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Abstract. This article studies the asymptotic linking pairing lk on the
space of exact 2-forms B2(S3) on the 3-sphere S3 through the geometry of Hopf
fibrations. Mitsumatsu [7] tried to apply this pairing to 3-dimensional con-
tact topology. He considered a positive definite subspace P (ξ) in (B2(M), lk)
associated with a contact structure ξ on a closed 3-manifold M . Further he
introduced an invariant of ξ, called the analytic torsion. We investigate the
case of the standard contact structure on S3 and construct a positive defi-
nite subspace of arbitrary large dimension in the lk-orthogonal complement of
P (ξ). This shows that the analytic torsion is infinite. Also we show that it is
infinite even for any closed contact 3-manifold.

1. Introduction.

The asymptotic linking pairing lk is a symmetric bi-linear form on the space of
homology-free vector fields on 3-manifolds. This is a generalization of the linking number
of knots or links. It is realized as a pairing on exact 2-forms, see [1], [2], and also Section
2 for the definitions. The purpose of this paper is to study the linking pairing on the
three sphere S3 through the geometry of Hopf fibrations.

In [7], Mitsumatsu tried to apply this pairing to the theory of foliations and con-
tact structures on a closed 3-manifold M . In the space of exact 2-forms (B2(M), lk),
a foliation F defines the null subspace N(F) and a positive contact structure ξ defines
the positive definite subspace P (ξ). Roughly speaking, he studied the maximality of
N(F) and P (ξ) as null or positive definite subspaces. To define the “signature” of lk, he
considered if the dimension of N(F)⊥lk/N(F) is bounded and succeeded in determining
it for the case of algebraic Anosov foliations. Here N(F)⊥lk means the lk-orthogonal
complement of N(F). In particular, the space (N(F)⊥lk/N(F), lk) has important mean-
ings, which is related to the theory of secondary characteristic classes of foliations. To
apply the similar way in contact topology, he studied the supremum of the dimensions
of positive definite subspaces in (P (ξ)⊥lk , lk). It is called the analytic torsion of ξ and is
denoted by Toran(M, ξ). This is interesting from viewpoints of the correspondence be-
tween foliations and contact structures, and also the theory of secondary characteristics.
Mitsumatsu showed the criterion of tightness of ξ by using Toran(M, ξ) (Theorem 2.4).
A sketch of the proof is given in Section 2.2. It is important to study the space P (ξ)⊥lk

and the quantity Toran(M, ξ); however there are few known results.
We focus the case of the 3-sphere S3 and the standard positive contact structure ξst.

Our main result is the following:
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Theorem 1.1. There exists a positive definite subspace in P (ξst)⊥lk with respect
to lk of arbitrary large dimension, that is, the analytic torsion of (S3, ξst) is infinite.

This problem can be replaced into the space of homology-free vector fields on S3 by
Arnold’s theorem (Theorem 2.1). We calculate the linking number of a special class of
homology-free vector fields on S3. As a Lie group, S3 contains many subgroups which
are isomorphic to S1. Each of them defines a different Hopf fibration. In Section 3, we
show that for each fiber in a Hopf fibration, there are two special Hopf fibers in any
other Hopf fibrations (Theorem 3.1). From such observations, we construct vector fields
which give positive definite subspaces of arbitrary large dimensions (Proposition 3.4).
Theorem 1.1 follows by combining Proposition 3.4 and Theorem 2.1. Further, such a
positive definite subspace can be locally constructed for any closed contact 3-manifold.
We will give proofs of Theorem 1.1 and Corollary 1.2 in Section 4.

Corollary 1.2. For any closed contact 3-manifold, the analytic torsion is infinite.

From the standpoint of Theorem 2.4, our result implies that the criterion is not
applicable without major modification. On the other hand, our result indicates the dif-
ference of the subspaces associated with foliations and contact structures in (B2(M), lk);
For algebraic Anosov foliations, the dimensions of N(F)⊥lk/N(F) are bounded ([7]).
That is, N(F) has finite codimension to a maximal null subspace. However, once such a
foliation deform to contact structures, the corresponding quantities Toran(M, ξ) become
infinite. That is, P (ξ) has infinite codimension to a maximal positive definite subspace.
This phenomenon that occurs infinite dimension seems to express a part of “deformation
quantization”.

