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Functional distribution for a collection of Lerch zeta functions

By Hidehiko Mishou

(Received Sep. 27, 2012)

Abstract. Let 0 < α < 1 be a transcendental real number and
λ1, . . . , λr be real numbers with 0 ≤ λj < 1. It is conjectured that a joint
universality theorem for a collection of Lerch zeta functions {L(λj , α, s)} will
hold for every numbers λj ’s which are different each other. In this paper we
will prove that the joint universality theorem for the set {L(λj , α, s)} holds
for almost all real numbers λj ’s.

1. Introduction.

Let α be a real number with 0 < α ≤ 1 and λ be a real number. The Lerch zeta
function L(λ, α, s) is defined by

L(λ, α, s) =
∞∑

m=0

e(λm)
(m + α)s

, (1.1)

for σ = <s > 1, where e(x) = e2πix. If λ−λ′ ∈ Z, then L(λ, α, s) = L(λ′, α, s). Therefore,
in the following we assume that 0 ≤ λ < 1.

The Lerch zeta function is one of the classical and popular objects in analytic number
theory, since it was introduced by Lerch [6]. Many analytic properties of Lerch zeta
functions have been established by several mathematicians (see, for instance, Laurinčikas
and Garunkstis [4]). Here, we are concerned with universality property. A function f(s)
is said to have universality property on a region U , if arbitrary analytic function can
be uniformly approximated on compact subsets of U by vertical translation of f . Such
universality property for Lerch zeta functions was established by Laurinčikas [3]. To
state it, we prepare some symbols. Let µ be the Lebesgue measure on the set R of all
real numbers. For T > 0 define

νT (· · · ) =
1
T

µ{τ ∈ [0, T ] : · · · },

where in place of dots we write some conditions satisfied by a real number τ . Let D

denote a strip {s ∈ C | 1/2 < σ < 1}. Now we state the universality theorem for the
Lerch zeta function.

Theorem 1 (Laurinčikas [3]). Assume that 0 < α < 1 be a real transcendental
number. Let λ be a real number with 0 ≤ λ < 1. Let K be a compact subset of D with

2010 Mathematics Subject Classification. Primary 11M35; Secondary 11M06, 11K38.

Key Words and Phrases. Lerch zeta function, joint universality theorem, discrepancy.

http://dx.doi.org/10.2969/jmsj/06641105


1106 H. Mishou

connected complement and f(s) be a continuous function on K which is analytic in the
interior of K. Then for any ε > 0 we have

lim inf
T→∞

νT

(
max
s∈K

|L(λ, α, s + iτ)− f(s)| < ε
)

> 0.

In this paper, we treat value distribution of a collection of Lerch zeta functions

{L(λj , α, s) | 1 ≤ j ≤ r},

when α is a fixed transcendental real number and λj ’s are real numbers. The first result
in this direction was obtained by Laurinčikas and Matsumoto [5].

Theorem 2 (Laurinčikas and Matsumoto [5]). Let α be a transcendental real
number. Let λj = (aj/qj) (1 ≤ j ≤ r) be distinct rational numbers which satisfy (aj , qj) =
1 and 0 ≤ aj < qj. For each 1 ≤ j ≤ r, let Kj be a compact subset in the strip D with
connected complement and hj(s) be a continuous function on Kj which is analytic in the
interior of Kj. Then for any small positive number ε we have

lim inf
T→∞

1
T

µ
{

τ ∈ [0, T ]
∣∣∣ max

1≤j≤r
max
s∈Kj

|L(λj , α, s + iτ)− hj(s)| < ε
}

> 0.

The above inequality implies that for a collection of Lerch zeta functions the corre-
sponding universality properties hold simultaneously. We call this type of property for a
collection of zeta functions joint universality.

Here we give a conjecture which asserts that the joint universality theorem for the
set {L(λj , α, s)} will hold without the restriction that λj’s are rational numbers. As a
consequence of Theorem 1, Laurinčikas [3] showed that for 1/2 < σ0 ≤ 1 and a positive
integer N the set

{(
L(λ, α, σ0 + it), . . . , L(N−1)(λ, α, σ0 + it)

) ∈ CN
∣∣ t ∈ R}

is dense in CN . Conversely, the universality theorem for L(λ, α, s) is interpreted as an
extension of the above multi-dimensional denseness result for ζ(s) to the functional space.
Recently, Nagoshi [8] obtained the similar multi-dimensional denseness result for the
collection of Lerch zeta functions.

Theorem 3. Let 0 < α < 1 be a transcendental real number. Let λ1, . . . , λr be
distinct real numbers with 0 ≤ λj < 1. Fix a real number σ0 with 1/2 < σ0 ≤ 1 and a
positive integer N . Then the set

{(
L(λ1, α, σ0 + it), . . . , L(N−1)(λ1, α, σ0 + it),

. . . , L(λr, α, σ0 + it), . . . , L(N−1)(λr, α, σ0 + it)
) ∈ CrN

∣∣ t ∈ R}

is dense in CrN .
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From Theorem 3, we predict the following conjecture.

Conjecture 1. Let 0 < α < 1 be a transcendental real number. Let λ1, . . . , λr be
distinct real numbers with 0 ≤ λj < 1. Then the joint universality theorem holds for the
set of Lerch zeta functions {L(λj , α, s) | 1 ≤ j ≤ r} on the strip D.

