# Algebraic Montgomery-Yang problem: the log del Pezzo surface case 

By DongSeon Hwang and JongHae Keum

(Received June 9, 2012)
(Revised Sep. 20, 2012)


#### Abstract

We prove that a log del Pezzo surface of Picard number one contains at most 3 singular points if its smooth locus is simply connected. This establishes the algebraic Montgomery-Yang problem for log del Pezzo surfaces.


## 1. Introduction.

The present paper is a continuation of two papers [HK2] and [HK3] on the conjecture called algebraic Montgomery-Yang problem.

Conjecture $1.1([\mathbf{K}])$. (Algebraic Montgomery-Yang Problem). Let $S$ be a $\mathbb{Q}$ homology projective plane with quotient singularities, i.e., a normal projective surface with quotient singularities such that $b_{2}(S)=1$. Assume that $S^{0}:=S \backslash \operatorname{Sing}(S)$ is simply connected. Then $S$ contains at most 3 singular points.

In previous papers [HK2] and [HK3], we have confirmed the conjecture when $S$ contains at least one non-cyclic singularity or $S$ is not rational.

In this paper we confirm the conjecture when $-K_{S}$ is ample, or equivalently when $S$ is a $\log$ del Pezzo surface. By [HK2], we may assume that $S$ has cyclic singularities only.

Theorem 1.2. Let $S$ be a log del Pezzo surface of Picard number one with cyclic singularities only. If $H_{1}\left(S^{0}, \mathbb{Z}\right)=0$, then $S$ contains at most 3 singular points.

The condition $H_{1}\left(S^{0}, \mathbb{Z}\right)=0$ is weaker than the condition $\pi_{1}\left(S^{0}\right)=1$. In fact, there are $\log$ del Pezzo surfaces $S$ of Picard number one with $H_{1}\left(S^{0}, \mathbb{Z}\right)=0$ but $\pi_{1}\left(S^{0}\right) \neq 1$. Such surfaces have been classified in [HK2], under the assumption that the number of singularities is at least 4 and at least one of the singularities is non-cyclic.

The main ingredient of the proof is the classification theory of $\log$ del Pezzo surfaces of Picard number one developed by Zhang [ $\mathbf{Z}$ ], Gurjar and Zhang [GZ], Belousov [Be] together with the formulas developed in [HK3] for the intersection numbers of divisors on the minimal resolution.

Conjecture 1.1 is now reduced to the case where $S$ is a rational surface with cyclic singularities such that $K_{S}$ is ample. We do not know any example of a rational surface with 4 cyclic singularities such that $K_{S}$ is ample. However, there are infinitely many

[^0]examples with smaller number of singularities ( $[\mathbf{K M}],[\mathbf{K}]$ and $[\mathbf{H K 4}])$.
Throughout this paper, we work over the field $\mathbb{C}$ of complex numbers.

## 2. Algebraic surfaces with cyclic singularities.

## 2.1.

A singularity $p$ of a normal surface $S$ is called a cyclic singularity if the germ is locally analytically isomorphic to $\left(\mathbb{C}^{2} / G, O\right)$ for some nontrivial finite cyclic subgroup $G$ of $G L_{2}(\mathbb{C})$ without quasi-reflections. Such subgroups are completely classified by Brieskorn ([Br]).

For a cyclic singularity of type $\frac{1}{q}\left(1, q_{1}\right)$, one can associate a Hirzebruch-Jung continued fraction

$$
\left[n_{1}, n_{2}, \ldots, n_{l}\right]=n_{1}-\frac{1}{n_{2}-\frac{1}{\ddots-\frac{1}{n_{l}}}}=\frac{q}{q_{1}} .
$$

Let $\mathcal{H}$ be the set of all Hirzebruch-Jung continued fractions $\left[n_{1}, n_{2}, \ldots, n_{l}\right]$,

$$
\mathcal{H}=\bigcup_{l \geq 1}\left\{\left[n_{1}, n_{2}, \ldots, n_{l}\right] \mid \text { all } n_{j} \text { are integers } \geq 2\right\}
$$

We will use the following notation in this paper.
Notation 2.1. Fix $w=\left[n_{1}, n_{2}, \ldots, n_{l}\right] \in \mathcal{H}$ and an integer $0 \leq s \leq l+1$.
(1) The length of $w$, denoted by $l(w)$, is the number of entries of $w$. We will write simply $l$ for $l(w)$ if there is no confusion.
(2) Let $q$ be the order of the cyclic singularity corresponding to $w$, i.e.,

$$
q=|w|=\left|\left[n_{1}, n_{2}, \ldots, n_{l}\right]\right|:=\left|\operatorname{det}\left(M\left(-n_{1}, \ldots,-n_{l}\right)\right)\right|
$$

where

$$
M\left(-n_{1}, \ldots,-n_{l}\right)=\left(\begin{array}{cccccc}
-n_{1} & 1 & 0 & \cdots & \cdots & 0 \\
1 & -n_{2} & 1 & \cdots & \cdots & 0 \\
0 & 1 & -n_{3} & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -n_{l-1} & 1 \\
0 & 0 & 0 & \cdots & 1 & -n_{l}
\end{array}\right)
$$

is the intersection matrix corresponding to the singularity $\left[n_{1}, n_{2}, \ldots, n_{l}\right]$.
(3) $u_{s}:=\left|\left[n_{1}, n_{2}, \ldots, n_{s-1}\right]\right|(2 \leq s \leq l+1), \quad u_{0}=0, u_{1}=1$.
(4) $v_{s}:=\left|\left[n_{s+1}, n_{s+2}, \ldots, n_{l}\right]\right|(0 \leq s \leq l-1), \quad v_{l}=1, v_{l+1}=0$.

Now let $S$ be a normal projective surface with cyclic singularities and

$$
f: S^{\prime} \rightarrow S
$$

be a minimal resolution of $S$. Since cyclic singularities are log-terminal singularities, one can write

$$
K_{S^{\prime}} \underset{n u m}{\overline{\bar{u}}} f^{*} K_{S}-\sum_{p \in \operatorname{Sing}(S)} \mathcal{D}_{p},
$$

where $\mathcal{D}_{p}=\sum\left(a_{j} A_{j}\right)$ is an effective $\mathbb{Q}$-divisor with $0 \leq a_{j}<1$ supported on $f^{-1}(p)=$ $\cup A_{j}$ for each singular point $p$. Intersecting the formula with $\mathcal{D}_{p}$, we get

$$
K_{S}^{2}=K_{S^{\prime}}^{2}-\sum_{p} \mathcal{D}_{p}^{2}=K_{S^{\prime}}^{2}+\sum_{p} \mathcal{D}_{p} K_{S^{\prime}}
$$

When $p$ is a cyclic singularity of order $q$, the coefficients of $\mathcal{D}_{p}$ can be expressed in terms of $v_{j}$ and $u_{j}$ (see Notation 2.1) as follows.