Acknowledgements. The author is grateful to Professor Yoshihiko Mitsumatsu
for many discussions and his encouragements. Also the author would like to thank him
for agreeing to publish his proof of Theorem 2.4 in this paper.

2. Linking pairing.

2.1. Two definitions of the linking paring.
We review the definition of the linking pairing and related topics. Let M be a closed

oriented 3-manifold. Fix a volume form d vol on M . There is a one to one correspondence
between the space of differential 2-forms Ω2(M) and the space of C∞-vector fields X(M).
Each 2-form is obtained by ιXd vol for a vector field X. Under this correspondence, the
space of divergence-free vector fields Xd(M) is isomorphic to the space of closed 2-forms
Z2(M). Let Xh(M) denote the space of vector fields corresponding to the space of exact
2-forms B2(M). The elements of Xh(M) are called homology-free vector fields. Arnold
[1] introduced the pairing on B2(M);

lk(dα1, dα2) =
∫

M

α1 ∧ dα2.

This is called the asymptotic linking pairing (or the asymptotic Hopf invariant), briefly
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we say the linking pairing. This pairing is an indefinite symmetric bi-linear form on
B2(M).

There is an another interpretation of the linking pairing lk as the asymptotic linking
number of homology-free vector fields X1 and X2. Let φt1

1 and φt2
2 denote the flows

generated by X1 and X2. Choose a Riemannian metric and two points p1 and p2. Once
φTi

i (pi) is close to the initial point pi, where Ti is such a return time, we connect them
with a short geodesic for each i = 1, 2. These closed curves are denoted by k1(T1; p1) and
k2(T2; p2). For almost all (p1, p2) and (T1, T2), the closed curves k1(T1; p1) and k2(T2; p2)
are disjoint and the linking number is defined. In particular, we can choose a short
geodesic connecting φT1

1 (p1) and p1 so that the intersection number with Seifert surfaces
of k2(T2; p2) is uniformly bounded. Arnold showed that the limit

lk(X1, X2; p1, p2) = lim
T1,T2→∞

1
T1T2

link(k1(T1; p1), k2(T2; p2))

exists for almost all (p1, p2) and it is integrable on M ×M with respect to d vol×d vol.
The asymptotic linking number of X1 and X2 is defined by

lk(X1, X2) =
∫∫

(p1,p2)∈M×M

lk(X1, X2; p1, p2) d vol(p1)d vol(p2).

For more details, see [1], [2] and also [5] for related topics. This can be interpreted
in the context of Schwartzman’s asymptotic cycles ([8], [9] and [5]). In this paper,
we will consider only if all trajectories are closed. Thus the computation is not much
complicated.

Arnold connected the two definitions of lk. We will use this theorem in Section 4.

Theorem 2.1 (Arnold [1], [2]). The linking pairing and the asymptotic linking
number coincide on S3;

lk(dα1, dα2) = lk(X1, X2),

where dαi = ιXid vol (i = 1, 2).

2.2. A relationship to contact topology.
To close this section, we state a relationship to contact topology. First, recall the

definition of a contact structure.
Let α be a contact form on an oriented 3-manifold M , that is, α is a nonsingular

1-form and α ∧ dα vanishes nowhere. A contact form is said to be positive if the volume
form α ∧ dα gives the orientation of M . A contact form α determines a non-integrable
plane field ξ by Ker α, which is called the contact plane field or the contact structure.

There is a dichotomy in 3-dimensional contact topology; A contact structure contains
an overtwisted disk or not. The overtwisted disk is an embedded disk D ⊂ (M, ξ) such
that ξp = TpD for each p ∈ ∂D, that is, ξ does not twist along ∂D. A contact structure
which admits no overtwisted disks is said to be tight. Darboux’s theorem tells that any
contact structure is locally tight. See [3] and [4] for more details.
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Let P (ξ) denote the space of exact 2-form d(φα) for any smooth function φ, where
α determines a positive contact structure ξ on M .