The purpose of this paper is to give results which assure this conjecture. The first
main theorem asserts that the joint universality for the set {L(λj , α, s)} holds for almost
all real numbers λj ’s.

Theorem 4. There exists a subset Λ of [0, 1)r which has the following properties.

1. The set Λ contains almost all real numbers λj’s such that 1, λ1, . . . , λr are linearly
independent over Q. Namely,

µr(Λ) = 1

where µr is the Lebesgue measure on Rr.
2. Let 0 < α < 1 be a transcendental real number. Assume that (λ1, . . . , λr) ∈ Λ. For

each 1 ≤ j ≤ r, let Kj be a compact subset in the strip D with connected complement
and hj(s) be a continuous function on Kj which is analytic in the interior of Kj.
Then for any small positive number ε we have

lim inf
T→∞

1
T

µ
{

τ ∈ [0, T ]
∣∣∣ max

1≤j≤r
max
s∈Kj

|L(λj , α, s + iτ)− hj(s)| < ε
}

> 0.

The definition of the set Λ will be given in the next section. Also we will give the
explicit example of λj ’s for which the joint universality of Lerch zeta functions holds.

Theorem 5. Let 0 < α < 1 be a transcendental real number. Assume that real
numbers λ1, . . . , λr with 0 ≤ λj < 1 satisfy one of the following conditions:

1. λ1, . . . , λr are algebraic irrational numbers such that 1, λ1, . . . , λr are linearly inde-
pendent over Q.

2. λj = erj , where rj’s are distinct rational numbers.

For each 1 ≤ j ≤ r, let Kj be a compact subset in the strip D with connected complement
and hj(s) be a continuous function on Kj which is analytic in the interior of Kj. Then
for any small positive number ε we have

lim inf
T→∞

1
T

µ
{

τ ∈ [0, T ]
∣∣∣ max

1≤j≤r
max
s∈Kj

|L(λj , α, s + iτ)− hj(s)| < ε
}

> 0.

The construction of the paper is as follows. In Section 2 we quote definitions and
results on discrepancy estimate in uniform distribution theory. In Section 3 we prepare
some lemmas for the proof of the theorems. In Section 4 we give the proof of Theorem 3
which differs from Nagoshi’s original proof. We prove Theorem 4 and 5 in Section 5–7.
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2. Discrepancy.

To prove our theorems, we need to know the behavior of the sequence {(e(λ1m),
. . . , e(λrm)) | m ≥ 0}. For the purpose, we quote definitions and results in uniform
distribution theory.

For an r-tuple (λ1, . . . , λr) of real numbers, the Kronecker sequence {ω(n) | n ∈ N}
is defined by

ω(n) = ({nλ1}, {nλ2}, . . . , {nλr}) ∈ [0, 1)r

for n ≥ 1, where {x} denotes the fractional part of the real number x. The next lemma
is the well-known Kronecker approximation theorem.

Lemma 1. Suppose that the numbers 1, λ1, . . . , λr are linearly independent over Q.
Then the Kronecker sequence {ω(n)} is uniformly distributed in [0, 1)r. Namely, for an
interval I = [a1, b1)× · · · × [ar, br) ⊂ [0, 1)r and a positive integer N define

AN (I) = ]{1 ≤ n ≤ N | ω(n) ∈ I}.

Then for any interval I,

lim
N→∞

AN (I)
N

= vol(I) =
r∏

j=1

(bj − aj). (2.1)

Now we define the discrepancy of the sequence {ω(n)} by

DN = DN (λ1, . . . , λr) =
∑

I⊂[0,1)r

∣∣∣∣
AN (I)

N
− vol(I)

∣∣∣∣.

Then (2.1) means that

DN = o(1), as N →∞. (2.2)

Estimate (2.2) is useful enough to prove Theorem 3 only. To prove the joint universality
theorems, however, we need a more precise estimate for the upper bound of the discrep-
ancy DN . Here we quote two classical results from uniform distribution theory omitting
the proof. The next lemma is due to Schmidt [10].

Lemma 2. For almost all r-tuples (λ1, . . . , λr) ∈ Rr, the discrepancy DN =
DN (λ1, . . . , λr) satisfies

DN = O

(
(log N)r+1+ε

N

)
, as N →∞, (2.3)

for every ε > 0.
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Now we put

Λ =
{
(λ1, . . . , λr) ∈ [0, 1)r

∣∣ estimate (2.3) holds for DN (λ1, . . . , λr).
}
.

Then Lemma 2 yields that µr(Λ) = 1.
The following lemma is easily deduced from Theorem 6.1 of Niederreiter [9].

Lemma 3. Assume that real numbers λ1, . . . , λr with 0 < λj < 1 satisfy one of the
following conditions:

1. λ1, . . . , λr are algebraic irrational numbers such that 1, λ1, . . . , λr are linearly inde-
pendent over Q.

2. λj = erj , where rj’s are distinct rational numbers.

Then the discrepancy DN = DN (λ1, . . . , λr) satisfies

DN = O(N−1+ε), as N →∞,

for every ε > 0.

Combining the above lemmas, we obtain the next approximation formula.

Lemma 4. Assume that real numbers λ1, . . . , λr with 0 < λj < 1 satisfy one of the
following conditions:

1. λ1, . . . , λr ∈ Λ, where the set Λ is given by (2.3).
2. λ1, . . . , λr are algebraic irrational numbers such that 1, λ1, . . . , λr are linearly inde-

pendent over Q.
3. λj = erj , where rj’s are distinct rational numbers.

