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Abstract. With the aid of the technique of variation of domains devel-
oped in Memoirs of Amer. Math. Soc., Vol. 209, No. 984 (2011), we character-
ize the pseudoconvex domains with smooth boundary in Hopf surfaces which
are not Stein.

1. Introduction.

Let a € C* := C\ {0} with |a] > 1 and let H, be the Hopf manifold with respect
to a, i.e., H, = C™\ {(0,...,0)}/ ~ where 2z’ ~ z if and only if there exists m € Z such
that 2/ = a™z in C™ \ {0}. In a previous paper [1] we showed that any pseudoconvex
domain D C H, with C*-smooth boundary which is not Stein is biholomorphic to T, x
Dy where Dg is a Stein domain in P*~! with C¥-smooth boundary and T, is a one-
dimensional torus. This was achieved using the technique of variation of domains in a
complex Lie group developed in [1] applied to H, as a complex homogeneous space with
transformation group GL(n,C) (Theorem 6.5 in [1]).

For a,b € C* with [b] > [a| > 1 we let H(4y) be the Hopf surface with respect
to (a,b), ie., Hap = C*\ {(0,0)}/ ~, where (z,w) ~ (2/,w’) if and only if there
exists n € Z such that 2/ = a"z, w' = b"w. We set T, = T, x {0}, T, = {0} x T}, and
Hip) = Hiap) \(TaUTy). For (z,w) € C2\{(0,0)} we denote by [z, w] the corresponding
point in H, p)-

We remark that H, ) is not a complex Lie group. However, Hf@b) is both a complex
Lie group and a complex homogeneous space. With the aid of the aforementioned tech-
nique of variation of domains in [1], we can characterize the domains with C*-smooth
boundary in H, ) which are not Stein.

We set

log [b|
= > 1 1.1
= toglal = (1.1)

and we define the holomorphic vector field
0 0
X, := (log|a|)z E + (log |b))w 0 (1.2)
on C2. This induces a holomorphic vector field on H(a,py which we still write as X,.

These vector fields X, are crucial and will be discussed in Section 3. We let o, be the
integral curve of X,, with initial value at [1, 1].
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To state our result, we divide the parameter space of pairs (a,b) into two disjoint
sets following the discussion on p.52 in [2]. We let

S:={(a,b) eC*xC*: 1< |a|] < |b]} =S1US,
where
81 :={(a,b) € S : there do not exist positive integers P,Q with a®? = b"}.

If (a,b) € S, then H(, ) admits no nonconstant meromorphic functions. If (a,b) € Sz,
there exist positive integers P,Q such that a® = b; letting P be the minimal such
integer, H(q4) admits the non-constant meromorphic function w”/z%. Indeed, in this
case any meromorphic function on H, p) is a rational function of w? /2% For (a,b) € Sy,
since p = log |b|/log |a| and 7 := (1/27)(Q arga — P argb) are rational, we set

p:=4q/p, ¢zp=1and (p,q) =1; (1.3)
T:=m/fl, I >1and (I,m)=+1or 7 =0 (and we set [ = 1). (1.4)

We have the following decompositions of H := H q ).

PROPOSITION 1.1.  Let H := H, ) be a Hopf surface.

() In case (a,b) € S1 we have

H = ( U zc> U (T, UTy) (1.5)

c€(0,00)

and this is a disjoint union. Here X, is the closure of [z, wgl|o, with ¢ =
lwo['°8P /| 20]!°8 ¢ (and X. is independent of the choice of [20,wg] provided ¢ =
lwo|'°8P /| 20|'°8 7), and hence ¥, is a real three-dimensional Levi-flat hypersurface
m H* = HZ‘a’b). We set ¥g =T, and Yoo = Ty so that H = Uce[o,oo] Y.

(8) In case (a,b) € S, with p and T as in (1.3) and (1.4), we have

H= ( U ac> U (T, UT) (1.6)

ceC~

which is a disjoint union. Here o := [zg,wo|dy with ¢ = wgl/zgl (where o, is inde-
pendent of the choice of [z, wo| provided ¢ = wgl/zgl), and hence o, is compact curve
in H*. We note that T, = [29,0]exptX, where zy # 0 and Ty, = [0, wo] exptX,
where wg # 0. We set 09 = Ty and 0o = T} so that H = Ucepl Oec-

We can now state our main result.

THEOREM 1.1.  Let D be a pseudoconvexr domain in Hqpy with C¥-smooth bound-
ary. Suppose D is not Stein.
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Case a: (a,b) € S7.
D reduces to one of the following:

(a-1)  There ewist 0 < k1 < kp < 400 such that D = ¢, r,) Ze-
(a-2)  There exists a positive number k such that D = J ¢y x) Ze-
(a-2") There exists a positive number k such that D = ¢, 1 00) Ze-

Case b: (a,b) € 5.
D = ,c50c for some domain 0 in P! with smooth boundary.

REMARK 1.1. In Case a, the Levi-flat hypersurfaces ¥, for ¢ # 0,00 are level
sets of the logarithmically pluriharmonic function sz, w] :=|w|°&1%l /|z[1°8 Pl on H* (see
(2.5)) and hence all these surfaces are biholomorphically equivalent in H*. In Case b,
the compact curves o, are level sets of the meromorphic function f[z,w] :=wP!/2% and
for ¢ € C* each o, is conformally equivalent to a torus T(, ). A detailed construction of
T(a,p) is discussed in Appendix A (Section 5).

The main idea behind the proof is this: starting with a pseudoconvex domain D C ‘H
with smooth boundary, we consider D* = D N'H*. We construct a natural plurisubhar-
monic exhaustion function using our ¢-Robin function techniques in [1]. It is natural
to try to extend this function to D first as a plurisubharmonic function and then as an
exhaustion function. The construction of a plurisubharmonic exhaustion function on D
is the most delicate part in the proof of the theorem (see Section 4). Hirschowitz ([3], [4])
proved the existence of such a function on a pseudoconvex domain in an infinitesimally
homogeneous space. However, a Hopf surface H, ) with a # b is not an infinitesimally
homogeneous space — this essentially follows from the fact that any holomorphic vector
field on H(q ) is of the form ¢;2(0/0z) + cow(9/0w)dw where ci,ca € C (cf. Exam-
ple 2.15 on pp.69-71 of [2]) — thus we cannot apply his result. We study obstructions
to our resulting plurisubharmonic exhaustion function (or a modification of it) being
strictly plurisubharmonic arising from the possible existence of certain holomorphic vec-
tor fields. As a by-product of this procedure, we also encounter an interesting class of
Stein subdomains in ‘H which we call Nemirovskii-type domains.

The outline of our paper is the following. In the next section, we briefly discuss
properties of the Hopf surface Hp), and in Section 3 we state without proof some
preliminary results, including a classification in Lemma 3.1 of the holomorphic vector
fields on H (4 and their integral curves. This yields the decompositions (1.5) and (1.6)
of H(ap) in Proposition 1.1. The proof of Theorem 1.1 is given in Section 4. At the end
of this section we give an example of the aforementioned Nemirovskii-type domain. The
proofs of the results in Section 3 are given at the end of the paper in Appendix A and
Appendix B.

We would like to thank Professor Tetsuo Ueda for suggesting this problem and for
many useful comments, and we also thank the referee for his/her very careful reading of
the original manuscript which allowed us to make many corrections.
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2. Properties of the Hopf surface Hq p)-
We write C* := C \ {0} and (C?)* :=C?\ {(0,0)}. Fix a,b € C* with 1 < |a| < ||
For (z,w), (2/,w’) € (C?)*, we define the equivalence relation
(z,w) ~ (2,w') if and only if I n € Z such that 2’ = a"z, v’ = b"w.
The space (C2)*/ ~ consisting of all equivalence classes

[z,w] == {(a"2,b"w) : n € Z}, (z,w) € (CH*

is called the Hopf surface H = H,p); it is a complex two-dimensional compact manifold.
For z, 2/ € C* we define z ~, 2’ if and only if there exists n € Z such that 2’ = a"z
in C*. Then

Ta = (C*/ ~a and Tb = (C*/ ~p

are complex one-dimensional tori, and H contains two disjoint compact analytic curves
T, =T, x {0} and T}, = {0} x Ty. We have T, UT, = {(z,w) € (C?)* : 2w = 0}/ ~
in H; for simplicity we write T, UT, = {zw = 0}. We consider the subdomain H* of H
defined by

H* :=H\ {zw =0} (2.1)

Thus H is a compactification of H* by two disjoint one-dimensional tori. The set H* is
a complex Lie group and will play a crucial role in this work.
We give a more precise description of the Hopf surface. A fundamental domain for
H is
Fi=({lzl < lal} x {lw| < I} \ ({l2] <1} x {|lw| <1})
=FUE;, € ((Cz)*, (22)

where
By = B x BY = {|2] < [al} x {1<|uw| < |b]},
Ey = E) x By := {1<|z| < a|} x {|w| < [b]}.

For k = 0,£1,... we set F}, := F - (a*,bF). Then Fy = F; each F}, is a fundamental
domain; and we have the disjoint union (C?)* = (J>2 Fa-

n—=—oo

The Hopf surface H is obtained by gluing the boundaries of OF in the following way:
setting

L o= {lel < lal} x {lol = bl}, Ly = {J2] <1} x {Jw| = 1};
vi= {2l = lal} x {lwl < B, L{ = {lel = 1} x {ju] < 1},
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we have the identifications:
(1) (z,w) e L, with (z/a,w/b) € L};
(2) (2,w) €Ly with (z/a,w/b) € LY.
We set
IT={(a",b")eC*"xC":neZ} CC"xC", (2.3)
which is a discrete set in (C2)*. For D C C* x C* we set
D=D-T={(a"zb"w)eC" xC":(z,w) €D, neZ} CC"xC* (2.4)
and
D/~ ={lz,w] € H: (z,w) € D} CH.

Therefore D/ ~ = D/ ~. We note that the subset (D/ ~)NF in (C)* is equal to DNF,
but it is not necessarily the same as D N F.

We give an example of the action of the equivalence relation which will illustrate the
difference between the Lie group H* and the Hopf surface H. Let D = C, x {w} where
w # 0. As a subset of H*, the complex curve DN (C* x C*)/ ~ is closed and is equivalent
to C*. However, as a complex curve in H, D/ ~ is not closed and is equivalent to C.
Moreover, if [b|*~1 < |w| < |b[¥, then (0,w) € Fj and

D/~ =DyUDyUDyU---
where
Do ={|2| <la[*} x {w}, Dp={la*" <|z[ <|a*} x {w/b"}, n=1,2,...

Thus Dy is a disk and D,,, n =1,2,... are annuli such that D11 = D, - (1,1/b), n =
1,2,.... Hence the D,,, n =1,2,3,... are conformally equivalent and, as n — oo, they
wind around and converge to T, in H.

Following T. Ueda, we consider the following real-valued function U[z,w] on H*:

_ log|z|  log|w|

Ul vl = foglal ~ Toglo

for [z,w] € H*. (2.5)
This has the following properties:
(1) Ulz,w] is a pluriharmonic function on H* satisfying

lim Ulz,w] =+oc0 and lim Ulz,w] = —o0,
[z,w] =T, BRI e 4
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thus for any interval I € (—o0, o), the subdomain U1 (I) of H* is relatively compact
in H*.

(2) |U[z,w]| := Max {U|[z,w], —Ulz,w]} is a plurisubharmonic exhaustion function for
‘H* which is pluriharmonic everywhere except on the Levi-flat set

1 1
Oglz‘ _ Og|w‘7 ie., |’LU‘ _ |z|p in H*
logJa] — Tog|l
(3) For ¢ € (—o0, +0), the level set
Se: Ulz,w] =¢

is equal to |w| = k|z|” where k = e~¢1°8 bl > 0. Thus {ks|2|? < |w| < k1|2|?} is equal
to U~ ([e1, ca]) where k; = =198 Pl; while {|w| < k|2|P} is equal to U~ ([¢, +-00)) U
T,; and {|w| > k|z|} is equal to U~ ((—o0, c]) UT, where k = e~closlbl,

From (2) and (3), it is immediately clear that each of the domains D in (a-1), (a-2')
and (a-2") in the statement of Theorem 1.1 contains a compact, Levi-flat hypersurface
S, for appropriate ¢; hence each such D is not Stein.