Lemma 2.2 ([HK3, Lemma 3.1]). Let p be a cyclic singular point of S. Assume that $f^{-1}(p)$ has $l$ components $A_{1}, \ldots, A_{l}$ with $A_{i}^{2}=-n_{i}$ forming a string of smooth rational curves $\stackrel{-n_{1}}{\circ}-\stackrel{-n_{2}}{\circ}-\cdots-{ }_{-}^{-n_{l}}$. Then
(1) $\mathcal{D}_{p} K_{S^{\prime}}=-\mathcal{D}_{p}^{2}=\sum_{j=1}^{l}\left(1-\frac{v_{j}+u_{j}}{q}\right)\left(n_{j}-2\right)$,
(2) $\mathcal{D}_{p}^{2}=2 l-\sum_{j=1}^{l} n_{j}+2-\frac{q_{1}+q_{l}+2}{q}$.

In particular, if $l=1$, then $\mathcal{D}_{p}^{2}=-\frac{\left(n_{1}-2\right)^{2}}{n_{1}}$.

## 2.2.

The torsion-free part of the second cohomology group,

$$
H^{2}\left(S^{\prime}, \mathbb{Z}\right)_{\text {free }}:=H^{2}\left(S^{\prime}, \mathbb{Z}\right) /(\text { torsion })
$$

has a lattice structure which is unimodular. For a cyclic singular point $p \in S$, let

$$
R_{p} \subset H^{2}\left(S^{\prime}, \mathbb{Z}\right)_{\text {free }}
$$

be the sublattice of $H^{2}\left(S^{\prime}, \mathbb{Z}\right)_{\text {free }}$ spanned by the numerical classes of the components of $f^{-1}(p)$. Then it is a negative definite lattice. Let

$$
R=\bigoplus_{p \in \operatorname{Sing}(S)} R_{p} \subset H^{2}\left(S^{\prime}, \mathbb{Z}\right)_{\text {free }}
$$

be the sublattice of $H^{2}\left(S^{\prime}, \mathbb{Z}\right)_{\text {free }}$ spanned by the numerical classes of the exceptional curves of $f: S^{\prime} \rightarrow S$. Here, the order $\left|G_{p}\right|$ of the local fundamental group is equal to the absolute value $\left|\operatorname{det}\left(R_{p}\right)\right|$ of the determinant of the intersection matrix of $R_{p}$.

The following will be also useful in our proof.
Lemma 2.3 ([HK2, Lemma 2.5]). Let $S$ be a log del Pezzo surface of Picard number one with cyclic singularities such that $H_{1}\left(S^{0}, \mathbb{Z}\right)=0$. Let $f: S^{\prime} \rightarrow S$ be a minimal resolution. Then
(1) $H^{2}\left(S^{\prime}, \mathbb{Z}\right)$ is torsion free, i.e., $H^{2}\left(S^{\prime}, \mathbb{Z}\right)=H^{2}\left(S^{\prime}, \mathbb{Z}\right)_{\text {free }}$,
(2) $R$ is a primitive sublattice of the unimodular lattice $H^{2}\left(S^{\prime}, \mathbb{Z}\right)$,
(3) the orders $\left|G_{p}\right|=\left|\operatorname{det}\left(R_{p}\right)\right|$ of the local fundamental groups are pairwise relatively prime,
(4) $D:=\left|\operatorname{det}\left(R+\left\langle K_{S^{\prime}}\right\rangle\right)\right|=|\operatorname{det}(R)| K_{S}^{2}$ and is a nonzero square number.

The intersection numbers $E K_{S^{\prime}}$ and $E^{2}$ can be expressed in terms of the intersection numbers $E A_{j, p}$ of $E$ and the exceptional curves $A_{j, p}$. See ([HK3, Section 4]) for a more general description.

Proposition 2.4 ([HK3, Proposition 4.2]). Let $S^{\prime}$ be a minimal resolution of a log del Pezzo surface of Picard number one with cyclic singularities, and $E$ be a divisor on it. Then, for some positive integer $m$ depending on $E$, the following hold true.
(1) $E K_{S^{\prime}}=-\frac{m}{\sqrt{D}} K_{S}^{2}-\sum_{p} \sum_{j=1}^{l_{p}}\left(1-\frac{v_{j, p}+u_{j, p}}{q_{p}}\right) E A_{j, p}$.
(2) If $E A_{j, p}=0$ for $j \neq s_{p}, t_{p}$ for some $s_{p}$ and $t_{p}$ with $1 \leq s_{p}<t_{p} \leq l_{p}$, then

$$
E^{2}=\frac{m^{2}}{D} K_{S}^{2}-\sum_{p}\left(\frac{v_{s_{p}} u_{s_{p}}}{q_{p}}\left(E A_{s_{p}}\right)^{2}+\frac{v_{t_{p}} u_{t_{p}}}{q_{p}}\left(E A_{t_{p}}\right)^{2}+\frac{2 v_{t_{p}} u_{s_{p}}}{q_{p}}\left(E A_{s_{p}}\right)\left(E A_{t_{p}}\right)\right) .
$$

Theorem 2.5 ([HK1, Theorem 1.1], [Be, Theorem 1.2]). Let $S$ be a $\mathbb{Q}$-homology projective plane with quotient singularities. If $S$ is rational, then it contains at most 4 singular points.

Proof. This is the result of Belousov ([Be, Theorem 1.2]) if $-K_{S}$ is ample, and is one of our previous results ([HK1, Theorem 1.1]) if $K_{S}$ is nef.

## 3. Log del Pezzo surfaces of Picard number one.

Throughout this section, $S$ denotes a $\log$ del Pezzo surface of Picard number one. Let

$$
f: S^{\prime} \rightarrow S
$$

be its minimal resolution. We denote by

$$
\mathcal{F}:=f^{-1}(\operatorname{Sing}(S))
$$

the reduced exceptional divisor of $f$.
We review the work of Zhang $[\mathbf{Z}]$, Gurjar and Zhang $[\mathbf{G Z}]$ and Belousov $[\mathbf{B e}]$ on log del Pezzo surfaces of Picard number one. Assume that $S$ does not contain any non-cyclic singularities, even though most of the results in this section hold for general case.

Lemma 3.1. $\quad B^{2} \geq-1$ for any irreducible curve $B \subset S^{\prime}$ not contracted by $f: S^{\prime} \rightarrow$ $S$.

Proof. This is well-known (cf. [HK2, Lemma 2.1]).
The following lemma is given in Lemma 4.1 in [ $\mathbf{Z}]$, and can also be easily derived from the inequality of Proposition 2.4 (1).

Lemma 3.2 ([Z्Z, Lemma 4.1]). Let $E$ be $a(-1)$-curve on $S^{\prime}$. Let $A_{1}, \ldots, A_{r}$ exhaust all irreducible components of $\mathcal{F}$ such that $E A_{i}>0$. Suppose that $A_{1}^{2} \geq A_{2}^{2} \geq \cdots \geq A_{r}^{2}$. Then the r-tuple $\left(-A_{1}^{2}, \ldots,-A_{r}^{2}\right)$ is one of the following:

$$
(2, \ldots, 2, n), n \geq 2,(2, \ldots, 2,3,3),(2, \ldots, 2,3,4),(2, \ldots, 2,3,5)
$$

An irreducible curve $C$ on $S^{\prime}$ is called a minimal curve if $C .\left(-f^{*} K_{S}\right)$ attains the minimal positive value.

