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Sharp lower bound on the curvatures of ASD connections

over the cylinder

By Masaki Tsukamoto

(Received Sep. 1, 2012)

Abstract. We prove a sharp lower bound on the curvatures of non-flat
ASD connections over the cylinder.

1. Introduction.

The purpose of this note is to calculate explicitly a universal lower bound on the
curvatures of non-flat ASD connections over the cylinder R× S3.

First we fix our conventions. Let S3 = {x2
1 + x2

2 + x2
3 + x2

4 = 1} ⊂ R4 be the unit
3-sphere equipped with the Riemannian metric induced by the Euclidean metric on R4.
Set X := R×S3. We give the standard metric on R, and X is equipped with the product
metric.

Let H be the space of quaternions. Consider SU(2) = {x ∈ H | |x| = 1} with the
Riemannian metric induced by the Euclidean metric on H. (Hence it is isometric to
S3 above.) We naturally identify su(2) := T1SU(2) with the imaginary part ImH :=
Ri + Rj + Rk. Here i, j and k have length 1.

Let E := X × SU(2) be the product SU(2)-bundle. Let A be a connection on E,
and let FA be its curvature. FA is an su(2)-valued 2-form on X. Hence for each point
p ∈ X the curvature FA can be considered as a linear map

FA,p : Λ2(TpX) → su(2).

We denote by |FA,p|op the operator norm of this linear map. The explicit formula is as
follows: Let x1, x2, x3, x4 be the normal coordinate system on X centered at p. Let A =∑4

i=1 Aidxi. Each Ai is an su(2)-valued function. Then F (A)ij := FA(∂/∂xi, ∂/∂xj) =
∂iAj − ∂jAi + [Ai, Aj ]. Since ∂/∂xi ∧ ∂/∂xj (1 ≤ i < j ≤ 4) form an orthonormal basis
of Λ2(TX) at p, the norm |FA,p|op is equal to

sup
{∣∣∣∣

∑

1≤i<j≤4

aijF (A)ij,p

∣∣∣∣
∣∣∣∣ aij ∈ R,

∑

1≤i<j≤4

a2
ij = 1

}
.

Let ‖FA‖op be the supremum of |FA,p|op over p ∈ X. The main result is the following.
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Theorem 1.1. The minimum of ‖FA‖op over non-flat ASD connections A on E

is equal to 1/
√

2.

Note that we don’t assume FA ∈ L2 in this statement. As far as I know, this kind of
explicit calculations have never been done in Yang-Mills theory. (See Remark 1.3 below.)
The above minimum value 1/

√
2 is attained by the following BPST instanton ([1]).

Example 1.2. We define an SU(2) instanton A on R4 by

A := Im
(

x̄dx

1 + |x|2
)

, (x = x1 + x2i + x3j + x4k).

By the conformal map

R× S3 → R4 \ {0}, (t, θ) 7→ etθ,

the connection A is transformed into an ASD connection A′ on E over R× S3. Then

|FA′,(t,θ)|op =
2
√

2
(et + e−t)2

.

Hence

‖FA′‖op =
1√
2
.

Remark 1.3. The essential point of the statement of Theorem 1.1 is the explic-
itness of 1/

√
2. Indeed the following general statement is easy to prove: Let Y be a

closed Riemannian 3-fold, and assume that all flat SU(2) connections ρ on Y satisfy
the non-degeneracy condition H1

ρ = 0. (See [2, p. 25, Definition 2.4]. S3 satisfies this
condition. More generally lens spaces S3/Zp satisfy it.) Then the infimum of ‖FA‖op
over non-flat SU(2) ASD connections A on R× Y is positive. The proof is just a direct
application of [2, p. 81, Proposition 4.4]. But it is difficult to determine the value of
inf ‖FA‖op explicitly.

