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Weak-type inequalities for Fourier multipliers with applications

to the Beurling-Ahlfors transform

By Adam Osȩkowski
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Abstract. The paper contains the study of weak-type constants of
Fourier multipliers resulting from modulation of the jumps of Lévy processes.
We exhibit a large class of functions m : Rd → C, for which the corresponding
multipliers Tm satisfy the estimates
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for 1 < p < 2, and
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‖f‖Lp(Rd)

for 2 ≤ p < ∞. The proof rests on a novel duality method and a new sharp
inequality for differentially subordinated martingales. We also provide lower
bounds for the weak-type constants by constructing appropriate examples for
the Beurling-Ahlfors operator on C.

1. Introduction.

The martingale theory plays a fundamental role in obtaining the Lp bounds for many
important singular integrals and Fourier multipliers, and the purpose of this paper is to
explore further this connection. We shall introduce a new method which will allow us to
deduce sharp weak type (p, p) inequalities for a large class of Fourier multipliers from an
appropriate bound for differentially subordinated martingales.

A celebrated theorem of Burkholder [7] states that if X, Y are Hilbert-space-valued
martingales such that Y is differentially subordinate to X (see the next section for the
necessary definitions), then we have the sharp estimate

‖Y ‖p ≤ (p∗ − 1)‖X‖p, 1 < p < ∞, (1.1)

where p∗ = max{p, p/(p − 1)}. The inequality breaks down for p = 1, but we have the
corresponding weak-type bound [7]:

P
(

sup
t≥0

|Yt| ≥ 1
)
≤ 2

Γ(p + 1)
‖X‖p

p, 1 ≤ p ≤ 2, (1.2)
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and the constant is the best possible. The optimal constant in the case 2 < p < ∞ was
determined by Suh in [16]: we have

P
(

sup
t≥0

|Yt| ≥ 1
)
≤ pp−1

2
‖X‖p

p. (1.3)

The moment inequality (1.1) can be used to obtain tight Lp bounds for a wide class
of Fourier multipliers. Recall that for any bounded function m : Rd → C, there is a
unique bounded linear operator Tm on L2(Rd), called the Fourier multiplier with the
symbol m, which is given by the following relation between Fourier transforms:

T̂mf = mf̂.

The norm of Tm on L2(Rd) is equal to ‖m‖L∞(Rd) and it has been long of interest to
study those m, for which the corresponding Fourier multiplier extends to a bounded linear
operator on Lp(Rd), 1 < p < ∞. One of the fundamental examples of such multipliers is
the collection of Riesz transforms R1, R2, . . . , Rd in Rd, which correspond to the symbols
iξ1/|ξ|, iξ2/|ξ|, . . . , iξd/|ξ|, respectively. Using (1.1), Bañuelos and Wang [6] showed the
following bound for the vector R = (R1, R2, . . . , Rd):

‖Rf‖Lp(Rd;Rd) ≤ 2(p∗ − 1)‖f‖Lp(Rd), 1 < p < ∞.

See also Iwaniec and Martin [12] for related results, obtained by a purely analytic ap-
proach.

In the present paper we shall consider the following class of symbols, studied by
Bañuelos and Bogdan [2] and Bañuelos, Bielaszewski and Bogdan [3]. Let ν be a Lévy
measure on Rd: that is, a nonnegative Borel measure on Rd such that ν({0}) = 0 and

∫

Rd

min{|x|2, 1}ν(dx) < ∞.

Assume further that µ is a finite Borel measure on the unit sphere S of Rd and fix two
Borel functions φ on Rd and ψ on S which take values in the unit ball of C. We define
the associated multiplier m = mφ,ψ,µ,ν on Rd by

m(ξ) =
(1/2)

∫
S〈ξ, θ〉2ψ(θ)µ(dθ) +

∫
Rd [1− cos〈ξ, x〉]φ(x)ν(dx)

(1/2)
∫
S〈ξ, θ〉2µ(dθ) +

∫
Rd [1− cos〈ξ, x〉]ν(dx)

(1.4)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for the scalar
product in Rd. As proved in [2] and [3] (see also Section 3 below), the Fourier multipliers
corresponding to these symbols can be given a martingale representation by the use of
appropriate transformations of jumps of Lévy processes. Combining this representation
with Burkholder’s inequality (1.1), Bañuelos, Bielaszewski and Bogdan established the
following Lp estimate.
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Theorem 1.1. Let 1 < p < ∞ and let m = mφ,ψ,µ,ν be given by (1.4). Then for
any f ∈ Lp(Rd) we have

‖Tmf‖Lp(Rd) ≤ (p∗ − 1)‖f‖Lp(Rd). (1.5)

See also [5] for related lower bounds. In particular, this theorem yields interesting
estimates for the Beurling-Ahlfors transform BA on C. Recall that this operator is given
by the singular integral

BA f(z) = −p.v.
1
π

∫

C

f(w)
(z − w)2

dw, z ∈ C,

where the integration is with respect to the Lebesgue’s measure on the complex plane.
Alternatively, BA can be defined as the Fourier multiplier with the symbol m(ξ) =
(ξ/|ξ|)2, ξ ∈ C \ {0} (with the standard identification C ' R2). This operator plays a
fundamental role in the study of quasiconformal mappings, partial differential equations
and complex analysis; its importance lies in the fact that it changes the complex derivative
∂̄ into ∂. Formally,

BA(∂̄f) = ∂f (1.6)

for every f in the Sobolev space W 1,2(C,C). There is an important question about the
precise value of the norm of BA acting on Lp(C), 1 < p < ∞; a celebrated and long-
standing hypothesis of Iwaniec [10] states that ‖BA‖Lp(C)→Lp(C) = p∗ − 1. While the
lower bound p∗−1 was shown by Lehto [13], the question about the upper bound remains
open. The estimate (1.5) yields ‖BA‖Lp(C)→Lp(C) ≤ 2(p∗ − 1) (see Section 4 below).
This can be further improved; the best result so far is the inequality ‖BA‖Lp(C)→Lp(C) ≤
1.575(p∗ − 1), obtained by Bañuelos and Janakiraman [4] by the use of a refined version
of (1.1).

