Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers

By Hiro-o Tokunaga

(Received Apr. 5, 2012)
(Revised July 4, 2012)

Abstract

In this article, we make use of geometry of sections of elliptic surfaces and elementary arithmetic on the Mordell-Weil group in order to study existence problem of dihedral covers with given reduced curves as the branch loci. As an application, we give some examples of Zariski pairs $\left(B_{1}, B_{2}\right)$ for "conic-line arrangements" satisfying the following conditions: (i) $\operatorname{deg} B_{1}=\operatorname{deg} B_{2}=7$. (ii) Irreducible components of $B_{i}(i=1,2)$ are lines and conics. (iii) Singularities of $B_{i}(i=1,2)$ are nodes, tacnodes and ordinary triple points.

Introduction.

Let $\varphi: S \rightarrow \mathbb{P}^{1}$ be a relatively minimal elliptic surface over \mathbb{P}^{1} with a distinguished section O. Let $\mathrm{MW}(S)$ be the set of sections of S. It is well-known that one can define a structure of an abelian group on $\operatorname{MW}(S)$ with identity element O and that $\operatorname{MW}(S)$ is called the Mordell-Weil group of $\varphi: S \rightarrow \mathbb{P}^{1}$. We denote the group law by $\dot{+}$ and the multiplication-by- m map $(m \in \mathbb{Z})$ on $\operatorname{MW}(S)$ by $[m] s$ for $s \in \operatorname{MW}(S)$. Also we identify a section with its image on S.

Take $s_{1}, \ldots, s_{k} \in \operatorname{MW}(S)$. Then $\sum_{i}\left[a_{i}\right] s_{i}$ gives another element of $\operatorname{MW}(S)$ and its image on S gives rise to a new curve on S. In this article, we consider p-divisibility (p : odd prime) of $\sum_{i}\left[a_{i}\right] s_{i}$ in $\operatorname{MW}(S)$ and a reduced divisor on S given by the union of $\left[a_{i}\right] s_{i}$ $(i=1, \ldots, k)$ in order to study dihedral covers of the Hirzebruch surface Σ_{d} of degree d (d : even) or its blowing-ups $\widehat{\Sigma}_{d}$. As an application, we give examples of Zariski pairs of degree 7 for conic-line arrangements. This can be considered as a continuation of the author's previous articles $([\mathbf{2 2}],[\mathbf{2 3}],[\mathbf{2 4}],[\mathbf{2 5}])$. Before we go on to explain our results in detail, let us first recall the definition of a Zariski pair.

Definition 1. A pair $\left(B_{1}, B_{2}\right)$ of reduced plane curves $B_{i}(i=1,2)$ of degree n in $\mathbb{P}^{2}=\mathbb{P}^{2}(\mathbb{C})$ (the base field of this article is always the field of complex numbers \mathbb{C}) is called a Zariski pair of degree n if it satisfies the following condition:
(i) $B_{i}(i=1,2)$ are curves of degree n such that the combinatorial type (see Definition 2 below) of B_{1} is the same as that of B_{2}.
(ii) $\left(\mathbb{P}^{2}, B_{1}\right)$ is not homeomorphic to $\left(\mathbb{P}^{2}, B_{2}\right)$.

[^0]Definition $2([\mathbf{7}])$. The combinatorial type of a curve B is given by a 7 -tuple

$$
\left(\operatorname{Irr}(B), \operatorname{deg}, \operatorname{Sing}(B), \Sigma_{\mathrm{top}}(B), \sigma_{\mathrm{top}},\{B(P)\}_{P \in \operatorname{Sing}(B)},\left\{\beta_{P}\right\}_{P \in \operatorname{Sing}(B)}\right),
$$

where:

- $\operatorname{Irr}(B)$ is the set of irreducible components of B and deg : $\operatorname{Irr}(B) \rightarrow \mathbb{Z}_{\geq 0}$ assigns to each irreducible component its degree.
- $\operatorname{Sing}(B)$ is the set of singular points of $B, \Sigma_{\mathrm{top}}(B)$ is the set of topological types of $\operatorname{Sing}(B)$, and $\sigma_{\text {top }}: \operatorname{Sing}(B) \rightarrow \Sigma_{\text {top }}(B)$ assigns to each singular point its topological type.
- $B(P)$ is the set of local branches of B at $P \in \operatorname{Sing}(B)$, and $\beta_{P}: B(P) \rightarrow \operatorname{Irr}(B)$ assigns to each local branch the global irreducible component containing it.
We say that two curves B_{1} and B_{2} have the same combinatorial type (or simply the same combinatorics) if their data of combinatorial types

$$
\left(\operatorname{Irr}\left(B_{i}\right), \operatorname{deg}_{i}, \operatorname{Sing}\left(B_{i}\right), \Sigma_{\mathrm{top}}\left(B_{i}\right), \sigma_{\mathrm{top} i},\left\{\beta_{i, P}\right\}_{P \in \operatorname{Sing}\left(B_{i}\right)},\left\{B_{i}(P)\right\}_{P \in \operatorname{Sing}\left(B_{i}\right)}\right), \quad i=1,2,
$$

are equivalent, that is, if $\Sigma_{\text {top }}\left(B_{1}\right)=\Sigma_{\text {top }}\left(B_{2}\right)$, and there exist bijections $\varphi_{\text {Sing }}$: $\operatorname{Sing}\left(B_{1}\right) \rightarrow \operatorname{Sing}\left(B_{2}\right), \varphi_{P}: B_{1}(P) \rightarrow B_{2}\left(\varphi_{\text {Sing }}(P)\right)$ (restriction of a bijection of dual graphs) for each $P \in \operatorname{Sing}\left(B_{1}\right)$, and $\varphi_{\mathrm{Irr}}: \operatorname{Irr}\left(B_{1}\right) \rightarrow \operatorname{Irr}\left(B_{2}\right)$ such that $\operatorname{deg}_{2} \circ \varphi_{\mathrm{Irr}}=\operatorname{deg}_{1}$, $\sigma_{\mathrm{top}_{2}} \circ \varphi_{\text {Sing }}=\sigma_{\text {top }_{1}}$, and $\beta_{2, \varphi_{\text {Sing }}(P)} \circ \varphi_{P}=\varphi_{\text {Irr }} \circ \beta_{1, P}$.

Note that when $B_{i}(i=1,2)$ are irreducible, B_{1} and B_{2} have the same combinatorics if they have the same degree and the same local topological types for singularities. Also, for line arrangements, B_{1} and B_{2} have the same combinatorial type if they have the same set of incidence relations. The first example of a Zariski pair is given by Zariski ([30], [31]), which is as follows:

Example 3. Let $\left(B_{1}, B_{2}\right)$ be a pair of irreducible sextics such that (i) both of B_{1} and B_{2} have six cusps as their singularities, and (ii) the six cusp of B_{1} are on a conic, while no such conic for B_{2} exists. Then $\left(B_{1}, B_{2}\right)$ is a Zariski pair.

For these twenty years, Zariski pairs have been studied by many mathematicians and many examples have been found (see [7] and its reference). Among them, Zariski pairs for line arrangements of degrees 9 and 11 are considered by Artal Bartolo, Carmona Ruber, Cogolludo Agustin and Marco Buzunariz ([5], [6]), Rybnikov ([19]) and those for conic arrangements of degree 8 are considered by Namba and Tsuchihashi ([15]). In this article, we study Zariski pairs for conic-line arrangements.

Remark 4. Conic-line arrangements have been studied by M. Amram, M. Friedman, D. Garber, M. Teicher and A. M. Uludag. They put emphasis in studying properties of the fundamental group of the complements of conic-line arrangements ([1], [2], [3], [9]). No example of a Zariski pair, however, seems to be given.

As we explain in $[\mathbf{7}]$, the study of Zariski pairs, in general, consists of two parts:
(I) To give curves B_{1} and B_{2} having the same combinatorics, but some "different property," e.g., the location of singularities as in Example 3.
(II) To show $\left(\mathbb{P}^{2}, B_{1}\right)$ is not homeomorphic to $\left(\mathbb{P}^{2}, B_{2}\right)$.

One of our goals in this article is to consider a new method for (I). Namely we make use of elementary arithmetic and geometry of sections of the Mordell-Weil group of an elliptic surface. Let us explain how it will be done briefly.