Lemma 3.3 ([Be, Lemma 3.2, Lemma 4.1]). A minimal curve $C$ is a smooth rational curve.

Lemma 3.4. Let $C$ be a minimal curve. Suppose that $\left|C+\mathcal{F}+K_{S^{\prime}}\right| \neq \emptyset$. Then there is a unique decomposition $\mathcal{F}=\mathcal{F}^{\prime}+\mathcal{F}^{\prime \prime}$ such that
(1) $\mathcal{F}^{\prime}$ consists of $(-2)$-curves not meeting $C+\mathcal{F}^{\prime \prime}$,
(2) $C+\mathcal{F}^{\prime \prime}+K_{S^{\prime}} \sim 0$,
(3) $\mathcal{F}^{\prime \prime}=f^{-1}(p)$ for some singular point $p$ unless $\mathcal{F}^{\prime \prime}=0$.

Furthermore, if $\mathcal{F}^{\prime \prime} \neq 0$, then $C \mathcal{F}^{\prime \prime}=C \mathcal{F}=2$ and one of the following holds:
(1) $\mathcal{F}^{\prime \prime}$ consists of one irreducible component, which $C$ meets in a single point with multiplicity 2 or in two points,
(2) $\mathcal{F}^{\prime \prime}$ consists of two irreducible components, whose intersection point $C$ passes through,
(3) $\mathcal{F}^{\prime \prime}$ consists of at least two irreducible components, and $C$ meets the two end components of $\mathcal{F}^{\prime \prime}$.

Proof. The result can be easily derived from either [GZ, Lemma 3.2, Remark 3.4], or [Be, Lemma 3.1, Lemma 3.2].

Lemma 3.5 ([GZ, Proposition 3.6]). Let $C$ be a minimal curve. Suppose that $\left|C+\mathcal{F}+K_{S^{\prime}}\right|=\emptyset$. Then either $C$ is a $(-1)$-curve, $S \cong \mathbb{P}^{2}$, or $S$ is the Hirzebruch surface with the minimal section contracted.

Lemma 3.6 ([Be, Lemma 4.1]). Suppose that $S^{\prime}$ contains a minimal curve $C$ with $C^{2}=-1$. Suppose that $\left|C+\mathcal{F}+K_{S^{\prime}}\right|=\emptyset$. Then $C \mathcal{F}^{\prime} \leq 1$ for any connected component
$\mathcal{F}^{\prime}$ of $\mathcal{F}$.
Lemma 3.7 ([Z, Lemma 4.4]). Suppose that $S^{\prime}$ contains a minimal curve $C$ with $C^{2}=-1$. Suppose that $\left|C+\mathcal{F}+K_{S^{\prime}}\right|=\emptyset$, and that $C$ meets exactly two components $F_{1}, F_{2}$ of $\mathcal{F}$. Then either $F_{1}^{2}=-2$ or $F_{2}^{2}=-2$.

The following lemma was proved in ([Z, Proof of Lemma 5.3]).
Lemma 3.8. With the same assumption as in Lemma 3.7, assume further that $F_{1}^{2}=F_{2}^{2}=-2$. If $F_{1}$ is not an end component, then one of the following two cases holds:
(1) There exists another minimal (-1)-curve $C^{\prime}$ such that $\left|C^{\prime}+\mathcal{F}+K_{S^{\prime}}\right| \neq \emptyset$.
(2) $F_{2}=f^{-1}\left(p_{i}\right)$ for some singular point $p_{i}$.

Lemma 3.9. Suppose that $S^{\prime}$ contains a minimal curve $C$ with $C^{2}=-1$. Suppose that $\left|C+\mathcal{F}+K_{S^{\prime}}\right|=\emptyset$, and that $C$ meets three components $F_{1}, F_{2}, F_{3}$ of $\mathcal{F}$ and possibly more. Define

$$
G:=2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}} .
$$

Then either $G \sim 0$ or $G \sim \Gamma$ for some ( -1 -curve $\Gamma$ such that $C \Gamma=F_{i} \Gamma=0$ for $i=1,2,3$. Furthermore, the following hold true.
(1) In the first case, there are 3 singular points $p_{1}, p_{2}, p_{3}$ such that $f^{-1}\left(p_{i}\right)=F_{i}$, and $C$ meets no component of $\mathcal{F}-\left(F_{1}+F_{2}+F_{3}\right)$.
(2) In the second case,
(a) $L=2-\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right)$, where $L$ is the number of irreducible components of $\mathcal{F}$,
(b) each curve in $\mathcal{F}-F_{1}-F_{2}-F_{3}$ is a $(-2)$ - or a $(-3)$-curve and there are at most two $(-3)$-curves in $\mathcal{F}-F_{1}-F_{2}-F_{3}$,
(c) each connected component of $\mathcal{F}$ contains at most one $(-n)$-curve with $n \geq 3$.

Proof. The main assertion is exactly ([Z, Lemma 2.3]).
(1) Let $F_{i}$ be an irreducible component of $f^{-1}\left(p_{i}\right)$. Suppose that $f^{-1}\left(p_{i}\right)$ has at least 2 irreducible components. Then there is an irreducible component $I$ of $f^{-1}\left(p_{i}\right)$ such that $I F_{i}=1$. By Lemma 3.6, $I C=0$, hence

$$
0=I G=I \cdot\left(2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}}\right)=I F_{i}+I K_{S^{\prime}}=1-I^{2}-2 .
$$

Thus $I^{2}=-1$, a contradiction.
Suppose that $C$ meets a component $J$ of $\mathcal{F}-\left(F_{1}+F_{2}+F_{3}\right)$. Then

$$
0=J G=J \cdot\left(2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}}\right)=2+J K_{S^{\prime}}
$$

so $J^{2}=0$, a contradiction.
(2) By ([GZZ, Remark 6.4]), we may assume that $f^{-1}\left(p_{i}\right)$ has at least 2 irreducible components for $i=1,2$ or 3 . Alternatively, by using Proposition 2.4, one can also derive
a contradiction for the case when $f^{-1}\left(p_{i}\right)$ consists of only one irreducible component for each $i=1,2$ and 3 , but it needs lengthy computation.

Now (2-b) and (2-c) directly follows from ([GZZ, Lemma 6.6]).
(2-a) We note that

$$
G^{2}=\left(2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}}\right)^{2}=1-L-\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right)
$$

where $L$ denotes the number of irreducible components of $\mathcal{F}$. Since $G^{2}=\Gamma^{2}=-1$, we have $L=2-\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right)$.

The following lemma was proved in ([Z, Proof of Lemma 5.2]).
Lemma 3.10. With the same assumption as in Lemma 3.9, assume further that $2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}} \sim \Gamma$ for some $(-1)$-curve $\Gamma$, and that at least two of $F_{1}, F_{2}, F_{3}$ are $(-2)$-curves. Then there exists another minimal ( -1 )-curve $C^{\prime}$ such that $\left|C^{\prime}+\mathcal{F}+K_{S^{\prime}}\right| \neq$ $\emptyset$.

