∪D(V ).
(3)

⋃
i D(Ui) ⊆ D(

⋃
Ui).

(4) If Ui are half-cones then
⋃

i D(Ui) = D(
⋃

Ui).
(5) D(U ∩ V ) ⊆ D(U) ∩D(V ).
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2.1. Condition (SSP).
In [3] sea-tangle properties and directional properties of sets with the sequence

selection property played an essential role in the proof of the main theorem (cf. Theorem
2.2). For the reader’s convenience let us recall the main theorem in [3]. See H. Hironaka
[2] for the definition of subanalyticity.

Theorem 2.2 (Main Theorem in [3]). Let A, B ⊂ Rn be subanalytic set-germs
at 0 ∈ Rn such that 0 ∈ A ∩ B, and let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeo-
morphism. Suppose that h(A), h(B) are also subanalytic. Then we have the equality of
dimensions,

dim(D(h(A)) ∩D(h(B))) = dim(D(A) ∩D(B)).

We denote by (SSP) the sequence selection property for short. Here we introduce a
generalised notion of (SSP) relatively to a subset of Rn.

Definition 2.3. Let A,B be two set-germs at 0 ∈ Rn such that 0 ∈ A∩B,D(A) ⊆
D(B). We say that A satisfies condition (SSP)-relative to B, if for any sequence of points
{am} of B tending to 0 ∈ Rn such that limm→∞ am/‖am‖ ∈ D(A), there is a sequence
of points {bm} ⊂ A such that

‖am − bm‖ ¿ ‖am‖, ‖bm‖.

In the case B = Rn we will not mention B (it is the usual (SSP) condition).

Concerning this relative condition (SSP), we can easily show the following:

Proposition 2.4. The relative condition (SSP) is transitive, namely if A satis-
fies condition (SSP)-relative to B and B satisfies condition (SSP)-relative to C, then A

satisfies condition (SSP)-relative to C.

We give some remarks on the relative condition (SSP) ((2) and (3) follow from the
above proposition).

Remark 2.5.

(1) A (resp. A) satisfies condition (SSP)-relative to A (resp. A).
(2) A satisfies condition (SSP) if and only if A satisfies condition (SSP)-relative to

LD(A).
(3) A satisfies condition (SSP) if and only if A satisfies condition (SSP).
(4) Let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A, and let d, C > 0. The

sea-tangle neighbourhood STd(A;C) of A, of degree d and width C, is defined by:

STd(A;C) := {x ∈ Rn | dist(x,A) ≤ C|x|d}.

Then, A satisfies condition (SSP)-relative to STd(A;C), d > 1.
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In this paper we consider also the notion of weak sequence selection property, denoted
by (WSSP) for short.

Definition 2.6. Let A,B be two set-germs at 0 ∈ Rn such that 0 ∈ A ∩ B,
D(A) ⊆ D(B). We say that A satisfies condition (WSSP)-relative to B, if for any
sequence of points {am} of B tending to 0 ∈ Rn such that limm→∞ am/‖am‖ ∈ D(A),
there is a subsequence {mj} of {m} with {bmj} ⊂ A such that

‖amj − bmj‖ ¿ ‖amj‖, ‖bmj‖.

We have the following characterisation of condition (SSP). The proof in the relative
case is similar to the non-relative case for which we gave a detailed proof in [4]. We
sketch a slightly rough proof here.

Proposition 2.7. Let A,B be two set-germs at 0 ∈ Rn such that 0 ∈ A∩B. If A

satisfies condition (WSSP)-relative to B, then it satisfies condition (SSP)-relative to B.
Namely, the conditions relative (SSP) and relative (WSSP) are equivalent.

Proof. Assume that A does not satisfy condition (SSP). Then there is a se-
quence of points {am ∈ B} tending to 0 ∈ Rn such that limm→∞ am/‖am‖ ∈ D(A)
and limm→∞ d(am, A)/‖am‖ = α > 0, where d(am, A) denotes the distance between am

and A. This implies that there does not exist a sequence of points {bm} ⊂ A such that
‖am − bm‖ ¿ ‖am‖. Therefore A does not satisfy condition (WSSP). ¤

We make some remarks on (SSP):

Remark 2.8.

(1) In fact one can easily see that A satisfies condition (SSP)-relative to B if and
only if for any sequence of points {am} of B tending to 0 ∈ Rn such that
limm→∞ am/‖am‖ ∈ D(A), then d(am, A)/‖am‖ tends to 0 ∈ R. (Or there is a
subsequence which tends to zero.)

(2) Condition (SSP) is C1 invariant, but not bi-Lipschitz invariant (cf. Section 5 in
[3]). Note that condition (SSP) is invariant under a bi-Lipschitz homeomorphism
h : (R, 0) → (R, 0). We leave the proof of this fact to the interested reader.

As stated in the above remark, the condition (SSP) is not bi-Lipschitz invariant.
However if a map h is bi-Lipschitz, we have the following:

Lemma 2.9. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism, and let
A,B be two set-germs at 0 ∈ Rn such that 0 ∈ A ∩ B. Then A satisfies condition
(SSP)-relative to B and D(B) = D(A) if and only if h(A) satisfies condition (SSP)-
relative to h(B) and D(h(B)) = D(h(A)). From this we can conclude that if A satisfies
condition (SSP), then D(h(A)) = D(h(LD(A))) and h(A) satisfies condition (SSP)-
relative to h(LD(A)) (B = LD(A)).

Proof. Use (1) of Remark 2.8. ¤
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Below we give several examples of sets satisfying the condition (SSP).

Remark 2.10. Let A,B ⊆ Rn be set-germs at 0 ∈ Rn such that 0 ∈ A ∩B.

(1) The cone LD(A) satisfies condition (SSP).
(2) If A is subanalytic or definable in an o-minimal structure, then it satisfies condition

(SSP).
(3) If A is a finite union of sets, all of which satisfy condition (SSP), then A satisfies

condition (SSP).
(4) If 0 ∈ A, a C1 manifold, then it satisfies condition (SSP) and LD(A) = T0(A). (This

is not necessarily true for C0 manifolds or if 0 /∈ A.)
(5) If A ⊆ B, D(A) = D(B), A satisfies condition (SSP), then B satisfies condition

(SSP).
(6) If A∪{0} is path connected with D(A) a point, then A satisfies condition (SSP). The

trajectories of the gradient flow of an analytic function satisfy this property; this is
the famous gradient conjecture of R. Thom, proven in [5]. They may not be always
subanalytic.

(7) If D(A) = {a1, . . . , ak} and there are subsets Ai ⊆ A, D(Ai) = {ai} and Ai ∪ {0},
i = 1, . . . , k, are path connected, then A satisfies condition (SSP).

We give one more important example satisfying condition (SSP).

Proposition 2.11 (Proposition 6.5 in [3]). Let h : (Rn, 0) → (Rn, 0) be a bi-
Lipschitz homeomorphism, and let A, h(A) ⊂ Rn be subanalytic set-germs at 0 ∈ Rn

such that 0 ∈ A. Then the set h(LD(A)) satisfies condition (SSP).

Concerning the condition (SSP) it is important to remember that LD(A) satisfies
condition (SSP) for any subset A, 0 ∈ A. Accordingly we will try to replace A by its real
tangent cone LD(A) whenever possible and convenient. The remaining results of this
subsection are in this spirit. We recall the following lemma.

Lemma 2.12 (Lemma 5.6 in [3]). Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz
homeomorphism, and let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A. Then
D(h(A)) ⊂ D(h(LD(A))). If A satisfies condition (SSP) or if h is a C1-diffeomorphism
the equality holds.

Using the above lemmas we can improve Proposition 2.11. In fact, we gave an
improvement in the non-relative case in [4]. Here we generalise it to the relative case.

Theorem 2.13. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism, and
let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A, and B ⊂ Rn a set-germ at 0 ∈ Rn

such that 0 ∈ B. Assume that A satisfies condition (SSP). Then h(A) satisfies condition
(SSP)-relative to B if and only if h(LD(A)) satisfies condition (SSP)-relative to B.

Proof. Let us assume that h(A) satisfies condition (SSP)-relative to B. By
assumption, A satisfies condition (SSP). Therefore it follows from Lemma 2.12 that
D(h(LD(A))) = D(h(A)). Let {ym} be an arbitrary sequence of points of B tending to
0 ∈ Rn such that
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lim
m→∞

ym

‖ym‖ ∈ D(h(LD(A))) = D(h(A)).

Let ym = h(xm) for each m. Since h(A) satisfies condition (SSP)-relative B, there is a
sequence of points {zm} ⊂ A such that

‖h(xm)− h(zm)‖ ¿ ‖h(xm)‖, ‖h(zm)‖.

On the other hand, there is a subsequence {zmj} of {zm} such that
limmj→∞ zmj

/‖zmj
‖ ∈ D(A). Since LD(A) satisfies condition (SSP), there is a sequence

of points {θmj
} ⊂ LD(A) such that

‖zmj
− θmj

‖ ¿ ‖zmj
‖, ‖θmj

‖.

It follows from h being bi-Lipschitz that

‖h(zmj
)− h(θmj

)‖ ¿ ‖h(zmj
)‖, ‖h(θmj

)‖.

Then we have

‖h(xmj )− h(θmj )‖ ≤ ‖h(xmj )− h(zmj )‖+ ‖h(zmj )− h(θmj )‖ ¿ ‖h(zmj )‖.