Then for any interval I,

AN (I) = vol(I)N + O(Nε), (2.4)

for every ε > 0.

3. Preliminaries.

In this section we will prepare some lemmas which we need to prove Theorems 3, 4,
and 5.

Lemma 5. Let H be a complex Hilbert space with the inner product 〈·, ·〉 and the
norm ‖ · ‖ =

√
〈·, ·〉. Assume that a sequence un ∈ H (n ≥ 1) satisfying

(I) The series

∑
n

‖un‖2
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is convergent.
(II) For any non-zero element e ∈ H, the series

∑
n

|〈un, e〉|

is divergent.

Then the set of convergent series

{ ∑
n

anun ∈ H

∣∣∣∣ |an| = 1
}

is dense in H.

Proof. This is Theorem 6.1.16 in [2]. ¤

Lemma 6. Let 0 < α ≤ 1 and 0 ≤ λ < 1. For x > 0

L(λ, α, s) =
∑

0≤m≤x

e(λm)
(m + α)s

+ δλ
x1−s

s− 1
+ Oλ(x−σ),

holds uniformly in the region 0 < σ1 ≤ σ ≤ 2, 2π ≤ |t| ≤ πx, where

δλ =

{
1 (λ = 0),

0 (otherwise).

Proof. This is a combination of Theorem 3.2.1 in Karatsuba and Voronin [13]
and Theorem 3.1.2 in [4]. ¤

Lemma 7. Let C and C ′ be compact subsets in C such that C is contained in the
interior of C ′. There exists a positive constant a(C, C ′) with the following property :

If an analytic function f(s) on C ′ satisfies the estimate

∫∫

C′
|f(s)|2dσdt < A,

for A > 0, then

max
s∈C

|f(s)| < a(C, C ′)
√

A.

Proof. This is Lemma 2.5 in the author and Nagoshi [7]. ¤

Lemma 8. Let U be a simply connected bounded region which is included in the
strip σ1 < <s < σ2. Let h(s) be a non-zero analytic function on U . Define



Functional distribution for Lerch zeta functions 1111

∆h(z) =
∫∫

U

e−szh(s)dσdt.

Then ∆h(z) is entire, and satisfies the following properties.

(I) The function ∆h(z) has the series expansion

∆h(z) =
∞∑

m=0

αh(m)
m!

zm,

where

|αh(m)| ≤ 1 for all m ≥ 1.

(II) There exists a divergent positive sequence Rn → ∞ (n → ∞) and a sequence of
intervals In = [xn, xn + yn] ⊂ [Rn − 1, Rn + 1] such that

|∆h(x)| ≥ 1
4
e−σ2xn (x ∈ In),

and such that

yn ∼ R−8
n .

Proof. This is essentially established in the proof of Lemma 7.1 of [13]. ¤

The next two lemmas are elementary inequalities for complex numbers.

Lemma 9. Let z1, . . . , zr be complex numbers. If all real parts of zj have the same
sign, then

|z1 + · · ·+ zr| ≥ |<z1|.

Lemma 10. For each 1 ≤ k ≤ 4, define intervals

Ak =
[
(k − 1)π

2
,
kπ

2

)
, Bk =

[
13− 3k

12
,
14− 3k

12

)
. (3.1)

Suppose that a non-zero complex number z satisfies arg z ∈ Ak and that a real number t

satisfies t ∈ Bk for the same k. Then

<(e(t)z) ≥ 1
2
|z| > 0.

Proof. Put z = reiθ. If θ ∈ Ak and t ∈ Bk for the same k, then θ + 2πt ∈
[(5/3)π, (7/3)π). Therefore
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<(e(t)z) = r cos(θ + 2πt) ≥ r cos
π

3
=

1
2
r. ¤

The next lemma is classical Jensen’s formula.

Lemma 11. Let f(z) be an analytic function on the disc |z| < R satisfying f(0) 6= 0.
Let ρk (k ≥ 1) be zeros of f(z) in |z| < R and rk = |ρk|. Assume that r1 ≥ r2 ≥ · · · . Let
0 < r < R satisfying rn ≤ r ≤ rn+1. Then

log
rn|f(0)|
r1 . . . rn

=
1
2π

∫ 2π

0

log |f(reiθ)|dθ.

Proof. This is Theorem 3.61 in Titchmarsh [12]. ¤

Lemma 12. Let G(z) be an analytic function satisfying

G(z) =
∞∑

m=0

αm

m!
zm, |αm| ¿ 1, and G 6≡ 0.

Let δ = δ(R) be a positive valued function satisfying δ → 0 as R → ∞. There exists a
positive constant C ′ = C ′(G) such that for any sufficiently large number R the interval
I(R) = [R, R + δ] contains a subinterval J ′(R) with length C ′δ2R−2 such that G(x) has
no zeros on J ′(R).

Proof. Assume that G(z) has a zero at z = 0 with multiplicity g. Put G(z) =
zgG1(z). If the function G1(z) has no zeros on some interval included in I(R), then
G(z) also has no zeros on this interval. Therefore we may only consider the case that
G(0) 6= 0. Let ai (1 ≤ i ≤ n) be different zeros of G(x) on the interval I(R) and ni be
order of ai. Let bj (1 ≤ j ≤ m) be other zeros of G(x) in the disc |z| < R + δ. Then
Lemma 11 implies that

log |G(0)|+
n∑

i=1

ni log
R + δ

ai
+

m∑

j=1

log
R + δ

|bj |

=
1
2π

∫ 2π

0

log
∣∣G((R + δ)eiθ)

∣∣dθ. (3.2)

From the assumption we have |G(x)| ¿ ex. Therefore

1
2π

∫ 2π

0

log
∣∣G((R + δ)eiθ)

∣∣dθ = O(R), and log |G(0)| = O(1).