The first reduction results shown in [HK3] can be reformulated, in the case of log del Pezzo surfaces, as follows:

Lemma 3.11 ([HK3, Lemma 5.2, Lemma 5.3, Lemma 5.4, Lemma 5.6]). Let $S$ be a log del Pezzo surface of Picard number one containing exactly 4 cyclic singular points $p_{1}, p_{2}, p_{3}, p_{4}$ of orders $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$. Let $E$ be a $(-1)$-curve on $S^{\prime}$. Then $E . \mathcal{F} \geq 2$, and one of the following cases occurs.
(1) The orders are $(2,3,5, q)$ where $q \geq 7$ and $\operatorname{gcd}(q, 30)=1$. Moreover, the order 3 singularity must be of type $\frac{1}{3}(1,1)$. In this case, $E . \mathcal{F}=2$ if and only if $E . f^{-1}\left(p_{i}\right)=0$ for $i=1,2,3$ and $E \cdot f^{-1}\left(p_{4}\right)=2$.
(2) The orders are either $(2,3,7, q)$ where $11 \leq q \leq 41$ or $(2,3,11,13)$. Moreover, the singularity type of $S$ is precisely one of the 24 cases in Table 1. In this case, if $E . \mathcal{F}=2$, then $E$ does not meet an end component of $f^{-1}\left(p_{i}\right)$ for any $i=1,2,3,4$.

## 4. Proof of Theorem 1.2.

Throughout this section, $S$ denotes a log del Pezzo surface of Picard number one such that $H_{1}\left(S^{0}, \mathbb{Z}\right)=0$. Then $S$ contains at most 4 singular points by Theorem 2.5. Suppose that $S$ contains 4 cyclic singular points $p_{1}, p_{2}, p_{3}, p_{4}$. By Lemma 3.11, it remains to consider the following cases:

- $A_{1}+\frac{1}{3}(1,1)+\frac{1}{5}(1,1)+\frac{1}{q}\left(1, q_{1}\right), q \geq 7, \operatorname{gcd}(q, 30)=1 ;$
- $A_{1}+\frac{1}{3}(1,1)+\frac{1}{5}(1,2)+\frac{1}{q}\left(1, q_{1}\right), q \geq 7, \operatorname{gcd}(q, 30)=1$;
- $A_{1}+\frac{1}{3}(1,1)+A_{4}+\frac{1}{q}\left(1, q_{1}\right), q \geq 7, \operatorname{gcd}(q, 30)=1$;
- the 24 cases in Table 1 .

Let

$$
\mathcal{F}=f^{-1}(\operatorname{Sing}(S))
$$

Table 1.

| No. | Type of $R$ | orders | $K_{S}^{2}$ |
| :---: | :---: | :---: | :---: |
| 1 | $A_{1}+A_{2}+[7]+[13]$ | $(2,3,7,13)$ | $\frac{1536}{91}$ |
| 2 | $A_{1}+A_{2}+[7]+[3,2,2,2,2,2,2,2,2]$ | $(2,3,7,19)$ | $\frac{6}{133}$ |
| 3 | $A_{1}+A_{2}+[7]+[5,4]$ | $(2,3,7,19)$ | $\frac{1350}{133}$ |
| 4 | $A_{1}+A_{2}+[7]+[3,4,2]$ | $(2,3,7,19)$ | $\frac{1014}{133}$ |
| 5 | $A_{1}+A_{2}+[4,2]+[2,2,4,2,2,2]$ | $(2,3,7,31)$ | $\frac{150}{217}$ |
| 6 | $A_{1}+A_{2}+[4,2]+[6,2,2,2,2,2]$ | $(2,3,7,31)$ | $\frac{486}{217}$ |
| 7 | $A_{1}+[3]+[3,2,2]+[4,2,2,2,3]$ | $(2,3,7,29)$ | $\frac{968}{609}$ |
| 8 | $A_{1}+A_{2}+[3,2,2]+[7,2,2,2]$ | $(2,3,7,25)$ | $\frac{24}{7}$ |
| 9 | $A_{1}+A_{2}+[7]+[2,2,3,2,2,2,2,2,2]$ | $(2,3,7,31)$ | $\frac{54}{217}$ |
| 10 | $A_{1}+[3]+[4,2]+[3,3,2,2,3]$ | $(2,3,7,41)$ | $\frac{2888}{861}$ |
| 11 | $A_{1}+A_{2}+[3,2,2]+[7,2,2,2,2,2]$ | $(2,3,7,37)$ | $\frac{384}{259}$ |
| 12 | $A_{1}+A_{2}+[4,2]+[11,2,2]$ | $(2,3,7,31)$ | $\frac{2166}{217}$ |
| 13 | $A_{1}+[3]+A_{6}+[2,6,2,2]$ | $(2,3,7,29)$ | $\frac{56}{87}$ |
| 14 | $A_{1}+[3]+[3,2,2]+[4,3]$ | $(2,3,7,11)$ | $\frac{1058}{231}$ |
| 15 | $A_{1}+[3]+[3,2,2]+[3,2,2,2,2]$ | $(2,3,7,11)$ | $\frac{50}{231}$ |
| 16 | $A_{1}+[3]+[3,2,2]+[4,2,2,3]$ | (2, 3, 7, 23) | $\frac{1250}{483}$ |
| 17 | $A_{1}+[3]+[3,2,2]+[6,5]$ | (2, 3, 7, 29) | $\frac{5000}{609}$ |
| 18 | $A_{1}+A_{2}+[3,2,2]+[3,5,2]$ | $(2,3,7,25)$ | $\frac{24}{7}$ |
| 19 | $A_{1}+A_{2}+[3,2,2]+[13,2]$ | $(2,3,7,25)$ | $\frac{1944}{175}$ |
| 20 | $A_{1}+A_{2}+[4,2]+[4,2,2,2]$ | $(2,3,7,13)$ | $\frac{216}{91}$ |
| 21 | $A_{1}+A_{2}+[4,2]+[5,2,2]$ | $(2,3,7,13)$ | $\frac{384}{91}$ |
| 22 | $A_{1}+A_{2}+[4,2]+[4,2,2,2,2,2]$ | $(2,3,7,19)$ | $\frac{54}{133}$ |
| 23 | $A_{1}+[3]+[3,2,2,2,2]+[4,2,2,2]$ | $(2,3,11,13)$ | $\frac{8}{429}$ |
| 24 | $A_{1}+[3]+[3,2,2,2,2]+[5,2,2]$ | $(2,3,11,13)$ | $\frac{800}{429}$ |

be the reduced exceptional divisor of the minimal resolution $f: S^{\prime} \rightarrow S$, and $L$ be the number of irreducible components of $\mathcal{F}$. Let $C$ be a (fixed) minimal curve on $S^{\prime}$.