Therefore we have

‖h(xmj
)− h(θmj

)‖ ¿ ‖h(xmj
)‖, ‖h(θmj

)‖.

Thus h(LD(A)) satisfies condition (WSSP)-relative to B, and also condition (SSP)-
relative to B by Proposition 2.7. The other claim can be proved in a similar way. ¤

Note that even if both h(A) and h(LD(A)) satisfy condition (SSP), it does not imply
that A satisfies condition (SSP) (the spiral example, Figure 1 below).

Proposition 2.14. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomor-
phism, and let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A. Then
LD(h(A)) = LD(h(LD(A))) and h(LD(A)) satisfy condition (SSP) if and only if
LD(h−1(LD(h(A)))) = LD(A) and h−1(LD(h(A))) satisfy condition (SSP).

Proof. As our conditions are symmetric in h (our bi-Lipschitz homeomorphism)
it suffices to prove only the “if ” part implication. Since h−1(LD(h(A))) satisfies condition
(SSP) it follows that

LD(h(A)) = LD(h(h−1(LD(h(A))))) = LD(h(LD(h−1(LD(h(A)))))),

and because we always have

LD(h(LD(A))) = LD(h(LD(h−1(h(A))))) ⊆ LD(h(LD(h−1(LD(h(A))))))
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it follows that LD(h(A)) = LD(h(LD(A))).
Assume that {h(ym)} is an arbitrary sequence of points of Rn tending to 0 ∈ Rn

such that

lim
m→∞

h(ym)
‖h(ym)‖ ∈ D(h(LD(A))) = D(h(A)).

As cones satisfy condition (SSP) we can assume that h(ym) ∈ LD(h(LD(A))) =
LD(h(A)), so ym ∈ h−1(LD(h(A))). Passing to a subsequence, if necessary, we may
assume that in fact limm→∞ ym/‖ym‖ ∈ D(h−1(LD(h(A)))) = D(A). Again as cones
satisfy condition (SSP) we can claim the existence of a sequence xi ∈ LD(A) such that

‖yi − xi‖ ¿ ‖xi‖, ‖yi‖.

The fact that h is bi-Lipschitz implies that

‖h(xi)− h(yi)‖ ¿ ‖h(xi)‖, ‖h(yi)‖.

As h(xi) ∈ h(LD(A)) we proved that h(LD(A)) satisfies condition (SSP). ¤

Remark 2.15. In order to show h(LD(A)) satisfies condition (SSP), we cannot
drop the assumption LD(h−1(LD(h(A)))) = LD(A). Indeed if h is the spiral bi-Lipschitz
homeomorphism of Example 3.3 in [3], we put A = R× 0 so that h(LD(A)) = h(A) is a
spiral which does not satisfy condition (SSP) (Figure 1 below). Clearly h−1(LD(h(A))) =
R2 so it satisfies condition (SSP), and LD(h−1(LD(h(A)))) = R2 6= LD(A).

In the same spirit we have the following.

Proposition 2.16. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism,
and let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A. The following are equivalent :

Figure 1.
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(1) A, h(A) both satisfy condition (SSP).
(2) A, h−1(LD(h(A))) both satisfy condition (SSP) and LD(h−1(LD(h(A)))) = LD(A).
(3) h(A), h(LD(A)) both satisfy condition (SSP) and LD(h(LD(A))) = LD(h(A)).

Example 2.17. For instance, the situation in the above result happens in the
following two general cases.

(1) If both A, h(A) are subanalytic or definable in an o-minimal structure over R.
(2) If A satisfies condition (SSP) and h is a C1-diffeomorphism.

2.2. Condition semiline-(SSP).
Our general purpose is to provide a large class of examples of homeomorphisms which

preserve the condition (SSP). In this subsection we introduce the condition semiline-
(SSP), and we use it to give some characterisations of the condition (SSP). In particular,
in the bi-Lipschitz case, we prove that the condition semiline-(SSP) is equivalent to
preserving the condition (SSP) (Corollary 2.23). Furthermore we prove that a semiline-
(SSP) bi-Lipschitz homeomorphism h, induces a “positive homogeneous” bi-Lipschitz
homeomorphism which corresponds the real cones of arbitrary sets A and their images
h(A) (Theorem 2.25).

Definition 2.18. We say that a homeomorphism h : (Rn, 0) → (Rn, 0) satisfies
condition semiline-(SSP), if h(`) has a unique direction for all semilines `.

Remark 2.19. The bi-Lipschitz homeomorphisms satisfying condition semiline-
(SSP) are bi-Lipschitz homeomorphisms which are Gateaux right differentiable.

Proposition 2.20. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism.
Suppose that h−1(τ) satisfies condition (SSP) for all semilines τ . Then LD(h(`)) is a
semiline for all semilines `, that is h satisfies condition semiline-(SSP). (In particular
h(`) satisfies condition (SSP).)

Proof. Indeed, take a semiline ` and sequences of points {bi}, {ci} ⊂ ` tending
to 0 ∈ Rn such that LD(h({bi})) = `1 and LD(h({ci})) = `2, where `1, `2 are semilines.
Since `1 (resp. `2) satisfies condition (SSP), there is a sequence of points {b′i} with
{h(b′i)} ⊂ `1 (resp. {c′i} with {h(c′i)} ⊂ `2) such that

‖h(bi)− h(b′i)‖ ¿ ‖h(bi)‖, ‖h(b′i)‖ (resp. ‖h(ci)− h(c′i)‖ ¿ ‖h(ci)‖, ‖h(c′i)‖).

It follows that

‖bi − b′i‖ ¿ ‖bi‖, ‖b′i‖ (resp. ‖ci − c′i‖ ¿ ‖ci‖, ‖c′i‖). (2.1)

On the other hand, we have

{
lim

i→∞
bi

‖bi‖
}

=
{

lim
i→∞

ci

‖ci‖
}

= D(`)
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and {c′i} ⊂ h−1(`2). By (2.1), we have

{
lim

i→∞
b′i
‖b′i‖

}
=

{
lim

i→∞
bi

‖bi‖
}

= D(`) ⊂ D(h−1(`2)).

Since h−1(`2) satisfies condition (SSP), there is a sequence of points {c′′i } with h({c′′i }) ⊂
`2 such that

‖b′i − c′′i ‖ ¿ ‖b′i‖, ‖c′′i ‖.

This implies that

D(`1) =
{

lim
i→∞

h(b′i)
‖h(b′i)‖

}
=

{
lim

i→∞
h(c′′i )
‖h(c′′i )‖

}
= D(`2),

that is `1 = `2. ¤

We have the following corollaries.

Corollary 2.21. In the case of a bi-Lipschitz homeomorphism, the condition
semiline-(SSP) is equivalent with asking that h(`) satisfies condition (SSP) for all semi-
lines `. Moreover in the bi-Lipschitz case it follows that h satisfies condition semiline-
(SSP) is equivalent to h−1 satisfies condition semiline-(SSP).

Proof. Indeed assume that h(`) satisfies condition (SSP) for all semilines `. From
the result above it follows that h−1 satisfies condition semiline-(SSP), and therefore it
satisfies condition (SSP) as well. This in turn shows that h satisfies condition semiline-
(SSP). ¤

Corollary 2.22. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism, and
let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A. Suppose that A satisfies condition
(SSP), and h satisfies condition semiline-(SSP). Then h(A) satisfies condition (SSP).

Proof. Let ` be an arbitrary semiline contained in LD(h(A)). Then there is a
sequence of points {ai} ⊂ A tending to 0 ∈ Rn such that LD({h(ai)}) = `. Since `

satisfies condition (SSP), there is a sequence of points {ci} with {h(ci)} ⊂ ` such that

‖h(ai)− h(ci)‖ ¿ ‖h(ai)‖, ‖h(ci)‖.

It follows that

‖ai − ci‖ ¿ ‖ai‖, ‖ci‖.

Therefore we have LD({ai}) = LD({ci}) ⊂ LD(h−1(`)). We can use the previous
proposition to claim that LD({ai}) = LD({ci}) = LD(h−1(`)) is a semiline `1 ⊂ LD(A).

Let {bi} be an arbitrary sequence of points tending to 0 ∈ Rn such that
LD({h(bi)}) = ` ⊂ LD(h(A)). Since ` satisfies condition (SSP), there is a sequence
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of points {b′i} with {h(b′i)} ⊂ ` such that

‖h(bi)− h(b′i)‖ ¿ ‖h(bi)‖, ‖h(b′i)‖.

It follows that

‖bi − b′i‖ ¿ ‖bi‖, ‖b′i‖. (2.2)

Note that {b′i} ⊂ h−1(`). Therefore we have

LD({b′i}) = LD(h−1(`)) = `1 ⊂ LD(A).

Since A satisfies condition (SSP), there is a sequence of points {b′′i } ⊂ A such that

‖b′i − b′′i ‖ ¿ ‖b′i‖, ‖b′′i ‖. (2.3)

By (2.2) and (2.3), we have

‖bi − b′′i ‖ ¿ ‖bi‖, ‖b′′i ‖.

It follows that

‖h(bi)− h(b′′i )‖ ¿ ‖h(bi)‖, ‖h(b′′i )‖.