Remark that the other terms in the left hand side of (3.2) are positive. Therefore

n∑

i=1

log
R + δ

ai
= O(R). (3.3)
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Let N be a positive integer. We divide the interval I(R) into N -subintervals

Jk =
[
R +

k − 1
N

δ,R +
k

N
δ

]
(1 ≤ k ≤ N).

Now we estimate the upper bound of N such that all sub intervals Jk contain at least
one zero ai. If ai is contained in Jk, then ai ≤ R + (k/N)δ. Therefore

R + δ

ai
≥

(
1− (N − k)δ

N(R + δ)

)−1

.

Put l = N − k. From (3.3) it follows

N−1∑

l=1

log
(

1− lδ

N(R + δ)

)−1

= O(R).

Applying an elementary inequality − log(1− x) > x for 0 < x < 1, we have

N−1∑

l=1

lδ

N(R + δ)
= O(R).

Then

N = O

(
R2

δ

)
.

Therefore there exists a positive constant C ′1 such that if N ≥ C ′1R
2δ−1 then there is at

least one sub interval Jk which contains no zeros of G(x). The length of this interval is
δN−1 = C ′−1

1 δ2R−2. Putting C ′ = C ′−1
1 , we have the lemma. ¤

Lemma 13. Let G(z) and δ = δ(R) be functions as in Lemma 12. Let Ak =
[(k − 1)π/2, kπ/2) (1 ≤ k ≤ 4) be intervals given by (3.1). For any sufficiently large
number R, there exists a subinterval J(R) of the interval I(R) = [R, R+ δ] and a integer
kR with 1 ≤ kR ≤ 4 satisfying the following properties:

1. The length of J(R) is Cδ4R−6, where C = C(G) is a positive constant depends only
on G.

2. We have

arg G(x) ∈ AkR

for all x ∈ J(R).

Proof. Put
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βm =
αm + αm

2
, G1(z) =

∞∑
m=0

βm

m!
zm,

and

γm =
αm − αm

2i
, G2(z) =

∞∑
m=0

γm

m!
zm.

Then G1(z) and G2(z) satisfy the same condition in Lemma 12 and

G1(x) = <G(x), and G2(x) = =G(x) for x ∈ R.

By Lemma 12, there exists a sub interval J ′(R) in I(R) such that G1(x) has no zeros on
J ′(R). The length of J ′(R) is δ′ = δ′(R) = C ′δ2R−2. For functions G2(x), δ′ and the
interval J ′(R) we apply Lemma 12 again. Then there exists a sub interval J(R) in J ′(R)
such that G2(x) has no zeros on J(R). In particular, the argument of G(x) belongs to
one of Ak for all x ∈ J(R). The length of J(R) is

C ′′
δ′2

R2
= (C ′′C ′2)

δ4

R6
.

Putting C = C ′′C ′2, we complete the proof of the lemma. ¤

4. Proof of Theorem 3.

Let λ1, . . . , λr be distinct real numbers with 0 ≤ λj < 1 and σ0 be real numbers
with 1/2 < σ0 ≤ 1. For m ≥ 0 we put

Fm =
(

e(λ1m)
(m + α)σ0

, . . . ,
e(λ1m)(− log(m + α))N−1

(m + α)σ0
,

. . . ,
e(λrm)

(m + α)σ0
, . . . ,

e(λrm)(− log(m + α))N−1

(m + α)σ0

)
∈ CrN .

First we prove the next lemma.

Lemma 14. The set of convergent series

{ ∞∑
m=0

εmFm ∈ CrN

∣∣∣∣ |εm| = 1
}

is dense in CrN .

Proof. We will check that the sequence {Fm} in the complex Hilbert space H =
CrN satisfies condition (I) and (II) in Lemma 5. Since σ0 > 1/2,
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∞∑
m=0

‖Fm‖2 =
∞∑

m=0

r

(m + α)2σ0

{
1 + log2(m + α) + · · ·+ logN−1(m + α)

}
< ∞.

Thus condition (I) is valid. Let u = (u10, . . . , ur0, . . . , u1N−1, . . . , urN−1) be any non-zero
element of CrN . Put

N0 = max{0 ≤ n ≤ N − 1 | ujn 6= 0 for some j}.

Then we have

〈Fm,u〉 =
r∑

j=1

e(λjm)(− log(m + α))N0ujN0

(m + α)σ0
+

N0−1∑
n=0

r∑

j=1

e(λjm)(− log(m + α))nujn

(m + α)σ0
.