There is a natural question whether the interplay between the martingale theory
and Fourier multipliers, which has been so fruitful in the case of Lp bounds, carries over
to the weak-type (p, p) estimates. The objective of this paper is to propose an approach
which will yield the affirmative answer to this question. It should be stressed here that
the repetition of the arguments leading to the Lp-estimates and replacing (1.1) by (1.2)
or (1.3) in the middle does not produce the weak-type bounds. Roughly speaking, the
problem lies in the fact that the representation of a given Fourier multiplier in terms of
Lévy processes involves the use of an appropriate conditional expectation; this operation
is a contraction on Lp, but no longer on Lp,∞. Thus a refinement of the method is
needed, and we have invented a duality argument to handle this problem. Of course,
since Lp ⊂ Lp,∞, we immediately obtain the rough bound for 1 < p < ∞:

‖Tm‖Lp(Rd)→Lp,∞(Rd) ≤ ‖Tm‖Lp(Rd)→Lp(Rd) ≤ p∗ − 1. (1.7)

We shall establish the following significant improvement of this estimate. Introduce the
constants



748 A. Osȩkowski

Kp =



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[
1
2
Γ
(

2p− 1
p− 1

)](p−1)/p

if 1 < p < 2,

pp−1/2 if p ≥ 2.

Theorem 1.2. Assume that 1 < p < ∞ and m is given by (1.4), with ν, µ, φ and
ψ satisfying the above assumptions. Then for any f ∈ Lp(Rd) we have

|{x ∈ Rd : |Tmf(x)| ≥ 1}| ≤ Kp‖f‖p
Lp(Rd)

, (1.8)

that is, ‖Tm‖Lp(Rd)→Lp,∞(Rd) ≤ K
1/p
p .

It is not difficult to prove that Kp < (p − 1)−1 for 1 < p < 2, so (1.8) is better
than (1.7); however, it is very likely that this bound can be further improved. On the
other hand, we strongly believe that for p ≥ 2 the constant Kp is the best possible. To
justify this conjecture, note that Kp coincides with the optimal constant from (1.3) and
hence the bound (1.8) seems to be the farthest point where the martingale methods can
take us. Unfortunately, we have only managed to find examples showing that the weak-
type constant Kp is not smaller than pp−1/2p+1. Nevertheless, these examples are very
interesting on their own, for they exhibit further close connections between martingale
transforms and the Beurling-Ahlfors operator. See Section 4 below for details.

We have organized the remainder of this paper as follows. In the next section we
study an inequality for differentially subordinated martingales, which constitutes the
foundation for our further considerations. In Section 3 we combine this estimate with
the representation of Fourier multipliers (1.4) in terms of Lévy processes, and provide
the proof of Theorem 1.2. This section contains also a version of Theorem 1.2 for vector-
valued multipliers. Finally, in Section 4 we apply our results to the study of the weak
type constants of the Beurling-Ahlfors transform and provide examples which yield the
corresponding lower bounds.

2. A martingale inequality.

The key ingredient of the proof of the announced estimate (1.8) is an appropriate
inequality for differentially subordinated martingales. We begin with introducing the
necessary probabilistic background and notation. Assume that (Ω,F ,P) is a complete
probability space, equipped with (Ft)t≥0, a nondecreasing family of sub-σ-fields of F ,
such that F0 contains all the events of probability 0. Let X, Y be two adapted martin-
gales taking values in a certain separable Hilbert space (H, | · |); with no loss of generality,
we may put H = `2. As usual, we assume that the processes have right-continuous tra-
jectories with the limits from the left. The symbol [X, Y ] will stand for the quadratic
covariance process of X and Y . See e.g. Dellacherie and Meyer [9] for details in the case
when the processes are real-valued, and extend the definition to the vector setting by
[X, Y ] =

∑∞
k=0[X

k, Y k], where Xk, Y k are the k-th coordinates of X, Y , respectively.
Following Bañuelos and Wang [6] and Wang [17], we say that Y is differentially subor-
dinate to X, if the process ([X, X]t − [Y, Y ]t)t≥0 is nonnegative and nondecreasing as a
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function of t.
Now we are ready to formulate our main probabilistic result, a dual estimate to (1.2)

and (1.3). For 1 < q < ∞, let

Cq =

{
21−qq/(q − 1) if 1 < q ≤ 2,

Γ(q + 1)/2 if q > 2.

We use the notation ‖X‖p = supt≥0 ‖Xt‖p, 1 ≤ p ≤ ∞.

Theorem 2.1. Assume that X, Y are H-valued martingales such that Y is differ-
entially subordinate to X. Then for any 1 < q < ∞,

‖Y ‖q
q ≤ Cq‖X‖1‖X‖q−1

∞ . (2.1)

For each q, the constant Cq is the best possible.

The proof rests on Burkholder’s method: we shall deduce the inequality (2.1) from
the existence of a family {Vq}q∈(1,∞) of certain special functions defined on the set S =
{(x, y) ∈ H × H : |x| ≤ 1}. In order to simplify the technicalities, we shall combine
the technique with an “ integration argument ”, invented in [14] (see also [15]): first
we introduce two simple functions v1, v∞ : H × H → R, for which the calculations
are relatively easy; then define Vq by integrating these two objects against appropriate
nonnegative kernels. Let

v1(x, y) =

{|y|2 − |x|2 if |x|+ |y| ≤ 1,

1− 2|x| if |x|+ |y| > 1

and

v∞(x, y) =

{
0 if |x|+ |y| ≤ 1,

(|y| − 1)2 − |x|2 if |x|+ |y| > 1.