Since {h(b′′i )} ⊂ h(A), h(A) satisfies condition (SSP). ¤

Using the above corollary, we can see the following:

Corollary 2.23. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism.
Then the following are equivalent :

(1) h has the property that for any set-germ at 0 ∈ Rn, A ⊂ Rn such that 0 ∈ A, we have
that A satisfies condition (SSP) if and only if h(A) satisfies condition (SSP).

(2) h (so h−1) satisfies condition semiline-(SSP).

Remark 2.24. Take a germ of a semiarc γ : ([0, ε), 0) → (Rn, 0) with a unique
direction, say ` = LD(γ). (It is not difficult to see that γ satisfies condition (SSP).)
It follows from Proposition 2.20 that for a bi-Lipschitz homeomorphism h : (Rn, 0) →
(Rn, 0) where h−1 satisfies condition semiline-(SSP), we do have that h(γ) has also a
unique direction. Indeed, we can easily see that LD(h(γ)) = LD(h(LD(γ))) = LD(h(`))
is also a semiline. Let

S L := {γ : ([0, ε), 0) → (Rn, 0) | LD(γ) is a semiline}.

The above argument implies that if h−1 satisfies condition semiline-(SSP), then the map
h : S L → S L induces a map h : Sn−1 → Sn−1 defined by h(D(γ)) = D(h(γ)) for
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γ ∈ S L . If both h, h−1 satisfy condition semiline-(SSP), then h : Sn−1 → Sn−1 is a
one-to-one correspondence, in other words, h : Sn−1 → Sn−1 is bijective.

Note that in the case where γ : ([0, ε), 0) → (Cn, 0), γ ∈ S L , we have that the
complex tangent cone, LD∗(γ), is a complex line, and all complex lines can be obtained
in this way (see 2.39 for a definition of the complex tangent cone).

Theorem 2.25. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism such
that h (so h−1) satisfies condition semiline-(SSP). Then the induced map h : Sn−1 →
Sn−1 given in Remark 2.24 extends to a bi-Lipschitz homeomorphism h : Rn → Rn, and
for any set-germ at 0 ∈ Rn, A ⊂ Rn such that 0 ∈ A, we have h(D(A)) = D(h(LD(A))) =
D(h(A)). In particular we have dimD(A) = dimD(h(A)).

Proof. First we prove the result for A which satisfies condition (SSP). Indeed
D(A) = D(LD(A)) and the latest satisfies condition (SSP).

Let us put `a := {ta | t ≥ 0} for a ∈ Sn−1. Then we have LD(A) =
⋃

a∈D(A) `a. Let
us assume that A satisfies condition (SSP), then we have the following:

h(D(A)) =
( ⋃

a∈D(A)

LD(h(`a))
)
∩ Sn−1

⊆ LD

( ⋃

a∈D(A)

h(`a)
)
∩ Sn−1

= LD

(
h

( ⋃

a∈D(A)

`a

))
∩ Sn−1

= LD(h(LD(A))) ∩ Sn−1 = D(h(A)).

By Corollary 2.22, h(A) also satisfies condition (SSP). Using the same argument as
above, we have

(h)−1(D(h(A))) ⊂ D(h−1(h(A))) = D(A).

It follows that

D(h(A)) ⊂ h(D(A)) ⊂ D(h(A)).

Therefore we have h(D(A)) = D(h(A)).
Since h : (Rn, 0) → (Rn, 0) is a bi-Lipschitz homeomorphism, there are positive

numbers K1, K2 ∈ R with 0 < K1 ≤ K2, called Lipschitz constants, such that

K1‖x1 − x2‖ ≤ ‖h(x1)− h(x2)‖ ≤ K2‖x1 − x2‖

in a small neighbourhood of 0 ∈ Rn. Let h : Sn−1 → Sn−1, Sn−1 ⊂ Rn, be the mapping
defined by
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h(a) = lim
t→0

h(ta)
‖h(ta)‖ .

Let a, b ∈ Sn−1. Then for sufficiently small, arbitrary t > 0, we have

∥∥∥∥
h(ta)
‖h(ta)‖ −

h(tb)
‖h(tb)‖

∥∥∥∥ ≤
‖h(ta)− h(tb)‖

min(‖h(ta)‖, ‖h(tb)‖)
‖h(ta)− h(tb)‖

min(‖h(ta)‖, ‖h(tb)‖) ≤
K2‖ta− tb‖

min(K1‖ta‖,K1‖tb‖) ≤
K2

K1
‖a− b‖.

Taking the limit as t → 0+, we have ‖h̄(a)− h̄(b)‖ ≤ (K2/K1)‖a− b‖. Therefore it
follows that h̄ is a bi-Lipschitz homeomorphism. It is not difficult to extend h to a global
bi-Lipschitz homeomorphism, we put h(tx) = th(x), x ∈ Sn−1 (its radial extension).

Our proof shows that in fact D(h(A)) ⊆ D(h(LDA)) = h(D(A)) for any A. Because
h
−1

= h−1, the equality D(h(A)) = D(h(LDA)) = h(D(A)) holds in general. ¤

Remark 2.26. In particular the above property holds for any definable bi-Lipschitz
homeomorphism, and for any subanalytic bi-Lipschitz homeomorphism (for the subana-
lytic case see [1]).

Remark 2.27. The assumption on h cannot be much relaxed. Indeed, consider
a bi-Lipschitz zig-zag homeomorphism h : R → R (in particular it preserves the (SSP)
property) whose graph is like in Example 4.11, Figure 3 below. Then H := 1×h : R×R→
R × R is a bi-Lipschitz homeomorphism and for the semiline A = {(t, t) | t ≥ 0}, H(A)
is exactly that part of the graph of h which is a zigzag. Therefore dimD(H(A)) = 1
(even A satisfies condition (SSP)), but D(A) is only a point. Clearly H does not satisfy
semiline-(SSP).

Corollary 2.28. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism such
that h (h−1) satisfies condition semiline-(SSP), and let A ⊂ Rn be a set-germ at 0 ∈ Rn

such that 0 ∈ A. Then LD(A) and LD(h(A)) are bi-Lipschitz homeomorphic.

Proof. Indeed by the previous result we have that D(A) and D(h(A)) are bi-
Lipschitz homeomorphic, and the radial extension of h gives the result. ¤

2.3. Directional properties of intersection sets.
In this subsection we treat some directional properties of intersections. Even if A,

B satisfy condition (SSP), A ∩B does not always satisfy condition (SSP).

Proposition 2.29. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism,
and let U , V ⊂ Rn be closed cones with 0 ∈ Rn as the vertex. Suppose that h(U) satisfies
condition (SSP). Then D(h(U ∩ V )) = D(h(U)) ∩D(h(V )).

Proof. Since the inclusion ⊂ is obvious, we show ⊃ here. Let α be an arbitrary
element of D(h(U))∩D(h(V )). Then there is a sequence of points {am} ⊂ V tending to
0 ∈ Rn such that limm→∞ h(am)/‖h(am)‖ = α. Since h(U) has condition (SSP), there
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is a sequence of points {bm} ⊂ U tending to 0 ∈ Rn such that

‖h(am)− h(bm)‖ ¿ ‖h(am)‖, ‖h(bm)‖.

It follows that

‖am − bm‖ ¿ ‖am‖, ‖bm‖. (2.4)

On the other hand, there is a subsequence {amj
} of {am} such that

lim
mj→∞

amj

‖amj
‖ = β ∈ D(V ).

By (2.4) we have

lim
mj→∞

bmj

‖bmj
‖ = β ∈ D(U).

Since U , V are closed cones, β ∈ D(U) ∩D(V ) ⊂ U ∩ V . Let β̃ denote the real half line
through 0 and β. Then β̃ ⊂ U ∩ V . Note that β̃ satisfies condition (SSP). Therefore
there is a sequence of points {cmj

} ⊂ β̃ tending to 0 ∈ Rn such that

‖amj
− cmj

‖ ¿ ‖amj
‖, ‖cmj

‖.

This implies

‖h(amj
)− h(cmj

)‖ ¿ ‖h(amj
)‖, ‖h(cmj

)‖.

Thus

lim
mj→∞

h(cmj )
‖h(cmj

)‖ = lim
mj→∞

h(amj )
‖h(amj

)‖ = α.

It follows that α ∈ D(h(U ∩ V )). Thus D(h(U)) ∩D(h(V )) ⊂ D(h(U ∩ V )). ¤

Using a similar argument to the above proposition, we can generalise it as follows:

Theorem 2.30. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism, and
let U , V ⊂ Rn be set-germs at 0 ∈ Rn such that 0 ∈ U ∩ V . Suppose that D(U ∩ V ) =
D(U) ∩ D(V ), and U ∩ V and h(U) satisfy condition (SSP). Then D(h(U ∩ V )) =
D(h(U)) ∩D(h(V )).

Remark 2.31. We cannot drop any assumption from the above theorem.