Theorem 1.1 is a Yang-Mills analogy of the classical result of Lehto [7, Theorem 1]
in complex analysis. (The formulation below is due to Eremenko [4, Theorem 3.2]. See
also Lehto-Virtanen [8, Theorem 1].) Consider C∗ := C \ {0} with the length element
|dz|/|z|. We give a metric on CP 1 = C∪ {∞} by (naturally) identifying it with the unit
2-sphere {x2

1 + x2
2 + x2

3 = 1}. For a map f : C∗ → CP 1 we denote its Lipschitz constant
by Lip(f). Then Lehto [7, Theorem 1] proved that the minimum of Lip(f) over non-
constant holomorphic maps f : C∗ → CP 1 is equal to 1. The function f(z) = z attains
the minimum. Eremenko [4, Section 3] discussed the relation between this result of Lehto
and a quantitative homotopy argument of Gromov [6, Chapter 2, 2.12. Proposition]. Our
proof of Theorem 1.1 is inspired by this idea.
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2. Preliminaries: Connections over S3.

In this section we study the method of choosing good gauges for some connections
over S3. The argument below is a careful study of [5, pp. 146–148]. Set N := (1, 0, 0, 0) ∈
S3 and S := (−1, 0, 0, 0) ∈ S3. Let P := S3 × SU(2) be the product SU(2)-bundle over
S3. For a connection B on P we define the operator norm ‖FB‖op in the same way as in
Section 1.

Let v1, v2 ∈ TNS3 be two unit tangent vectors at N . (|v1| = |v2| = 1.) Let
expN : TNS3 → S3 be the exponential map at N . Since |v1| = |v2| = 1, we have
expN (πv1) = expN (πv2) = S. We define a loop l : [0, 2π] → S3 by

l(t) :=

{
expN (tv1) (0 ≤ t ≤ π)

expN ((2π − t)v2) (π ≤ t ≤ 2π).

Lemma 2.1. Let B be a connection on P . Let Holl(B) ∈ SU(2) be the holonomy
of B along the loop l. Then

d(Holl(B), 1) ≤ 2π‖FB‖op.

Here d(·, ·) is the distance on SU(2) defined by the Riemannian metric.

Proof. This follows from the standard fact that curvature is an infinitesimal
holonomy [3, p. 36]. (2π is half the area of the unit 2-sphere.) The explicit proof is
as follows: Take a unit tangent vector v3 ∈ TNS3 orthogonal to v1 such that there is
α ∈ [0, π] satisfying v2 = v1 cos α + v3 sinα. Consider (the spherical polar coordinate of
the totally geodesic S2 ⊂ S3 tangent to v1 and v3):

Φ : [0, α]× [0, π] → S3, (θ1, θ2) 7→ expN{θ2(v1 cos θ1 + v3 sin θ1)}.

Let Q be the pull-back of the bundle P by Φ. Since Φ([0, α] × {0}) = {N} and
Φ([0, α] × {π}) = {S}, Q admits a trivialization under which the pull-back connection
Φ∗B is expressed as Φ∗B = B1dθ1 + B2dθ2 with B1 = 0 on [0, α]× {0, π}.

We take a smooth map g : [0, α]× [0, π] → SU(2) satisfying

g(θ1, 0) = 1 (∀θ1 ∈ [0, α]), (∂2 + B2)g = 0.

We have Holl(B) = g(α, π)−1g(0, π). Then FΦ∗B(∂1, ∂2)g = [∂1 +B1, ∂2 +B2]g = −(∂2 +
B2)(∂1 + B1)g. From B1 = 0 on [0, α]× {0, π} and Kato’s inequality |∂2|(∂1 + B1)g|| ≤
|(∂2 + B2)(∂1 + B1)g| = |FΦ∗B(∂1, ∂2)g|,

|∂1g(θ1, π)| = |(∂1 + B1)g(θ1, π)| − |(∂1 + B1)g(θ1, 0)|

≤
∫

{θ1}×[0,π]

|∂2|(∂1 + B1)g||dθ2 ≤
∫

{θ1}×[0,π]

|FΦ∗B(∂1, ∂2)|dθ2.
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Then

d(Holl(B), 1) = d(g(0, π), g(α, π)) ≤
∫

[0,α]×[0,π]

|FΦ∗B(∂1, ∂2)|dθ1dθ2.