We have the following fact (see Lemma 2.2 in [15] for a slightly stronger statement
in which the differential subordination is replaced by a less restrictive assumption).

Lemma 2.2. For all H-valued martingales X, Y such that Y is differentially sub-
ordinate to X we have

Ev1(Xt, Yt) ≤ 0 for all t ≥ 0.

If in addition X satisfies ‖X‖2 < ∞, then

Ev∞(Xt, Yt) ≤ 0 for all t ≥ 0.

Recall that S = {(x, y) ∈ H ×H : |x| ≤ 1}. For 1 < q < 2, define Vq : S → R by
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Vq(x, y) =
q(2− q)

2

∫ 1/2

0

rq−1v1(x/r, y/r)dr +
q

2q−1
(|y|2 − |x|2).

A little calculation shows that if |x|+ |y| ≤ 1/2, then

Vq(x, y) =
1

q − 1
(|x|+ |y|)q−1(−|x|+ (q − 1)|y|),

while for |x|+ |y| > 1/2,

Vq(x, y) =
q(2− q)

2

[
1

q2q
− |x|

(q − 1)2q−2

]
+

q

2q−1
(|y|2 − |x|2).

If q = 2, then we set Vq(x, y) = |y|2 − |x|2. Finally, when 2 < q < ∞, define Vq : S → R
by

Vq(x, y) =
∫ ∞

1

kq(r)v∞(x/r, y/r)dr +
Γ(q + 1)

2
(|y|2 − |x|2),

where, for r > 1,

kq(r) =
q(q − 1)r2

2

[
er

∫ ∞

r

e−s(s− 1)q−2ds− (r − 1)q−2

]
.

After some lengthy, but straightforward computations, we check that Vq(x, y) equals

{
Γ(q + 1)(|y|2 − |x|2)/2 if |x|+ |y| ≤ 1,

(|x|+ |y| − 1)q + q(1− |x|) ∫∞
|x|+|y| e

|x|+|y|−s(s− 1)q−1ds− Cq if |x|+ |y| > 1.

We shall need the following majorization property.

Lemma 2.3. For any 1 < q < ∞ we have

Vq(x, y) ≥ |y|q − Cq|x| for all (x, y) ∈ S. (2.2)

Proof. We may assume that q 6= 2, since for q = 2 the bound reduces to a trivial
estimate |y|2−|x|2 ≥ |y|2−1. Obviously, it suffices to prove the majorization for H = R.
Furthermore, since Vq satisfies the symmetry condition Vq(x, y) = Vq(−x, y) = Vq(x,−y)
for all (x, y) ∈ S, we may restrict ourselves to x, y ≥ 0. The next observation is that
Vq is linear along the line segments of slope −1 contained in S+ = [0, 1] × [0,∞), while
the right-hand side of (2.2) is convex along these segments. Consequently, it suffices to
verify the majorization at the boundary of the strip S+. The final reduction is that Vq is
concave along the segment [0, 1]×{0}; thus we will be done if we show (2.2) for x ∈ {0, 1}
and y ≥ 0. Let us consider the cases 1 < q < 2 and 2 < q < ∞ separately.

The case 1 < q < 2. If x = 0 and y ≤ 1/2, then both sides of (2.2) are equal. If
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x = 0 and y > 1/2, or x = 1, then (2.2) can be transformed into the equivalent estimate

2− q

2q+1
+

q

2q−1
y2 ≥ yq,

or

(y2)q/2 − (2−2)q/2 ≤ q

2
(2−2)q/2−1(y2 − 2−2),

which follows immediately from the mean value property.
The case 2 < q < ∞. Both sides of (2.2) are equal when x = 1. If x = 0 and |y| ≤ 1,

we have

Vq(x, y)− |y|q + Cq|x| = |y|2
(

Γ(q + 1)
2

− |y|q−2

)
≥ 0. (2.3)

Finally, if x = 0 and y > 1, the majorization can be rewritten in the form

κ(y) := (y − 1)qe−y + q

∫ ∞

y

e−s(s− 1)q−1ds− yqe−y − Γ(q + 1)
2

e−y ≥ 0.

We see that

κ′(y)ey = yq − (y − 1)q − qyq−1 +
Γ(q + 1)

2
→ −∞ as y →∞,

and

(κ′(y)ey)′ = q
(
yq−1 − (y − 1)q−1 − (q − 1)yq−2

) ≤ 0,

by the mean value property. Thus there is y0 ≥ 1 such that κ is increasing on [1, y0] and
decreasing on [y0,∞). Since κ → 0 as y →∞ and κ(1) ≥ 0, as we have already checked
in (2.3), the majorization follows. ¤

Now we are ready to establish Theorem 2.1.

Proof of (2.1). It suffices to show that ‖Y ‖q
q ≤ Cq‖X‖1 for any X, Y as in the

statement satisfying the additional condition ‖X‖∞ ≤ 1. Suppose first that 1 < q < 2
and fix t ≥ 0. We have E|Yt|2 ≤ E|Xt|2 ≤ 1, by Burkholder’s inequality (1.1) for p = 2
and the boundedness of X. Therefore, Lemma 2.2 and Fubini’s theorem imply

EVq(Xt, Yt) ≤ q(2− q)
2

∫ 1/2

0

rq−1Ev1(Xt/r, Yt/r)dr ≤ 0. (2.4)

To see that Fubini’s theorem is applicable, note that |v1(x, y)| ≤ c(|x| + |y| + 1) for all
x, y ∈ H and some absolute constant c; thus
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E
∫ 1/2

0

rq−1|v1(Xt/r, Yt/r)|dr ≤ c̃E(|Xt|+ |Yt|+ 1) < ∞,

where c̃ is another universal constant. Combining (2.4) with (2.2) yields E|Yt|q ≤ CqE|Xt|
and it suffices to let t →∞ to get the claim. The case 2 ≤ q < ∞ is dealt with in a similar
manner; the only thing which must be checked is that the kernel kq is nonnegative. But
this is evident: for r > 1,

er

∫ ∞

r

e−s(s− 1)q−2ds ≥ er

∫ ∞

r

e−s(r − 1)q−2ds = (r − 1)q−2.