3. Preliminary results.

In this section, we discuss two basic results which we will need. The first concerns
holomorphic vector fields in H = H 4 ), while the second concerns general pseudoconvex
domains with C¥-smooth boundary in C2.

We consider the linear space X of all holomorphic vector fields X of the form

0 0
X =az— — C
azy- +ﬁwaw, a, B e
in C2. Any such X clearly induces a holomorphic vector field on . The integral curve
C of X with initial value (2q,wg) € C* x C* is

z = zpe,
(20, wp) exptX = teC.
w = wyelt,

Therefore, if, for example, a # 0, we can write

C:w=cpz?’* where ¢y = wo/zg/a.
Regarding X as a holomorphic vector field on H, the integral curve [zp, wo] exptX of X
in H with initial value [29,wo] is equal to {w = ¢y 2%/*}/ ~ in H*. We will often simply
write exptX :=[1,1]exptX in H.

In particular, we recall the vector fields

9] 0
X, = (log |a|)z 2t (log |b))w 30
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from the introduction. The integral curve of X,, with initial value (1,1) is

_ (log|a|)t
2 = elloglal)t,

exptX, = teC.
P {w_gmwm

Thus w = 2” with 17 = 1. We set &, := {exptX, : t € C}/ ~ C H* and denote by 3,
the closure of 7, in H. For future use, we define the linear subspace X, = {¢X, : c € C}
of X.

The next lemma gives more precise information about the integral curves and will
be crucial in the proof of the key Lemma 4.2.

LemMA 3.1. 1. For X, = (logla[)2(0/0z) + (log |b])w(0/0w) we have:

(1) In case (a,b) € Sy, G, is a non-compact curve in H and ¥, = {|w[°slel =
|z[l8 b1} / ~ is a real three-dimensional Levi-flat closed hypersurface in H with
¥, € H*.

(2) In case (a,b) € Sz, 7 is a compact curve in H* such that

i) G. = [20, woloy if and only if W' = 2

ii) 0w, as a Riemann surface, is equivalent to the torus T,y from Remark 1.1.
2. For X = az(0/0z) + pw(0/0w) & {cX, : ¢ € C}, the integral curve o := {exptX :
t € C}/ ~ in H* is not relatively compact in H*. If we let ¥ denote the closure of o
n H, then:
(1) If a, B #0, we have ¥ > T, UT.
(2) If only one of a or 8 is not 0, e.g., « # 0 and B = 0, we have ¥ D T, and
>NT, =0.

REMARK 3.1.  The decompositions of the Hopf surface H := H 4 5) in the two cases
(a,b) € Sy or (a,b) € Sy given as (1.5) and (1.6) in Proposition 1.1 will essentially follow
from Lemma 3.1. The precise proofs of Lemma 3.1 and Proposition 1.1 are in Appendix

A.

We now turn to an elementary property of a pseudoconvex domain D with C“-
smooth boundary in C2. In C%2 = C, x C,, we consider disks

Ay ={|z] <}, Ax={|lw| <rs}

and the bidisk A = A; x As. Let D be a pseudoconvex domain with C* boundary in A.
We do not assume D is relatively compact. Thus there exists a C*-smooth, real-valued
function v(z,w) on A such that

D ={(z,w) € A:¢(z,w) < 0};
ODNA={(z,w) € A:¢(z,w) =0},

and on 1(z,w) = 0 we have both V(. , ¥ (z,w) # 0 and the Levi form Li(z,w) > 0.
We write out this last condition: for
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2

_ P |oyf’ Py opov) | 0 |ov
Loz w) = 5o 5w| ~ 2%{ azawazaw} * wow| 9z |
we have Liy(z,w) > 0 on ¢(z,w) = 0. (3.1)
We may assume
$(0,0)=0 and %(0,0) £0

so that {w : ¥(0,w) = 0} is a C*-smooth simple arc in Ay passing through w = 0.
We set S:=0D N A,
D(z) :=={w e Ay: (z,w) € D} C Ag; and
S(z) :={w € Ay : (z,w) € S} C Ay,
so that D = |J,ca, (2, D(2)) C A and S = [U,cp,(2,5(2)) C A. Taking 71,72 > 0
sufficiently small we can insure that

(i) for each z € Ay, D(z) is a non-empty domain in Ap and S(z) is a C¥-smooth open
arc in Ay connecting two points a(z) and b(z) on 0Ay;

(ii) 0 € 5(0).
We also need to assume the following condition for Lemma 3.2:

(iii) 9(z,0) £ 0 in Ay, hence, for any disk d; = {|]z] < r} C Ay, there exists zy € &1
with 0 & S(zo).

Under these three conditions we have the following.
LEMMA 3.2.  For any disk 61 = {|z] < r} C Ay, there exists a disk 02 = {Jw| <
'} C Ay with

| S(2) 2 D(0) N 6.

zZ€9;

The proof of Lemma 3.2 is in Appendix B. This result will be used in proving Lemma
4.1.

4. Construction of the plurisubharmonic exhaustion function —A[z, w]
on D.

Let (o, 8) € C* x C*. If we define
(@,B) : [z,0] € H — [0z, fu] € H,
then (o, ) is an automorphism of H. Thus C* x C* acts as a commutative group

of automorphisms of H with identity element e = (1,1). Although C* x C* is not
transitive on H, it is transitive on H*. Hence H* is a complex homogeneous space with
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Lie transformation group C* x C* which acts transitively. This is the setting of Chapter
6 of [1]. For any [z,w] € H* the isotropy subgroup I, ,, of C* x C* is

I[z,w] = {(avﬁ) eC*xC": (aaﬂ)[sz] = [va}}
= {(a",b") € C* x C* : n € Z}
=7 in (2.3),

and thus is independent of [z, w] € H*. We have
H* = (C* x C")/T.

In what follows we will generally consider the restriction to C* x C* of the Euclidean
metric ds? = |dz|?+|dw|? on C2, and we fix a positive real-valued function ¢(z, w) of class
C« on C2. This allows us to define c-harmonic functions and thus a c-Green function
and c-Robin constant associated to a smoothly bounded domain 2 € C* x C* and a point
po € N (if @ & C* x C* we define these by exhaustion); cf., Chapter 1 of [1]. Varying
the point pg yields the c-Robin function for . However, we remark that any Kahler
metric dS? and positive function C(z,w) of class C* on C* x C* gives rise to a C-Green
function and hence a C-Robin function on €; this flexibility will be used in the 4** case
of the proof of Lemma 4.3. For simplicity, we will always take ¢(z,w) (or C(z,w)) to be
a positive constant.

In this section we always assume that D C H is a pseudoconvexr domain with C¥-
smooth boundary in H. Our first goal is to construct a plurisubharmonic exhaustion
function for D. We note that

if D DT, or D D Ty, then D is not Stein.
We define
D*:=Dn{zw#0} CH"

(see (2.1)). The distinction between D C H and D* C H* will be very important. Since
(ar, B) € C* x C* defines an automorphism of H, for [z,w] € H we can define

D[z,w] ={(ca,8) e C* x C* : (o, B)[2,w] € D} C C* x C*.

Equivalently, using the notation DNT, = D, x {0}, DNT}, = {0} X Dy, D, = {a"z :
z2€ Dy, n€Z} CCtand Dy = {b"w : w € Dy, n € Z} C C,, we have

Dfz,w] = <(i;) 'D*) T= <ii> D+ it [z, u] € HY;

Dl[z,0] = <1Da7(C*> T = (11’771) x C, if [2,0] € Ty;
z z
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D[O,w] = | C*, —Dy -I:(CZ X | —Dy if [O,IU] eT.
w w

We note the following:
(1) If e € D then D[e] = D\ {zw = 0} = D*; and given [z,w] € H, [z,w] € D if and

only if e € D[z, w] (recall the definition of D (and hence bv*) in (2.4)).
(2) For each [z,w] € D, D[z, w] is an open set with C* boundary dD[z,w] but it is not
relatively compact in C* x C*. We have
(i) Dlz,w] = D|[z,w] - Z;
(ii) For [z, w] € D* we define

D*[z,w] = {(a, ) € C* x C* : (a, B)[2,w] € D*}.

Then D[z, w] = D*[z,w].
(3) (1) For [z,w] € D* we have

and for [z, w], [/, w'] € D*

zZ w

)D[z,w]. (4.2)

R
2w’

D[ 0] = (

In particular, the sets D[z, w] for [z, w] € D* are biholomorphic in C* x C*.
(ii) For any two points [z,0],[2’,0] € DN T,

D[2,0] = (;,1>D[z,0].

In particular, the sets D[z, 0] for [z,0] € D NT, are biholomorphic in C* x C*.
(4) Fix [20,0] € DN T, and let [z,,w,] € D* (n = 1,2,...) with [z,, w,] — [20,0] as
n — oo in H. For 0 < r < R, consider the product of annuli

A(r,R) : {r <|z| < R} x {r < |w| < R} c C* x C*.
Then
lim 0Dz, w,] N A(r, R) = 0D[z,0] N A(r, R) (4.3)

in the Hausdorff metric as compact sets in C* x C*.

We set

D:= |J (zw],D[zuw]). (4.4)
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This is a pseudoconvex domain in D x (C* x C*) which we consider as a function-theoretic
“parallel” variation

D:[z,w] € D — D[z,w] C C* x C".

Since e € D[z, w] for [z,w] € D, we have the ¢-Green function g([z,w], (§,n)) with pole
at e and the c-Robin constant A[z,w] for (D[z,w],e) with respect to the metric ds? on
C* x C* and the function ¢(z,w) > 0. We call [z,w] — A[z,w] the c-Robin function for
D.

The function —A[z,w] is a candidate to be a plurisubharmonic exhaustion function
for D. To be precise, we have the following fundamental result.

LEMMA 4.1. 1. —A[z,w] 4s a plurisubharmonic function on D.
2. We have the following:
(a) For any [z0,wo] € OD*, UMy, ][z, A2, w] = —00.
(b) If0 # 0DNT, # Ty then for any [20,0] € 0DNT, we have im(, ) [2,.0) A2, w] =
—oo (and similarly if T, is replaced by Ty).
3. If 0D p T, and 0D p Ty, then —Az,w] is a plurisubharmonic exhaustion function
for D.

PrOOF. Note that 3. follows from 1. and 2. We divide the proof of 1. into two
steps.

15 step:  —A[z, w] is plurisubharmonic on D*.

Fix [(o] = [20,w0] € D*. Let @ € C?\ {0} with ||a|| =1 and let B = {|t| < r} C C;
be a small disk and let (2(t), w(t)) = (o + at be such that the complex line [ : t € B —
[€(®)] = [2(t), w(t)] = [Co] + at passing through [(y] is contained in D*. It suffices to prove
that —A(¢) := —A[z(t), w(t)] is subharmonic on B, i.e.,

For brevity we write
D(t) := D[((t)] cC* xC* forte B;
9(t, (z,w)) == g([C(@®)], (2, w)) for (z,w) € D[¢(t)]-
By (4.2) we have

20 Wo

2(t) w(t)

We thus have the parallel variation of domains D(t) in C* x C* with parameter
t e B:

D(t) = D[¢o] - ( ) in C* x C*. (4.5)

Dlp:te B— D(t) CcC* x C*.
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We write

Dlp:=J (t.D®); 0D|s =[] (t,0D(t)) in Bx (C*xC),

teB teB

where again we identify the variation with the total space D|g. By (4.4), D|p is a
pseudoconvex domain in B x (C* x C*) (and hence a Stein domain) such that 0D|p is
C* smooth. Using the notation ¢ = (z,w) € C* x C* and ¢(¢,¢) = g(t, (2, w)), we have
the following variation formula from Theorem 3.1 of [1]:

W 2O_ [, Kt OV ot RS,

otor
~e [, (5
_202//% ‘3915()

Here 1/cy is the surface area of the unit sphere in C2, dV¢ is the Euclidean volume
element in C?;

2

d%g(t,¢)
otow

2
Jav:

ataz

dv;.