FΦ∗B(∂1, ∂2) = FB(dΦ(∂/∂θ1), dΦ(∂/∂θ2)). The vectors dΦ(∂/∂θ1) and dΦ(∂/∂θ2)
are orthogonal to each other, and |dΦ(∂/∂θ1)| = sin θ2 and |dΦ(∂/∂θ2)| = 1. Hence
|FΦ∗B(∂1, ∂2)| ≤ ‖FB‖op sin θ2. From 0 ≤ α ≤ π,

d(Holl(B), 1) ≤ ‖FB‖op
∫

[0,α]×[0,π]

sin θ2 dθ1dθ2 = 2α‖FB‖op ≤ 2π‖FB‖op. ¤

Let τ < 1/2. Let B be a connection on P satisfying ‖FB‖op ≤ τ . We construct a
good connection matrix of B.

Fix v ∈ TNS3. By the parallel translation along the geodesic expN (tv) (0 ≤ t ≤ π)
we identify the fiber PS with the fiber PN . Let gN and gS be the exponential gauges (see
[5, p. 146] or [3, p. 54]) centered at N and S respectively:

gN : P |S3\{S} → (S3 \ {S})× PN , gS : P |S3\{N} → (S3 \ {N})× PN .

(In the definition of gS we identify PS with PN as in the above.) By Lemma 2.1, for
x ∈ S3 \ {N, S},

d(gN (x), gS(x)) ≤ 2π‖FB‖op ≤ 2πτ < π.

The injectivity radius of SU(2) = S3 is π (this is a crucial point of the argument). Hence
there uniquely exists u(x) ∈ adPN (∼= su(2)) satisfying

|u(x)| ≤ 2π‖FB‖op, gS(x) = eu(x)gN (x).

We take and fix a cut-off function ϕ : S3 → [0, 1] such that ϕ(x1, x2, x3, x4) is equal to 0
over {x1 > 1/2} and equal to 1 over {x1 < −1/2}. We can define a bundle trivialization
g of P all over S3 by g := eϕugN . Then the connection matrix g(B) satisfies

|g(B)| ≤ Cτ‖FB‖op.

Here Cτ is a positive constant depending on τ .

3. Proof of Theorem 1.1.

In this section we denote by t the standard coordinate of R. Let A be an ASD
connection on E satisfying ‖FA‖op < 1/

√
2. We will prove that A must be flat. Set

τ := ‖FA‖op/
√

2 < 1/2.
The ASD equation implies that FA has the following form:
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FA = −dt ∧ (∗3F (A|{t}×S3)) + F (A|{t}×S3),

where A|{t}×S3 is the restriction of A to {t} × S3 and ∗3 is the Hodge star on {t} × S3.
Hence

|FA,(t,θ)|op =
√

2|F (A|{t}×S3)θ|op.

Therefore

‖F (A|{t}×S3)‖op ≤ τ <
1
2

(∀t ∈ R).

Thus we can apply the construction of Section 2 to A|{t}×S3 .
Fix a bundle trivialization of E over R × {N}. (Any choice will do.) Then the

construction in Section 2 gives a bundle trivialization g of E over X satisfying

|g(A)|{t}×S3 | ≤ Cτ‖F (A|{t}×S3)‖op (∀t ∈ R).

Set A′ := g(A). We consider the Chern-Simons functional

cs(A′) := tr
(

A′ ∧ FA′ − 1
3
A′3

)
.

For R > 0
∫

[−R,R]×S3
|FA|2d vol =

∫

{R}×S3
cs(A′)−

∫

{−R}×S3
cs(A′) (because A is ASD)

≤ constτ

(‖F (A|{R}×S3)‖op + ‖F (A|{−R}×S3)‖op
)
. (1)

Here we have used |A′|{±R}×S3 | ≤ Cτ‖F (A|{±R}×S3)‖op and ‖F (A|{±R}×S3)‖op ≤ τ .
Let R → +∞. Then we get

∫

X

|FA|2d vol < +∞.

This implies that the curvature FA has an exponential decay at the ends (see [2, Theorem
4.2]). In particular

‖F (A|{±R}×S3)‖op → 0 (R → +∞).

By the above (1)
∫

X

|FA|2d vol = 0.

This shows FA ≡ 0. So A is flat.
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