(1) D(U ∩ V ) = D(U) ∩ D(V ): Let h : (R, 0) → (R, 0) be the identity map, and let
V = {1/m | m ∈ N} and U = R\V . Then D(U ∩V ) 6= D(U)∩D(V ), and U ∩V = ∅
and h(U) = U satisfy condition (SSP). But D(h(U)∩ h(V )) 6= D(h(U))∩D(h((V )).
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(2) (SSP) of U ∩ V : Let h : (R2, 0) → (R2, 0) be the inverse of the slow spiral bi-
Lipschitz homeomorphism given in Example 3.3 of [3] (see Figure 1 and Remark
2.15), and let A, B be spirals on the source space mapped by h to two lines `1,
`2 through the origin on the target space, respectively. We set U = A ∪ (B \ m)
and V = A ∪ (B ∩ m), where m is a half line with 0 ∈ R2 as an end point. Then
D(U ∩V ) = D(U)∩D(V ) = S1, h(U) = `1∪(`2 \C), where C is a sequence of points
on `2 convergent to 0 ∈ R2, satisfies condition (SSP) and U ∩V = A does not satisfy
condition (SSP). On the other hand, we can see that D(h(U)∩ h(V )) = `1 ∩ S1 and
D(h(U)) ∩D(h(V )) = (`1 ∪ `2) ∩ S1.

(3) (SSP) of h(U): Let h : (R2, 0) → (R2, 0) be the zigzag bi-Lipschitz homeomorphism
given in Example 3.4 of [3], and let U = {y = 0} and V = {y = ax} for a sufficiently
small positive number a > 0. Then D(U ∩ V ) = D(U) ∩ D(V ) = ∅, U ∩ V = {0}
satisfies condition (SSP) and h(U) does not satisfy condition (SSP) (see Remark 5.4 in
[3]). On the other hand, we can see that D(h(U∩V )) = ∅ but D(h(U))∩D(h(V )) 6= ∅.

Remark 2.32 (Example 5.2 (2) in [3]). Let T be an angle with vertex at O ∈ R2.
We choose sequences of points {Pm} and {Qm} on the edges of T such that OPm = 1/m2

and OQm = (1/2)(1/m2 + 1/(m + 1)2), and let C2 be the zigzag curve connecting Pm’s
and Qm’s. Then C2 satisfies condition (SSP).

Figure 2.

Suppose that there are a subanalytic curve U and a bi-Lipschitz homeomorphism
h : (R2, 0) → (R2, 0) such that h(U) = C2 satisfies condition (SSP). Let V be a half
line arbitrarily close to LD(U), therefore close to U as well, such that U ∩ V = {0} and
D(U ∩ V ) = D(U) ∩D(V ) = ∅. On the other hand, D(h(U ∩ V )) = ∅ and D(h(U)) ∩
D(h(V )) 6= ∅, as the image h(V ) has to be arbitrarily close to the zigzag C2. By Theorem
2.30, we see that C2 cannot be the image of any subanalytic curve by any bi-Lipschitz
homeomorphism.

2.4. Directional properties of product sets.
We give some elementary set-theoretical properties concerning the condition (SSP).

Proposition 2.33 (Product). Let A ⊂ Rm be a set-germ at 0 ∈ Rm such that
0 ∈ A and let B ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ B. Then A, B satisfy
condition (SSP) at 0 ∈ Rm, 0 ∈ Rn respectively if and only if A × B satisfies condition
(SSP) at (0, 0) ∈ Rm × Rn.
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Proof. We first show the “only if ” part. Let {(ak, bk)} be an arbitrary sequence
of points of Rm × Rn tending to (0, 0) ∈ Rm × Rn such that

lim
k→∞

(ak, bk)
‖(ak, bk)‖ = (a, b) ∈ D(A×B).

In the case where ‖a‖, ‖b‖ 6= 0, limk→∞ ak/‖ak‖ = a/‖a‖ ∈ D(A) and
limk→∞ bk/‖bk‖ = b/‖b‖ ∈ D(B). Therefore it is easy to see that there exists a se-
quence of points {(ck, dk)} of A×B tending to (0, 0) ∈ Rm × Rn such that

‖(ak, bk)− (ck, dk)‖ ¿ ‖(ak, bk)‖, ‖(ck, dk)‖.

Let us assume that ‖a‖ = 0 and ‖b‖ = 1. Then ‖ak‖ ¿ ‖bk‖ and limk→∞ bk/‖bk‖ ∈
D(B). Since B satisfies condition (SSP) at 0 ∈ Rn, there is a sequence of points {dk} of
B tending to 0 ∈ Rn such that

‖bk − dk‖ ¿ ‖bk‖, ‖dk‖.

Let {cj} be a sequence of points of A tending to 0 ∈ Rm such that limj→∞ cj/‖cj‖ ∈
D(A). Take a subsequence {cjk

} of {cj} so that ‖cjk
‖ < (1/k)‖dk‖. Then {(cjk

, dk)} is
a sequence of points of A×B tending to (0, 0) ∈ Rm × Rn such that

‖(ak, bk)− (cjk
, dk)‖ ¿ ‖bk‖, ‖dk‖.

It follows that

‖(ak, bk)− (cjk
, dk)‖ ¿ ‖(ak, bk)‖, ‖(cjk

, dk)‖.

The case where ‖a‖ = 1 and ‖b‖ = 0 follows similarly to the above. Thus A × B

satisfies condition (SSP) at (0, 0) ∈ Rm × Rn.
We next show the “if ” part. Since the proof of the other part is the same, it suffices

to show that A satisfies condition (SSP) at 0 ∈ Rm. Let {ak} be an arbitrary sequence
of points of Rm tending to 0 ∈ Rm such that

lim
k→∞

ak

‖ak‖ = a ∈ D(A).

We take a sequence of points {bk} of Rn tending to 0 ∈ Rn such that

lim
k→∞

bk

‖bk‖ = b ∈ D(B).

Taking a subsequence if necessary, we may assume that ‖bk‖ ≤ ‖ak‖ for any k ∈ N, and

lim
k→∞

(ak, bk)
‖(ak, bk)‖ = (pa,

√
1− p2b) ∈ D(A×B)
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where 0 < p ≤ 1. Since A × B satisfies condition (SSP) at (0, 0) ∈ Rm × Rn, there is a
sequence of points {(ck, dk)} of A×B tending to (0, 0) ∈ Rm × Rn such that

‖(ak, bk)− (ck, dk)‖ ¿ ‖(ak, bk)‖, ‖(ck, dk)‖.

It follows that

‖ak − ck‖ ¿ ‖ak‖, ‖ck‖.

Thus A satisfies condition (SSP) at 0 ∈ Rm. ¤

Proposition 2.34. Let A ⊆ Rm, B ⊆ Rn be set-germs at 0 ∈ Rm and 0 ∈ Rn

respectively, such that 0 ∈ A, 0 ∈ B. Then

D(A×B) ⊆ {
(ta,

√
1− t2b) | a ∈ D(A), b ∈ D(B), t ∈ [0, 1]

}
.

Moreover if both A and B satisfy condition (SSP), then the equality holds.

Proof. Let {(ak, bk)} ∈ A × B be an arbitrary sequence of points tending to
(0, 0) ∈ Rm × Rn such that

lim
k→∞

(ak, bk)
‖(ak, bk)‖ = (a, b) ∈ D(A×B).

We must have at least one of ‖a‖ 6= 0 or ‖b‖ 6= 0, hence we get that
limk→∞ ak/‖ak‖ = a/‖a‖ ∈ D(A) or limk→∞ bk/‖bk‖ = b/‖b‖ ∈ D(B). In any case
we take t = ‖a‖ =

√
1− ‖b‖2. In the case a = 0 then t = 0 and b ∈ D(B) so we can

write (0, b) as required.
For the other inclusion, let (ta,

√
1− t2b), a ∈ D(A), b ∈ D(B), for some t ∈ [0, 1].

If t 6= 0, 1, then take s =
√

1− t2/t and consider a sequence of points (tia, stib), ti → 0,

such that (tia, stib)/‖(tia, stib)‖ → (ta, stb). Using the fact that A and B satisfy the
condition (SSP) we can find ai ∈ A, bi ∈ B such that ‖ai − tia‖ ¿ ti, ‖bi − stib‖ ¿ sti
and this implies that (ai, bi)/‖(ai, bi)‖ → (ta,

√
1− t2b). The case when t = 0, 1 is trivial.

(We can always reduce the (SSP) property to the case when the points are on a line.) ¤

2.5. Complex sequence selection property.
We next consider the complex tangent cone and introduce a complex analogue for

the condition (SSP). Let A ⊂ Cn be a set-germ at 0 ∈ Cn such that 0 ∈ A. The complex
tangent cone of A is defined as follows:

LD∗(A) :=
{

v ∈ Cn

∣∣∣∣
∃{ci} ⊂ C, ∃{vi} ⊂ A \ {0} → 0 ∈ Cn

s.t. limi→∞ civi = v

}
.

Note that if A is a real (resp. complex) vector space, then LD(A) = A, LD∗(A) = A+iA

(resp. LD∗(A) = A).
Let CD(A) = {cv ∈ Cn | c ∈ C, v ∈ D(A)}. Then we have following:
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Lemma 2.35. LD∗(A) = CD(A).

Proof. Since the inclusion LD∗(A) ⊃ CD(A) is obvious, we show the converse
inclusion. Note that 0 ∈ LD∗(A) ∩ CD(A). Take an element v ∈ LD∗(A) \ {0}. By
definition, there exist {ci} ⊂ C and {vi} ⊂ A \ {0} → 0 ∈ Cn such that limi→∞ civi = v.
Then there are subsequences {cij

} of {ci} and {vij
} of {vi} such that limj→∞ cij

/‖cij
‖ =

c ∈ C \ {0} and limj→∞ vij /‖vij‖ = w ∈ D(A). Then we have v = c‖v‖w ∈ CD(A). It
follows that LD∗(A) ⊂ CD(A). ¤

We define the complex projective direction set D∗(A) ⊂ PCn−1 of A as the quotient
set of LD∗(A) \ {0} by C \ {0}. Then we have

Lemma 2.36 (Lemma 8.1 in H. Whitney [9]). Let A ⊂ Cn be an analytic variety
such that 0 ∈ A. Then LD∗(A) is also an analytic variety in Cn and D∗(A) is a projective
variety. In addition, we have

dimCA = dimC LD∗(A) = dimCD∗(A) + 1.