There exists a positive integer M0 = M0(σ0,u) such that for any m > M0

|〈Fm,u〉| ≥ 1
2

logN0(m + α)
(m + α)σ0

·
∣∣∣∣

r∑

j=1

e(λjm)ujN0

∣∣∣∣. (4.1)

Put a(m) =
∑r

j=1 e(mλj)ujN0 . Now we show that for sufficiently large M there
exist a set AM of integers M ≤ m < 2M and positive constants c1 and c2 such that

|a(m)| ≥ c1 (4.2)

holds for all m ∈ AM , and that

lim
M→∞

]AM

M
> c2. (4.3)

First we consider the case that all λj ’s are rational numbers aj/qj with (aj , qj) = 1 and
0 ≤ aj < qj . Let Q be the least common multiple of qj ’s. Substituting m = 0, 1, . . . , Q−1
into a vector (e(λ1m), . . . , e(λrm)), we obtain at least r distinct vectors. If a(m) becomes
zero for all these vectors, then ujN0 ≡ 0 for all 1 ≤ j ≤ r, which contradicts to the
definition of N0. Therefore there exists some m0 such that am0 6= 0. Put

AM = {M ≤ m < 2M | m ≡ m0 (mod Q)}.

Then am = am0 for all m ∈ AM . Needless to say, the set AM has a positive density.
Next we consider the general case. Assume that 1, λ1, . . . , λr1 are linearly indepen-

dent over Q, and that λr1+1, . . . , λr1+r2 (r = r1 + r2) belong to the set Q[1, λ1, . . . , λr1 ].
Namely,

λr1+k =
b0k

c0k
+

b1k

c1k
λ1 + · · ·+ br1k

cr1k
λr1

(
bjk, cjk ∈ Z

(bjk, cjk) = 1

)
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for 1 ≤ k ≤ r2. Let c be the least common multiple of cjk and Bjk = (c/cjk)bjk. Then

cλr1+k = B0k + B1kλ1 + · · ·+ Br1kλr1 (Bjk ∈ Z)

for 1 ≤ k ≤ r2. Define a function F : Rr1 → C by

F (t1, . . . , tr1) =
r1∑

j=1

ujN0e(tj)
c +

r2∑

k=1

ur1+kN0

r1∏

j=1

e(tj)Bjk .

Then we have

F (cmλ1, . . . , cmλr1) = a(cm) for m ≥ 0.

Since F is a continuous function which is not identically zero, there exists a positive
constant δ and an interval I = [a1, b1)× · · · × [ar1 , br1) ⊂ [0, 1)r1 such that

|F (t1, . . . , tr1)| > δ for (t1, . . . , tr1) ∈ I.

Define

AM = {M ≤ m < 2M | ({cmλ1}, . . . , {cmλr1}) ∈ I}

then |a(cm)| > δ holds for any m ∈ AM . By Lemma 1,

lim
M→∞

]AM

M
=

vol(I)
c

> 0.

Thus (4.2) and (4.3) holds for the set AM .
From (4.1)–(4.3), we have

∑

m∈AM

|〈Fm,u〉| À logN0(m + α)
(m + α)σ0

]AM À M1−σ0+ε.

Since 1/2 < σ0 ≤ 1, the above sum diverges as M →∞. This completes the proof of the
lemma. ¤

Now we prove Theorem 3. For any rN -tuple (z10, . . . , z1N−1, . . . , zr0, . . . , zrN−1) ∈
CrN and every ε > 0 we will prove that there exists a real number t for which

max
1≤j≤r

max
0≤n≤N−1

∣∣L(n)(λj , α, σ0 + it)− zjn

∣∣ < ε. (4.4)

From Lemma 6 and Cauchy’s integral formula, for 0 ≤ n ≤ N − 1,

L(n)(λ, α, s) =
∑

0≤m≤x

(
e(λm)

(m + α)s

)(n)

+ δλ

(
x1−s

s− 1

)(n)

+
(
Oλ(x−σ)

)(n)
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holds uniformly in the same region as in Lemma 6. Let T be a sufficiently large number
and put x = T . Then we have

∣∣∣∣L(n)(λj , α, σ0 + it)−
∑

0≤m≤T

(− log(m + α))ne(λjm)
(m + α)σ0+it

∣∣∣∣ <
ε

3
, (4.5)

for any T ≤ t < 2T , 1 ≤ j ≤ r and 0 ≤ n ≤ N − 1.
Let M be a positive integer smaller than T . By the Montgomery-Vaughan estimate

(Theorem 2.7.2 in [2]), we obtain the second mean estimate

∫ 2T

T

∣∣∣∣
∑

M<m≤T

(− log(m + α))ne(λjm)
(m + α)σ0+it

∣∣∣∣
2

dt ¿ TM1−2σ0 + T 2−2σ0+ε.

Since 1 − 2σ0 < 0, there exists a positive integer M0 such that for all M ≥ M0 and all
sufficiently large T we have

∫ 2T

T

∣∣∣∣
∑

M<m≤T

(− log(m + α))ne(λjm)
(m + α)σ0+it

∣∣∣∣
2

dt <
ε3

3
. (4.6)

Now we define a set BT of real numbers t ∈ [T, 2T ) for which

∣∣∣∣
∑

M<m≤T

(− log(m + α))ne(λjm)
(m + α)σ0+it

∣∣∣∣ <
ε

3
(4.7)

holds. Then (4.6) yields that

lim inf
T→∞

µ(BT )
T

> 1− ε. (4.8)

By Lemma 14, there exists a sequence {εm ∈ S1 | m ≥ 0} such that

∞∑
m=0

(− log(m + α))ne(λjm)
(m + α)σ0

εm = zjn

holds for 1 ≤ j ≤ r and 0 ≤ n ≤ N − 1. Fix a positive integer M > M0 for which

∣∣∣∣
M∑

m=0

(− log(m + α))ne(λjm)
(m + α)σ0

εm − zjn

∣∣∣∣ <
ε

6

hold. For a positive number δ we set

Iδ(M) =
[
arg ε0

2π
− δ,

arg ε0

2π
+ δ

)
× · · · ×

[
arg εM

2π
− δ,

arg εM

2π
+ δ

)
⊂ [0, 1)M+1.
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If δ is sufficiently small, then