K (t,¢) = L(£,0)/ Ve (t, O)I°

where L(¢,() is the “diagonal” Levi form defined by

o (O D% O 9%
- 2;}3{ ot (azataz + awataw)} + ‘

ot

L(t,¢) =

8tc’)t A
and (t, ) is a defining function of D|g. The quantity Ks(t, () is independent of the
defining function (¢, ¢) (cf., Chapter 3 of [1]). Since D|p is pseudoconvex in B x (C* x
C*), following Theorem 3.2 of [1] we have K5(t,¢) > 0 on dD|z and hence 9?\(t)/0tdt <
0 on B, proving the first step.

Since ¢(z,w) > 0 in C* x C*, the variation formula immediately implies the following
rigidity result which will be useful later (cf., Lemma 4.1 of [1]).

REMARK 4.1.  If (02X/0tdt)(0) = 0, then (9g/0t)(0, (z,w)) = 0 on D(0), i.e.,

99([¢o] + at, (z,w))|  _
0 o = 0 on D[¢o).

27d step:  Plurisubharmonic extension of —\[z,w] to D.

We fix a point of D N [(T, x {0}) U ({0} x Tp)], e.g., [#0,0] with zo # 0. Let
[2n, wn] € D* (n=1,2,...) with [z, w,] — [20,0] as n — co. By (4.3)



Pseudoconvex domains in the Hopf surface 243

nli_)ngo(g([zn, wnL (aa 6)) - g([ZO7 0]7 (a7 6))) =0
uniformly for (o, 8) in K € D]zp,0] C C* x C*.

It follows that lim,— o A[2n, wy] = A[20, 0], i.e., A[z,w] is continuous and finite at [z, 0].
Hence \[z,w] is continuous and finite-valued on D. Since D N Ty, is a complex line, it
follows from the first step that —\[z, w] extends to be plurisubharmonic from D*NT, to
DNT,. Hence —\[z,w] extends to be plurisubharmonic on D. O

We divide the proof of 2. in two steps; the first step is 2 (a).
15 step:  Fiz [2/,w'] € OD*. If [z,w] € D — [2/,w'] in H, then [z, w] — —o0.

Since [2/,w'] € dD*, we have 2/ # 0 and w’ # 0. If [z,w] € D* tends to [¢/,w'] in
H, then dD[z,w] C C* x C* tends to the single point e in the sense that if we define
d[z, w] = dist(0D][z,w],e) > 0, where

dist(9D[z,wl, ) := Min{\/[€ ~ 1P + | — 17 : (€,) € D[z, ]}

then d[z,w] — 0 as [z,w] — [¢/,w']. Indeed, let [z,w] € D approach [/,w'] in H. By
slightly deforming the fundamental domain F C C* x C* if necessary, we may assume
(Z/,w"), (z,w) € F. Since

dDz,w] = {(0‘ 5) €C*xC*:a,f] € ap}

zZ w

and [#/,w'] € D,

d[z,w] = dist(0D[z,w],e) < \/|2'/z — 12+ [w/ Jw — 1|2

which clearly tends to 0 as [z,w] — [z/,w’]. Since dD[z,w] is a smooth real three-
dimensional hypersurface, it follows by standard potential-theoretic arguments that
=z, w] — 4o0. O

It remains to prove 2 (b). Thus we assume () # 0D NT, # T,.
28 step:  Fix [20,0] € 0D NT,. If [z,w] € D — [20,0] in H, then [z, w] — —o0.

For the proof of this step we require Lemma 3.2. Fix pg = [20,0] € 0D N T,. We
want to show

lim Az, w] = —o0.
[z,w]—[z20,0], [2z,w]€ED

We take a sequence {[zn, w,]|}, C D which converges to pg in H. We show

lim Afzp,w,] = —o0. (4.6)

n—oo

From continuity of A[z, w] in D, it suffices to prove (4.6) for [z, w,] € D*. Moreover,
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since 0Dz, wy] is smooth, as in the end of the first step, we need only show

nlingo dist(OD]zn, wy],e) = 0. (4.7)
This is the key technical step and it is here where we will use Lemma 3.2 and the
pseudoconvexity of the domain D in H.
We may assume that py = [29, 0] € 9D lies in the fundamental domain F and we take
a sufficiently small bidisk A = A; x Ay with center (zg,0) so that A C F. Let ¢(z, w)
be a defining function of D in A, i.e., ¥(z,w) € C¥(A) with DNA = {¢(z,w) < 0} and
0D NA = {¢(z,w) = 0}. Since 0D is smooth in H, we have two cases:

%
0z

9

Case (cl) : o

# 0 on A; Case (¢2) : # 0 on A.

Apriori, we also have two cases relating to the behavior of ¢(z,0) on Ay:
Case (d1) : 9¥(z,0) £0 on Ay; Case (d2): 9(z,0) =0 on A;.

However, the hypothesis 9D 2 T, in 2 (b) together with the real-analyticity of 9D imply
that Case (d2) does not occur. Thus it suffices to prove (4.7) assuming that 1(z,0) Z 0
on Aj.

PROOF OF (4.7) IN CASE (C1). In this case, by taking a suitably smaller bidisk
A if necessary, 1(0) := {¢(z,0) = 0} is a C¥-smooth arc in A; passing through z = z
and 1(0) x {0} C 9D NA. For w € Ay,

l(w):={z€A;:(z,w) €dDNA}

is a simple C*¥-smooth arc in A;.
Fix € > 0. Since zy # 0, we can find a disk §; C A; with center zg such that

z/

pr —1‘ <e forall 2/,2" € ;.

Now we take s : |[w| < r < € in Ay so that each arc [(w) passes through a certain point
¢(w) in ¢1. For sufficiently large ng, if n > ng we have (z,,w,) € d1 X d. Since w,, € da,
we have ((wy,) € l(wy,)Nd1 so that ({(wy),wn) € D in H. Hence, (C(wy)/zn, Wy /wy) =
(C(wn)/2n,1) € OD[zp,wy] in C* x C*. Thus

dist(0D[zn, wy], €) < dist ((C(wn), 1),8) = ’C(wn) - 1’ < e for n > ng.

n Z’ﬂ

PROOF OF (4.7) IN CASE (€2). In this case, by taking a suitably smaller bidisk
A if necessary, S(zo) := {¥ (20, w) = 0} is a C*-smooth arc in Ay passing through w =0
and {z0} x S(z9) CODNA. For z € Ay,
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S(z) :={w € Ay : (z,w) € IDN A},

is a simple C“-smooth arc in As.
Fix 61 := {|z — 20| < 11} € A;. Case (d1) corresponds to the condition (iii) in
Lemma 3.2, thus this lemma implies that there exists a disk d2 := {|]w| < r2} such that

U S(2) © D(20) N 62. (4.8)

Z€51
Fix € > 0. Taking r; sufficiently small, we can insure that
|2/2" — 1| <e forall 2/, 2" € 6.

Take a disk d; C Ao satisfying (4.8). For sufficiently large ng, if n > ng we have
(zn,wy) € 61 X 6. We divide the points w,, € d2 into two types:

Case (i): wy, € 02 N D(z0); Case (ii): wy, € d2 \ D(z0).

In Case (i), using (4.8) we can find z* € ¢; with w, € S(z*) so that (z*,w,) € 9D
in H (see wy, z*,0D(z*) in the figure below).

. D) op )

Al 6]

Z = Z/Zr,,,

dD|z,
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Thus, (2*/zp, Wn/wy) = (2*/2n,1) in D[z, w,] in C* x C* and hence
dist(OD]zn, wy],e) < dist((2"/zn,1),€) = 2" /2, — 1| < e for all n > ny.

In Case (ii), let £ = [z, 20] be a segment in §;. We can find z* € £ with w,, € 9D(z*).
Indeed, as z goes from z, to zp along ¢, the arcs dD(z) N dz transform from 9D(z,) N d2
to OD(zp) N d2 in a continuous fashion. Since [z,,w,] € D*, we can find z* € ¢ with
wy, € OD(z*).

Thus (z*,w,) € D*, so that (z*/z,,1) € D*[z,,w,], and hence

dist(OD[zn, wy],e) < dist((z*/zn,1),e) = |27 /2, — 1| < e for all n > no,

which is (4.7). This completes the proof of 2 (b) in Lemma 4.1. O

REMARK 4.2.  We offer a non-pseudoconvex example to explain the subtlety of the
lemma, in particular, in proving (4.7). We encourage the reader to draw a picture to
illustrate the following situation. Let D be a domain in H with smooth boundary but
which is not pseudoconvex. We assume that [zg,0] € 0D NT, where 1 < |zo| < |a|]. We
can find a bidisk ¢ := §1 x da = {|z — 20| < r1} x {|w| < r2} with 71,7 sufficiently small
so that Dy := DN ¢ is of the form Dy = J, 5 (2, D1(2)) where D1(2) C 02 and 9D1(z)
is a non-empty smooth arc in ds. We assume that, for each z € §;

D1(2) D D1(20) D 2N {Rw > 0} =: 63

and it then follows from Hartogs theorem that D is not pseudoconver at [zo,0] € 0D. We
can find a sequence {(zp, un)}n in Dy with u, = Rw, > 0 which converges to the point
(20,0) € OD. Fix r] : 0 < r} < 11/|20|. By definition

Dlzn, tn] = (1/20, 1/un)D* D (1) 2, 1/un)61 % 6
and for sufficiently large n, say n > ny,
E:={(z,w) e C*xC": |z —1| <7}, |lw—1|<1/2} C (1/2n,1/un)d1 X 65.

If we let A denote the c-Robin constant for the domain E in C* x C* and the point
e = (1,1), it follows that A[zp,u,] > A for n > ng, so that —A[z,w] is not an exhaustion
function for D.

We next relate the possible absence of strict plurisubharmonicity of the function
— [z, w] on a pseudoconvex domain D in H at a point in D* with existence of holomorphic
vector fields on H with certain properties. This is in the spirit of, but does not follow
from, Lemma 5.2 of [1]. Recall that if (a,b) € So (Case b of Theorem 1.1) we defined
o, in (1.6) to be the integral curve [z, wo] exptX, with ¢ = wh'/z8" # 0,00 of X, :=
(log |a])2(9/8z) + (log [b)w(8/0w).

LEMMA 4.2.  Let D be a pseudoconver domain with C*-smooth boundary in H and



Pseudoconvex domains in the Hopf surface 247

let Az, w] be the c-Robin function on D. Assume that there exists a point pg = [zo, wo]
in D* at which —\|[z,w] is not strictly plurisubharmonic.

(1) There exists a holomorphic vector field X = az(0/0z)dz + fw(0/0w)dw # 0 on H
such that if [z,w] € D* (resp. OD*), then the integral curve I[z,w] := [z, w]exptX
in H is contained in D* (resp. OD*). We say X is a tangential vector field on OD*.

(2) The form of the vector field X in (1) and the domain D are determined as follows:
(i) IfoD p T, and 0D p Ty, then X = cX,, for some ¢ # 0 with X,, in (1.2). If

(a,b) € S1, D is of type (a-1), (a-2") or (a-2") in Theorem 1.1. If (a,b) € Sy,
D = .e50c where § is a relatively compact domain in P* = C U {co} with
smooth boundary. In all cases, we have D N (T, UTy) = (.
(ii) If 0D D Ty and 0D 2 T, then we have two cases:
(i-a) X = cX, for some c#0 and D is of Case b: D =], c50c where § is a
domain in P' with smooth boundary 06 which contains 0 but not co.
(ii-b) X = ¢z(0/0z) for some ¢ # 0. Then D is a domain of “Nemirovskii
type”: b > 1 and D = C, x {Au+ Bv < 0}/ ~, where A, B € R with
(A, B) # (0,0) (here w = u +iv).
(ii") If 0D D T} and 0D p Ty, we have the result analogous to (ii).
(iii) If 0D D T, UTy, then X = cX,, for some c and D is of Case b: D =] .50
where § is a domain in P! with smooth boundary 05 with 0,00 € O6.