The next lemma follows also from Remark 8.2 and Theorem 11.8 in [9]:

Lemma 2.37. For an analytic variety 0 ∈ A ⊂ Cn, LD∗(A) = LD(A).

Remark 2.38. Let S1 = {eiθ | θ ∈ R}. For A ⊂ Cn such that 0 ∈ A, LD∗(A) =
LD(A) if and only if S1D(A) = D(A). Note that D∗(A) is the quotient of D(A) by S1.

One can also consider the sequence selection property over the complex numbers,
which we denote by (CSSP).

Definition 2.39. Let A ⊂ Cn be a set-germ at 0 ∈ Cn such that 0 ∈ A. We say
that A satisfies condition (CSSP), if for any sequence of points {am} of Cn tending to
0 ∈ Cn such that limm→∞ am/‖am‖ ∈ LD∗(A), there is a sequence of points {bm} ⊂ A

such that

‖am − bm‖ ¿ ‖am‖, ‖bm‖.

Remark 2.40. If A satisfies condition (CSSP), then LD∗(A) = LD(A), and it
is clear that it also satisfies condition (SSP). In particular, Lemma 2.12 implies that
D(h(A)) = D(h(LD(A))) = D(h(LD∗(A))) and LD∗(h(A)) = LD∗(h(LD∗(A))). In
general it is not true that D(h(A)) = D(h(LD∗(A))) implies A satisfies condition (SSP).
Amongst the examples of sets satisfying condition (CSSP) we mention the complex tan-
gent cones LD∗(A) and the complex analytic varieties.

Proposition 2.41. Let A ⊂ Cn be a set-germ at 0 ∈ Cn such that 0 ∈ A. Then A

satisfies condition (CSSP) if and only if A satisfies condition (SSP) and S1D(A) = D(A).
Consequently if A satisfies condition (SSP), then both S1A and CA satisfy condition
(CSSP).

Proof. The direct implication is clear from the comments above. For the other
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implication let us consider a sequence {am} of Cn tending to 0 ∈ Cn, such that
limm→∞ am/‖am‖ ∈ LD∗(A) = CD(A). It follows that limm→∞ am/‖am‖ = ca ∈
S1D(A) = D(A) by assumption. Because A satisfies condition (SSP) it follows that
there are bm ∈ A such that ‖am − bm‖ ¿ ‖am‖, ‖bm‖, that is A satisfies condition
(CSSP). ¤

3. Transversality.

3.1. Transversality for singular sets.
Let us define the notion of transversality for complex analytic varieties, using the

complex tangent cones.

Definition 3.1. Let 0 ∈ A, B ⊂ Cn be analytic varieties. Then we say that A

and B are transverse at 0 ∈ Cn if the following equality holds:

dimC LD∗(A) + dimC LD∗(B)− n = dimC(LD∗(A) ∩ LD∗(B)).

Concerning this transversality, we have

Theorem 3.2. Let h : (Cn, 0) → (Cn, 0) be a bi-Lipschitz homeomorphism, and
let 0 ∈ A, B, h(A), h(B) ⊂ Cn be analytic varieties. Then A and B are transverse at
0 ∈ Cn if and only if h(A) and h(B) are transverse at 0 ∈ Cn.

Proof. We show only the “only if ” part. The “if ” part follows similarly.
By assumption,

dimC LD∗(A) + dimC LD∗(B)− n = dimC(LD∗(A) ∩ LD∗(B)).

By Lemma 2.36, we see that

dimC LD∗(A) = dimC LD∗(h(A)), dimC LD∗(B) = dimC LD∗(h(B)).

Then, using Lemma 2.37 and Theorem 2.2, we can compute dimC(LD∗(A) ∩ LD∗(B))
as follows:

2 dimC(LD∗(A) ∩ LD∗(B)) = dimR(LD∗(A) ∩ LD∗(B))

= dimR(LD(A) ∩ LD(B))

= dimR(LD(h(A)) ∩ LD(h(B)))

= dimR(LD∗(h(A)) ∩ LD∗(h(B)))

= 2 dimC(LD∗(h(A)) ∩ LD∗(h(B))).

Therefore we have

dimC LD∗(h(A)) + dimC LD∗(h(B))− n = dimC(LD∗(h(A)) ∩ LD∗(h(B))).
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Thus h(A) and h(B) are transverse at 0 ∈ Cn. ¤

3.2. Weak transversality.
When dealing with singular sets in the real set up, we find more convenient to use

a weaker form of transversality, in terms of real tangent cones. This is analogous to the
use of semi-arcs in Real Algebraic Geometry.

Definition 3.3. Let A, B ⊂ Rn be set-germs at 0 ∈ Rn such that 0 ∈ A∩B. We
say that A and B are weakly transverse at 0 ∈ Rn if D(A) ∩ D(B) = ∅ (if and only if
LD(A) and B are weakly transverse at 0 ∈ Rn).

Concerning this weak transversality, we have the following:

Lemma 3.4. Let A, B be two set-germs at 0 ∈ Rn such that 0 ∈ A ∩ B, and let
h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Suppose that h(A) (or h(B))
satisfies condition (SSP). If D(A) ∩D(B) = ∅, then D(h(A)) ∩D(h(B)) = ∅.

As a corollary of this we have the following.

Theorem 3.5. Let A, B be two set-germs at 0 ∈ Rn such that 0 ∈ A ∩B, and let
h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Suppose that A or B satisfies
condition (SSP), and h(A) or h(B) satisfies condition (SSP). Then A and B are weakly
transverse at 0 ∈ Rn if and only if h(A) and h(B) are weakly transverse at 0 ∈ Rn.

Proof of Lemma. By hypothesis, LD(A) ∩ LD(B) = {0}.
Assume that h(A) and h(B) are not weakly transverse at 0 ∈ Rn. Namely, there are a

half line ` ⊂ LD(h(A))∩LD(h(B)) and a sequence of points {bm} ⊂ B tending to 0 ∈ Rn

such that limm→∞ h(bm)/‖h(bm)‖ = D(`). Here LD(`) = ` ⊂ LD(h(A)) ∩ LD(h(B)).
Since h(A) satisfies condition (SSP), there is a sequence of points {am} ⊂ A such

that

‖h(am)− h(bm)‖ ¿ ‖h(am)‖, ‖h(bm)‖.

It follows that

‖am − bm‖ ¿ ‖am‖, ‖bm‖. (3.1)

Taking a subsequence of {bm} if necessary, we may assume that limm→∞ bm/‖bm‖ = b̂ ∈
D(B). By (3.1), b̂ = limm→∞ am/‖am‖ ∈ D(A). Thus it follows that D(A) ∩ D(B) 6=
∅, which contradicts the hypothesis. Thus it follows that h(A) and h(B) are weakly
transverse at 0 ∈ Rn. ¤

Remark 3.6. We cannot drop the assumption of (SSP) from the above theorem.
For instance, consider Figure 1, the “slow spiral” bi-Lipschitz homeomorphism pictured
before.

As a corollary of Theorem 3.5, we have the following:
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Corollary 3.7. Let A, B be two set-germs at 0 ∈ Rn such that 0 ∈ A∩B, and let
h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Suppose that h(LD(A)) satisfies
condition (SSP). Then A and B are weakly transverse at 0 ∈ Rn if and only if h(LD(A))
and h(B) are weakly transverse at 0 ∈ Rn.

The following is a simple corollary of Theorem 2.25.

Corollary 3.8. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism such
that h satisfies condition semiline-(SSP) and A,B ⊂ Rn two arbitrary set-germs at 0 ∈
Rn such that 0 ∈ A ∩ B. Then A and B are weakly transverse at 0 ∈ Rn if and only if
h(A) and h(B) are weakly transverse at 0 ∈ Rn.

3.3. Applications to complex analytic varieties.
Having developed our transversality theory specifically to deal with the singular

situations, let us apply (illustratively) the above results to arbitrary complex analytic
varieties. We first give an important proposition.

Proposition 3.9. Let A, B ⊂ Cn be set-germs at 0 ∈ Cn such that 0 ∈ A∩B. If
LD(A) ∩ LD∗(B) = {0}, then LD∗(A) ∩ LD∗(B) = {0}.

Proof. Assume that there exists v ∈ LD∗(A) ∩ LD∗(B) such that v 6= 0 ∈ Cn.
Then, by Lemma 2.35, there is a non-zero c ∈ C such that cv ∈ LD(A) ∩ LD∗(B). This
contradicts the hypothesis. Thus the statement follows. ¤

As a corollary of Proposition 3.9 and Lemma 2.37, we have

Corollary 3.10. Let 0 ∈ V ⊂ Cn be an analytic variety, and let A ⊂ Cn such
that 0 ∈ A. Then LD∗(A) ∩ LD∗(V ) = {0} if and only if LD(A) ∩ LD(V ) = {0}.