∣∣∣∣
M∑

m=0

(− log(m + α))ne(λjm)
(m + α)σ0

e(tm)− zjn

∣∣∣∣ <
ε

3
,

holds for any (t0, . . . , tM ) ∈ Iδ(M). Now we define

AT =
{

t ∈ [T, 2T )
∣∣∣∣
({

− t
log α

2π

}
, . . . ,

{
− t

log(M + α)
2π

})
∈ Iδ(M)

}

Then for any t ∈ AT ,

∣∣∣∣
M∑

m=0

(− log(m + α))ne(λjm)
(m + α)σ0+it

− zjn

∣∣∣∣ <
ε

3
. (4.9)

Since α is a transcendental number, the numbers 1, log α, . . . , log(M + α) are linearly
independent over Q. Therefore, by Kronecker’s approximation theorem,

lim
T→∞

µ(AT )
T

= (2δ)M+1.

This and (4.8) imply that the intersection AT ∩BT has a positive lower density. For any
t ∈ AT ∩BT estimates (4.5), (4.7) and (4.9) hold. Combining these estimates, we obtain
(4.4). This completes the proof of the theorem.

5. A joint limit theorem for Lerch zeta functions.

Nowadays, the joint universality for a collection of zeta functions is mainly obtained
as an application of the joint limit theorem on the weak convergence of probability
measure associated with the set of zeta functions. This method was given by Bagchi [1].
To describe Bagchi’s probabilistic method, we define some notations.

Denote by H(D) the space of analytic functions on D equipped with the topology
of uniform convergence on compacta. Let Hr(D) = H(D)× · · · ×H(D) be the product
space. For a topological space S, let B(S) denote the family of Borel subsets of S. Assume
that 0 < α < 1 is a transcendental real number and that λ1, . . . , λr are real numbers
with 0 ≤ λj < 1. For T > 0 we define a probability measure PT on (Hr(D),B(Hr(D)))
by

PT (A) = νT

(
(L(λ1, α, s + iτ), . . . , L(λr, α, s + iτ)) ∈ A

)

for A ∈ B(Hr(D)). Laurinčikas and Matsumoto [5] obtained the following joint limit
theorem.

Proposition 1. The probability measure PT on (Hr(D),B(Hr(D))) converges
weakly to a certain limit measure P on (Hr(D),B(Hr(D))) as T tends to infinity.
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The limit measure P is given as follows. Let γ be the unit circle {s ∈ C | |s| = 1}
and

Ω =
∞∏

m=0

γm,

where γm = γ for each m ≥ 0. With the product topology and pointwise multiplication
Ω is a compact Abelian group. Let mH be the probability Haar measure on (Ω,B(Ω)).
For ω = {ω(m) | m ≥ 0} ∈ Ω define

L(λj , α, s, ω) =
∞∑

m=0

e(λjm)ω(m)
(m + α)s

. (5.1)

For almost all ω ∈ Ω the series (5.1) converges uniformly on compact subsets of D.
Therefore L(λj , α, s, ω) is considered as an H(D)-valued random element. Define the
Hr(D)-valued random element L(s, ω) by

L(s, ω) = (L(λ1, α, s, ω), . . . , L(λr, α, s, ω)). (5.2)

Then the limit measure P is the distribution of L(s, ω). Namely,

P (A) = mH({ω ∈ Ω | L(s, ω) ∈ A}) (5.3)

for A ∈ B(Hr(D)).

6. A joint denseness lemma for Lerch zeta functions.

For m ≥ 0 define

Fm(s) =
(

e(λ1m)
(m + α)s

, . . . ,
e(λrm)

(m + α)s

)
∈ Hr(D).

Then from (5.1) and (5.2)

L(s, ω) =
∞∑

m=0

ω(m)Fm(s) (6.1)

holds for almost all ω ∈ Ω and s ∈ D. Our aim is to obtain the following joint denseness
result.

Proposition 2. Assume that real numbers λ1, . . . , λr with 0 ≤ λj < 1 satisfy one
of the following conditions:

1. (λ1, . . . , λr) ∈ Λ, where the set Λ is given by (2.3).
2. λ1, . . . , λr are algebraic irrational numbers such that 1, λ1, . . . , λr are linearly inde-
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pendent over Q.
3. λj = erj , where rj’s are distinct rational numbers.

Then the set of all convergent series

∞∑
m=0

amFm(s), (am ∈ γ)

is dense in the space Hr(D).

Here we construct a complex Hilbert space which consists of analytic functions on
D. Let U be a bounded simply connected region satisfying U ⊂ D. Let L2(U) be the set
of all C-valued measurable functions on U which are square integrable with respect to
the Lebesgue measure. Then L2(U) is a complex Hilbert space with the inner product

〈g(s), h(s)〉 =
∫∫

U

g(s)h(s)dσdt,

and the norm

‖g(s)‖ =
√
〈g(s), g(s)〉 =

( ∫∫

U

|g(s)|2dσdt

)1/2

.

Let H be the closure of H(D) in L2(U) and Hr = H × · · · ×H be the product space.