REMARK 4.3. With respect to the Nemirovskii-type domain in (ii-b), we recall
Nemiroviskii’s theorem in [6]. Let a > 1 and let H = H(,4). Then the domain D =
C, x {Rw >0}/ ~ CH is Stein and 9D is Levi-flat. At the end of Section 4 we will
discuss an explicit example of such a domain which will illustrate some of the ideas used
in the proof of Theorem 1.1.

PROOF. Since —A[z,w] is plurisubharmonic on D and is not strictly plurisubhar-
monic at pg = [20,wo] € D*, we can find a holomorphic vector field X = «z(9/9z)dz +
Bw(9/0w)dw # 0 on H such that

0?\[po exp tX]

— =0. 4.9
oot |, (4.9)

We shall show that this X is a tangential vector field on 0D*. Since py € D*, we can take
a small disk B = {|t| < r} with ppexptX C D* fort € B. We set D(t) = D[poexptX]| C
C* x C* so that D(0) = D[pg]. We let g(t, (z,w)) (resp. A(t)) denote the ¢-Green function
g([poexptX], (z,w)) (resp. the c-Robin constant A[pgexptX]) for (D(t),e) and t € B.
We set D|p = {,cp5(t, D(t)) C B x (C* x C*) which we consider as the variation

D|gp:t€ B— D(t) = D[ppexptX] C C* x C".
By (4.2) we have

D(t) = DIpg exptX| = D][z0, wo] exp tX]

= D[z, wo] exp(—tX) = Dl[z0, wo] (e, efﬁt) in C* x C*.
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Using the same reasoning as in the first step of the proof of Lemma 4.1 together with
Remark 4.1 we see from (4.9) and the real analyticity of 0D|p = |J,c5(t,0D(t)) in
x (C* x C*) that

ag(t’ (27 w))

P =0 on D[z, wo] UID[zg, wp). (4.10)

t=0

For a fixed t € B we consider the automorphism

of C* x C* where

F(t,(Z,W)) = (7, W)(l, 1) exp(—tX) = (Zeat, Wem).

20 Wo 20 Wo

Then
(z,w) = (Z,W) = F7(t, (z,w)) = (zzoeat,wwge’gt).

By (4.1) we have

. —at  ,—p0t
D(t) = D*<1 1) exp(—tX) D*(e < ) in C* x C*,

20 Wo 20 Wo
so that D(t) = F(t, D*). We note that D* C C* x C* is independent of ¢ € B. We set

G(t,(Z,W)) := g(t,(z,w)) where (z,w) = F(t,(Z,W)), (Z,W) € D~.

Since
ot (2)) = Gt P70, (21))) = G, (206, wuge™),
we have
80 0, (zow)) = o 0, (ZW) - S0 (2, W )aze™ + 20, (2, W) e
= 90 (2, W) + 02 5 (1, (2, W)+ BW (1, (2, W)
where (Z,W) = F=1(t, (z,w)). Since, for cach ¢ € B,
G(t,(Z,W))=0 on dD*, (4.11)

we have
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oG —
815( (Z,W))=0 on dD*.
It follows from (4.10) that
02250,z w)) + w25 (0,(2,W)) =0 on 0D

07 ow

Together with (4.11), this says that the holomorphic vector field

0 6

considered as a vector field on C* x C*, satisfies the property that for any (z,w) € dD*,
the integral curve (z,w)exptX C dD* for all t € C. Tt follows that for any (z,w) € D*,
the integral curve (z,w)exptX is contained in D*:

B;exth = 5:‘, for all t € C.

Hence X is a tangential vector field on OD*.
This implies

Di[z,w]exptX] = D[z, w] CC* x C*, forallteC (4.12)

if [z,w] € D* since

~ /11 ~ (1
D][z,w]exptX] = D* ( ) exp(—tX) = D* (, ) = D[z, w].
2w
But for [z, w] € D* (resp. 0D*) it is clear that

[z, w]exptX C D* (resp. 0D*) in H
if and only if

(z,w)exptX C Dv*(resp. va*) in C* x C*,

which proves that X, as a holomorphic vector field on H, is a tangential vector field on
0D*, verifying (1) of Lemma 4.2.
To prove assertion (2) we first observe by (4.12)

Az, w] = AN[[z,w]exptX], forallteC

for any [z, w] € D*. In case (2)(i) in Lemma 4.2, from 3 in Lemma 4.1, the Robin function
—Alz, w] is an exhaustion function on D, and it follows that

{[z,w]exptX : t € C} € D for [z,w] € D*. (4.13)
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We now prove (2) (i). First we show that X = ¢X,, for some ¢ # 0. If not, i.e., if
X & {cX, : c € C*}, we take [z, w] € OD* and let 0 = [z, w] exptX be the integral curve
of X passing through [z, w]. From Lemma 3.1 part 2, the closure ¥ of ¢ in H contains
T, or T, (or both) which contradicts the hypothesis 0D 7 T, and 0D 2 T} of (2) (i) in
Lemma 4.2. Thus X = ¢X, for some ¢ # 0.

By (4.13), for [z, w] € D* the closure of the integral curve I[z, w] := [z, w] exp t X, is
compactly contained in D and hence lies in D*. It follows from («) and (3) in Proposition
1.1 that we have

(") D*= U Y., where I is an open interval in (0, 00); or
cel

(6*) D*= U 0., where §* is a domain in C*.
ceo*

We next show that if D NT, # @ then D D T,. Thus let [29,0] € DNT,. Let U,V
be sufficiently small disks such that

(20,0) e U xV =U x{|lw|<r} @DNE,

where recall Ey = {1<|z| < |a|} X {Jw| < |b]} C F. We show that there exists r’ with
0 < r" < r such that

G(r')={(z,w) € By : 1< |z| <a|, 0 < |w| <r'} C D*. (4.14)

We prove (4.14) in the case (*); the proof in the case (a*) is similar. We recall the
non-constant meromorphic function f[z,w] = wP!/2% in H from Remark 1.1. Since this
function vanishes on {w = 0}, if we set

A:={c= flz,w] € C": (z,w) € U x {0 < |w| <71}},

there exists m > 0 such that the punctured disk ¢’ = {0 < |¢| < m} is contained in A.
Clearly we can choose r’ > 0 sufficiently small with " < r such that the corresponding
set G(r') satisfies f(G(r')) C §’. Combined with (5*) this implies (4.14).

Suppose D 5 T,,. Observe that D(0) := D N T, is a domain in T, whose boundary
I consists of smooth real one-dimensional curves. For |w| </, we let D(w) C {1 < |z| <
|a|} denote the slice of D over w. Since 9D is of class C*, each dD(w) is a union of
smooth real one-dimensional curves which approach ¢ as w — 0. This contradicts (4.14);
hence D D T,. A completely similar argument shows that if D NTy # @ then D D Ty,
Thus either D = D* as in (a*) or (8*) or D is the union of D* with Ty, T, or T, U T}.
If D= D* asin (a*) then D is of type (a-1) in Case a; if D = D* as in (8*) then D is
as in Case b with 6 € C*. We let D be the union of D* with T,,, T}, or T, UT},. The case
D = D*UT, corresponds to (a-2’) in Case a and to § in Case b with 0 € § and co € 94.
The case D = D* U T, corresponds to (a-2"”) in Case a and to § in Case b with co € §
and 0 € 96. For the last case D = D* UT, U Ty, in Case a we have D = H which does
not occur, and in Case b, D corresponds to § with 0,00 € §.
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To prove (2) (ii), we note that under the condition 8D D Ty, and 0D 5 T, from
(2) of Lemma 3.1 we have either X = ¢X, with ¢ # 0 or X = «z(9/9z) with « # 0.
Assume that X = cX,, with ¢ # 0. We conclude from (o*) that D cannot be of the form
in Case a, so that D* is of the form (8*). Since 0D D Ty, and 9D 7 T}, we arrive at the
conclusion in (2) (ii-a). On the other hand, if X = «z(9/0z) with a # 0, we first observe
from the facts that D D T, and 9D is C¥-smooth, for any zy € C* the slice of 9D over
z = zg contains a C¥ curve C(zg) C C,, passing through the origin w = 0. We can find
a sufficiently small disk V' := {|w| < r¢} so that C(zp) divides V into two parts V' and
V" with {z0} x V/ € D and {2} x V" € D°. We set C(z) := C(2)NV. By (1) in
Lemma 4.2 we conclude that C* x V/ € D and C* x V” € D°. Thus C* x C(z0) C 8D,
which implies D N (C* x V) = C* x C(z) and DN (C* x V) = C* x V.

We use this geometric set-up to show that b must be a positive real number (hence
b > 1). To see this, fix a point wy € C(z0) (resp. V') with wg # 0. Since (2o, wp) € D
(resp. V'), we have C* x {wg} C 9D (resp. D). In particular, (a™zg,wp) € 0D (resp.
D) for any n € Z. Hence (zg,wo/b"™) € 0D (resp. D) for any n € Z. Since |b| > 1 we can
take N sufficiently large so that wo/bN € V. It follows that wo/b" € C(zo) (resp. V')
for any n > N.

We first show that b is real. If not, let b = |b|e’® where |b| > 1 and 0 < |¢| < 7. We
set wo = |wole®. Let ng = €% be a unit normal vector to C(z) at w = 0 pointing in
to V”. Since C(zp) is smooth, we can find 7, sufficiently small with 0 < r{ < r( so that
the sector e := {re? : 0 < r < ry, |§ — 6| < 27/3} is contained in V". For any N’ € Z,
it is clear that there exists n’ > N’ satisfying

|(po —n'¢) — 0o| < 2m/3 modulo 2. (4.15)

We take N’ > N so that |wo|/|b|N" < r1, and then we choose n’ > N’ with property
(4.15). Then wo/b" € e C V", which contradicts the fact that w/b" € C(zo). Thus b
is real.

We next show b is positive. If not, we have b < —1. We take wy € V' \ {0} close
to 0. Then (z,w;) € D for all z € C*. In particular, (a"zp,w;) € D for any n € Z;
hence (2o, w1/b™) € ({20} x V)N D for n sufficiently large. In other words, for n > N we
have wy/b™ € V'. Since b < —1 it follows that {w;/b™ : n > N} lies on a line L passing
through w = 0. Moreover, if we take a sufficiently small disk V; := {Jw| < ro} C V,
then L NV} intersects the smooth curve C (z0) transversally. At the point w =0, LNV,
divides into two segments L’ and L” with L' = (LN V)NV’ and L” = (LN V) NV".
Since b < —1, for n sufficiently large, if wy/b"™ € L’ then w; /b" Tt € L”. This contradicts
the fact that wy/b™ € V' for all m sufficiently large. Thus b > 1.

Consequently,

w € C(z) (resp. V') — w/b" € C(zo) (vesp. V') forn=1,2,....
It follows from the smoothness of C(zo) and the fact that b > 1 that C(z) is a line

Au + Bv = 0 passing through w = 0, proving (2) (ii-b).
To verify (2) (iii), we show
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XE{ch:cE(C}U{azaaz:aeC}U{ﬁwaaw:BE(C}. (4.16)

Once (4.16) is verified, we obtain 2 (iii) by repeating the arguments in 2 (i) and 2 (ii).
Suppose X = az(0/0z) + pw(0/0w) & {cX, : ¢ € C} where @ # 0, 3 # 0. We set
B/a = A+ iB where A, B are real numbers. To get a contradiction, we work in the
case where A is irrational; the other cases are similar. Fix zo € {1 < |z| < |a|}. Since
0D D T, UT, and 9D is smooth, we can find a smooth curve ¢ in {|w| < |b|} containing
w = 0 such that {z} x £ C 9D. We fix a disk V := {Jw| < r} with r sufficiently small so
that ¢ divides V into two parts V/ and V" where {2} x V' C D and {2} x V" C D°. Let
wo € V' and for ¢ = wp/z5 5", we consider the integral curve o, := {w = cz4t P}/ ~
of X passing through (zg,wg) in H. Using (1) in Lemma 4.2 we see that 0. C D. On
the other hand, by Remark 5.2 in Appendix A there is a point (2, w(20)) € o, with
w(zg) € V", which is a contradiction. This proves (4.16) and hence 2 (iii). O

Given a pseudoconvex domain D in ‘H with C“-smooth boundary, under the various
cases of (2) of Lemma 4.2, depending on the relationship between the tori Ty, T}, and
0D, we want to show that either D is Stein or D is the appropriate type of non-Stein
domain in Theorem 1.1. This will be done in a series of lemmas. Before proceeding, we
recall an important “rigidity” result from [1].