Let 0 ∈ V, W ⊂ Cn be analytic varieties, and let A be a subset of Cn such that
0 ∈ A. Suppose that there exists a bi-Lipschitz homeomorphism h : (Cn, 0) → (Cn, 0)
such that h(V ) = W . Then, by Lemma 3.4, Lemma 2.37 and Proposition 3.9, we can
see the following:

Theorem 3.11. LD∗(A) ∩ LD∗(V ) = {0} if and only if LD∗(h(A)) ∩ LD∗(W ) =
{0}.

We consider also the application to the singular points sets of complex analytic
varieties. Let V , W , A and h be the same as above. Let us denote by Σ(V ) (resp.
Σ(W )) the singular points set of V (resp. W ). Note that h(Σ(V )) = Σ(W ).

By Lemma 3.4, we can easily see the following:

Proposition 3.12. A and Σ(V ) are weakly transverse at 0 ∈ Cn if and only if
h(A) and Σ(W ) are weakly transverse at 0 ∈ Cn.

Let us apply our Proposition 2.29 to complex analytic hypersurfaces. Let 0 ∈ V ,
W ⊂ Cn be analytic hypersurfaces, and let the ideals I(V ) and I(W ) of V and W be
generated by complex analytic functions f and g, respectively. Let fd and gk be the
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initial homogeneous forms of f and g, respectively.
We note that for a hypersurface V = {f = 0}, as above, we have LD(V ) =

LD∗(V ) = {fd = 0}. Suppose that there exists a bi-Lipschitz homeomorphism h :
(Cn, 0) → (Cn, 0) such that h(V ) = W . Then, by Lemma 2.12, we have

Observation 1. LD(h(LD(V ))) = LD(h(V )).

In addition, by Proposition 2.11, we have

Observation 2. h(LD(V )) satisfies condition (SSP).

Using these facts, we can show the following:

Corollary 3.13. Let A ⊂ Cn be a set-germ at 0 ∈ Cn such that 0 ∈ A. Then we
have

LD(h(LD(A) ∩ LD(V ))) = LD(h(LD(A))) ∩ LD(W ).

Proof. By Observation 2, h(LD(V )) satisfies condition (SSP). Then it follows
from Proposition 2.29 and Observation 1 that

LD(h(LD(A) ∩ LD(V ))) = LD(h(LD(A))) ∩ LD(h(LD(V )))

= LD(h(LD(A))) ∩ LD(W ). ¤

We end this section with an application to analytic curves.
Let W1,W2 be the set-germs of two analytic curves at 0 ∈ Cn.
Then LD(W1) =

⋃s
j=1 mj , mi ∩mj = {0}, i 6= j, LD(W2) =

⋃t
j=1 lj , li ∩ lj = {0},

i 6= j, s, t ∈ N, where mj , lj are complex lines through 0 ∈ Cn.

Proposition 3.14. Suppose that there is a bi-Lipschitz homeomorphism h :
(Cn, 0) → (Cn, 0) such that h(W1) = W2. Then s = t.

Proof. We are going to use the known fact that the tangent cone of an irreducible
complex curve is just a complex line. We know that

t⋃

j=1

lj = LD∗(W2) = LD(W2) = LD(h(LD(W1))) =
s⋃

j=1

LD∗(h(mj)).

This shows that for any j, 1 ≤ j ≤ s , LD∗(h(mj)) consists of some lines lk. We will show
that we cannot have more than one lk. Indeed assume that l1, l2 are in LD∗(h(m1)),
for convenience. This would imply that there are sequences ai, bi ∈ W1 realising the
direction m1 so that their images h(ai), h(bi) realise l1 and l2 respectively. As l1, l2 are
distinct directions, following the cited result it follows that the sequences h(ai) and h(bi)
are in different irreducible components of W2, say in V1 and in V2 respectively. As h is
a homeomorphism it follows that ai ∈ h−1(V1) and bi ∈ h−1(V2) are also on different
irreducible components of W1. This contradicts our Theorem 3.11. It follows that each
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LD∗(h(mj)) consists exactly of one line and therefore s ≥ t. By symmetry we conclude
our proof. ¤

Remark 3.15. It is not difficult to see that the above result does not hold for h

merely a homeomorphism.

4. (SSP) mappings.

In this section we introduce and investigate the notion of (SSP) mappings.

Definition 4.1. Let A ⊂ Rm be a set-germ at 0 ∈ Rm such that 0 ∈ A and B ⊂ Rn

a set-germ at 0 ∈ Rn such that 0 ∈ B. Let h : (A, 0) → (B, 0) be an arbitrary map (or a
homeomorphism) germ. We say that h is an (SSP) map ((SSP) homeomorphism) if the
graph of h satisfies condition (SSP) at (0, 0) ∈ Rm × Rn.

Subanalytic maps and definable maps in an o-minimal structure are examples of
(SSP) maps. Also the Cartesian product of two (SSP) maps is an (SSP) map. By
Theorem 4.19 weak diffeomorphisms are also (SSP) homeomorphisms. A function h :
(R, 0) → (R.0) whose graph is a zigzag given in Example 2.32 is also an (SSP) map. (Of
course, the zigzag should be expanded to the negative part.)

We next consider the image of a set satisfying condition (SSP) by an (SSP) map.
Let π : (Rn, 0) → (Rn−1, 0) be the projection on the first (n− 1) coordinates, and let A

be a set-germ at 0 ∈ Rn such that 0 ∈ A. Then the following result holds:

Proposition 4.2. Suppose that kerπ and A are weakly transverse at 0 ∈ Rn.
Then we have

(1) π(LD(A)) = LD(π(A)).
(2) If A satisfies condition (SSP), then so does π(A).

Proof. (1) For the first inclusion ⊆, it suffices to show π(D(A)) ⊆ LD(π(A)).
Take a ∈ D(A). Then there is a sequence of points {am} ⊂ A \ {0} tending to 0 ∈ Rn

such that limm→∞ am/‖am‖ = a. By the weak transversality, a /∈ kerπ. Since π(am) 6= 0
for sufficiently large m, we may assume that π(am) 6= 0 for any m. Then we have

π(a)
‖π(a)‖ = lim

m→∞
π(am)
‖π(am)‖ ∈ D(π(A)).

Hence π(a) ∈ LD(π(A)).
For the second inclusion it suffices to show D(π(A)) ⊆ π(LD(A)). Take b ∈ D(π(A)).

Then there is a sequence of points {am} ⊂ A \ {0} tending to 0 ∈ Rn such that
limm→∞ π(am)/‖π(am)‖ = b. Because of the same reason as above, we may assume
that π(am) 6= 0 for any m. Then, by the weak transversality, there is a subsequence
{amj

} of {am} such that

lim
mj→∞

amj

‖amj
‖ = a ∈ D(A) and π(a) 6= 0.
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Then we have

b = lim
mj→∞

π(amj
)

‖π(amj
)‖ =

π(a)
‖π(a)‖ = π

(
a

‖π(a)‖
)
∈ π(LD(A)).

(2) Let {bm} be an arbitrary sequence of points of Rn−1 tending to 0 ∈ Rn−1 such
that

lim
m→∞

bm

‖bm‖ = b ∈ D(π(A)).

Let ` = {tb | t ≥ 0} ⊂ LD(π(A)). Then by (1), there is a half line L ⊂ LD(A) such that
π(L) = `. Let us express L as {t(b, c) | t ≥ 0} for some c ∈ R. Let αm = (bm, ‖bm‖c) for
each m. Then we have

lim
m→∞

αm

‖αm‖ = lim
m→∞

(bm, ‖bm‖c)
‖(bm, ‖bm‖c)‖ = lim

m→∞
(bm/‖bm‖, c)
‖(bm/‖bm‖, c)‖ =

(b, c)
‖(b, c)‖ ∈ D(A).

Since A satisfies condition (SSP), there is a sequence of points {βm} ⊂ A, where βm =
(am, dm) ∈ Rn−1 × R, tending to 0 ∈ Rn such that

‖βm − αm‖ ¿ ‖βm‖, ‖αm‖.

It follows that

‖π(βm)− π(αm)‖ = ‖π(βm − αm)‖ ≤ ‖βm − αm‖ ¿ ‖βm‖.

Then, by the weak transversality,

‖π(βm)− π(αm)‖ ¿ ‖π(βm)‖ (and also ‖π(αm)‖).

This means

‖am − bm‖ ¿ ‖am‖, ‖bm‖.

Since am = π(βm) ∈ π(A), π(A) satisfies condition (SSP). ¤

Remark 4.3. We cannot drop the assumption of the weak transversality in the
above theorem.

Let π : R3 → R2 be the projection defined by π(x, y, z) = (x, y), and let A = {z4 =
x2 + y2} ∩ π−1(S), where S is a slow spiral on (x, y)-plane. Then we can see that A

satisfies condition (SSP), but π(A) = S does not satisfy condition (SSP). In addition,
π(LD(A)) = {0} but LD(π(A)) = R2.

Concerning the weak transversality assumption of Proposition 4.2, we have the fol-
lowing lemma.
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Lemma 4.4. Let f : (Rn, 0) → (Rp, 0) be a map such that there is c > 0 with
|f(x)| ≤ c|x| in a neighbourhood of the origin. Let π : Rn×Rp → Rn be the projection on
the first n-coordinates. Then kerπ and the graph of f are weakly transverse at (0, 0) ∈
Rn × Rp.