Proposition 2.2 ([7]). The space P (ξ) is a positive definite subspace in (B2(M),
lk).

Proof. This follows from the easy calculation:

lk(d(φα), d(φα)) =
∫

M

φα ∧ d(φα) =
∫

M

φ2α ∧ dα > 0

for any smooth function φ which is not identically zero. ¤

In order to measure the maximality of P (ξ) as a positive definite subspace in
(B2(M), lk), Mitsumatsu [7] introduced the following definitions.

Definition 2.3. The analytic torsion Toran(M, ξ) of a positive contact structure
ξ is defined by the supremum of the dimensions of positive definite subspaces in the
lk-orthogonal complement P (ξ)⊥lk of P (ξ) in (B2(M), lk).

He gave a criterion for the tightness of a contact structure.

Theorem 2.4 (Mitsumatsu [7]). If Toran(M, ξ) is bounded, then ξ is tight.

Outline of the proof. Following [7], we mention to the outline of his proof.
First we recall the Giroux torsion of ξ. This torsion is defined by the supremum length
n ∈ (1/2)Z such that there is a contact embedding

ϕn : (T 2 × [0, 1], ζn) ↪→ (M, ξ),

where ζn = Ker{cos(2πnt)dx− sin(2πnt)dy} and (x, y, t) is the coordinate of T 2 × [0, 1].
Mitsumatsu considered the total length of a disjoint union (possibly connected) of contact
embeddings

m∐

i=1

ϕni
:

m∐

i=1

(T 2 × [0, 1], ζni
) ↪→ (M, ξ),

where each image is mutually disjoint in (M, ξ). The supremum of the total length∑m
i=1 ni is called the twisting invariant Tw(M, ξ) of (M, ξ). By definition, the twisting

invariant is greater than or equal to the Giroux torsion. It is known that the Giroux
torsion of an overtwisted contact structure is infinite. Thus, if Tw(M, ξ) is bounded,
then ξ is tight.

Suppose that there is a contact embedding ϕn of length n. We can extend ϕn to

ϕ̃n : (T 2 × (−ε, 1 + ε), ζn) ↪→ (M, ξ)

for small ε > 0. Next we separate ϕ̃n into 2n disjoint contact embeddings of length 1/2.
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Choose open sets {Ui} of M which cover each of connected components of the image and
which are mutually disjoint. Further we take a 1-form λi on T 2 × [0, 1] as

λi = sin(2πnit)dx + cos(2πnit)dy.

This can be extended to a global 1-form λ̃i on M in such a way that the following
properties are satisfied

( i ) supp(λ̃i) ⊂ Ui,
( ii ) dλ̃i ∈ P (ξ)⊥lk , lk(dλ̃i, dλ̃i) > 0 and lk(dλ̃i, dλ̃j) = 0 for i 6= j.

To achieve this, we need to carefully deform λi. This reduces to a problem of ordinary
differential equations.

Once this is done, the vector space P spanned by such exact 2-forms {dλ̃i} is a
positive definite subspace in P (ξ)⊥lk , where dim P = 2n. We do this procedure for all
possible contact embeddings, then we have

Toran(M, ξ) ≥ 2 · Tw(M, ξ) ≥ 2 ·Giroux torsion.

Therefore if Toran(M, ξ) is bounded, then ξ is tight.

Remark 2.5. Similarly, for a foliation F defined by a 1-form ω, we set N(F) =
{d(φω) | φ ∈ C∞(M)}. This is a null subspace in (B2(M), lk). Mitsumatsu [7] showed
that, for an algebraic Anosov foliation, the dimension of N(F)⊥lk/N(F) is determined
by using the leafwise cohomology of F . In particular, this is bounded. Compare Theorem
1.1. See also Sections 3, 4 and 5 in [6] as the brief summary of [7].