This completes the proof. ¤

Remark 2.4. It is well known that in general Burkholder’s function (that is, the
special function leading to a given martingale inequality) is not unique, see e.g. [8].
Sometimes it is of interest to determine the optimal (that is, the least) of the possible
ones, at least for H = R. Though we shall not need this, we would like to mention here
that Vq is optimal in the real case when 2 ≤ q < ∞. When 1 < q < 2, the optimal
function is given by the following formula. First define vq : [0, 1]× [0,∞) → R by

vq(x, y) =

{
(−x + (q − 1)y)(x + y)q−1/(q − 1) + qx/(q − 1) if x + y ≤ 1,

(x + y)q − qxe−x−y
∫ x+y

1
essq−1ds if x + y > 1.

Then the optimal V q : [−1, 1]× R→ R is given by

V q(x, y) = vq

(
1− ∣∣2|x| − 1

∣∣, 2|y|)/2q − Cq|x|.

We omit the further details.

Sharpness of (2.1), 1 < q ≤ 2. If q = 2, the sharpness is trivial: simply take
X = Y ≡ 1. Suppose then, that q < 2. Let N ≥ 1 be a fixed integer and put δ = (4N)−1.
Consider a sequence ξ0, ξ1, . . . , ξ2N of independent random variables with the following
distributions: ξ0 ≡ δ,

P(ξn = δ) = 1− P(ξn = −nδ) =
n

n + 1
, n = 1, 2, . . . , 2N − 1,

and P(ξ2N = −1/2) = P(ξ2N = 1/2) = 1/2. Introduce the stopping time

τ = inf{n ≤ 2N : ξ0 + ξ1 + ξ2 + · · ·+ ξn ∈ {0, 1}}.

Define the processes X, Y by

Xt = ξ0 + ξ1 + · · ·+ ξτ∧btc and Yt = ξ0 − ξ1 + ξ2 − ξ3 + · · ·+ (−1)btcξτ∧btc,
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for t ≥ 0. Since the variables ξk are centered (for k > 0), both X and Y are martingales.
We have that ‖X‖∞ = 1, since X takes values in [0, 1] and P(X2N = 1) > 0. Moreover,
Y is differentially subordinate to X: we have [X, X]t = [Y, Y ]t for all t ≥ 0. Next,
‖Y ‖q

q = E|Y2N |q and the distribution of |Y2N | is given as follows. We have |Y2N | ∈
{2δ, 4δ, . . . , 1/2} and, for k = 1, 2, . . . , N − 1,

P(|Y2N | = 2kδ) = P(τ = 2k − 1 or τ = 2k)

= P(ξ1 > 0, ξ2 > 0, . . . , ξ2k−2 > 0, ξ2k−1 < 0)

+ P(ξ1 > 0, ξ2 > 0, . . . , ξ2k−1 > 0, ξ2k < 0)

=
1

2k(2k − 1)
+

1
2k(2k + 1)

=
2

(2k + 1)(2k − 1)
.

Finally, we have

P(|Y2N | = 1/2) = 1− P(|Y2N | < 1/2) =
1

2N − 1
.

Recalling that δ = (4N)−1, we see that

‖Y ‖q
q

‖X‖1‖X‖q−1
∞

=
E|Y2N |q
EX0

= 2δ
N−1∑

k=1

(2kδ)q

(2k + 1)δ · (2k − 1)δ
+

21−q

(4N − 2)δ
.

If we tend with N to ∞, the first term on the right converges to
∫ 1/2

0
sq−2ds =

21−q/(q − 1) and the second to 21−q; thus, if N is taken sufficiently large, then the ratio
‖Y ‖q

q/(‖X‖1‖X‖q−1
∞ ) can be made arbitrarily close to Cq. This proves the optimality of

this constant in (2.1). ¤

Sharpness of (2.1), q > 2. As previously, fix a large positive integer N and put
δ = (4N)−1. Consider independent random variables ξ0, ξ1, ξ2, . . . such that ξ0 ≡ 1/2,
P(ξ1 = −1/2) = P(ξ1 = 1/2) = 1/2 and, for k = 1, 2, . . . ,

P(ξ2k = δ) = 1− P(ξ2k = −1) =
1

1 + δ
,

P(ξ2k+1 = −δ) = 1− P(ξ2k+1 = 1− δ) = 1− δ.

Next, let τ = inf{n : ξ0 + ξ1 + · · ·+ ξn ∈ {−1, 1}} and define martingales X, Y by

Xt = ξ0 + ξ1 + · · ·+ ξτ∧btc and Yt = ξ0 − ξ1 + ξ2 − ξ3 + · · ·+ (−1)btcξτ∧btc,

for t ≥ 0. We easily verify that ‖X‖1 = ‖X‖∞ = 1 and that Y is differentially subor-
dinate to X. It is also easy to see that the martingale Y converges almost surely to a
random variable Y∞, which takes values in the set {0, 2δ, 4δ, . . .}. We compute that
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P(Y∞ = 0) = P(τ = 1 or τ = 2) = P(ξ1 > 0) + P(ξ1 < 0, ξ2 < 0) =
1 + 2δ

2(1 + δ)

and, for k = 1, 2, . . . ,

P(Y∞ = 2kδ) = P(τ = 2k + 1 or τ = 2k + 2) =
δ(1− δ)k−1

(1 + δ)k+1
.