### 4.1. $\quad$ Step 1. $\left|C+\mathcal{F}+K_{S^{\prime}}\right|=\emptyset$.

Proof. Suppose that $\left|C+\mathcal{F}+K_{S^{\prime}}\right| \neq \emptyset$. By Lemma 3.4 (1) and (3), we see that $S$ contains at least 3 rational double points.

In the case of $(2,3,5, q)$, by Lemma 3.11 (1) we see that $S$ contains at least 3 rational double points, only if the singularities are of type $A_{1}+[3]+A_{4}+A_{q-1}$. In this case, by Lemma 2.2,

$$
L=q+5 \text { and } K_{S}^{2}=9-(q+5)+\frac{1}{3}<0
$$

a contradiction.
We also see that each of the 24 cases from Table 1 contains at most 2 rational double points.

### 4.2. Step 2.

(1) $C$ is a ( -1 )-curve.
(2) $C \mathcal{F}=3$, and $C$ meets three distinct components $F_{1}, F_{2}, F_{3}$ of $\mathcal{F}$.

Proof. (1) It immediately follows from Lemma 3.5 since $S$ contains 4 singularities.
(2) By Lemma 3.6, $C \mathcal{F} \leq 4$. Since $C^{2}=-1<0$ and the lattice $R$ is negative definite, $C \mathcal{F} \geq 1$.

Assume that $C \mathcal{F}=1$. Blowing up the intersection point, then contracting the proper transform of $C$ and the proper transforms of all irreducible components of $\mathcal{F}$, we obtain a $\mathbb{Q}$-homology projective plane with 5 quotient singularities, which may not be a $\log$ del Pezzo surface, i.e., whose canonical class may be nef. Even this case contradicts Theorem 2.5.

Assume that $C \mathcal{F}=4$. By Lemma 3.6, $C$ meets four components $F_{1}, F_{2}, F_{3}, F_{4}$ of $\mathcal{F}$, where $F_{i} \subset f^{-1}\left(p_{i}\right)$. Then $G \sim \Gamma$ by Lemma 3.9 (1). By Lemma 3.2, at least two of $F_{1}, F_{2}, F_{3}, F_{4}$ have self-intersection -2 . Thus, by Lemma 3.10, there exists another minimal (-1)-curve $C^{\prime}$ such that $\left|C^{\prime}+\mathcal{F}+K_{S^{\prime}}\right| \neq \emptyset$. This is impossible by Step 1 .

Assume that $C \mathcal{F}=2$.
(a) Suppose that the case $(2,3,5, q)$ occurs for some $q \geq 7$ with $\operatorname{gcd}(q, 30)=1$. By Lemma $3.11(1), C . f^{-1}\left(p_{4}\right)=2$. But, by Lemma 3.6, C. $f^{-1}\left(p_{4}\right) \leq 1$, a contradiction.
(b) Now suppose that one of the 24 cases of Table 1 occurs. By Lemma 3.6, there are two components $F_{1}$ and $F_{2}$ of $\mathcal{F}$ with $C F_{1}=C F_{2}=1$. By Lemma 3.7, we may assume that $F_{1}^{2}=-2$. Moreover, by Lemma 3.11 (2), $C$ does not meet an end component of $f^{-1}\left(p_{i}\right)$ for any $i$, i.e., both $F_{1}$ and $F_{2}$ are middle components. Thus $F_{2}^{2} \neq-2$ by Lemma 3.8 and Step 1. After contracting the $(-1)$-curve $C$, by contracting the proper transforms of all irreducible components of $\mathcal{F}-F_{1}$, we obtain a $\mathbb{Q}$-homology projective plane with 5 quotient singularities, again contradicting Theorem 2.5.

### 4.3. Step 3.

$2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}} \sim \Gamma$ for some ( -1 )-curve $\Gamma$.
Proof. Suppose that

$$
2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}} \sim 0
$$

Then, by Lemma 3.9 (1), each $F_{i}$ is equal to the inverse image of a singular point of $S$. By Table 1 and Lemma 3.11, only the following cases satisfy this condition:

$$
\begin{aligned}
& A_{1}+A_{2}+[7]+[13] \quad(\text { Case 1, Table 1) }, \\
& A_{1}+[3]+[2,2,2,2]+[q], \\
& A_{1}+[3]+[3,2]+[q], \\
& A_{1}+[3]+[5]+\frac{1}{q}\left(1, q_{1}\right) .
\end{aligned}
$$

Thus,

$$
\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=(2,7,13),(2,3, q),(2,5, q),(3,5, q),(2,3,5) .
$$

Then Lemma 3.2 rules out the first four possibilities, since $q \geq 7$.
In the last case $\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=(2,3,5), F_{i}=f^{-1}\left(p_{i}\right)$ for $i=1,2,3$. In this case we consider the sublattice

$$
\left\langle C, F_{1}, F_{2}, F_{3}\right\rangle \subset H^{2}\left(S^{\prime}, \mathbb{Z}\right)
$$

generated by $C, F_{1}, F_{2}, F_{3}$. It is of rank 4 and has

$$
\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -2 & 0 & 0 \\
1 & 0 & -3 & 0 \\
1 & 0 & 0 & -5
\end{array}\right)
$$

as its intersection matrix. It has determinant -1 , hence the orthogonal complement of $\left\langle C, F_{1}, F_{2}, F_{3}\right\rangle$ in $H^{2}\left(S^{\prime}, \mathbb{Z}\right)$ is unimodular. The orthogonal complement is an over-lattice of the lattice $R_{p_{4}}$ generated by the components of $f^{-1}\left(p_{4}\right)$. Since $R_{p_{4}}$ is a primitive sublattice of $H^{2}\left(S^{\prime}, \mathbb{Z}\right)$, it must be unimodular, hence $q=1$, a contradiction.

### 4.4. Step 4.

If one of the cases $(2,3,5, q), q \geq 7, \operatorname{gcd}(q, 30)=1$, occurs, then $C \cdot f^{-1}\left(p_{4}\right)=1$.
Proof. Suppose that the case $(2,3,5, q)$ occurs for some $q \geq 7$ with $\operatorname{gcd}(q, 30)=1$. By Lemma 3.11 (1), $p_{2}$ is of type [3].

By Lemma 3.6, $C . f^{-1}\left(p_{i}\right) \leq 1$ for $i=1,2,3,4$.
Suppose on the contrary that $C \cdot f^{-1}\left(p_{4}\right)=0$.
Then,

$$
C \cdot f^{-1}\left(p_{1}\right)=C \cdot f^{-1}\left(p_{2}\right)=C \cdot f^{-1}\left(p_{3}\right)=1 .
$$

Let $F_{i} \subset f^{-1}\left(p_{i}\right)$ be the component with $C F_{i}=1$ for $i=1,2,3$.
Assume that $p_{3}$ is of type [5]. Then $\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=(2,3,5)$ and the sublattice $\left\langle C, F_{1}, F_{2}, F_{3}\right\rangle \subset H^{2}\left(S^{\prime}, \mathbb{Z}\right)$ has determinant -1 , leading to the same contradiction as above, since the orthogonal complement of $\left\langle C, F_{1}, F_{2}, F_{3}\right\rangle$ in $H^{2}\left(S^{\prime}, \mathbb{Z}\right)$ is $R_{p_{4}}$.