We first recall that any elliptic surface $\varphi: S \rightarrow \mathbb{P}^{1}$ with section O is always obtained in the following way (see in Section 1, 1.2):

- Let Σ_{d} be the Hirzebruch surface of degree d (d : even).
- Let Δ_{0} be the section with $\Delta_{0}^{2}=-d$ and let T be a tri-section on Σ_{d} such that (i) T has at most simple singularities and (ii) $\Delta_{0} \cap T=\emptyset$.
- Let $f^{\prime}: S^{\prime} \rightarrow \Sigma_{d}$ be a double cover with branch locus $\Delta_{0}+T$.
- Let $\mu: S \rightarrow S^{\prime}$ be the canonical resolution. By our assumption, μ is the minimal resolution and we have the following double cover diagram as in Section 1.2:

where morphisms q and f are those introduced in Section 1.2.
Under these circumstances, S is an elliptic surface over \mathbb{P}^{1} such that
- the elliptic fibration $\varphi: S \rightarrow \mathbb{P}^{1}$ is induced by $\Sigma_{d} \rightarrow \mathbb{P}^{1}$ and
- φ has a section O which comes from Δ_{0}.

Let Δ_{1} and Δ_{2} be sections of Σ_{d} with $\Delta_{i}^{2}=d$ and $\Delta_{i} \cap \Delta_{0}=\emptyset(i=1,2)$. Let $\bar{\Delta}_{i}$ $(i=1,2)$ be the proper transforms of $\Delta_{i}(i=1,2)$ by q, respectively. We now suppose the following conditions are satisfied:

1. $f^{*}\left(\bar{\Delta}_{i}\right)$ consists of two sections $s_{\Delta_{i}}^{ \pm}$for each i.
2. $\widehat{\Sigma}_{d}$ can be blown down to \mathbb{P}^{2}, which we denote by $\bar{q}: \widehat{\Sigma}_{d} \rightarrow \mathbb{P}^{2}$.

Let $[2] s_{\Delta_{i}}^{+}$be the duplication of $s_{\Delta_{i}}^{+}$in $\operatorname{MW}(S)$ for $i=1,2$. In order to give two plane curves B_{1} and B_{2} with the same combinatorics, we make use of $\bar{q} \circ f\left(s_{\Delta_{i}}^{+}\right), \bar{q} \circ f\left([2] s_{\Delta_{i}}^{+}\right)$ $(i=1,2)$, and $\bar{q}\left(\Delta\left(S / \widehat{\Sigma}_{d}\right)\right)$, where $\Delta\left(S / \widehat{\Sigma}_{d}\right)$ is the branch locus of f. We apply this method to the case when $d=2$ to construct examples of Zariski pairs for conic-line arrangements of degree 7 (see Proposition 4.4). The author hopes that this method adds a new viewpoint to the study of elliptic surfaces and their Mordell-Weil groups.

As for (II), we also make use of theory of dihedral covers and p-divisibility of sections of an elliptic surface as in our previous papers ([23], [24], [25]). Our main results of this article along this line are Theorems 3.2 and 3.3

Now let us explain conic-line arrangements of degree 7 considered in this article.

Conic-line arrangement 1.

Let $C_{i}(i=1,2)$ be smooth conics and let $L_{j}(i=1,2,3,4)$ be lines as follows:
(i) Both L_{1} and L_{2} meet C_{1} transversely. We put $C_{1} \cap L_{1}=\left\{P_{1}, P_{2}\right\}, C_{1} \cap L_{2}=$ $\left\{P_{3}, P_{4}\right\}$.
(ii) C_{2} is tangent to C_{1} at two distinct points $\left\{Q_{1}, Q_{2}\right\}$ or at one point $\{Q\}$. We call the former type (a) and the latter type (b).
(iii) The tangent lines at $C_{1} \cap C_{2}$ do not pass through $L_{1} \cap L_{2}$.
(iv) C_{2} is tangent to L_{1} and L_{2}.
(v) L_{3} passes through P_{1} and P_{3}.
(vi) L_{4} passes through P_{1} and P_{4}.
(vii) Both L_{3} and L_{4} meet C_{2} transversely.

We put $B_{1}:=C_{1}+C_{2}+L_{1}+L_{2}+L_{3}$ and $B_{2}:=C_{1}+C_{2}+L_{1}+L_{2}+L_{4}$. Then B_{1} and B_{2} have the same combinatorics.

Conic-line arrangement 1 of type (a).
We now go on to explain Conic-line arrangement 2. It is obtained from Conic-line arrangement 1 by replacing two lines L_{1} and L_{2} by a smooth conic.