Consequently, we have

‖Y ‖q
q

‖X‖1‖X‖q−1
∞

= EY q
∞ =

δ

(1− δ)(1 + δ)

∞∑

k=1

(2kδ)q

(
1− δ

1 + δ

)k

.

If we let N → ∞, then δ → 0 and the right-hand side converges to (1/2)
∫∞
0

sqe−sds =
Cq. This proves that the constant Cq cannot be replaced in (2.1) by a smaller number.

¤

3. Proof of Theorem 1.2.

Let m = mφ,ψ,µ,ν be a multiplier as in (1.4). By the results in [3], we may assume
that the Lévy measure ν satisfies the symmetry condition ν(B) = ν(−B) for all Borel
subsets B of Rd. More precisely, there are µ̄, ν̄, φ̄, ψ̄ such that ν̄ is symmetric and
mφ,ψ,µ,ν = mφ̄,ψ̄,µ̄,ν̄ . Assume in addition that |ν| = ν(Rd) is finite and nonzero, and
define ν̃ = ν/|ν|. Consider the independent random variables T−1, T−2, . . . , Z−1, Z−2, . . .

such that for each n = −1,−2, . . . , Tn has exponential distribution with parameter |ν| and
Zn takes values in Rd and has ν̃ as the distribution. Next, put Sn = −(T−1 +T−2 + · · ·+
Tn) for n = −1,−2, . . . and let

Xs,t =
∑

s<Sj≤t

Zj , Xs,t− =
∑

s<Sj<t

Zj , ∆Xs,t = Xs,t −Xs,t−,

for −∞ < s ≤ t ≤ 0. For a given f ∈ L∞(Rd), define its parabolic extension Uf to
(−∞, 0]× Rd by

Uf (s, x) = Ef(x + Xs,0).

Next, fix x ∈ Rd, s < 0 and f ∈ L∞(Rd). We introduce the processes F = (F x,s,f
t )t∈[s,0]

and G = (Gx,s,f,φ
t )t∈[s,0] by

Ft = Uf (t, x + Xs,t),

Gt =
∑

s<u≤t

[
∆Fu · φ(∆Xs,u)

]

−
∫ t

s

∫

Rd

[Uf (v, x + Xs,v− + z)− Uf (v, x + Xs,v−)
]
φ(z)ν(dz)dv.

(3.1)
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Note that the sum in the definition of G can be seen as the result of modulating of the
jumps of F by φ, and the subsequent double integral can be regarded as an appropriate
compensator. We have the following statement, proved in [2].

Lemma 3.1. For any fixed x, s, f as above, the processes F x,s,f , Gx,s,f,φ are martin-
gales with respect to (Ft)t∈[s,0]. Furthermore, if ‖φ‖∞ ≤ 1, then Gx,s,f,φ is differentially
subordinate to F x,s,f .

Now, fix s < 0 and define the operator S = Ss,φ,ν by the bilinear form

∫

Rd

Sf(x)g(x)dx =
∫

Rd

E
[
Gx,s,f,φ

0 g(x + Xs,0)
]
dx, (3.2)

where f, g ∈ C∞0 (Rd). We have the following fact, proved in [2]. It constitutes the
crucial part of the aforementioned representation of Fourier multipliers in terms of Lévy
processes.

Lemma 3.2. Let 1 < p < ∞ and d ≥ 2. The operator Ss,φ,ν is well defined and
extends to a bounded operator on Lp(Rd), which can be expressed as a Fourier multiplier
with the symbol

M(ξ) = Ms,φ,ν(ξ)

=
[
1− exp

(
2s

∫

Rd

(1− cos〈ξ, z〉)ν(dz)
)]∫

Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫
Rd(1− cos〈ξ, z〉)ν(dz)

if
∫
Rd(1− cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise.

We are ready to establish the following dual version of (1.8).

Theorem 3.3. Assume that 1 < q < ∞ and let m : Rd → C be a multiplier as in
Theorem 1.2. Then for any function f ∈ L1(Rd) ∩ L∞(Rd) we have

‖Tmf‖q
Lq(Rd)

≤ Cq‖f‖L1(Rd)‖f‖q−1
L∞(Rd)

. (3.3)

Proof. By homogeneity, it suffices to establish the bound for f bounded by 1.
Furthermore, we may and do assume that at least one of the measures µ, ν is nonzero.
It is convenient to split the reasoning into two parts.

Step 1: First we show the estimate for the multipliers of the form

Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫
Rd(1− cos〈ξ, z〉)ν(dz)

. (3.4)

Assume that 0 < ν(Rd) < ∞, so that the above machinery using Lévy processes is
applicable. Fix s < 0 and functions f, g ∈ C∞0 (Rd) such that f is bounded by 1; of
course, then the martingale F x,s,f also takes values in the unit ball of C. By Hölder’s
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inequality, Fubini’s theorem and (2.1), we have

∣∣∣∣
∫

Rd

E
[
Gx,s,f,φ

0 g(x + Xs,0)
]
dx

∣∣∣∣

≤
( ∫

Rd

E|Gx,s,f,φ
0 |qdx

)1/q( ∫

Rd

E|g(x + Xs,0)|pdx

)1/p

=
( ∫

Rd

E|Gx,s,f,φ
0 |qdx

)1/q

‖g‖Lp(Rd)

≤
(

Cq

∫

Rd

E|F x,s,f
0 |dx

)1/q

‖g‖Lp(Rd)

= (Cq‖f‖1)1/q‖g‖Lp(Rd). (3.5)

Plugging this into the definition of S, we obtain

‖Ss,φ,νf‖q
Lq(Rd)

≤ Cq‖f‖L1(Rd).