Using Proposition 4.2 and Lemma 4.4, we can show the following theorem on the
(SSP) structure:

Theorem 4.5. Let h : (Rn, 0) → (Rn, 0) be a Lipschitz homeomorphism such that
c1|x| ≤ |h(x)|, for some c1 > 0, in a neighbourhood of 0 ∈ Rn, and let A ⊂ Rn be a
set-germ at 0 ∈ Rn such that 0 ∈ A. Suppose that A satisfies condition (SSP) and h is
an (SSP) map. Then h(A) also satisfies condition (SSP).

Proof. Let π2 : Rn × Rn → Rn be the projection on the second n-coordinates,
and let

GA := {(a, h(a)) ∈ Rn × Rn | a ∈ A}.

Suppose that GA satisfies condition (SSP) as a set-germ at (0, 0) ∈ Rn × Rn. Since
h−1 : (Rn, 0) → (Rn, 0) satisfies |h−1(x)| ≤ (1/c1)|x| in a neighbourhood of 0 ∈ Rn,
it follows from Proposition 4.2 and Lemma 4.4 that h(A) = π2(GA) satisfies condition
(SSP). Therefore it suffices to show that GA satisfies condition (SSP).

Let π1 : Rn × Rn → Rn be the projection on the first n-coordinates, and let G be
the graph of h. Since kerπ1 and G are weakly transverse at (0, 0) ∈ Rn × Rn, so are
kerπ1 and GA.

Let us show that GA satisfies condition (SSP). Let {αm} be an arbitrary sequence
of points of Rn × Rn tending to (0, 0) ∈ Rn × Rn such that

lim
m→∞

αm

‖αm‖ = α ∈ D(GA) ⊂ D(G),

where αm = (bm, cm) ∈ Rn × Rn for m ∈ N. Let L = {tα | t ≥ 0} ⊂ LD(GA). Since G

satisfies condition (SSP), there is a sequence of points of {βm} ⊂ G such that

‖αm − βm‖ ¿ ‖αm‖, ‖βm‖, (4.1)

where βm = (dm, h(dm)) ∈ Rn×Rn for m ∈ N. By the weak transversality of kerπ1 and
GA, π1(L) = ` ⊂ LD(A). Note that ` = {tb | t ≥ 0} for b = limm→∞ bm/‖bm‖ ∈ D(A).
Therefore it follows from the weak transversality that

‖bm − dm‖ ¿ ‖bm‖, ‖dm‖. (4.2)

On the other hand, since A satisfies condition (SSP), there is a sequence of points
{am} ⊂ A tending to 0 ∈ Rn such that

‖am − bm‖ ¿ ‖am‖, ‖bm‖. (4.3)
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It follows from (4.2) and (4.3) that

‖am − dm‖ ¿ ‖am‖, ‖dm‖. (4.4)

Because h is Lipschitz, (4.4) implies that,

‖h(am)− h(dm)‖ ¿ ‖am‖, ‖dm‖. (4.5)

Consequently our assumption on h implies that

‖h(am)− h(dm)‖ ¿ ‖h(am)‖, ‖h(dm)‖. (4.6)

Let γm = (am, h(am)) ∈ GA for m ∈ N. It follows from (4.4) and (4.6) that

‖γm − βm‖ ¿ ‖γm‖, ‖βm‖. (4.7)

By (4.1) and (4.7) we have

‖αm − γm‖ ¿ ‖αm‖, ‖γm‖.

Therefore GA satisfies condition (SSP). This completes the proof of Theorem 4.5. ¤

Definition 4.6. We call a homeomorphism : (Rn, 0) → (Rn, 0) an (SSP) bi-
Lipschitz homeomorphism if it is bi-Lipschitz and an (SSP) map.

Obviously a C1 diffeomorphism h : (Rn, 0) → (Rn, 0) is an (SSP) bi-Lipschitz home-
omorphism.

As a special case of the above theorem we have the following preserving (SSP)
structure Theorem.

Theorem 4.7. Let h : (Rn, 0) → (Rn, 0) be an (SSP) bi-Lipschitz homeomorphism,
and let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A. Then A satisfies condition
(SSP) if and only if h(A) satisfies condition (SSP).

We have a corollary of the proof of Theorem 4.5.

Corollary 4.8. Let h : (Rn, 0) → (Rn, 0) be a Lipschitz homeomorphism as in
Theorem 4.5, and let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A. Suppose that h

is an (SSP) map and A satisfies condition (SSP). Then the restriction h|A is an (SSP)
map.

We can give a characterisation of an (SSP) map as follows:.

Proposition 4.9. Let h : (Rn, 0) → (Rn, 0) be a Lipschitz homeomorphism as in
Theorem 4.5. Then h is an (SSP) map if and only if its restrictions to any semiline `

are (SSP) maps.
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Proof. The corollary above gives the necessity. Let G be the graph of h. To
prove the sufficiency, let us consider a sequence of points {(am, bm)} of Rn ×Rn tending
to (0, 0) ∈ Rn × Rn such that

lim
m→∞

(am, bm)
‖(am, bm)‖ = (a, b) ∈ D(G).

We put l := {(ta, tb) | t ≥ 0} and l1 := {ta | t ≥ 0}. Then there is a sequence
of points {(ci, h(ci))} of G such that limi→∞ (ci, h(ci))/‖(ci, h(ci))‖ = (a, b). Since l

satisfies condition (SSP), there are positive numbers si ∈ R so that

‖si(a, b)− (ci, h(ci))‖ ¿ ‖ci‖, si.

This shows that the direction l is also attained by the sequence {(sia, h(sia))}, namely
it appears as a direction of the graph of the restriction of h to l1, and we can apply the
hypothesis to end the proof. ¤

Remark 4.10. Unfortunately a homeomorphism which is merely an (SSP) home-
omorphism, does not always preserve the condition (SSP). We can construct an (SSP)
homeomorphism h : R → R, which also satisfies semiline-(SSP), such that there is a set
A satisfying condition (SSP) but h(A) does not.

Concerning Theorem 4.7, it may be natural to ask the following question:

Question 1. Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Suppose
that if A satisfies condition (SSP), so does h(A) for any set-germ A at 0 ∈ Rn such that
0 ∈ A. Then is h an (SSP) map?

We have a negative example to the above question.

Example 4.11. Let h : (R, 0) → (R, 0) be a zig-zag function whose graph is drawn
below (Figure 3). (Note that the zigzag in Figure 2 is not the graph of a function!)

Then h is a bi-Lipschitz homeomorphism. As stated in Remark 2.8 (2), h satisfies
the (SSP) assumption in Question 1. But the graph of h does not satisfy condition (SSP).
Therefore h is not an (SSP) map, moreover h also satisfies condition semiline-(SSP).

Remark 4.12. We can consider a similar question to Question 1 in the semialge-
braic category or in the subanalytic one. Namely, we consider the question, replacing
condition (SSP) with semialgebraic or subanalytic. Indeed, let h : (Rn, 0) → (Rn, 0) be a
bi-Lipschitz homeomorphism. Suppose that if A is semialgebraic (or subanalytic), then
so does h(A) (for any set-germ A at 0 ∈ Rn such that 0 ∈ A). Does this property imply
that h is a semialgebraic map (subanalytic respectively)? The above example provides a
negative answer.

This kind of phenomenon is not particular to the one-dimensional case. For instance,
let T := {(x, y) ∈ R2;x > 0 and exp(−1/x2) < y < 2 exp(−1/x2)}. Then we can define a
homeomorphism germ h : (R2, 0) → (R2, 0) by identity outside T , and, on T , we can take
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Figure 3.

any extension so that h is a non-semialgebraic homeomorphism. However this kind of h

takes semialgebraic set-germs to semialgebraic set-germs. Indeed, for any 1-dimensional
semialgebraic set A such that 0 ∈ A, A∩T is empty as a set-germ at 0 ∈ R2, and obviously
its image h(A) = A is semialgebraic. If B is an arbitrary 2-dimensional semialgebraic set
such that 0 ∈ B, then the boundary of B does not intersect T as set-germs at 0 ∈ R2.
Therefore we can see that h(B) is also a semialgebraic set-germ.

The subanalytic case is similar.
Concerning the above phenomenon we mention the following results.

Proposition 4.13.

(1) Both hi : (Rni , 0) → (Rni , 0), i = 1, 2, are (SSP) bi-Lipschitz homeomorphisms if
and only if h1×h2 : (Rn1 ×Rn2 , 0× 0) → (Rn1 ×Rn2 , 0× 0) is an (SSP) bi-Lipschitz
homeomorphism.

(2) Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Then In × h : (Rn ×
Rn, 0× 0) → (Rn×Rn, 0× 0) (or In×h−1) satisfies condition semiline-(SSP) if and
only if In × h : (Rn × Rn, 0× 0) → (Rn × Rn, 0× 0) is an (SSP) map.

(3) Let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Then h is an (SSP) map
if and only if In × h : (Rn × Rn, 0 × 0) → (Rn × Rn, 0 × 0) (or In × h−1) satisfies
condition semiline-(SSP).

(Here In : (Rn, 0) → (Rn, 0) represents the identity map.)

Proof. Note that the graph of h1 × h2 is the Cartesian product of the graphs of
h1 and h2. Then (1) follows from Proposition 2.33.