Assume that $p_{3}$ is of type $[2,3]$. Then $\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=(2,3,2)$ or $(2,3,3)$. Let $f^{-1}\left(p_{3}\right)=F_{3}+F_{3}^{\prime}$. If $F_{3}^{2}=-2$, then

$$
\left|\operatorname{det}\left\langle C, F_{1}, F_{2}, F_{3}, F_{3}^{\prime}\right\rangle\right|=13,
$$

and by Lemma 3.9 (2-a) $L=2+2+3+2=9$, so $l=5$. The orthogonal complement of $\left\langle C, F_{1}, F_{2}, F_{3}, F_{3}^{\prime}\right\rangle$ in $H^{2}\left(S^{\prime}, \mathbb{Z}\right)$ is $R_{p_{4}}$, hence

$$
\left|\operatorname{det}\left(R_{p_{4}}\right)\right|=q=13 .
$$

This leads to a contradiction since there is no continued fraction of length 5 with $q=13$. If $F_{3}^{2}=-3$, then

$$
\left|\operatorname{det}\left\langle C, F_{1}, F_{2}, F_{3}, F_{3}^{\prime}\right\rangle\right|=7
$$

hence $\left|\operatorname{det}\left(R_{p_{4}}\right)\right|=q=7$. By Lemma $3.9(2), L=2+2+3+3=10$, so $l=6$. Thus $p_{4}$ is of type $A_{6}$. But, then

$$
K_{S}^{2}=9-L-\mathcal{D}_{p_{2}}^{2}-\mathcal{D}_{p_{3}}^{2}=-1+\frac{1}{3}+\frac{2}{5}<0,
$$

a contradiction.
Assume that $p_{3}$ is of type $A_{4}=[2,2,2,2]$. Then $\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=(2,3,2)$. Let $f^{-1}\left(p_{3}\right)=H_{1}+H_{2}+H_{3}+H_{4}$. If $F_{3}$ is an end component of $f^{-1}\left(p_{3}\right)$, say $H_{1}$, then

$$
\left|\operatorname{det}\left\langle C, F_{1}, F_{2}, H_{1}, H_{2}, H_{3}, H_{4}\right\rangle\right|=19
$$

and by Lemma 3.9 (2-a) $L=2+2+3+2=9$, so $l=3$. Thus $\left|\operatorname{det}\left(R_{p_{4}}\right)\right|=q=19$ and $\operatorname{rank}\left(R_{p_{4}}\right)=3$. Among all Hirzebruch-Jung continued fractions of order 19, only two, $[7,2,2]$ and $[3,4,2]$, have length 3 . In each of these two cases, $f^{-1}\left(p_{4}\right)$ contains an irreducible component with self-intersection $\leq-4$. Since $f^{-1}\left(p_{4}\right) \subset \mathcal{F}-F_{1}-F_{2}-F_{3}$, we have a contradiction by Lemma $3.9(2-\mathrm{b})$. If $F_{3}$ is a middle component of $f^{-1}\left(p_{3}\right)$, say $H_{2}$, then

$$
\left|\operatorname{det}\left\langle C, F_{1}, F_{2}, H_{1}, H_{2}, H_{3}, H_{4}\right\rangle\right|=31
$$

and by Lemma 3.9 (2-a) $L=2+2+3+2=9$, so $l=3$. Thus $q=31$ and $p_{4}$ is of type $[11,2,2],[3,6,2]$, or $[5,2,4]$. In each of these three cases, $f^{-1}\left(p_{4}\right)$ contains an irreducible component with self-intersection $\leq-4$, a contradiction by Lemma 3.9 (2-b). This proves that $C . f^{-1}\left(p_{4}\right)=1$.

### 4.5. Step 5.

None of the cases $(2,3,5, q), q \geq 7, \operatorname{gcd}(q, 30)=1$, occurs.
Proof. Suppose that the case $(2,3,5, q)$ occurs for some $q \geq 7$ with $\operatorname{gcd}(q, 30)=1$. By Lemma 3.11 (1), $p_{2}$ is of type [3].
By Step $2, C \mathcal{F}=3$ and $C$ meets the three components $F_{1}, F_{2}, F_{3}$ of $\mathcal{F}$.
By Step 3,

$$
2 C+F_{1}+F_{2}+F_{3}+K_{S^{\prime}} \sim \Gamma
$$

for some ( -1 )-curve $\Gamma$.
By Step 4, we may assume that $F_{3} \subset f^{-1}\left(p_{4}\right)$.
Let

$$
f^{-1}\left(p_{4}\right)=\stackrel{\left.\left.\begin{array}{c}
n_{1} \\
D_{1} \\
D_{1}
\end{array}-\begin{array}{c}
-n_{2} \\
D_{2}
\end{array}-\cdots-\begin{array}{c}
-n_{l} \\
D_{l}
\end{array}\right)-\begin{array}{c}
-n_{l} \\
D_{1}
\end{array}\right)}{ }
$$

and $F_{3}=D_{j}$ for some $1 \leq j \leq l$. Note first that by Lemma 3.9 (2-b), $n_{k} \leq 3$ for all $k \neq j$.

Assume that $p_{3}$ is of type [5]. By Lemma 3.9 (2-b), $C$ must meet $f^{-1}\left(p_{3}\right)$, so we may assume that $F_{2}=f^{-1}\left(p_{3}\right)$. Since $F_{1}=f^{-1}\left(p_{1}\right)$ or $F_{1}=f^{-1}\left(p_{2}\right)$, by Lemma 3.2,

$$
\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=(2,5,2),(3,5,2),(2,5,3)
$$

By Lemma 3.9 (2-a), we have

$$
\left(L, n_{j}\right)=(11,2),(12,2),(12,3)
$$

hence

$$
\left(l, n_{j}\right)=(8,2),(9,2),(9,3) .
$$

By Lemma 3.9 (2-b) and (2-c),

$$
\begin{aligned}
{\left[n_{1}, \ldots, n_{l}\right]=} & {[3,2,2,2,2,2,2,2],[2,2,2,2,2,2,2,2] ; } \\
& {[3,2,2,2,2,2,2,2,2],[2,2,2,2,2,2,2,2,2] }
\end{aligned}
$$

up to permutation of $n_{1}, \ldots, n_{l}$. As you can see in Table 2, none of these 11 cases satisfies the following three conditions:

- $(\# 1) \operatorname{gcd}(q, 30)=1$,
- (\#2) $K_{S}^{2}>0$,
- (\#3) $D=|\operatorname{det}(R)| K_{S}^{2}$ is a positive square integer.