Now if we let s → −∞, then Ms,φ,ν converges pointwise to the multiplier Mφ,ν given
by (3.4). By Plancherel’s theorem, Ss,φ,νf → TMφ,ν

f in L2(Rd) and hence there is
a sequence (sn)∞n=1 converging to −∞ such that limn→∞ Ssn,φ,νf → TMφ,ν

f almost
everywhere. Thus Fatou’s lemma yields the desired bound for the multiplier TMφ,ν

.

Step 2: Now we deduce the result for the general multipliers as in (1.4) and drop
the assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy measure νε in polar
coordinates (r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)µ(dθ).

Here δε denotes Dirac measure on {ε}. Next, consider a multiplier Mε,φ,ψ,µ,ν as in
(3.4), in which the Lévy measure is 1{|x|>ε}ν + νε and the jump modulator is given by
1{|x|>ε}φ(x) + 1{|x|=ε}ψ(x/|x|). Note that this Lévy measure is finite and nonzero, at
least for sufficiently small ε. If we let ε → 0, we see that

∫

Rd

[1− cos〈ξ, x〉]ψ(x/|x|)νε(dx) =
∫

S
〈ξ, θ〉2φ(θ)

1− cos〈ξ, εθ〉
〈ξ, εθ〉2 µ(dθ)

→ 1
2

∫

S
〈ξ, θ〉2φ(θ)µ(dθ)

and, consequently, Mε,φ,ψ,µ,ν → mφ,ψ,µ,ν pointwise. This yields the claim by the similar
argument as above, using of Plancherel’s theorem and the passage to the subsequence
which converges almost everywhere. ¤

Now we shall apply duality to deduce (1.8).
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Proof of Theorem 1.2. Observe that the class (1.4) is closed under the com-
plex conjugation: we have m̄ = mφ̄,ψ̄,µ,ν . Fix f ∈ Lp(Rd) and put

g =
Tmf

|Tmf |1{x∈Rd:|Tmf(x)|≥1}.

By Hölder’s inequality and Parseval’s identity,

|{x ∈ Rd : |Tmf(x)| ≥ 1}| ≤
∫

Rd

Tmf(x)g(x)dx

=
∫

Rd

T̂mf(x)ĝ(x)dx

=
∫

Rd

f̂(x)T̂m̄g(x)dx

=
∫

Rd

f(x)Tm̄g(x)dx

≤ ‖f‖Lp(Rd)‖Tm̄g‖Lq(Rd)

≤ ‖f‖Lp(Rd)

(
Cq‖g‖L1(Rd)

)1/q
. (3.6)

Here in the latter passage we have used (3.3) and the fact that g takes values in the
unit ball of C. However, ‖g‖L1(Rd) = |{x ∈ Rd : |Tmf(x)| ≥ 1}| and C

p/q
q = Kq. This

completes the proof of the weak type estimate. ¤

In the remainder of this section we discuss the possibility of extending the as-
sertion of Theorem 1.2 to the vector-valued multipliers. For any bounded function
m = (m1,m2, . . . , mn) : Rd → Cn, we may define the associated Fourier multiplier acting
on complex valued functions on Rd by the formula Tmf = (Tm1f, Tm2f, . . . , Tmn

f). As
we shall see, the reasoning presented above can be easily modified to yield the following
statement.

Theorem 3.4. Let ν, µ be two measures on Rd and S, respectively, satisfying the
assumptions of Theorem 1.2. Assume further that φ, ψ are two Borel functions on Rd

taking values in the unit ball of Cn and let m : Rd → Cn be the associated symbol given
by (1.4). Then for any Borel function f : Rd → C we have

‖Tmf‖q
Lq(Rd;Cn)

≤ Cq‖f‖L1(Rd)‖f‖q−1
L∞(Rd)

, 1 < q < ∞,

and

‖Tmf‖Lp,∞(Rd;Cn) ≤ K1/p
p ‖f‖Lp(Rd), 1 < p < ∞.

Proof. Suppose first that ν is finite. For a given function f ∈ C∞0 (Rd) bounded
by 1, we introduce the martingales F and G = (G1, G2, . . . , Gn) by (3.1). It is not
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difficult to check that Lemma 3.1 is also valid in the vector-valued setting (repeat the
reasoning from [2]). Applying the representation (3.2) to each coordinate of G separately,
we obtain the associated multiplier S = (S1,S2, . . . ,Sn), where Sj has symbol Mφj ,ν

defined in (3.4). Now we repeat the reasoning from (3.5), with a vector-valued function
g : Rd → Cn (the expression Gx,s,f,φ

0 g(x + Xs,0) under the first integral is replaced with
the corresponding scalar product). An application of (2.1) gives

‖Ss,φ,νf‖q
Lq(Rd;Cn)

≤ Cq‖f‖L1(Rd),

which extends to general f by standard density arguments. The passage to general m

as in (1.4) is carried over in the same manner as in the scalar case; this yields the vector
version of Theorem 3.3. The duality argument explained in (3.6) extends to the vector-
valued setting with no difficulty (one only has to replace appropriate multiplications by
scalar products) and thus Theorem 1.2 holds true for the multipliers on Cn. ¤

4. Weak-type bounds for the Beurling-Ahlfors transform.

For the sake of clarity, we have decided to split this section into three parts.

4.1. Upper bounds.
Let us rewrite the symbol corresponding to the Beurling-Ahlfors transform in the

form

m(ξ) =
ξ2

|ξ|2 =
ξ2
1 − ξ2

2

ξ2
1 + ξ2

2

+ i
2ξ1ξ2

ξ2
1 + ξ2

2

.