Conic-line arrangement 2.

Conic-line arrangement 2 of type (a).
Let C_{1}, C_{2} and C_{3} be smooth conics and L_{1} and L_{2} be lines as follows:
(i) C_{1} and C_{2} meet transversely. We put $C_{1} \cap C_{2}=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$.
(ii) C_{3} is tangent to both C_{1} and C_{2} such that the intersection multiplicities at intersection points are all even. By exchanging C_{1} and C_{2} if necessary, we may assume that there are three possibilities:
(a) $C_{3} \cap C_{1}=\left\{Q_{1}, Q_{2}\right\}, C_{3} \cap C_{2}=\left\{Q_{3}, Q_{4}\right\}$,
(b) $C_{3} \cap C_{1}=\left\{Q_{1}\right\}, C_{3} \cap C_{2}=\left\{Q_{2}, Q_{3}\right\}$ or
(c) $C_{3} \cap C_{1}=\left\{Q_{1}\right\}, C_{3} \cap C_{2}=\left\{Q_{2}\right\}$.
(iii) No tangent line at Q_{i} is bitangent to $C_{1}+C_{2}$.
(iv) L_{1} passes through P_{1} and P_{3}.
(v) L_{2} passes through P_{1} and P_{4}.
(vi) Both of L_{1} and L_{2} meet C_{3} transversely.

We put $B_{1}:=C_{1}+C_{2}+C_{3}+L_{1}, B_{2}:=C_{1}+C_{2}+C_{3}+L_{2}$. Then B_{1} and B_{2} have the same combinatorics.

Theorem 5. (i) Let $\left(B_{1}, B_{2}\right)$ be the pair of Conic-line arrangement 1. Then $\left(B_{1}, B_{2}\right)$ is a Zariski pair.
(ii) Let C_{1} and C_{2} be conics intersecting at four distinct points, P_{1}, P_{2}, P_{3} and P_{4} and let L_{0}, L_{1} and L_{2} be lines through $\left\{P_{1}, P_{2}\right\},\left\{P_{1}, P_{3}\right\}$ and $\left\{P_{1}, P_{4}\right\}$, respectively. Choose a point z_{o} on C_{1} such that the tangent line at z_{o} to C_{1} is not tangent to C_{2}. Then there exist just three conics $C_{3}^{(0)}, C_{3}^{(1)}$ and $C_{3}^{(2)}$ satisfying the following conditions:

- $z_{o} \in C_{3}^{(i)}$ for each i.
- Both C_{1} and C_{2} are tangent to $C_{3}^{(i)}$ for each i and the intersection multiplicities $I_{x}\left(C_{3}^{(i)}, C_{j}\right)$ are either 2 or 4 for $\forall x \in C_{3}^{(i)} \cap C_{j}(j=1,2)$.
- For $i, j=0,1,2(i \neq j)$, if both of $C_{1}+C_{2}+C_{3}^{(i)}+L_{i}$ and $C_{1}+C_{2}+C_{3}^{(i)}+L_{j}$ have the combinatoric for Conic-line arrangement 2 of the same type, then $\left(C_{1}+C_{2}+C_{3}^{(i)}+L_{i}, C_{1}+C_{2}+C_{3}^{(i)}+L_{j}\right)$ is a Zariski pair.

Remark 6. The triple $\left(C_{1}+C_{2}+C_{3}^{(i)}+L_{0}, C_{1}+C_{2}+C_{3}^{(i)}+L_{1}, C_{1}+C_{2}+C_{3}^{(i)}+L_{2}\right)$ may be a candidate for a Zariski triple. Our method in this article, however, does not work to see whether it is or not.

This article consists of 5 sections. In Section 1 and Section 2, we summarize some facts and results for theory of elliptic surfaces and $D_{2 n}$-covers, which we need to prove our theorem. We prove Theorem 3.2 in Section 3 and Theorem 3.3 in Section 4. In Section 5, we prove Theorem 5 and give another example of a Zariski pair by our method.

Acknowledgements. Part of this article was done during author's visit to Universidad de Zaragoza and Ruhr Universität Bochum in September 2011. He thanks for Professors E. Artal Bartolo, J.-I. Cogolludo and P. Heinzner for their hospitality. He also thanks the referee for his/her valuable comments.