3. Linking of fibers of Hopf fibrations.

This section deals with the geometry of Hopf fibrations on S3. For the basic geometry
of S3, we refer to e.g. [10]. Our first aim is to prove Theorem 3.1. To do this, we consider
our problem in the oriented Grassman manifold G̃r(4, 2) rather than S3. In G̃r(4, 2), we
will understand the linking number of any two Hopf fibers. Second, we calculate the
linking pairing of Hopf fibrations for concrete examples in Section 3.2.

3.1. Hopf fibrations on S3.
We regard the unit sphere S3 ⊂ C2 ∼= R4 as the Lie group SU(2). Throughout this

paper, we fix the correspondence between the unit sphere S3 and the group SU(2) where
e1 = t(1, 0, 0, 0) in S3 ⊂ R4 is identified with the unit e in SU(2). The Lie algebra su(2)
is isomorphic to the real vector space spanned by i, j, k ∈ H. Let S2(i, j, k) denote the
set of pure unit quaternions. Each u ∈ S2(i, j, k) generates the one-parameter subgroup
Ou ⊂ SU(2), which is isomorphic to S1. The right (resp. left) action of Ou on S3 is
defined by the multiplication x 7→ x · g (resp. x 7→ g · x) in SU(2). The right (resp. left)
action gives the principal S1-bundle hu : S3 → Pu (resp. uh : S3 → uP), called the right-
handed (resp. left-handed) Hopf fibration for u. In order to distinguish the underlying
space P1, we use the notation Pu (resp. uP). The space Pu (resp. uP) is regarded as the
set of complex lines for the positive (resp. negative) complex structure determined by u.
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We fix the standard metric and the orientation on S3 induced from R4. We assign the
orientation of S3 by the outward normal vector in R4. The orientations of Hopf fibers
are given by the actions, so that the linking number of two fibers is determined.

Hopf fibrations have the following property: Each fiber of hu (resp. uh) links pos-
itively (resp. negatively) once to the others. In contrast, the following result describes
the linking of fibers in different Hopf fibrations.

Theorem 3.1. Fix a right-handed Hopf fibration hu : S3 → Pu and a fiber γ of
hu. For each right-handed Hopf fibration hv : S3 → Pv where v is neither u nor −u, the
following statements hold :

( i ) There exist precisely two fibers δ+(γ) and δ−(γ) of hv, depending on the choice of γ,
which satisfy the following condition: The fiber γ links positively (resp. negatively)
once with δ+(γ) (resp. δ−(γ)), where γ, δ+(γ) and δ−(γ) are mutually parallel
with respect to the standard metric on S3.

( ii ) There is the circle C(γ) separating Pv into two open disks D+(γ) and D−(γ)
centered at δ+(γ) and δ−(γ) respectively. Each oriented fiber over D+(γ) (resp.
D−(γ)) links positively (resp. negatively) once with γ.

Figure 1.

The closed disk D−(γ) (resp. D+(γ)) degenerates to the point δ−(γ) (resp. δ+(γ))
when v = u (resp. −u). It will be understood that the similar statement holds if we
replace a right-handed Hopf fibration by a left-handed one. To prove Theorem 3.1, we
consider 2-dimensional oriented subspaces in R4 instead of oriented Hopf fibers in S3. In
what follows, we regard uP and Pv as submanifolds in the oriented Grassman manifold
G̃r(4, 2).

Proposition 3.2. For each u and v in S2(i, j, k), two submanifolds uP and Pv

intersect at one point L in G̃r(4, 2). Conversely, for each L in G̃r(4, 2), there exist u and
v such that uP ∩ Pv = {L}.

Proof. Let us find a common invariant subspace in R4 by the left action of Ou

and the right action of Ov. Since the right and left actions commute, these actions
are simultaneous diagonalizable as elements of SO(4). Hence we can find two invariant
2-dimensional subspaces in R4 under both actions. On one of the invariant subspaces,
which is denoted by L, the induced orientations by both actions coincide. On the other
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one, which is denoted by L′, those are opposite. Of course, L′ = L⊥ (= the orthogonal
complement of L in R4). This invariant subspace L is the desired element.