The real and imaginary parts of m belong to the class (1.4). For instance, the choice
d = 2, µ = δ(1,0)+δ(0,1), ψ(1, 0) = −1 = −ψ(0, 1) and ν = 0 gives Tm = Re(BA); likewise,
d = 2, µ = δ(1/

√
2,1/

√
2) + δ(1/

√
2,−1/

√
2), ψ(1/

√
2, 1/

√
2) = 1 = −ψ(1/

√
2,−1/

√
2) and

ν = 0 leads to Tm = Im(BA). Analogously, it can be shown that (1/2)BA also has the
symbol as in (1.4). Thus Theorem 1.2 yields the following.

Theorem 4.1. For any 1 < p < ∞ and f ∈ Lp(C) we have

|{z ∈ C : |ReBAf(z)| ≥ 1}| ≤ Kp‖f‖p
Lp(C),

|{z ∈ C : | ImBAf(z)| ≥ 1}| ≤ Kp‖f‖p
Lp(C)

and

|{z ∈ C : |BAf(z)| ≥ 1}| ≤ 2Kp‖f‖p
Lp(C).

4.2. Lower bounds.
We consider the cases 1 ≤ p ≤ 2 and p ≥ 2 separately.

Theorem 4.2. For any 1 ≤ p ≤ 2 there is a real-valued function f ∈ Lp(C) which
satisfies
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|{z ∈ C : |BAf(z)| ≥ 1}| =
( ∫ ∞

0

|1− t|pe−tdt

)−1 ∫

C
|f(z)|pdz.

Proof. Consider the function w : C → C given by w(z) = z̄ log |z|21{|z|<1}. We
easily derive that the complex partial derivatives of w are

∂̄w(z) = (1 + log |z|2)1{|z|<1} and ∂w(z) =
(

z̄

|z|
)2

1{|z|<1}.

Put f = ∂w. Then, using the polar coordinates,

∫

C
|f(z)|pdz = 2π

∫ 1

0

|1 + log(r2)|prdr = π

∫ ∞

0

|1− t|pe−tdt

and, since BA f = ∂w (see (1.6)),

|{z ∈ C : |BAf(z)| ≥ 1}| = π.

This completes the proof. ¤

The corresponding lower bound in the case p ≥ 2 is much more interesting. We
obtain the same constant as in the martingale inequality (1.3) of Suh.

Theorem 4.3. For any p ≥ 2 and any c < pp−1/2 there is a function f on C such
that

|{z ∈ C : |BAf(z)| ≥ 1}| > c

∫

C
|f(z)|pdz − ε.

The further interesting fact is that the examples we are going to present are based
on appropriate extremal martingales X, Y in (1.3) (i.e., those which yield the sharpness
of this estimate).

Proof of Theorem 4.3. Fix a positive number δ, let α = (p−1)−1 and consider
the sequences (rk)k≥0, (ak)k≥1 given as follows. The term r0 < 1 will be specified later,
while for k ≥ 0,

rk+1 = (1 + δ)−k/(2α),

a2k+1 =
p− 1

p
(1 + δ)1−2k and a2k+2 =

p− 1
p

(1 + δ)2k+1.

Define w : C→ C by



760 A. Osȩkowski

w(z) =





a1r
2−2α
0 z̄−1 if |z| ≥ r0,

a2k+1z|z|−2α if r2k+1 ≤ |z| < r2k,

a2k+2z|z|2α if r2k+2 ≤ |z| < r2k+1

(4.1)

for k = 0, 1, 2, . . . . The detailed explanation of how we have discovered this function is
given in Subsection 4.3 below. We easily compute the complex derivatives

∂̄w(z) =





−a1r
2−2α
0 z̄−2 if |z| ≥ r0,

−αa2k+1z
2|z|−2α−2 if r2k+1 ≤ |z| < r2k,

αa2k+2z
2|z|2α−2 if r2k+2 ≤ |z| < r2k+1

and

∂w(z) =





0 if |z| ≥ r0,

(1− α)a2k+1|z|−2α if r2k+1 ≤ |z| < r2k,

(1 + α)a2k+2|z|2α if r2k+2 ≤ |z| < r2k+1,

k = 0, 1, 2, . . . . Note that for each k and each z ∈ C satisfying r2k+2 ≤ |z| < r2k+1 we
have

∂w(z) ≥ (1 + α)a2k+2r
2α
2k+2 = 1.

Consequently, we may write

|{z ∈ C : |∂w| ≥ 1}| ≥ π
∞∑

k=0

(
r2
2k+1 − r2

2k+2

)

= π
∞∑

k=0

[
(1 + δ)−2k/α − (1 + δ)−(2k+1)/α

]

= π
[
1 + (1 + δ)−1/α

]−1 → π/2

as δ → 0. We turn to the integral
∫
C |∂̄w|p. We have

∫

{|z|≥r0}
|∂̄w(z)|pdz = 2π

∫ ∞

r0

∣∣a1r
2−2α
0

∣∣pr1−2pdr =
π(p− 1)p−1(1 + δ)p

pp
r2−2αp
0

and (recall that r1 = 1)

∫

{r1≤|z|<r0}
|∂̄w(z)|pdz = 2π

∫ r0

1

|αa1|pr1−2αpdr

=
π(p− 1)(1 + δ)p

pp

(
1− r2−2αp

0

)
.
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Next, we easily check that 1/p ≤ |∂̄w| ≤ (1 + δ)/p on {|z| ≤ r1} and hence

π

pp
≤

∫

{|z|≤r1}
|∂w(z)|pdz ≤ π(1 + δ)p

pp
.

Combining the above three facts, we see that if we take r0 sufficiently large and δ suffi-
ciently small, then the integral

∫
C |∂̄w|p can be made arbitrarily close to π(p − 1)p−p +

πp−p = πp−p+1. Thus, for any ε > 0 we have

|{z ∈ C : |∂w| ≥ 1}|∫
C |∂̄w(z)|pdz

≥ pp−1

2
− ε

with the appropriate choice of the parameters r0 and δ. This completes the proof. ¤

Since (1/2)BA has the symbol belonging to (1.4), we get the following.