1. Elliptic surfaces.

1.1. General facts.

We first summarize some facts from the theory of elliptic surfaces. As for details, we refer to $[\mathbf{1 1}],[\mathbf{1 3}],[\mathbf{1 4}],[\mathbf{2 0}]$.

In this article, the term, an elliptic surface, always means a smooth projective surface S equipped with a structure of a fiber space $\varphi: S \rightarrow C$ over a smooth projective curve,
C, as follows:
(i) There exists a non-empty finite subset, $\operatorname{Sing}(\varphi)$, of C such that $\varphi^{-1}(v)$ is a smooth curve of genus 1 for $v \in C \backslash \operatorname{Sing}(\varphi)$, while $\varphi^{-1}(v)$ is not a smooth curve of genus 1 for $v \in \operatorname{Sing}(\varphi)$.
(ii) φ has a section $O: C \rightarrow S$ (we identify O with its image).
(iii) There is no exceptional curve of the first kind in any fiber.

Under these circumstances, we first recall the basic results on invariants of S.
Proposition 1.1. Let $\varphi: S \rightarrow C$ be an elliptic surface as above. Then
(i) $\chi\left(\mathcal{O}_{S}\right)>0$,
(ii) $O \cdot O=-\chi\left(\mathcal{O}_{S}\right)$, and
(iii) $\operatorname{dim} H^{1}\left(S, \mathcal{O}_{S}\right)=$ genus of C. In particular, the irregularity of S is 0 if $C=\mathbb{P}^{1}$.

Proof. Since Sing $(\varphi) \neq \emptyset, \chi\left(\mathcal{O}_{S}\right)>0$ by [11, Theorem 12.2]. By [12, Proposition 2.3], we have (ii) and (iii).

For $v \in \operatorname{Sing}(\varphi)$, we put $F_{v}=\varphi^{-1}(v)$. We denote its irreducible decomposition by

$$
F_{v}=\Theta_{v, 0}+\sum_{i=1}^{m_{v}-1} a_{v, i} \Theta_{v, i}
$$

where m_{v} is the number of irreducible components of F_{v} and $\Theta_{v, 0}$ is the irreducible component with $\Theta_{v, 0} \cdot O=1$. We call $\Theta_{v, 0}$ the identity component. The types of singular fibers are classified by [11]. There are two types for irreducible singular fibers. One is a rational curve with a node, and the other is a rational curve with a cusp. The former is called of type I_{1}, while the latter is called of type II. The following dual graphs and figures explain types of reducible singular fibers. Every vertex in dual graphs and every smooth irreducible component of Type III and IV are rational curve with self-intersection number -2 .

We also define a subset of $\operatorname{Sing}(\varphi)$ by $\operatorname{Red}(\varphi):=\left\{v \in \operatorname{Sing}(\varphi) \mid F_{v}\right.$ is reducible $\}$. Let $\operatorname{MW}(S)$ be the set of sections of $\varphi: S \rightarrow C$. From our assumption, MW $(S) \neq \emptyset$. By regarding O as the zero element of $\mathrm{MW}(S)$ and considering fiberwise addition (see [11, Section 9] or [27, Section 1] for the addition on singular fibers), MW (S) becomes an abelian group. We denote its addition by $\dot{+}$.

Also for $k \in \mathbb{Z}$ and $s \in \operatorname{MW}(S)$, we write

$$
[k] s:=\left\{\begin{array}{l}
k \text {-times addition of } s \text { if } k \geq 0 \\
k \text {-times addition of the inverse of } s \text { if } k<0
\end{array}\right.
$$

The following two theorems are fundamental:
Theorem $1.2([\mathbf{2 0}$, Theorem 1.2]). Let $\operatorname{NS}(S)$ be the Néron-Severi group of S. Under our assumption, $\mathrm{NS}(S)$ is torsion free.
Type $\mathrm{I}_{b}(b \geq 1)$
Type I_{b}^{*} ($b \geq 0$:even)
Type $\mathrm{I}_{b}^{*}(b \geq 1$:odd $)$