Conversely, take L in G̃r(4, 2) and the orthogonal complement L⊥ whose orientation
is given by L and R4. We choose the orthonormal basis 〈e1, e2〉 of L and 〈e3, e4〉 of L⊥.
The positive complex structure J+ associated with L⊕ L⊥ determines the element v in
S2(i, j, k) and the right action of Ov. Here J+ maps as e1 7→ e2 and e3 7→ e4. Similarly,
the negative complex structure J−, which maps as e1 7→ e2 and e3 7→ −e4, determines
the element u in S2(i, j, k) and the left action of Ou. Thus the latter statement follows.

¤

Let uLv denote the intersection point of uP and Pv in G̃r(4, 2). Also −L denotes
the subspace L with the opposite orientation. Notice that −(uLv) = −uL−v. From
Proposition 3.2, it follows that G̃r(4, 2) is diffeomorphic to uP× Pv.

Next, we consider the actions on G̃r(4, 2). The action of SU(2) on S3 itself is linearly
extended on R4. This induces the right and left actions on G̃r(4, 2). The homomorphism
τ : SU(2) × SU(2) ³ SO(4) is defined by τ(g, h) = Lg−1Rh, where L and R denote
the left and right translations on G̃r(4, 2). The kernel is isomorphic to the cyclic group
of order 2, so that SO(4) ∼= SU(2) ×Z/2Z SU(2). See e.g. [10, p. 107]. The action of
SU(2)× SU(2) on G̃r(4, 2) ∼= uP× Pu is described as follows:

Proposition 3.3. The action of SU(2)×SU(2) preserves the horizontal and ver-
tical foliations of G̃r(4, 2) ∼= uP×Pu. The right action of SU(2) preserves each horizontal
leaf although it moves vertical leaves through the foliation. More precisely, a vertical leaf
Pu moves to another one PAdg(u) for some g in SU(2), where Ad : SU(2) ³ SO(3)
is the adjoint representation. This statement also holds if we replace right by left and
horizontal by vertical respectively.

Proof. Any element L in Pu is obtained as follows. Take x ∈ S3 ∩ L ⊂ R4. Let
x denote the position vector for x in R4. The differential of the right action of Ou yields
the left invariant vector field {vx = d/dt|t=0 x · exp(tu)}x∈S3 . Then L is spanned by x

and vx, denoted by R〈x,vx〉. Thus the left action preserves the right quotient space Pu.
(Similarly, the right action preserves the left quotient spaces.) For each g in SU(2), we
have

τ(g, g) L = R〈g−1xg,Adg(vx)〉,

so that τ(g, g) L belongs to PAdg(u). We have

τ(e, g)Pu = τ(g, g)Pu = PAdg(u).

Hence the right action preserves both foliations as desired. ¤

Here we write the action of SU(2) × SU(2) explicitly. Since {uLv} = uP ∩ Pv, we
have

τ(g, h) uLv = Adg(u)LAdh(v).
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The fixed point sets of the left and right actions are obtained as follows:

Fix(τ(g, e)) = uP t −uP and Fix(τ(e, g)) = Pu t P−u if g ∈ Ou.

Take L1 and L2 in G̃r(4, 2). Let Int(L1,L2) denote the algebraic intersection number
of L1 and L2 in R4. This is equal to the linking number of their restrictions on S3 if it
is defined.

Proof of Theorem 3.1. We consider L ∈ G̃r(4, 2) corresponding to the oriented
Hopf fiber γ in Theorem 3.1. After transformations of SU(2) × SU(2), we may assume
that L = uLu. The intersection number is invariant under such transformations. Let E

denote the set of all L in G̃r(4, 2) for which dim(L ∩ uLu) is at least 1. We determine
the set E. First, we show that the diagonal set ∆ = {vLv | v ∈ S2(i, j, k)} is contained
in E. Recall the correspondence between S3 and SU(2). Choose i in S2(i, j, k) and iLi

(= R〈e1, e2〉). For each g in SU(2), we have

iLi ∩ τ(g, g)iLi = R〈e1〉 ⊂ R4.