Corollary 4.4. For 1 < p < ∞, let κp be the best constant in (1.8). Then

κp ≥





( ∫ ∞

0

|1− t|pe−tdt

)−1

/2p if 1 < p < 2,

pp−1/2p+1 if p ≥ 2.

4.3. On the search of the function w in the case p ≥ 2.
Let us now sketch some steps which led us to the discovery of the function w above.

First we present a pair (X, Y ) of martingales which implies the sharpness of (1.3). Fix
ε ∈ (0, 1− p−1), a positive integer N and put δ = (1− p−1 − ε)/(2N). We assume that
N is large enough so that ε > (p − 3)δ and δ < (2p)−1. Consider the sequence (ξn)n≥0

of independent mean-zero random variables with the distributions uniquely determined
by the following assumptions:

( i ) ξ0 ≡ ε/2, ξ1 ∈ {−ε/2, ε/2},
( ii ) for n = 0, 1, 2, . . . , N ,

ξ2n+2 ∈
{

δ,−ε + 2nδ

p− 1

}
and ξ2n+3 ∈

{
− δ,

ε + 2(n + 1)δ
p− 1

− δ

}
,

(iii) we have

ξ2N+4 ∈ {−δ, p−1} and ξ2N+5 ∈ {δ,−p−1 + δ},

(iv) for n ≥ 2N + 6, the random variable ξn has the same distribution as ξn−4.

Next, introduce the stopping time τ by

τ =

{
1 if ξ1 = ε/2,

inf{n ≥ 2 : |ξn| 6= δ} if ξ1 = −ε/2
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and for any t ≥ 0, define

Xt = ξ0 + ξ1 + · · ·+ ξτ∧btc and Yt = ξ0 − ξ1 + ξ2 − · · ·+ (−1)btcξτ∧btc.

Clearly, Y is differentially subordinate to X. Moreover, it can be checked that the ratio
P(supt≥0 |Yt| ≥ 1)/‖X‖p

p = P(|Yτ | ≥ 1)/‖Xτ‖p
p can be made arbitrarily close to pp−1/2,

by choosing sufficiently small ε, δ and sufficiently large N . In fact, a careful analysis of
this example reveals the following further properties of the terminal variable (Xτ , Yτ ):

1◦ If τ = 1, then (Xτ , Yτ ) = (ε, 0).
2◦ If τ ≤ 2N + 3, then Yτ = (p− 2)|Xτ |.
3◦ If τ ∈ {2N + 4k, 2N + 4k + 1}, k = 1, 2, . . . , then Yτ ≥ 1 and |Xτ | = p−1.
4◦ If τ ∈ {2N+4k+2, 2N+4k+3}, k = 1, 2, . . . , then Yτ ≥ 1−2p−1 and Yτ = (p−2)|Xτ |.

These four conditions are the key in the construction of the extremal functions
announced in Theorem 4.3. Let us explain the connection now. First of all, it is clear
that the complex plane C should correspond to Ω and the pair (∂w, ∂w) should play
the role of the terminal value (Xτ , Yτ ). Motivated by the examples of Baernstein and
Montgomery-Smith [1], Iwaniec [11], Lehto [13] and others, it is natural to work with
the functions of the form

w(z) =

{
b0z|z|2β0 if |z| ≥ R0,

bnz|z|2βn if |z| ∈ [Rn, Rn−1), n = 1, 2, . . . ,

for some parameters (bn)n≥0, (βn)n≥0 and (Rn)n≥0 to be found. We derive that

∂w(z) =

{
b0β0z

2|z|2β0−2 if |z| > R0,

bnβnz2|z|2βn−2 if |z| ∈ (Rn, Rn−1), n = 1, 2, . . . ,

and

∂w(z) =

{
b0(β0 + 1)|z|2β0 if |z| > R0,

bn(βn + 1)|z|2βn if |z| ∈ (Rn, Rn−1), n = 1, 2, . . . .

A little thought and experimentation suggests that the set {z ∈ C : |z| ≥ R0} should
correspond to the event {τ = 1}; the annulus {z ∈ C : R0 ≤ |z| < R1} should be the
analogue of {τ ≤ 2N + 3}; finally, that {z ∈ C : Rn ≤ |z| < Rn−1}, n ≥ 2, should play
the role of the set {τ ∈ {2N + 4k, 2N + 4k + 1}} or {τ ∈ {2N + 4k + 2, 2N + 4k + 3}},
depending on the parity of n. Now we exploit the algebraic relations between Xτ and
Yτ described in 1◦–4◦. The first condition suggests the equality ∂w(z) = 0 for |z| > R0,
since Yτ vanishes on {τ = 1}. This yields β0 = −1. Next, the relation Yτ = (p− 2)|Xτ |,
valid on {τ ≤ 2N + 3} and {τ ∈ {2N + 4k + 2, 2N + 4k + 3}}, k = 1, 2, . . . , implies
βn = −(p − 1)−1 for odd n. On the remaining annuli, motivated by 3◦, we impose the
condition ∂w = p|∂w|, which yields βn = (p − 1)−1. The parameters bn and Rn are
determined by the condition w ∈ W 1,2(C,C) and the further requirements
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inf
Rn<|z|<Rn−1

∂w(z) = 1 for even n

and

inf
Rn<|z|<Rn−1

∂w(z) = 1− 2p−1 for odd n,

which are suggested by 3◦ and 4◦. This yields the function w given by (4.1).

Acknowledgments. I thank Rodrigo Bañuelos for several helpful suggestions.
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