Lemma 15. Suppose that real numbers λ1, . . . , λr with 0 ≤ λj < 1 satisfy the same
assumption in Proposition 2. Then the set of convergent series

{ ∞∑
m=0

amFm(s) ∈ Hr

∣∣∣∣ am ∈ γ

}

is dense in Hr.

Proposition 2 easily follows from this lemma and Lemma 7. For each 1 ≤ j ≤ r,
let Kj be a compact subset of D and f(s) = (f1(s), . . . , fr(s)) ∈ Hr(D). Let U ⊂ D be
a bounded simply connected region such that U ⊂ D and that

⋃
1≤j≤r Kj ⊂ U . From

Lemma 15, there exists a sequence am ∈ γ such that

∥∥∥∥
∞∑

m=0

amFm(s)− f(s)
∥∥∥∥ <

ε2

a(
⋃

1≤j≤r Kj , U)2

where a(
⋃

1≤j≤r Kj , U) is a constant given by Lemma 7. Then it follows from Lemma 7

r∑

j=1

max
s∈Kj

∣∣∣∣
∞∑

m=0

am
e(λjm)

(m + α)s
− fj(s)

∣∣∣∣ < ε.
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This implies that Proposition 2 holds.
Now we prove Lemma 15 using Lemma 5. We will check that the sequence {Fm(s)}

in Hr satisfies conditions (I) and (II) of Lemma 5. Let σ1 and σ2 be real numbers with
1/2 < σ1 < σ2 < 1 such that the strip σ1 < <s < σ2 contains the region U . Then we
have

∞∑
m=0

‖Fm(s)‖2 =
∞∑

m=0

∫∫

U

r

(m + α)2σ
dσdt ¿U

∑
p

1
(m + α)2σ1

< ∞.

Therefore condition (I) holds. Next we check condition (II). Let g(s) = (g1(s), . . . , gr(s))
be a non-zero element of Hr. Then

〈
Fm(s), g(s)

〉
=

r∑

j=1

∫∫

U

e(λjm)
(m + α)s

gj(s)dσdt.

Putting

∆j(x) =
∫∫

U

e−sxgj(s)dσdt (6.2)

then we have

〈
Fm(s), g(s)

〉
=

r∑

j=1

e(λjm)∆j(log(m + α)).

Now our purpose is the next lemma.

Lemma 16. Suppose that real numbers λ1, . . . , λr with 0 ≤ λj < 1 satisfy the same
assumption in Proposition 2. Let g(s) = (g1(s), . . . , gr(s)) be a non-zero element of Hr.
Then the series

∞∑
m=0

∣∣∣∣
r∑

j=1

e(λjm)∆j(log(m + α))
∣∣∣∣

is divergent.

Proof. We may only consider the case that all gj ’s are not identically equal to
zero. Applying Lemma 8, there exists a divergent positive sequence Rn → ∞ (n → ∞)
and a sequence of intervals In = [xn, xn + yn] ⊂ [Rn − 1, Rn + 1] such that

xn = Rn + O(1), yn ∼ R−8
n ,

and that

|∆1(x)| ≥ 1
4
e−σ2xn (6.3)
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for x ∈ In. Next we apply Lemma 13 for

G(z) = ∆1(x), δ(R) = yn, and I(R) = In.

Then there exist a positive integer N (1), a sequence of subintervals J
(1)
n = [α(1)

n , α
(1)
n +

β
(1)
n ] ⊂ In, and a sequence of integers k

(1)
n with 1 ≤ k

(1)
n ≤ 4 such that

α(1)
n = Rn + O(1), β(1)

n ∼ R−N(1)

n (6.4)

and that

arg ∆1(x) ∈ A
k
(1)
n

for all x ∈ J (1)
n , (6.5)

where Ak is the interval given by (3.1). Remark that inequality (6.3) also holds for
x ∈ J

(1)
n . Again, we apply Lemma 13 for

G(z) = ∆2(x), δ(R) = R−N(1)
, and I(R) = J (1)

n .

Then there exist a positive integer N (2), a sequence of subintervals J
(2)
n = [α(2)

n , α
(2)
n +

β
(2)
n ] ⊂ J

(1)
n , and a sequence of integers k

(2)
n with 1 ≤ k

(2)
n ≤ 4 which satisfy the similar

properties as (6.4) and (6.5). Repeating this argument, we obtain a positive integer
N , a sequence of subintervals Jn = [αn, αn + βn] ⊂ In, and a sequence of integers k

(j)
n

(1 ≤ j ≤ r) with 1 ≤ k
(j)
n ≤ 4 which satisfy the following properties:

1. We have

αn = Rn + O(1), βn ∼ R−N
n . (6.6)

2. For x ∈ Jn

|∆1(x)| À e−σ2Rn . (6.7)

3. For x ∈ Jn and 1 ≤ j ≤ r

arg ∆j(x) ∈ A
k
(j)
n

. (6.8)

For each n ≥ 1 we define the set of integers Xn as follows.

Xn =
{
m ≥ 0 | log(m + α) ∈ Jn, {λjm} ∈ B

k
(j)
n

(1 ≤ j ≤ r)
}
. (6.9)

If m ∈ Xn, then from (6.8) and Lemma 10

<(
e(λjm)∆j(log(m + α))

) ≥ 1
2
|∆j(log(m + α))| ≥ 0,
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for any 1 ≤ j ≤ r. In particular, by (6.7)

<(
e(λ1m)∆1(log(m + α))

) À e−σ2Rn .