Welet D:t € B— D(t) C M be a smooth variation of domains D(t) C M over
B C C where M is a complex Lie group of dimension n > 1. Here D(t) need not be
relatively compact in M but dD(t) is assumed to be C*°-smooth. Assume each domain
D(t) contains the identity element e. Let g(¢, z) and A(t) be the ¢-Green function and
the ¢-Robin constant for (D(t), e) associated to a Kéahler metric and a positive, smooth
function ¢ on M. We have the following from [1]:

(x1)  Assume that the total space D = J,c 5(t, D(t)) is pseudoconver in B x M. If
(0%X/0tdt)(0) = 0, then dg(t, z)/0t|;=o = 0 on D(0).

Next let 9(t,z) be a C°°-defining function of D in a neighborhood of 9D =
U,ep(t,0D(t)). Since 0D(t) is smooth, we have

(gz(t,z),...,ii(tyzo #(0,...,0)

for (t,2) € 0D = {¥(t,z) = 0}. We have a type of contrapositive of (x1):
(%2)  Assume that D is pseudoconvex in B x M. If there exists a point zy € 9D(0)
with

-, (0,20) # 0, (4.17)

then (92(—\)/0tot)(0) > 0.

We prove this by contradiction; thus suppose (92(—\)/9td#)(0) = 0. By (x1) we
have 0g(t,z)/0t|t=0 = 0 on 0D(0). Since —g(t,z) is a C*° defining function of D, it
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follows that 0y(t, 2)/dt|t=¢o = 0 on dD(0), which contradicts (4.17).

Returning to the case of a pseudoconvex domain D in ‘H with C*-smooth boundary,
we proved in Lemma 4.1 that under certain hypotheses on 0D the function —\[z,w] is
a plurisubharmonic exhaustion function for D. The next lemma shows that if 9D hits,
but does not contain, one of the tori T, or T, and D does not contain the other one,
then D is Stein.

LEMMA 4.3. Let D be a pseudoconvex domain in H with C*-smooth boundary. If
0 #£0DNT, #T, and D 7 Ty, then D is Stein (and similarly if Ty, and Ty, are switched).

The condition D A T}, separates into the following three cases:
(Cl) oDNT, :(Z), (02) @#aDme #Tb or (03) obNT, =1T,.

PROOF. We first want to show that if —A[z,w] is not strictly plurisubharmonic
in D, then there is point py = [20, wp| in D* at which —\[z, w] is not strictly plurisub-
harmonic; then we show this cannot occur so that D is Stein. Let 1]z, w] be a defining
function for D defined in a neighborhood of 0D. We divide the proof of the lemma in
five cases related to [z, w] and the subcases (c1), (c2), (¢3) of the condition D 2 T.

15 case: Assume there exists [29,0] € dDNT, with zg # 0 such that neither 9/9z
nor Jv¢ /0w vanishes at (zp,0) and assume case (cl).

Using (x2), we first prove the following fact in this 1%* case. Assume (1,0) € DNT,.
Then —\[z,w] is strictly subharmonic at [1,0] in the direction a = (0, 1), i.e.,

9?(=\
( 7) [1, 7] > 0.
oToT —0
To see this, we take a small disk ¢ := {|7| < r} C C, and consider the variation of
domains
D:7€d— D(r):=D[l,7] C C, x Cy.
Note that

D(r) =1 -
DuxCly  ifr=0

{5*~(1,1/7) ifTE(S\{O};}

(recall D N T, = [D,,0]). We let A\(t) = A[1,7] denote the ¢-Robin constant for
(D(1),(1,1)). We set © := |, 5(7, D(7)) and 9D = |J,5(r,0D(7)). For 7 € 6\ {0},
we consider the automorphism

w

Fo: (z,w) € CEx C, — (Z,W) = (%:) €Ty x Cly.

From the definition of D(7), we have D(r) = F,(D*). We let ¢(z,w) be a defining
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function for 0D in H; to avoid notational issues we also regard ¥ (z,w) as a defining
function of dD. For 7 € § \ {0} we set

(7, (Z,W)) :==Y(Z,7W)

which is a defining function for 09 |5 03. Setting ®[0, (Z, W)] := ¢(Z,0), we see that
®[r, (Z,W)] becomes a smooth defining function for the entire set 9D. We focus on the

SpeCial pOlnt (ZO7 1) ln 8D(O> Then
<(’1b (9@& )
(0,(2:0,1)) w

0
(w(zo,O), 0) #(0,0) by the condition of the 15 step.

9o 9D
V)20 ¢ = (aZ’ 6W)

(07(Z071))

0z
Similarly,
0P 0
or - ad}W
Tloo)) 9 10,(20,0))
8,1/} oy t
= a—(zo, 0) # 0 by the condition of the 15 step.
w

It follows from (x2) that (9%(—\)/0707)[1, 7]|,=0 > 0, as desired.
We next prove that —A[z,w] in D is strictly subharmonic at [1,0] in any direction
a = (a1, as) € C?\ {0} with ||la|| =1 and a; # 0, i.e.,

(=)
oToT

[]. +ayT, (IQT] > 0. (418)

7=0

We use the same notation 7 and ¥(z,w) as in the case a = (1,0). We consider the
variation of domains

&: 7€0— G(1):=D[l+ a17,a27] C C; x Cyy.

Note that
D* (1 1+ a17),1/(as7)) if 7€\ {0};
oy =12 (1/(1 +a17),1/(az7)) \ {0} in case ag £ 0,
DaX(C;V if7=0
G(T)=[Do- (1/(1+a17))] x Clyy ifred in case as = 0.

We let pu(7) := A[l 4+ a17, az7] denote the c-Robin constant for (G(7),(1,1)). Our claim
(4.18) is that (0?(—u)/0797)(0) > 0.

We set & := |J,5(7,G(7)) and 0& = |J,5(1,0G(7)). Since (0/0z)(20,0) # 0
and a; # 0, we can find a point Wy € Cj;, such that
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0 0
alzoa—f(zo, 0) + GQWO%(Z0,0) ?é 0.

We note that (2o, Wo) € G(0) = (Dg) x Cjy. We consider
U(r, (Z,W)) = (1 4+ a17)Z, aaTW),

which is defined in a sufficiently small polydisk V := d; x (Uy x V1) of center (0, (20, Wp))
in § x C x Cj;,. This is a defining function for 0 in V. We have

o oY
V(Z,W)\Ij‘(o,(zo,Wo)) - (52 (14 ay7), 9w ~a27) 0ot
0
- (i(zo,oxt)) #(0,0);
oV o B}
67 = a’(/}(alZ)‘f'a,(/)(aQW)]
T 1(0,(20,.W0)) ? w (0,(20,W0))

= alzo%(Z’O, 0) + QQWO%(ZQ, O) # 0.
Using (¥2) we conclude that (9%(—p)/9797)(0) > 0 which proves our claim.

A similar argument shows that —A[z,w] in D is strictly plurisubharmonic at any
point [z,0] € D NT,. Hence, in case (cl), we conclude that if —\[z,w] is not strictly
plurisubharmonic in D, there exists a point p’ = [2/,w’] in D* at which —\[z,w] is not
strictly plurisubharmonic. Now since 0D 2 T, and 0D 2 T, we are in case (2) (i) of
Lemma 4.2. Hence we have 0D N (T, UTy) = 0. This contradicts 9D NT, # (); thus D
is Stein. d

2°d case:  Assume there exists [29,0] € dDNT, with zg # 0 such that neither 9¢ /92
nor Oy /0w vanishes at (zg,0) and there exists [0, wo] € 9D N T}, with wy # 0 such that
neither 9y /0z nor /0w vanishes at (0,wp), and assume case (c2).

Using the same argument as in the 15¢ case we see that —A[z, w] is strictly plurisub-
harmonic at any point [0, w] € D NT} and at any point [z,0] € DNT,. Thus there again
exists a point p’ = [2/,w’] in D* at which —\[z, w] is not strictly plurisubharmonic; and
we similarly conclude that D is Stein. (|

3'd case:  Assume there exists [z, 0] € dDNT, with 2y # 0 such that neither 8¢/
nor Jv¢/O0w vanishes at (zp,0) and assume case (c3).

Recall 9D D Ty, holds in case (c3). Here we need the function Uz, w] on H* defined
in Section 2. Using 2 (a) of Lemma 4.1, i.e., for [zg, wo] € 0D \ T,

—Az,w] = 00 as [z,w] € D — [z, wp),

and property (1) of U[z, w] we see that



256 N. LEVENBERG and H. YAMAGUCHI
slz,w] := max{—\[z, w], U[z, w]} (4.19)

is a well-defined plurisubharmonic exhaustion function for D. In order to prove that
D is Stein, we use a result from Section 14 in [7]: it suffices to show that for any
K & D there exists a Stein domain Dy with K € D C D. To construct Dy, we take
m > max(; ,)ex 1| — A[z, ]|} and consider

v[z,w] := max{—A[z,w] + 2m, U[z, w]} (4.20)

where € > 0 is chosen sufficiently small so that v[z, w] = —A[z, w|+2m on K. Again from
property (1) of Ulz, w], v[z, w] is a well-defined plurisubharmonic exhaustion function for
D. We take M > 1 sufficiently large so that

K eD(M):={[z,w] € D:v[z,w] < M} and 0#0DM)NT, #T,.
Note that D(M) € D; thus D D Ty, implies that T, N D(M) = 0; also dD(M) is
piecewise smooth. We now have

OD(M)NT, =0 and 0 #0D(M)NT, #T,. (4.21)

We consider the ¢-Robin function Ays[z, w] for D(M). Although 0D (M) is not smooth, by
the construction of Aps[z, w] and the fact that 0D(M) 2 Ty, Tp, it follows that —Aps[z, w]
is a smooth plurisubharmonic exhaustion function for D(M).

Let D(M,M’) := {[z,w] € D(M) : =Ap[z,w] < M'} and take M’ > 1 sufficiently
large so that

D(M,M')> K and 0+ 0DM,M)NT, % T,.

Now since —Aps[z, w] is smooth we have that D(M, M’) is a pseudoconvex domain in H
with smooth boundary; moreover we have

OD(M,M')NT, =0 and 0+#9D(M,M')NT, 3 T,. (4.22)

We can now apply the 1%% case, where we assumed condition (c1), to D(M,M’) to
conclude that D(M, M') is Stein; hence D is Stein.

4*h case:  Assume one of O /0z, Orp/Ow vanishes identically on 9D NT, and assume
case (cl).

To deal with this case we construct the C-Robin function Az, w] on D with respect to
a positive constant function C' on P2 > C? and the restriction of the Fubini-Study metric
dS? on P? to C* x C*. Note this metric is different than the Euclidean metric ds? on
C? restricted to C* x C*; accordingly, —A[z,w] is a smooth plurisubharmonic exhaustion
function on D which is different from the function —A[z, w]. Moreover, for any positive
constant k the function ug[z, w] := —(A[z, w] + kA[z,w]) is a smooth plurisubharmonic
exhaustion function for D. We claim that we can find a k£ and an increasing sequence
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{My}n=12,.. tending to +oo such that the increasing sequence of pseudoconvex domains
D, = {[z,w] € D : uglz,w] < M,} satisfy the hypotheses of the 15 case. Clearly
0D, N T, = 0 so that (c1) holds. It remains to select k and then the sequence M, so
that there exists [z,,,0] € D N T, with z, # 0 such that neither 94, /9z nor o, /Ow
vanishes at (z,,0) where 1, [z, w] := ug[2,w] — M,,. From the 1°* case we conclude that
each D,, is Stein and it follows from Section 14 of [7] that D is Stein.