In (2) we already know the sufficiency by Theorem 4.5. For necessity, in our set up,
it follows that In × h takes (SSP) sets to (SSP) sets, see Corollary 2.23. In particular
the diagonal in Rn × Rn is taken to the graph of h, so h is an (SSP) map and by (1) so
is In × h.

Now (3) clearly follows from (1) and (2). ¤
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Remark 4.14. Note that if h : (Rn, 0) → (Rn, 0) is an (SSP) bi-Lipschitz home-
omorphism, then for any semiline ` the cone LD(G`) is also a semiline. This fact also
explains Example 4.11. (Here G` is the graph of the restriction of h to `.)

Remark 4.15.

(1) There are bi-Lipschitz homeomorphisms h : (Rn, 0) → (Rn, 0), n ≥ 2, which are not
(SSP) bi-Lipschitz homeomorphisms.
For instance, let h : (R2, 0) → (R2, 0) be a zigzag bi-Lipschitz homeomorphism
in Example 3.4 of [3] or a slow spiral bi-Lipschitz homeomorphism, and let A be
the positive x-axis. Clearly A satisfies condition (SSP) and h(A) does not satisfy
condition (SSP). Then, by Theorem 4.7, h is not an (SSP) map.

(2) The homeomorphism h associated to a bi-Lipschitz homeomorphism which satisfies
condition semiline-(SSP) is an (SSP) map.

In order to give another large class of examples of (SSP) homeomorphisms, let us
consider a category of homeomorphisms h : (Rn, 0) → (Rn, 0) called weak diffeomor-
phisms, namely those h and h−1 which admit derivative (= linear approximation) at
0 ∈ Rn.

We will point out some directional and (SSP) properties for the class of weak diffeo-
morphisms, namely we will show that the weak diffeomorphisms are also (SSP) homeo-
morphisms.

Remark 4.16. Note that a weak diffeomorphism is not necessarily Lipschitz. For
instance we may have h(x, y, z) = (x, y, z + (x5 + y5)1/3).

Let h : (Rn, 0) → (Rn, 0) denote a weak diffeomorphism. Then h can be expressed
in a neighbourhood of 0 ∈ Rn as follows:

h(x) = Mh(x) + Oh(x),

where Mh is a regular linear map from Rn to Rn, and limx→0 ‖Oh(x)‖/‖x‖ = 0. Note
that Mh−1 ◦Mh = Id.

Lemma 4.17. Let A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A, and let G and
GA be the graphs of the weak diffeomorphism h and h|A respectively. Then we have

(1) LD(Mh(A)) = Mh(LD(A)) = LD(h(A)).
(2) LD(GA) = LD(graph(Mh|A)). In particular LD(G) = graph(Mh) is an n-

dimensional linear subspace of Rn × Rn.

Proof. (1) Since we can easily see the first equality, we show only the second one.
Moreover, interchanging h and h−1, it suffices to show Mh(LD(A)) ⊂ LD(h(A)).

Let α be an arbitrary element of D(A). Then there is a sequence of points {am} ⊂ A

tending to 0 ∈ Rn such that limm→∞ am/‖am‖ = α. Therefore
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Mh(α)
‖Mh(α)‖ = lim

m→∞
Mh(am/‖am‖)
‖Mh(am/‖am‖)‖

= lim
m→∞

(1/‖am‖)(Mh(am) + Oh(am))
(1/‖am‖)‖Mh(am) + Oh(am)‖

= lim
m→∞

Mh(am) + Oh(am)
‖Mh(am) + Oh(am)‖

= lim
m→∞

h(am)
‖h(am)‖ ∈ D(h(A)).

It follows that Mh(LD(A)) ⊂ LD(h(A)).
(2) The proof is similar to the above and it is omitted. ¤

Remark 4.18. It is also worth mentioning that there are (SSP) homeomorphisms
which do not satisfy condition semiline-(SSP). For example one may consider the function
f which has a zig-zag graph and the associated homeomorphism h : (R2, 0) → (R2, 0),
h(x, y) = (x, y + f(x)). This shows that outside the bi-Lipschitz category there is no
direct implication between the (SSP) homeomorphisms and those satisfying condition
semiline-(SSP) (see also 4.11).

The following theorem shows that the weak diffeomorphisms are also suitable for
the (SSP) category.

Theorem 4.19. A weak diffeomorphism is an (SSP) homeomorphism and satisfies
condition semiline-(SSP) as well.

Proof. Let h be a weak diffeomorphism. In fact it is an easy consequence of
Lemma 4.17 that for any A ⊂ Rn satisfying condition (SSP), GA satisfies condition
(SSP), where GA is the graph of the restriction of h to A. Therefore G satisfies condition
(SSP) at 0 ∈ R2n. ¤

As a corollary of the proof above and Lemma 4.4 we have the following corollary.

Corollary 4.20. Let h : (Rn, 0) → (Rn, 0) be a weak diffeomorphism and let
A ⊂ Rn be a set-germ at 0 ∈ Rn such that 0 ∈ A. Then A satisfies condition (SSP) if
and only if h(A) satisfies condition (SSP).

5. Appendix – Geometric applications to spirals.

We consider polar coordinates (r, θ), 0 < r, θ < ∞. Let R : (0,∞) → (0,∞) be
a continuous function. We say that S0 : r = R(θ) is a spiral at 0 ∈ R2 if R is strictly
monotone and

lim
θ→∞

R(θ) = 0 or lim
θ→∞

R(θ) = ∞.

In the first case we write R(∞) = 0 and note that the extension R : (0,∞] → [0,∞) is
continuous and injective. In the second case we write R(0) = 0 and note that also the
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extension R : [0,∞) → [0,∞) is continuous and injective.
Let us introduce the homeomorphism germ induced by a spiral, defined in polar

coordinates by:

hS0 : (R2, 0) → (R2, 0), hS0(r, α) = (r,R−1(r) + α), 0 ≤ α < 2π.

For 0 ≤ α < 2π we put Lα := {(r, α)|0 ≤ r < ∞} and Sα := hS0(Lα). Note that S0 is
just the spiral r = R(θ) together with 0 ∈ R2.

If 0 ≤ α < 2π we denote by Rα the rotation of R2 centred at the origin and of angle
α. Then the following is obvious:

Remark 5.1. Sα = Rα(S0) and D(hS0(Lα)) = Rα(D(S0)).

For applications to spirals we need Proposition 2.29 modified to the following:

Proposition 5.2. Let h : (Rn, 0) → (Rn, 0) be a homeomorphism, and let U ,
V ⊂ Rn be set-germs 0 ∈ Rn such that 0 ∈ U ∩ V . Suppose that

(1) D(U ∩ V ) = D(U) ∩D(V ),
(2) U ∩ V satisfies condition (SSP),
(3) h(U) satisfies condition (SSP), and
(4) h is bi-Lipschitz.

Then D(h(U ∩ V )) = D(h(U)) ∩D(h(V )).

We will use the above proposition to give a classification of spirals. (We note that
in general is quite tedious to test the property of being bi-Lipschitz.) Firstly note that
for α 6= β, α, β ∈ [0, 2π) we have D(Lα ∩ Lβ) = D(Lα) ∩D(Lβ) = ∅ and Lα ∩ Lβ = {0}
satisfies condition (SSP). That is, Lα and Lβ satisfy the first two conditions in Proposition
5.2.

We first consider the case when #(D(S0)) > 1, which is equivalent with the following
condition: There are α 6= β, α, β ∈ [0, 2π) such that D(hS0(Lα)) ∩D(hS0(Lβ)) 6= ∅.

On the other hand, as D(hS0(Lα ∩Lβ)) = ∅, the conclusion of Proposition 5.2 does
not hold; this may happen only if one or both of conditions (3) and (4) fail. We can
therefore divide the case #(D(S0)) > 1 in three classes as follows:

(A) S0 satisfies condition (SSP) at 0 ∈ R2. In this case the induced homeomorphism hS0

is not bi-Lipschitz. For example, this is the case for the hyperbolic spiral, r = a/θ,
a > 0. Note that the length of the spiral is infinite (even for c ≤ θ < ∞, c > 0). On
the other hand the spiral r = a/θ2 also satisfies (SSP) so, although its length is finite
for c ≤ θ < ∞, c > 0, the induced homeomorphism is, yet again, not bi-Lipschitz.

(B) The induced homeomorphism hS0 is bi-Lipschitz, and therefore S0 does not satisfy
(SSP). This is the case for the logarithmic spiral r = ae−bθ, a, b > 0.

(C) In this case S0 does not satisfy (SSP) and hS0 is not bi-Lipschitz.

Finally we have the remaining case when #D(S0) = 1. This condition is equivalent
to the condition ∀α 6= β, α, β ∈ [0, 2π) we have D(hS0(Lα)) ∩D(hS0(Lβ)) = ∅. This is
the case for the Archimedean spiral r = aθ, a > 0.
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Let us recall some examples on (SSP) analysed in [3].

Example 5.3. (1) Let 0 < r < 1, and let A = {am|m ∈ N} be a sequence of points
of R, defined by am := rm. Then A does not satisfy (SSP) at 0 ∈ R.

(2) Let B = {bm|m ∈ N} and C = {cm|m ∈ N} be sequences of points of R defined
by bm := 1/m and cm := (1/m)2, respectively. Then B and C satisfy (SSP) at 0 ∈ R.

The first example above can be used to construct spirals belonging to the class (C),
whilst the second one can be used to explain the examples given in the class (A).
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