Therefore, by Lemma 9, we have

∣∣∣∣
r∑

j=1

e(λjm)∆j(log(m + α))
∣∣∣∣ ≥

1
2
|∆1(log(m + α))| À e−σ2Rn (6.10)

for all m ∈ Xn.
Now we calculate the the lower bound of the cardinality of the set Xn. Since the

numbers (λ1, . . . , λr) satisfy the condition in Lemma 4, we may apply (2.4) for the set
B(n) = B

k
(1)
n
× · · · ×B

k
(r)
n
⊂ [0, 1)r. Then we have

]AN (B(n)) = vol(B(n))M + O(Mε) (6.11)

for every ε > 0. Since vol(Bk) = 1/12 for all 1 ≤ k ≤ 4,

vol(B(n)) =
(

1
12

)r

.

Therefore, by (6.6) and (6.9),

]Xn = Aeαn+βn−α(B(n))−Aeαn−α(B(n))

=
(

1
12

)r

(eαn+βn − eαn) + O(eεαn) À eRn

RN
n

.

From this and (6.10)

∑

m∈Xn

∣∣∣∣
r∑

j=1

e(λjm)∆j(log(m + α))
∣∣∣∣ À

e(1−σ2)Rn

RN
n

.

Since σ2 < 1, this series diverges as n tends to infinity. This completes the proof of
Lemma 16, and the proof of Proposition 2. ¤

7. Completion of the proof of joint universality theorems.

Assume that λ1, . . . , λr are real numbers with 0 ≤ λj < 1 satisfying either the
assumption in Theorem 4, or the assumption in Theorem 5. From Proposition 1 and
Proposition 2 we will complete the proof of the theorems at one time.

It follows from Proposition 1 that the probability measure

PT (A) = νT

(
(L(λ1, α, s + iτ), . . . , L(λr, α, s + iτ)) ∈ A

)
, A ∈ B(Hr(D)),
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weakly converges to the probability measure P as T → ∞, where the measure P is the
distribution of the Hr(D)-valued random element

L(s, ω) = (L(λ1, α, s, ω), . . . , L(λr, α, s, ω)), ω ∈ Ω,

where L(λj , α, s, ω) is defined by (5.1). Now we calculate the support of the measure P ,
which is a minimal closed subset S ⊂ Hr(D) such that P (S) = 1. For the purpose we
quote Lemma 12.7 in [11].

Lemma 17. Let {Xm} be a sequence of independent Hr(D)-valued random ele-
ments, and suppose that the series

∞∑
n=1

Xm

converges almost surely. Then the support of the sum of this series is the closure of the
set of all f ∈ Hr(D) which may be written as a convergent series

f =
∞∑

m=1

f
m

, f
m
∈ SXm

,

where SXm is the support of the random element Xm.

As we saw in (6.1), the random element L(s, ω) is the series of the random elements

Xm = ω(m)Fm(s), ω(m) ∈ γ.

The support of each ω(m) is the unit circle γ. Therefore the support of the random
element ω(m)Fm(s) is

{
f ∈ Hr(D), f(s) = aFm(s), a ∈ γ

}
.

Moreover, since {ω(m) | m ≥ 0} is a sequence of independent random variable,
{ω(m)Fm(s) | m ≥ 0} is also a sequence of Hr(D)-valued random elements. By Lemma
17, the support of P , that is, the support of L(s, ω) is the closure of the set of all
convergent series

∞∑
m=0

amFm(s) (am ∈ γ).

From Proposition 2, we obtain the support of P .

Proposition 3. Assume that λ1, . . . , λr are real numbers with 0 ≤ λj < 1 satis-
fying either the assumption in Theorem 4, or the assumption in Theorem 5. Then the
support of the probability measure P is Hr(D) itself.
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Now we prove the theorems. Let arbitrary sets Kj ’s and functions hj ’s be taken
as in Theorem 4 and 5. First we suppose that all functions hj(s) (1 ≤ j ≤ r) can be
analytically continued to the whole of strip D. Then, by Proposition 3, the function
h(s) = (h1(s), . . . , hl(s)) belongs to S. Put

G0 =
{

g(s) = (gj(s)) ∈ Hr(D)
∣∣∣∣ max

1≤j≤r
max
s∈Kj

|gj(s)− hj(s)| < ε

2

}
.

From the definition of the support, we have

P (G0) > 0. (7.1)

Since the measure PT weakly converges to the measure P as T →∞, we have

lim inf
T→∞

PT (G) ≥ P (G), (7.2)

for any open subsets G ∈ B(Hr(D)). From (7.1) and (7.2),

lim inf
T→∞

PT (G0) > 0,

which implies

lim inf
T→∞

1
T

µ

{
τ ∈ [0, T ]

∣∣∣∣ max
1≤j≤r

max
s∈Kj

|L(λj , α, s + iτ)− hj(s)| < ε

2

}
> 0.

Next we consider the general case for the functions hj(s). By Mergelyan’s theorem,
there exist polynomials pj(s) satisfying

max
s∈Kj

|hj(s)− pj(s)| < ε

2
(7.3)

for all 1 ≤ j ≤ r. Remark that the polynomials pj(s) belong to the support S. According
to the similar argument as above, we have

lim inf
T→∞

1
T

µ

{
τ ∈ [0, T ]

∣∣∣∣ max
1≤j≤r

max
s∈Kj

|L(λj , α, s + iτ)− pj(s)| < ε

2

}
> 0.

Combining this with (7.3), we complete the proof of the theorems.
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