5 case:  Assume one of 9v/dz, 01 /Ow vanishes identically on 9DNT, and assume
case (c2) or (¢3).

The type of argument used to show a domain D in the 2°? or 3" case, where we
assume (c2) or (c3) of the condition D 7 T}, reduces to the 15° case, where we assume
(c1) of this condition, allows us to deduce the 5" case from the 4'" case. We leave the
details to the reader. (]

We next turn to the situation where 9D contains one of T, or T} but not both.

LEMMA 4.4. Let D be a pseudoconvexr domain in H with C¥-smooth boundary. If
i) 0D D T, and (ii) 0D NTy, # Ty, then

(

(1) D is Stein or

(2) D is of Case b in Theorem 1.1. In fact, D = J, c50c with 0 € 90 and oo ¢ 6 U 96
(

and similarly if T, and T}, are switched as well as 0 and o0).

The condition (ii) separates into the following three cases:
(61) @#aDme#Tb, (62) D>T, or (63) (8DUD)ﬁTb:(Z)

PROOF. We first treat the cases (¢1) and (¢3). We assume that D is not of Case
b as in (2) and we show D is Stein. We proceed as in the proof of the 3'¢ case of Lemma
4.3 where we use the function Uz, w] on H* defined in Section 2. However, instead of
(4.19) and (4.20) we use

sz, w] := max{—A[z, w], —U[z, w]}
and
v[z, w] := max{—A[z,w] + 2m, —eUlz, w]}.

We leave the details to the reader.

We next treat the case (€2) in which 0D D T, and D D Tj,. In this setting we shall
show that conclusion (2) in Lemma 4.4 holds.

Since T} is compact in D, we can find a neighborhood V of T} in D such that
T, € V € D. Since . := {Jw| = ¢|z2|’}/ ~ (or 0. := {w = ¢zP}/ ~) approaches T},
in H as ¢ — oo, it follows that for ¢ sufficiently large, the Levi-flat hypersurface X.
satisfies ¥, € V' € D (or the compact torus o. satisfies o, € V' € D). But —\[z,w]
is a plurisubharmonic function on D (although not necessarily an exhaustion function);
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hence —A[z, w] is not strictly plurisubharmonic at any point in X. (or o.). From Lemma
4.2, we conclude that D is given as in case (2) (ii) of that lemma.

For simplicity, we complete the argument if ¥, € V' € D. We claim that (a,b) is of
Case b in Theorem 1.1 and hence D is of the form in case (2) (ii-a) of Lemma 4.2,
completing our proof. For if (a,b) is of Case a then from the proof of Lemma 4.2, we
have (recall (a*))

D* = U Y., where I = (r, R) is an open interval in (0, 00),
cel

because D* is connected. Since D D Ty, D = Uce(r’oo] Y... However, since 0D D T,, we
must have r = 0. Thus D = H \ T, which contradicts the smoothness of 9D. U

Note in particular we have proved that the Nemirovskii-type domains in (2) (ii-b)
of Lemma 4.2 are Stein. An entirely similar proof, which we omit, deals with the case
where D contains both T;, and Ty.

LEMMA 4.5. Let D be a pseudoconver domain in H with C¥-smooth boundary. If
oD D T, UT,, then

(1) D is Stein or
(2) D is of type b in Theorem 1.1. More precisely, D = .5 0c with 0,00 € 94.

We suspect that under the hypotheses of Lemma 4.5 conclusion (2) must always hold,
but we are unable to verify this.
We can now easily conclude with the proof of our main result.

PROOF OF THEOREM 1.1. Let D be a pseudoconvex domain in H with C“-
smooth boundary which is not Stein. We consider three “symmetric” cases depending
on the nature of 9D NT, or 0D N Ty.

15t case: 0D D T, (or OD D Ty).

If 0D D T,, we can have either 0D NT, # T, or 0D D T,. If 0D NTy, # Ty,
from Lemma 4.4, D = J,c50. with 0 € 96 and oo ¢ § U 36. If D D T, this means
0D D T, UTy; hence Lemma 4.5 implies D = J, 50 with 0,00 € 94.

28d case: DN T, =0 (or D NTy = ).

If 9D NT, = 0, we can have either 8D N'T}, # T}, or 0D D Ty. If D D T, we are
done by the 15¢ case. If 9D N'T;, # T, either

(I) ODNT, =0 or (H) @#aDﬂTbﬁTb.

Note that if D N Ty = (), then in this 2°¢ case 9D N (T, U Ty,) = 0.

Let A[z, w] be the ¢-Robin function of D. From Lemma 4.1 we know that —A[z, w] is
a plurisubharmonic exhaustion function on D. We shall prove that under our assumption
that D is not Stein we can find a point [z, wp] in D* at which —\[z, w] is not strictly
plurisubharmonic.
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In the setting of the 279 case with (I) 9D NTy, = () we have three possible situations
for D relative to T, Ty: (1) DN (T, UT,) = 0; (ii) DNT, = § and D D T, (or the
symmetric case with Ty, T}, switched); and (iii) D D T, U T

In case (i) we are done since D = D* so that, by the assumption D is not Stein,
there is a point [zg,wg] in D = D* at which —A[z,w] is not strictly plurisubharmonic.
By (2) (i) of Lemma 4.2, D is a domain of the type in Case (a-1) or Case b of Theorem
1.1 (in the latter situation, we have D = |J .50 where 6 C C*). For cases (ii) and
(iil) we only give the proofs under the hypothesis of Case a of Theorem 1.1 ((a,b) € S7)
as the proofs in Case b are similar. In case (ii), since T}, is compact in D, we can find
a neighborhood V of T}, in D such that T, € V € D. The Levi-flat hypersurface .
approaches T}, as ¢ — o00; hence X, € V € D for ¢ sufficiently large. Since —A[z,w] is a
plurisubharmonic function on D, —A[z,w] is not strictly plurisubharmonic at points of
3¢; thus we can find such a point in D*. Recalling (a*):

D* = U Y., where I is an open interval in (0, c0),
cel

we see that D is of type (a-2”) in Theorem 1.1. In case (iii), similar reasoning as in case
(ii) shows that Y., C D for some cq # 0,00. It follows that D = |J .; X where I is an
interval in [0, 00]. Since D D T, U Ty, we have I = [0, 0], i.e., D = H, which is absurd
(note in Case b of case (iii) the conclusion is that D = |J .50 where 0,00 € § C P').
This finishes the proof of the 2" case under situation (I).

To finish the proof of the 2°¢ case, where 9D N T, = (), it remains to deal with
situation (II), i.e., 9D NT, = 0§ and O # 9D NT}, # Ty. Again, we give the proofs under
the hypothesis (a,b) € Sy of Case a of Theorem 1.1 since the proofs in Case b are similar.
Apriori, we separate this into two subcases:

(cl) DDOT, and (c2) D 2T,

In case (cl), using the argument in case (ii) above we can find a neighborhood V of T,
in D such that T, € V € D and hence ¥, € V € D for ¢ > 0 sufficiently close to 0.
Thus we obtain points in D* at which —A[z, w] is not strictly plurisubharmonic. We now
appeal to case (2) (i) of Lemma 4.2.

Now we observe that case (c2) cannot occur, for the assumptions (§ # 0D N'T, # Ty,
and D A T, imply from Lemma 4.3 that D is Stein.

39 case: 0 #IDNT, #T, (or D #0DNTy #Ty).

If ) #£0DNT, # T,, from Lemma 4.3 we must have D D Tj,. Thus 0D NT, = 0
and we are done by the 2" case.
This completes the proof of Theorem 1.1. O

We end with an explicit example of the construction of both D[z, w] and the c-
Robin function Az, w] for a specific Nemirovskii-type domain D C H. We recall the
fundamental domain F = Ey U Ey = (Ef U EY) U (E4 U EY) for H defined in (2.2). Let
D be a subdomain of F defined by
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D= (E] x K{)U(Eyx KY) C E1 U Es
where (recall b > 1)
K/ ={1<|w|<b}n{Rw >0} and K := {Jw| <b}N{Rw > 0}.
We note that 0D, which can be written as
{lzl <lal} x {Rw = 0,1 < |w| <b}U{L <[z <laf} x {Rw =0, [w] < b]},
is smooth in H. To see that D is of Nemirovskii-type as in Lemma 4.2 (ii-b), setting
N =C, x {Rw > 0} C (C*)*
we will show that
N/~ =D inH, orequivalently, N=D=D-Z in (C2)* (4.23)

(recall (2.3)). Hence N \ (C, x {0}) = D*.
To prove (4.23), we show N = D. Let (z,w) € N. Then we have z = a"zy and
w = b™wy for some n,m € Z and (zg,wo) € F. Since b > 1, we have Rwy > 0.

Case 1: n>m.
In this case we have (z,w) ~ (z/a",w/b"™) = (20,b™ "wy) € Fy x K§ C D.
Case 2: m > n.

In this case we have (z,w) ~ (z/a™,w/b™) = (a" ™zp,wp) € E{ x K{ C D.

Hence N C D = D-Z. The converse is clear from the relations D ¢ N and N-Z = N.

We turn to the study of the sets D[z, w] and the ¢-Robin functions A[z,w] for
(D[z,w],e) with respect to the metric ds?> on C* x C* and the function ¢(z,w) > 0.
Recall e = (1,1). We put K/’ = {Rw > 0}. Let w’ € KY. We write w' = |w'|e?® where
—7/2 < § < /2 and define

d(w") :={w=u+1iveCy : (cosb)u — (sinf)v > 0}. (4.24)
We then have

1 .
{Rw > 0} - o = S(w') in C,,

so that dist(1,00(w’)) = cosf for |w’| < |b|. Recalling the formulas

Dz, w] = <(1 1) -D*> T if [z, 0] € D*;

2w

Dlz,0] = <1Da,(C*> I = <1bva) x Cy, if [2,0] € DN Ty;
z z
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1 1 ~
D[O,w] =(C", =Dy | Z=Cix|—Dy if [O,w] e DNT,
w i w

where DNT, = D, x {0}, DNT, = {0} x Dy, D, = {a"z :z € D,, n € Z} C C:
and D, = {b"w : w € Dy, n € Z} C C%, in using the equality D = N we obtain the
following:

If (2/,w") € D*, then

1 1\~
D[/, w'] = (z” w’)D* =C; x o(w'),
while if (0,w’) € D, then
DI0,w') = C x — KY = €% x 6(u)
) - Yz w’ 1 = Yz .
Hence for any [z, w] € D, we have
Dlz,w] = C} x 6(w)
which is independent of z. It follows that A[z, w], [z, w] € D is independent of z.
We analyze the boundary behavior of A[z,w]. We consider different cases:
(1) Let [20,wq] € OD \ Ty; i.e., 2o # 0, wg = 0+ ivg # 0. We let [z,w] € D approach
[20,4v0]. If 2 — 2p and w — fvp, then regarding (4.24) with 6 = /2 we see that
Dlz,w] = C} x 6(w) approaches D|zp,ivg] = Ci x {Sw < 0}.

In particular e € 9(C: x {Sw < 0}); thus as [z, w] approaches [z, ivg], we have
dist(0D[z,w],e) tends to 0 and A[z, w] tends to —oo.

(2) Let [20,0] € 0DNT, = T, where zy # 0. We let [z, w] € D approach [zp,0] in such a
way that z — zo arbitrarily but w — 0 in an angular sector; i.e., writing w = |w|e®,
there exists 0y with 0 < 6y < 7/2 so that || < 6y as |w| — 0. As before we have
Dz, w] = C% x§(w). It follows from (4.24) that dist(0D[z,w],e) > cos by for |w| < 1.
Let A be the c-Robin constant for the region

G(00) == {(z,w) € CE x C: : |z — 1> + |w — 1]* < cos® Oy}

with pole e. Then A is finite and since G(6y) C D[z, w] for |w| < 1, clearly A[z, w] >
A. Thus —\[z, w] is not an exhaustion function due to its boundary behavior at T,.