Table 2.

| Type of $p_{4}$ | $q$ | $\operatorname{gcd}(q, 30)$ | $K^{2}$ | $\sqrt{D}$ |
| :---: | :---: | :---: | :---: | :---: |
| $A_{8}$ | 9 | $\neq 1$ | - | - |
| $[3,2,2,2,2,2,2,2]$ | 17 | 1 | $\frac{154}{255}$ | $2 \sqrt{77}$ |
| $[2,3,2,2,2,2,2,2]$ | 23 | 1 | $\frac{256}{345}$ | $16 \sqrt{2}$ |
| $[2,2,3,2,2,2,2,2]$ | 27 | $\neq 1$ | - | - |
| $[2,2,2,3,2,2,2,2]$ | 29 | 1 | $\frac{358}{435}$ | $2 \sqrt{179}$ |
| $A_{9}$ | 10 | $\neq 1$ | - | - |
| $[3,2,2,2,2,2,2,2,2]$ | 19 | 1 | $-\frac{112}{285}$ | - |
| $[2,3,2,2,2,2,2,2,2]$ | 26 | $\neq 1$ | - | - |
| $[2,2,3,2,2,2,2,2,2]$ | 31 | 1 | $-\frac{88}{465}$ | - |
| $[2,2,2,3,2,2,2,2,2]$ | 34 | $\neq 1$ | - | - |
| $[2,2,2,2,3,2,2,2,2]$ | 35 | $\neq 1$ | - | - |

Assume that $p_{3}$ is of type $[2,3]$. Then, by Lemma 3.2,

$$
\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=\left(2,3, n_{j}\right), n_{j} \leq 5, \quad \text { or }(3,3,2), \quad \text { or }\left(2,2, n_{j}\right) .
$$

The last case can be ruled out by Lemma 3.10 and Step 1 . Now, by Lemma 3.9 (2), we have

$$
\left(l, n_{j}\right)=(5,2),(6,3),(7,4),(8,5),(6,2)
$$

and

$$
\begin{aligned}
{\left[n_{1}, \ldots, n_{l}\right]=} & {[3,2,2,2,2],[2,2,2,2,2] ;[3,2,2,2,2,2] ; } \\
& {[4,2,2,2,2,2,2] ;[5,2,2,2,2,2,2,2] ;[2,2,2,2,2,2], }
\end{aligned}
$$

up to permutation of $n_{1}, \ldots, n_{l}$. None of the 16 cases satisfies the three conditions $(\# 1),(\# 2),(\# 3)$. Table 3 summarizes the computation.

Table 3.

| Type of $p_{4}$ | $q$ | $\operatorname{gcd}(q, 30)$ | $K^{2}$ | $\sqrt{D}$ |
| :---: | :---: | :---: | :---: | :---: |
| $A_{5}$ | 6 | $\neq 1$ | - | - |
| $[3,2,2,2,2]$ | 11 | 1 | $\frac{196}{165}$ | $14 \sqrt{2}$ |
| $[2,3,2,2,2]$ | 14 | $\neq 1$ | - | - |
| $[2,2,3,2,2]$ | 15 | $\neq 1$ | - | - |
| $A_{6}$ | 7 | 1 | $-\frac{4}{15}$ | - |
| $[3,2,2,2,2,2]$ | 13 | 1 | $\frac{38}{195}$ | $2 \sqrt{19}$ |
| $[2,3,2,2,2,2]$ | 17 | 1 | $\frac{82}{255}$ | $2 \sqrt{41}$ |
| $[2,2,3,2,2,2]$ | 19 | 1 | $\frac{104}{285}$ | $4 \sqrt{13}$ |
| $[4,2,2,2,2,2,2]$ | 22 | $\neq 1$ | - | - |
| $[2,4,2,2,2,2,2]$ | 32 | $\neq 1$ | - | - |
| $[2,2,4,2,2,2,2]$ | 38 | $\neq 1$ | - | - |
| $[2,2,2,4,2,2,2]$ | 40 | $\neq 1$ | - | - |
| $[5,2,2,2,2,2,2,2]$ | 33 | $\neq 1$ | - | - |
| $[2,5,2,2,2,2,2,2]$ | 51 | $\neq 1$ | - | - |
| $[2,2,5,2,2,2,2,2]$ | 63 | $\neq 1$ | - | - |
| $[2,2,2,5,2,2,2,2]$ | 69 | $\neq 1$ | - | - |

Assume that $p_{3}$ is of type $[2,2,2,2]$. Then, by Lemma 3.2,

$$
\left(-F_{1}^{2},-F_{2}^{2},-F_{3}^{2}\right)=\left(2,3, n_{j}\right), n_{j} \leq 5, \quad \text { or }\left(2,2, n_{j}\right) .
$$

The last case can be ruled out by Lemma 3.10 and Step 1 . Now, by Lemma 3.9 (2), we have

$$
\left(l, n_{j}\right)=(3,2),(4,3),(5,4),(6,5),
$$

and

$$
\left[n_{1}, \ldots, n_{l}\right]=[3,2,2],[2,2,2] ;[3,2,2,2] ;[4,2,2,2,2] ;[5,2,2,2,2,2]
$$

up to permutation of $n_{1}, \ldots, n_{l}$. None of the 11 cases satisfies the three conditions (\#1), $(\# 2),(\# 3)$. Table 4 summarizes the computation.

Table 4.

| Type of $p_{4}$ | $q$ | $\operatorname{gcd}(q, 30)$ | $K^{2}$ | $\sqrt{D}$ |
| :---: | :---: | :---: | :---: | :---: |
| $A_{3}$ | 4 | $\neq 1$ | - | - |
| $[3,2,2]$ | 7 | 1 | $\frac{16}{21}$ | $4 \sqrt{10}$ |
| $[2,3,2]$ | 8 | $\neq 1$ | - | - |
| $[3,2,2,2]$ | 9 | $\neq 1$ | - | - |
| $[2,3,2,2]$ | 11 | 1 | $-\frac{4}{33}$ | - |
| $[4,2,2,2,2]$ | 16 | $\neq 1$ | - | - |
| $[2,4,2,2,2]$ | 22 | $\neq 1$ | - | - |
| $[2,2,4,2,2]$ | 24 | $\neq 1$ | - | - |
| $[5,2,2,2,2,2]$ | 25 | $\neq 1$ | - | - |
| $[2,5,2,2,2,2]$ | 37 | 1 | $-\frac{26}{111}$ | - |
| $[2,2,5,2,2,2]$ | 43 | 1 | $-\frac{20}{129}$ | - |

Next, we will show that none of the cases $(2,3,7, q), 11 \leq q \leq 41, \operatorname{gcd}(q, 42)=1$, and $(2,3,11,13)$ occurs. To do this, it is enough to consider the 24 cases of Table 1.

### 4.6. Step 6.

None of the 24 cases of Table 1 occurs.
Proof. By Step 2, $C \mathcal{F}=3$ in each of the 24 cases of Table 1.
Each of Cases (1), (2), (3), (4), (6), (8), (9), (11), (12), (13), (17), and (19), contains an irreducible component $F^{\prime}$ with self-intersection $\leq-6$. Lemma 3.9 (2-b) implies that $C$ meets $F^{\prime}$. Thus $C$ meets two components of $\mathcal{F}$ with self-intersection -2 by Lemma 3.2. Thus we get a contradiction for those cases by Lemma 3.10 and Step 1.