By the surjectivity of Ad, it follows that any element of ∆ includes R〈e1〉. Thus ∆ is
included in E. Take g in Ou ⊂ SU(2). We have

τ(g, e)(uLu ∩ vLv) = Adg(u)Lu ∩ Adg(v)Lv = uLu ∩ Adg(v)Lv.

Hence Adg(v)Lv is contained in E for such g. Conversely, any element of E is obtained
in such a way. The left action of Ou on E is free except uLu and −uL−u and the
quotient space Ou\E is equal to the diagonal set ∆. Observe that E is obtained by
collapsing the product bundle ∆ × S1 along {uLu} × S1 ∪ {−uL−u} × S1. The general
fiber {Adg(v)Lv | g ∈ Ou} of E corresponds to the circle C(γ) ⊂ Pv in Theorem 3.1,
where v is neither u nor −u.

The left action of Ou on Pv preserves C(γ) and fixes uLv and −uLv, which are desired
elements δ−(γ) and δ+(γ) respectively. In fact, the intersection numbers are obtained by

Int(uLu, uLv) = −1, Int(uLu,−uLv) = −Int(uLu, uL−v) = +1

since uLu, uLv and uL−v belong to uP. These restrictions on S3 are mutually parallel.
Thus the statement (i) follows. The set E decomposes G̃r(4, 2) into two components.
The circle C(γ) decomposes Pv into two disks D−(γ) and D+(γ) which contain δ−(γ)
and δ+(γ) respectively. By the continuity of Int(uLu, ·) : G̃r(4, 2)\E → {+1,−1}, the
statement (ii) follows.

As seeing Figure 2, we can understand the linking numbers of any Hopf fibers. The
thick line means the set E. The “+” (resp. “−”) chamber surrounded by the thick line
is the set of L in G̃r(4, 2) for which Int(uLu,L) = +1 (resp. = −1). The intersection
E ∩ Pv is equal to C(γ). Compare with Figure 1.
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Figure 2. The signs of intersection numbers with uLu in fGr(4, 2) ' uP× Pu.

3.2. Linking quadratic forms and Hopf fibrations.
Let us compute the linking numbers of flows related to Hopf fibrations. Further we

try to compute the rank of lk as a quadratic form.

Example 1. We consider a right-handed Hopf fibration hu. Fix the standard
metric and the volume form d vol on S3. (The volume of the unit sphere is 2π2.) Let Xu

denote the left invariant vector field on S3 such that (Xu)e = u, which is called the Hopf
vector field for u. The vector field gives the Hopf fibration hu. The self-linking number
of Xu is given by

lk(Xu, Xu) =
∫∫

(x,y)∈S3×S3
lk(Xu, Xu;x, y)d vol(x)d vol(y)

=
+1

2π · 2π
· vol(S3) · vol(S3) = π2.

This is also obtained by the calculation on B2(S3). Let Xi, Xj , Xk denote Hopf
vector fields for i, j, k, which give the basis of su(2). The dual basis of su(2)∗ is denoted
by {X∗

i , X∗
j , X∗

k} and it is easy to see that this satisfies the following relations:

dX∗
i = X∗

j ∧X∗
k , dX∗

j = X∗
k ∧X∗

i , dX∗
k = X∗

i ∧X∗
j ,

and X∗
i ∧ X∗

j ∧ X∗
k is a half of the standard volume form d vol on S3. Since lk (over

Xh(M)) is invariant under volume preserving diffeomorphisms, we have

lk(Xu, Xu) = lk(Xi, Xi) = lk(dX∗
i , dX∗

i ) =
∫

S3
X∗

i ∧ dX∗
i =

∫

S3
X∗

i ∧X∗
j ∧X∗

k = π2.

The second equality follows by the Arnold’s theorem (Theorem 2.1). These calculations
are known in [1] and [2].