Finally, we let X := 2(0/9z) and py = [20,wo] € D*. Then the integral curve for X
with initial value pq is given by

0 :=poexptX = (C; x {wo})/ ~ C D*/ ~ = D".

Thus this example does indeed satisfy (1) and (2) (ii-b) of Lemma 4.2.
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5. Appendix A: Proofs of Lemma 3.1 and Proposition 1.1.

We give the proof of Lemma 3.1 and simultaneously that of Proposition 1.1. We
first prove 1. of the lemma; hence we recall that

0 0
X, = (logal)z 5 + (log [} -

the integral curve of X, with initial value (1,1) is

z = elloglalt
exptX, = 0 elloglih, t e C;

we set 0, := {exptX, :t € C}/ ~ C H* and we denote by ¥, the closure of 7, in H.

Consider case (1) where we let (a,b) € S;. There are two subcases: p = log |b|/log |a| > 1

is irrational, or p = ¢/p is rational, (p,q) = 1, and 7 = (¢arga — pargb)/2x is irrational.
In the first subcase, taking the closure in C; x C; we have

Cl[zlog|b\ _ w10g|a|] _ {|z|log|b\ _ |w|log\a\}
so that
B = {Jal 51" = w11}/
One can check that
{|Z‘log|b| — |w|log|a|}~:: {|Z‘log|b\ — ‘w|log|a|} T = {|Z|log|b\ — |w|log\a\};

it follows that iu is an irreducible, compact, Levi-flat hypersurface in H*.
For any (zo,wp) € C% x C¥,, we have

|Z|log|b\ |Zo‘loglb|
Cl[[zowo] exp tX] = { el = o [E T }/ ~ and (5.1)
|Z|10g|b\ |Zo‘loglb| ~ |Z|10g|b\ |Zo‘log|b|
{ ‘w|log|a| - |w0|log|a| } - { ‘w|log|a| - |w0|log|a| } (52)

Indeed, since C* x C* are the group of automorphism of H, letting (§,n) € C* x C* we
have

[€, 1] € Cll[zowo] exptX] = (20, wp) - CU[[1, 1] exptX] = (20, wp) * L.

Equivalently, [z 1§,w0— 117] € iu By the argument in the previous paragraph, this is
equivalent to |2y '¢[18IYl = |wy 'p['o8lel proving (5.1). The assertion (5.2) is easily
checked and it yields the validity of the definition of ¥, for ¢ € (0,4c0) in (o) of
Proposition 1.1. This proves (o) as well as 1.(1) of Lemma 3.1 in case (a,b) € S and p
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is irrational.
If (a,b) € S; and p is rational while 7 is irrational, setting pr{z9/P} for the principal
q/p-th root, we have

G, = {w = pr{z?/"}}/ ~

= U {(a"z, (a"2)"?)}/ ~  (by analytic continuation)
nez

= (J{(z07"((@"2)77))}/ ~

nez
p—1

= U UG pr{ze/ryermimimeasingy ) (5:3)
k=0n€eZ

Since 7 is irrational, we similarly have
S 1 log |b
Su = {w] = 2|77}/ ~ = {Jw] 8l = |z[ls 1"}/ ~ .

A similar argument as before verifies (5.1) and (5.2), finishing the proof of 1.(1) of Lemma
3.1 and (o) of Proposition 1.1.

We next prove 1.(2). Let (a,b) € Sz so that p = log|b|/logla] > 1 is rational;
we write p := q/p, (p,q) = 1; and 7 := (garga — pargb)/2w is also rational; we write
T:=m/l,1>1, (I,m)==x1 (=1 for 7 =0), where 0 < arga, argb < 2.

We consider the circle A := {e? : 0 < § < 27} and an arc B : t € [0,1] — ((t) =
r(t)e®®® connecting 1 and a in C, where 7(t),0(t) are increasing in t. We set

Yo = {0 <0 <2} forn==41,42,...;

(n=a""'Bforn>1 and (,=a"""(~B)forn< -1
where — B is the arc with the opposite orientation of B. We define
M= GG forn>1; (M i=( (g Cpforn<—1

so that ¢(™ is an arc connecting 1 and a” in C:.
Given k, s € Z, we perform an analytic continuation of the principal value pr{zQ/ P}
of z4/P from z = 1 to a® along the curve 7, - ((®): we have

Gu={(2,297)}/ ~
2, |2|/Pei@/P)(Arez+k2myy /- (hhy anal. cont. along ;)
z,pr{z?/P} . 27Ra/P)L )

Sz, |a|*¥/P|z|9/Peila/P)(sargatArg ) p2mika/pyy ) (by anal. cont. along ((*))

—_— o~ =~ =

{
{
={
{
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= {(z,pr{z9/P}b™* |a|?9/Peisaarsalp . 2mika/pyY )
= {(z, pr{z9/P}e¥mism/pl . o2mika/P\L  gince garga — pargh = 2wm)/l.
We set
wis(2) = priz?/P}e?msm/PEka/P) ¢ Loy € C* ¢ |w| = |2|7/P}. (5.4)
In particular we have
Wy (1) = 2T m/PIERA/P) ¢ o) € C* : |w| = 1}. (5.5)

Setting W(1) :={wys(1): 0< k<p—-1, 0<s<l—1} C Ci, we show

1) (I, W(1)) consists of pl different points in the fundamental domain F, and hence
W(1) = {e2™/P) .0 < < pl — 1};

2) if w € C},, then [1,w] € g, if and only if w € W(1);

3) for (zg,wp) € C% xC?, we consider the integral curve [zg, wp] exp tX,, of X,, with initial
value at [zg, wp]. Let (z,w) € C% x C¥. Then

[z, w] € [0, wo] exptX, <= wP' /2% = wh' /28" in C*.

To prove 1), assume wy, s, (1) = Wiy 5, (1) with 0 < kq, ko <p—1,0 < sy, 59 <1 —1.
Then we can find N € Z with

(81 — 32)m T (]{71 — ]Cg)q

= N.
pl P

Using (I,m) =1 and (p,q) = 1 it follows that k1 = ks and s; = so, which proves 1).

To prove 2), let (1,wo) € 7, N F. Then wy is determined as follows: we can find
S € Z and a (not necessarily simple) curve C' connecting 1 and a® in C} such that if
we perform an analytic continuation w = we¢(2) of pr{z9/P} along C, then the value w*
of we(z) at the terminal point of C' (which lies over a®) satisfies wy = b~*w*. Since C
is homotopic to the curve 7 - () for some k,s € Z, it follows from (5.5) and 1) that
wp = 627ri(sm+kql)/pl c W(l)

To prove 3), we first consider the case where (zp,wp) = (1,1). Using arguments
similar to 2), and using (5.4), for (z,w) € C} x C?, we have

[z,w] € 7, <= w = pr{zq/p}e%i("/pl) for some n with 0 < n <pl — 1.

The point (z,w) in the right-hand-side satisfies wP! = 2%; conversely, if (z,w) € C% x C¥,
satisfies wP' = 29 then it satisfies the right-hand-side of the displayed equivalence. Since
oy = [1,1] exptX,, this shows that 3) is true for (zo,wo) = (1,1). For general (zg,wq) €
Ci x Ci, fix (z,w) with [z, w] € [0, wo] exptX,,. Since any (a, 3) € C* x C* induces an
automorphism in H, we have
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[z, w] € [20,wo] expt X, = (20, wo) - [1,1] exptX,,

ie., [z 2z, wy tw] € [1,1]exptX,. From the (1,1) case we conclude that (wy 'w)P! =
(2512)%, so that wP! /29" = wh /22,

We note that 3) guarantees the validity of the definition of o, in assertion () in
Proposition 1.1 and proves (8). Furthermore 3) proves the equality {w? = 27}/ ~ =
{wP! = 29}/ ~ and {wP! = 27} = {wP! = 29"} in C* x C*.

We next prove 1.(2) ii) in Lemma 3.1. Here, (a,b) € So. We show the curve o, as
a Riemann surface, is equivalent to a torus T, ;). To construct T(, ) we begin with the
annulus {1 < |z| < |a|}. Identifying the inner boundary A = {e? : 0 < 0 < 27} with
the outer boundary {ae? : 0 < 6 < 27}, we get a torus 7. Recall that B : t € [0,1] —
¢(t) = r(t)e?® is an arc connecting 1 and a in C,. Let 7,; be the covering space of 7
which covers the circle A p times and covers the arc B [ times. We offer a realization of
the tori 7 and 7, in the following figure:

Since wio(1) for 0 < k < p—1 from (5.5) are p distinct points and wpo(1) = 1 = weo(1),
we can form the covering space 7, of 7 which covers A p times. Now wgs(1) for
0 < s < 1—1 arel distinct points and wg;(1) = €>™™/?_ If m/p is an integer, then
wor(1) = woeo(1), in which case the covering space T, of 7 covers B | times. Since
wis(1) for 0 <k <p—1,0 < s <1 —1 are [ distinct points by 1), it follows in this
case that o, is equivalent to the torus 7, ;. If, on the other hand, m/p is not an integer,
there exists k with 1 < k < p — 1 such that wro(1l) = we;(1). Setting m* :=p — k, we
have 1 < m* < p — 1. We perform an analytic continuation of pr{z9/?} along the closed
curve B'A™" which traverses B [ times and then A m* times. In doing so, we return to
pr{z9/P}. Using 1), we see that o, is equivalent to the torus T(a,p) Pictured in the figure.
This proves 1.(2) of Lemma 3.1.

REMARK 5.1.  As noted in the introduction, if (a,b) € S; we have the non-constant
meromorphic function f[z,w] = w’ /29 on H with a® = b”. We see that P = pl and
Q = ql; and for ¢ € C* and (z9,wp) € C; x C¥, with f(z0,wp) = ¢, the level curve
f(z,w) = ¢ coincides with ([zo, wo] exptX,,) .
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We turn to 2. of Lemma 3.1 and we first prove 2.(1). Thus let

0 0
XfazaJrﬁw%gZ{ch.ce(C}

with a, 8 # 0. Considering X as a vector field in C¥ x C¥, the integral curve {exptX :
t € C} of X with initial value e = (1,1) in C* x C, is w = 2°/®. Let 8/a = A + Bi
where A, B are real. Then
w = ZA+B'L' _ e(AJrBi) Iogz'
Fix z € C* and let Log z = log|z| + 0 (0 < 6 < 27) be the principal value. By analytic
continuation, over z we have
wn(z) — e(A+Bi)(log|z|+i(0+2nﬂ'))

— eA(log |z|+i0)e[—B(9+2n7r)]ei(A2n7r+Blog |z|)’ ne7. (56)

We first assume B # 0, e.g., B > 0. Then |w,(2)| = (|z|*¢ B e 2B n € Z.
Hence lim,_, 4 o0 |wn(2)] = 0 in C,; thus

lim (z,wn(2))/ ~ =12,01 €T, inH.

n—-+4oo

Since z € C* is arbitrary, we have T, C ¥, the closure of 0 = {w = 2478}/ ~ in H.

A+Bi

Since w = z can be written as

z=wAtP where A’ = AJ(A? + B?), B' = —B/(A% + B?) <0,

we similarly have T, C 3. This proves 2.(1) in case B # 0.

We next assume B = 0 and A # p. Since the proof is similar, we shall prove 2.(1)
assuming —oo < A < p. For z € C* we have Logz = log|z| +if (0 < § < 27m). By
analytic continuation of w(z) = 24 = eAlloglz[+iarg2) along an arbitrary path { from z to
akz where k € Z is arbitrary, we have

w(akz) — (akZ)A — |akZ|AeiAargakz — ‘akz‘AeiA(karga+0+2n7r)’ ne7.