By Lemma 3.9 (2-c), we get a contradiction immediately for Cases (7), (10), (14), (16), (18), since each of these cases contains a connected component of $\mathcal{F}$ with at least two irreducible components of self-intersection $\leq-3$.

By Lemma 3.2 and Lemma 3.9 (2-b), we get a contradiction immediately for Cases (5), (20), (21), (22), since each of these cases contains at least two irreducible components with self-intersection $\leq-4$.

We need to rule out the remaining three cases: (15), (23), (24).
Consider Case (24). Note that $L=10$ in this case. On the other hand, by Lemma 3.9 (2-b), $C$ must meet the component having self-intersection number -5 . Thus, we may assume that $F_{3}^{2}=-5$. Since $F_{1}^{2} \leq-2, F_{2}^{2} \leq-2$, Lemma 3.9 (2-a) gives $L=$ $2-\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right) \geq 2+2+2+5=11$, a contradiction.

Case (15): Let
be the exceptional curves. In this case, $K_{S}^{2}=50 / 231, \sqrt{D}=10$.
Since $L=10=2-\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right), C$ meets only two of $B, C_{1}, D_{1}$.
If $C C_{1}=C D_{1}=1$, then $C A=1$. Applying Proposition 2.4 (1) to $C$ and looking at Table 5, we get

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-\frac{3}{7}-\frac{5}{11}=\frac{9}{77},
$$

thus $m=27 / 5$, not an integer, a contradiction.
Table 5.

|  | $[2]$ | $[3]$ | $[3,2,2]$ |  |  |  | $[3,2,2,2,2]$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $j$ | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 |  |
| $1-\frac{v_{j}+u_{j}}{q}$ | 0 | $\frac{1}{3}$ | $\frac{3}{7}$ | $\frac{2}{7}$ | $\frac{1}{7}$ | $\frac{5}{11}$ | $\frac{4}{11}$ | $\frac{3}{11}$ | $\frac{2}{11}$ | $\frac{1}{11}$ |  |

If $C B=C C_{1}=C A=1$, then $\Gamma$ only meets $C_{2}$ and $D_{1}$, a contradiction to Lemma 3.11 (2).

If $C B=C C_{1}=C D_{j}=1$ for some $j$, then Proposition 2.4 (1) gives

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-\frac{1}{3}-\frac{3}{7}-\left(1-\frac{v_{j}+u_{j}}{q}\right)>0
$$

hence $j=4,5$. If $j=4$, then

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-\frac{1}{3}-\frac{3}{7}-\frac{2}{11}=\frac{13}{231},
$$

thus $m=13 / 5$, a contradiction. If $j=5$, then

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-\frac{1}{3}-\frac{3}{7}-\frac{1}{11}=\frac{34}{231},
$$

thus $m=34 / 5$, a contradiction.

$$
\text { If } C B=C D_{1}=C A=1 \text {, then }
$$

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-\frac{1}{3}-\frac{5}{11}=\frac{7}{33}
$$

thus $m=49 / 5$, a contradiction.
If $C B=C D_{1}=C C_{2}=1$, then

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-\frac{1}{3}-\frac{2}{7}-\frac{5}{11}=-\frac{17}{231}<0
$$

a contradiction.
If $C B=C D_{1}=C C_{3}=1$, then

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-\frac{1}{3}-\frac{1}{7}-\frac{5}{11}=\frac{16}{231}
$$

thus $m=16 / 5$, a contradiction.
Case (23): Let
be the exceptional curves. Since $C$ meets $D_{1}$ and $L=11, C$ must meet only one of $B$ and $C_{1}$.

If $C B=C A=1$, then $\Gamma$ meets exactly two irreducible components $C_{1}, D_{2}$ with multiplicity 1 , a contradiction to Lemma 3.11 (2).

If $C B=C C_{j}=1$ for some $j \geq 2$, then Table 6 gives

$$
\frac{m}{\sqrt{D}} K_{S}^{2} \leq 1-\frac{1}{3}-\frac{1}{11}-\frac{8}{13}<0
$$

a contradiction.
If $C C_{1}=1$, then $C A=1$ and Proposition 2.4 (1) together with Table 6 gives

$$
\frac{m}{\sqrt{D}} K_{S}^{2}=1-0-\frac{5}{11}-\frac{8}{13}<0
$$

a contradiction.
Table 6.

|  | $[2]$ | $[3]$ | $[3,2,2,2,2]$ |  |  |  |  | $[4,2,2,2]$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $j$ | 1 | 1 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 |
| $1-\frac{v_{j}+u_{j}}{q}$ | 0 | $\frac{1}{3}$ | $\frac{5}{11}$ | $\frac{4}{11}$ | $\frac{3}{11}$ | $\frac{2}{11}$ | $\frac{1}{11}$ | $\frac{8}{13}$ | $\frac{6}{13}$ | $\frac{4}{13}$ | $\frac{2}{13}$ |

This completes the proof of Theorem 1.2.

## References

[Be] G. N. Belousov, Del Pezzo surfaces with log terminal singularities, Math. Notes, 83 (2008), 152-161.
[Br] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math., 4 (1968), 336-358.
[GZ] R. V. Gurjar and D.-Q. Zhang, $\pi_{1}$ of smooth points of a log del Pezzo surface is finite. I, J. Math. Sci. Univ. Tokyo, 1 (1994), 137-180.
[HK1] D. Hwang and J. Keum, The maximum number of singular points on rational homology projective planes, J. Algebraic Geom., 20 (2011), 495-523.
[HK2] D. Hwang and J. Keum, Algebraic Montgomery-Yang problem: the non-cyclic case, Math. Ann., 350 (2011), 721-754.
[HK3] D. Hwang and J. Keum, Algebraic Montgomery-Yang problem: the non-rational surfacce case, Michigan Math. J., 62 (2013), 3-37.
[HK4] D. Hwang and J. Keum, Construction of singular rational surfaces of Picard number one with ample canonical divisor, Proc. Amer. Math. Soc., 140 (2012), 1865-1879.
[KM] S. Keel and J. McKernan, Rational Curves on Quasi-Projective Surfaces, Mem. Amer. Math. Soc., 140, no. 669, Amer. Math. Soc., Providence, RI, 1999.
[K] J. Kollár, Is there a topological Bogomolov-Miyaoka-Yau inequality?, Pure Appl. Math. Q., 4 (2008), 203-236.
[Z] D.-Q. Zhang, Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka J. Math., 25 (1988), 461-497.

## DongSeon Hwang

Department of Mathematics
Ajou University
Suwon 443-749, Korea
E-mail: dshwang@ajou.ac.kr

## JongHae KEum

School of Mathematics
Korea Institute For Advanced Study Seoul 130-722, Korea
E-mail: jhkeum@kias.re.kr


[^0]:    2010 Mathematics Subject Classification. Primary 14J26; Secondary 14J17, 14J45.
    Key Words and Phrases. Montgomery-Yang problem, log del Pezzo surface, quotient singularity.