Next we consider a smooth function f such that Xu(f) = 0, where Xu(·) means
the differential by Xu. Then fXu is a homology-free vector field. Set VXu

= {fXu |
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Xu(f) = 0} in Xh(S3). The self-linking number of fXu is given by

lk(fXu, fXu) =
∫∫

S3×S3
f(x)f(y)lk(Xu, Xu;x, y)d vol(x)d vol(y)

=
{

1
2π

∫

S3
f(x)d vol(x)

}2

.

The computation shows that the quadratic form lk has rank one over VXu
and it is positive

definite. Notice that it is easy to compute the rank of lk|VXu
on Xh(S3), although it seems

to be difficult to do that on B2(S3).

Example 2. Choose u and v in S2(i, j, k). We consider the linking number of two
Hopf fibrations hu and hv. Let Xu and Xv denote the Hopf vector fields for u and v.
Also let θ denote the angle between u and v. We have

lk(Xu, Xv) =
∫

x∈S3

{ ∫

y∈S3
lk(Xu, Xv;x, y)d vol(y)

}
d vol(x)

=
∫

x∈S3

{ ∫

y∈h−1
v (D+(hu(x)))

lk(Xu, Xv;x, y)d vol(y)

+
∫

y∈h−1
v (D−(hu(x)))

lk(Xu, Xv;x, y)d vol(y)
}

d vol(x)

= vol(S3) ·
{

+1
2π · 2π

· (π − θ)2

(π − θ)2 + θ2
· vol(S3)

+
−1

2π · 2π
· θ2

(π − θ)2 + θ2
· vol(S3)

}

=
(π − θ)2 − θ2

(π − θ)2 + θ2
· π2.

Here, the area of D+(hu(x)) ⊂ Pv is equal to (π − θ)2/((π − θ)2 + θ2) and the area of
D−(hu(x)) ⊂ Pv is equal to θ2/((π − θ)2 + θ2). If u and v are perpendicular, then we
have lk(Xu, Xv) = 0.

Example 3. Assume that u and v are perpendicular. We consider laminar flows
contained in hu and hv. Here a Hopf fiber γ in S3 is identified with the base point
hu(γ) on Pu. By abuse of notation, we write γ instead of hu(γ). For each γ in Pu, the
disks D+(γ) and D−(γ) are hemispheres in Pv (see Theorem 3.1). We choose 2(2m+1)-
points γ1, γ2, . . . , γ2(2m+1) on a great circle in Pu so that these points divide the circle
2(2m+1)-th equally as shown in Figure 3. Then the points δ1, δ2, . . . , δ2(2m+1) in Pv are
determined by δi = δ+(γi).

By the configuration of γi’s and δj ’s, the corresponding orbits link with each other
in S3. In fact, it suffices to choose points so that δ1, δ2, . . . , δ2(2m+1) do not lie on the
great circles C(γ1), C(γ2), . . . , C(γ2(2m+1)).
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Figure 3. The case of m = 1: {γ1, γ2, . . . , γ6, δ1, δ2, . . . , δ6}.

Let us regard γ1, . . . , γ2(2m+1), δ1, . . . , δ2(2m+1) as atomic measures on Pu and Pv.
We put

ωi := γi + (−γ2m+1+i) and τi := δi + (−δ2m+1+i) for 1 ≤ i ≤ 2m + 1.

Let Qm denote the R-vector space spanned by

{ω1, . . . , ω2m+1, τ1, . . . , τ2m+1}.

Now we compute a matrix associated with the quadratic form lk, which is called the
linking matrix. First, observe that

lk(ωi, ωj) = 0 and lk(τi, τj) = 0

for 1 ≤ i, j ≤ 2m + 1. The self-linking number of γi is defined by Xu and it is equal to
1. Second, notice that lk(γi, δ2m+1+j) = −lk(γi, δj) by the configuration. Then we have

lk(ωi, τj) = 4 · lk(γi, δj).