Thus py, := (a¥z,w(a*z)) € 0. In H* the point p;, coincides with
(z,w(ak2)/b7)) ~ = (z,0%(2))) ~ €0 (5.7)

where ’LZ]C(Z) — ‘aA/b‘k‘Z|Aeik(Aargafargb)eiA((H*Qnﬂ) c Cz

Using p = log [b|/log |al,
|@r(2)] = 21" (|al**/[b]*) = [2[*(Jal*~7)". (5.8)

Since A < p and |a] > 1, it follows that limg_ 1 |Wk(2)| = 0, so that [z,0] € X. Since
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z € C* is arbitrary, we have ¥ D T,.

Since w = z? can be written as z = w'/4, we have by analytic continuation
@ = ((VFw)/4b*w) € o for any k € Z. In H*, the point g coincides with
(OF W)Y A Ja* w)) ~ =: Grp(w),w)/ ~. Since |Zx(w)| = |w|"4(|a]?=4)*/4, we have

limg, oo [Zk(w)| = 0 if A > 0 and limg_ 4o |Zk(w)| = 0if A < 0. Since w € C* is
arbitrary, we have ¥ D T}, which proves 2.(1).

Finally, to prove 2.(2), let X = «z(9/0z) # 0. Then the integral curve o of X
passing through [1,1] in H is given by {(e*,1) : t € C}/ ~ = Ci x {1}/ ~. In the
fundamental domain F,

o=({0<l|z <lal}, 1)U {1 < [2] < lal},1/b) U ({1 < |2] < al}, 1/6%) + -+,
so that ¥ = ({|z| <1}, 1)U, ~, ({1 < |2| <al}, 1/b") UT,, proving 2.(2). O

We end this appendix with a remark. Let X = az(9/9z) + pw(0/0w) & {cX, : c €
C} with @ # 0, 8 # 0 and set /o = A+ Bi as in the proof of 2.(1). Fix (29, wp) € C*xC*
and for ¢ = wy /255" consider the integral curve o, = {w = cz*t5"} /~ of X passing
through [zg,wo] in H. For each 2/ € {1 < |z| < |a|} we consider the set of all points
wg(2), k=1,2,...in {|Jw| < |b|} with [2/,wk(2")] € o.. The following fact was used to
prove (2) (iii) in Lemma 4.2.

REMARK 5.2. If A is irrational, then there exists a subsequence {wy,(2)}j=12,...
with the properties that lim; .. |wg,(2')] = 0 and the closure of the set
{argwy, (2")}j=1,2,... modulo 27 is equal to [0, 27].

PROOF. Since 0, = {w = cz2*P}/ ~ and 0 = {w = 2418}/ ~ where o is
defined in the proof of 2.(1), it suffices to prove the result using o. = 0. If B # 0, we
can assume B > 0. Since A is irrational, formula (5.6) gives the result. If B = 0 we have
A # p, and we can assume —oo < A < p. In this case, since A is irrational, formulas
(5.7) and (5.8) imply the result. O

6. Appendix B: Proof of Lemma 3.2.

We give the proof of Lemma 3.2. The lemma is local, hence we may assume from (i)
and (ii) that the unit outer normal vector of the curve 0D(0) in A is (0, 1); i.e., 9D(0)
is tangent to the u-axis at w = 0 where w = u + iv. Thus, we may assume that 1(z, w)
has the following Taylor expansion about the origin (z,w) = (2, (u,v)) = (0, (0,0)):

Y(z,w) = v+ po(2) + p1(2)u + pa(2)u® + - -- (6.1)
where each p;(z), i =0,1,2,... is a C*-smooth real-valued function and
po(0) =0 and p;1(0) =0.

We may further assume that formula (6.1) holds on (z,u) € Ay X (—rg,7r9) where Ay =
{|w| < r2}. Thus we write
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D ={v+po(2) +pi(2)u+pa(2)u +--- <0: (z,w) € Ay x Ag};
S=0D={v+po(2) +p1(2)u+p2(2)u® + - =0: (2,w) € Ay x Ay},

or equivalently,
D:v < —(po(2) +pr(2)utpa(z)u® +---) in Ay x Ay,
and, for each z € Aq,
S(2) v =—(po(2) + p1(2)u+pa(2)u’ +---) in Ay,
In particular, —ipg(z) € S(z). By condition (iii) we have

po(z) Z0 on Aj.

Since ¥(z,w) satisfies the Levi condition (3.1) on ¢(z,w) = 0, using the notation

+w w +w

+pa(2) ()

vz w) = 4 o)+ pi(9)

on points (z,w) = (z,u + i) with ¥(z,u + iv) = 0 we obtain

_ (9Ppo(z) | OPpi(2) Op2(2) 4
W(Z’w)( 0207 | 020z " 0202

(1522 ) (B 0 0

X (212 + %pl(z) +p2(z)u+--->}

1 Ipo(z) | Ipi(z) | Op2(2) »
+(2p2(z)+3p3(z)u+ >‘ 5, T, Ut Wt

In particular,

2

0%po(2)
020%Z

3 BB o)« o 282

LO(z,0 + iv) = i (1 +p(2)?)

2
>0

on v+ py(z) =0 for z € A;.

Since this expression for £1(z,0 + iv) is independent of v, we have

+ 1+1 (z) + p2(2)u +
u Qi 2p12 P2\2)u

(6.3)

2

" +)

> 0.
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Opo(2) 2
0z

for z € Ay, (6.4)

>0

Ppo(2) 2%{ 9p1(2) Ipo(2)

2
L+ () 57 9. 0z

(i p1<z>>} T opa()

This formula will be used later on in the proof.

Cram.  To prove the lemma, it suffices to show that for r1 > 0 sufficiently small
and 81 = {|z| <},

(Q)  there exists z* € 01 such that po(z*) > 0.

Indeed, if () is true, consider the segment [0, z*] in §; and the set
s:= U S(z) C Ag.
z€[0,2*]

The arc S(z) in Ay varies continuously with z € A;. Hence it follows from 0 € S(0),
—ipo(2z*) € S(2*), —po(z*) < 0 and (6.2) that there exists a sufficiently small disk
da C Ay centered at w = 0 with D(0) Nds C s.

Thus we turn to the proof of (). We have two cases, depending on whether
(Opo/0z)(0) vanishes:

Case (i):  (9po/02)(0) #£ 0.
Since pg(0) = 0, we have
po(z +iy) = ax + by + O(|z|*) mnear z =0
with (a,b) # (0,0). It is clear that there exist z* € d; which satisfies ().
Case (ii): (9po/0z)(0) = 0.

In this case, we have the following Taylor expansion of py(z) about z = 0:
(1) po(z) = ?R{CLQ()ZQ} +a112Z24+ -+ Jop_1 + Jop + O(‘Z|2n+1) near z = 0,

where
n—1 n—1
2n—1—k =k 2n—k =k 2n
Jon—1 = 9‘3{ E A2n—1—k,k 2 Z } Jon = 3‘3{ E A2k k 2 Z } + annl2|".
k=0 k=0
Here a;; is, in general, a complex number for ¢ # j; while a;; is real.

15t step:  Since (9pg/02)(0) = 0 and po(0) = p1(0) = 0, inequality (6.4) reduces to

52170
020%Z (0)

>0, ie., a;;>0.



270 N. LEVENBERG and H. YAMAGUCHI
If a1; > 0, (1) implies that

52170
020%

(2) = a1 +O(|z]) > % >0 mnear z=0.

Thus po(z) is strictly subharmonic on a sufficiently small diskd] = {|z| < 7'} C 1;

hence there exists z* with |z*| = 7'/2 and po(z*) > po(0) = 0, proving ().
If a;; = 0, then (1) becomes, for z = re®,

po(2) = R{az2®} + O(2?) = |2|*R{az0e®” + O(|2])} mnear z = 0.

If asg = |a20\ei‘90 # 0, then for z* € ¢; of the form z* = r*e~/2 £ 0 with r*
sufficiently small, we have

po(=") = () (Jasl + O(1)) > (1222 g

which proves ().
Thus it suffices to prove ({) in the following two cases when n > 2:

Case (I) : po(2) = Jon_1(2) + O(|z|*") near z =0
where
Jon-1(2) := R{agn_12*"" 4 agn 22" 2+ - +a,2"2" '} in C,;

a; is, in general, a complex number; and

(012”,1,0/2”,2,...,@”) # (0,0,,0) (65)
Case (I1) : po(2) = Jon(2) + O(|2|*" ™) near z =0

where
Jon(2) == §R{a2n22” +agn 12"z + an+1z”+1§"*1} + an|z\2” in C,;
a; for n+1 <1 < 2nis, in general, a complex number; a,, is a real number; and
(agn,aon—1,- -, an+1,an) # (0,0,...,0,0). (6.6)
We first assume Case (I). Setting z = |z|e®, we have
Jon-1(z) = \z|2”_1%{a2n,1ei(2”_1)9 + agp_0e’P 30 44 aneie} in C,.
We consider the polynomial in Z defined by

g(Z) = a2n7122n—1 + a2n72z2n—3 4+ o+ anZ.
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Note that g(Z) £ 0 by (6.5). Thus g(Z) # 0 for all Z with |Z] = r for some 0 < r < 1.
Since ¢(0) = 0, by the argument principle flz‘:rdargg(Z) > 1, hence there exists
0 < 0 < 27 such that Rg(re?®) > 0. By the maximum principle for the harmonic
function R g(Z) on {|Z] < 1}, there exists 0 < 0* < 27 such that

’

A:=Rg(e?) > Rg(re’”) > 0.
Since Jo,_1(2) = |2|>""1g(e?), we have
po(|2e®) = [2]>" 1A + O(]2*") for 0 < |2| < 1
> (22" 1A/2 > 0 for 0 < |2] < 1,

showing that () is true in Case (I).
We next assume Case (II). For z = |z|e"

0po(2)
020%Z

= [ (R{(0)} + n*an + O(|2])) (6.7)
where

(%) = (2n — Dagn_1"®""29 4 (20— 2)2 - a9, 2" 4. 4 (n 4+ 1)(n — Dane.
We substitute this in (6.4) to obtain

(1+ 0"~ (R{(*)} + n’an + O(l2]))
—2R{O(M)O(|l*" ") (=i + 0(1)} +20(|2)) O(|2*"1)* = 0

for |z| sufficiently small. Dividing both sides by (1 + O(1)?)|z|>*"=2 > 0 with |2| > 0 and
then letting |z| — 0, we have

R{(*)} +n%a, >0 forall 0 <6< 2r. (6.8)

We substitute this in the definition of py(z) in Case (II) to obtain

! 2n -1\
po(z) 2 len?ﬁ{arzneﬁne + azn_1 <1 - )ez(znz)e
n
+ G2n—2 (1 - (2n—22)2> ei(2n—4)0
n

ot anat (1 _ W)em} Oz

n

for |z| sufficiently small.
We divide the proof of Case (IT) in two subcases:
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Case (II-1):  (agn,a2n—1,---,an+1) 7Z (0,0,...,0);
Case (II-2):  (agn,a2n—1,---,an+1) = (0,0,...,0).

From (6.6), a,, # 0 in Case (II-2). In Case (II-1) we consider the polynomial

2n —1 2n —2)2
g(Z) — a2nZ2n + asp_1 (1 _ n - >Z2n—2 + Gon—2 (1 _ (nQ)>Z2n—4
n n

1 -1
+...+an+1(1_(n+)(n)>z2.

n
Since n > 2, we have (1 — (2n — k)k/n?) # 0 for k = 1,2,...,n — 1 so that g(Z) £ 0
on Cz and ¢(0) = 0. By the same reasoning as in Case (I) we have the existence of
0 <6* <27 and A > 0 with

po(|z]e) > 22" A/2 >0 for 0 < |2] < 1,

which proves () in Case (II-1).
In Case (II-2) we have (x) = 0 in (6.7) and hence a,, > 0 from (6.8); thus a, > 0.
Using (6.7) we have

2
TIC) 5 apr=2a, + O(2P"2) > 27, /2 2 0

for z in a sufficiently small disk ¢ centered at z = 0. In other words, po(z) is subharmonic
on ¢ and is strictly subharmonic in ¢ \ {0}. Thus, for a given 0 < r < 1, we can find
0 < 0* < 271 with po(re??”) > 0, which proves (¢) in Case (II-2). This completes the
proof of (). O
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