Hence the linking matrix Lkm over the basis {ω1, . . . , ω2m+1, τ1, . . . , τ2m+1} is obtained
by

Lkm =

(
0 Am

Am 0

)
,

where the diagonal part consists of only 0. The anti-diagonal part Am is shown in Fig-
ure 4. The part denoted by “1” (resp. “−1”) consists of only 1 (resp. −1). After the
conjugation by elementary transformations, it follows that the maximal rank of positive
(and also negative) definite subspaces in Qm is equal to 2m + 1. The elementary trans-
formations are roughly showed in Figure 5. (The Figures 4 and 5 are listed in the last
page.)

Such discrete orbits ω1, . . . , ω2m+1, τ1, . . . , τ2m+1 are approximated by a smooth
vector field supported on a small tubular neighborhood invariant under the actions of
Ou and Ov. This is interpreted as diffusing atomic measures on Pu tPv. Thus it follows
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that there is a positive definite subspace of rank 2m + 1 in VXu
+ VXv

⊂ Xh(S3). As
increasing m arbitrary, we obtain the following result.

Proposition 3.4. There exist positive and negative definite subspaces in VXu
+VXv

(with respect to lk) of arbitrary large dimensions.

4. Proofs of Theorem 1.1 and Corollary 1.2.

Recall that the standard positive contact structure on S3 can be expressed by ele-
ments of su(2)∗. Let X∗

i , X∗
j , X∗

k denote as in Section 3.2, Example 1. The plane field de-
fined by the kernel of X∗

k gives a positive contact structure on S3, which is denoted by ξst.
We consider the lk-orthogonal complement P (ξst)⊥lk of P (ξst) = d(φX∗

k) | φ ∈ C∞(S3)}.
Then we have the next lemma.

Lemma 4.1. The space P (ξst)⊥lk has the following expression:

P (ξst)⊥lk = fdX∗
i + gdX∗

j | Xi(f) + Xj(g) = 0, f, g ∈ C∞(S3)}.

Proof. Take any element dλ ∈ P (ξst)⊥lk . This is written by dλ = fdX∗
i +gdX∗

j +
hdX∗

k for f, g and h in C∞(S3). By lk(dX∗
k , dλ) = 0, we have h ≡ 0. Further, since

fdX∗
i + gdX∗

j belongs to B2(S3) = Z2(S3), we obtain the equality Xi(f) + Xj(g) = 0.
¤

We set PXi = {fdX∗
i | Xi(f) = 0} ⊂ P (ξst)⊥lk . By the above expression, the linear

subspace PXi
+PXj

is contained in P (ξst)⊥lk . Notice that PXi
is isomorphic to VXi

under
the correspondence B2(S3) ∼= Xh(S3). By Proposition 3.4 and Theorem 2.1, it follows
that there exists a positive definite subspace in PXi

+ PXj
⊂ P (ξst)⊥lk of arbitrary large

dimension. Thus Theorem 1.1 follows.
At the end, we show Corollary 1.2. Our construction was done in a (sufficiently

large) open ball B ⊂ (S3\{p0}, ξst) ∼= (R3, ξR3). Here p0 is a point in S3 and ξR3 is the
standard contact structure on R3. More precisely, the open ball B includes the support of
any exact 2-form contained in such a positive definite subspace. By Darboux’s theorem,
there is a contact embedding ϕ : (B, ξst) → (M, ξ). Notice that lk (over B2) is invariant
under orientation preserving diffeomorphisms. The induced map

ϕ∗ :
(
B2

cpt(B), lk
) → (B2(M), lk)

preserves the pairing lk, where B2
cpt means the space of exact 2-forms with compact

supports. In particular, the map

ϕ∗ : (P (ξst)⊥lk ∩B2
cpt(B), lk) → (P (ξ)⊥lk , lk)

is defined. By Theorem 1.1, we obtain a positive definite subspace in P (ξ)⊥lk of arbitrary
large dimension. Thus Corollary 1.2 follows.
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Figure 4. The anti-diagonal part of Lkm.

Figure 5. The conjugation of elementary transformations of Lkm.
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