Type IV*

Type III

Type IV

Theorem 1.3 ([20, Theorem 1.3]). Let T_{φ} be the subgroup of $\operatorname{NS}(S)$ generated by O, F and $\Theta_{v, i}\left(v \in \operatorname{Red}(\varphi), 1 \leq i \leq m_{v}-1\right)$. Under our assumption, there is a natural map $\tilde{\psi}: \mathrm{NS}(S) \rightarrow \mathrm{MW}(S)$ which induces an isomorphisms of groups

$$
\psi: \operatorname{NS}(S) / T_{\varphi} \cong \operatorname{MW}(S)
$$

In particular, $\mathrm{MW}(S)$ is a finitely generated abelian group.
In the following, rank MW (S) means that of the free part of MW (S).
Lemma 1.4 ([20, Lemma 5.1]). Let D be a divisor on S and put $s(D)=\psi(D)$. Then D is uniquely written in the form:

$$
D \approx s(D)+(d-1) O+n F+\sum_{v \in \operatorname{Red}(\varphi)} \sum_{i=1}^{m_{v}-1} b_{v, i} \Theta_{v, i}
$$

where \approx denotes the algebraic equivalence of divisors, and d, n and $b_{v, i}$ are integers defined as follows:

$$
d=D \cdot F \quad n=(d-1) \chi\left(\mathcal{O}_{S}\right)+O \cdot D-s(D) \cdot O,
$$

and

$$
\left(\begin{array}{c}
b_{v, 1} \\
\vdots \\
b_{v, m_{v}-1}
\end{array}\right)=A_{v}^{-1}\left(\begin{array}{c}
D \cdot \Theta_{v, 1}-s_{D} \cdot \Theta_{v, 1} \\
\vdots \\
D \cdot \Theta_{v, m_{v}-1}-s_{D} \cdot \Theta_{v, m_{v}-1}
\end{array}\right)
$$

Here A_{v} is the intersection matrix $\left(\Theta_{v, i} \cdot \Theta_{v, j}\right)_{1 \leq i, j \leq m_{v}-1}$.
For a proof, see [20].
Put $\mathrm{NS}_{\mathbb{Q}}:=\mathrm{NS}(S) \otimes \mathbb{Q}$ and $T_{\varphi, \mathbb{Q}}:=T_{\varphi} \otimes \mathbb{Q}$. Since $\operatorname{NS}(S)$ is torsion free under our setting, there is no harm in considering $\mathrm{NS}_{\mathbb{Q}}$. By using the intersection pairing, we have the orthogonal decomposition $\mathrm{NS}_{\mathbb{Q}}=T_{\varphi, \mathbb{Q}} \oplus\left(T_{\varphi, \mathbb{Q}}\right)^{\perp}$. In $[\mathbf{2 0}]$, the homomorphism $\phi: \operatorname{MW}(S) \rightarrow\left(T_{\varphi, \mathbb{Q}}\right)^{\perp} \subset \mathrm{NS}_{\mathbb{Q}}$ is defined as follows:

$$
\begin{aligned}
\phi: \operatorname{MW}(S) \ni s \mapsto & s-O-\left(s \cdot O+\chi\left(\mathcal{O}_{S}\right)\right) F \\
& +\sum_{v \in \operatorname{Red}(\varphi)}\left(\Theta_{v, 1}, \ldots, \Theta_{v, m_{v}-1}\right)\left(-A_{v}\right)^{-1}\left(\begin{array}{c}
s \cdot \Theta_{v, 1} \\
\vdots \\
s \cdot \Theta_{v, m_{v}-1}
\end{array}\right) \in\left(T_{\varphi, \mathbb{Q}}\right)^{\perp} .
\end{aligned}
$$

Also, in $[\mathbf{2 0}]$, a \mathbb{Q}-valued bilinear form \langle,$\rangle on \operatorname{MW}(S)$ is defined by $\left\langle s_{1}, s_{2}\right\rangle:=-\phi\left(s_{1}\right)$. $\phi\left(s_{2}\right)$, where the right hand side means the intersection pairing in $\mathrm{NS}_{\mathbb{Q}}$. Here are two basic properties of \langle,$\rangle :$

- $\langle s, s\rangle \geq 0$ for $\forall s \in \operatorname{MW}(S)$ and the equality holds if and only if s is an element of finite order in MW (S).
- An explicit formula for $\left\langle s_{1}, s_{2}\right\rangle\left(s_{1}, s_{2} \in \operatorname{MW}(S)\right)$ is given as follows:

$$
\left\langle s_{1}, s_{2}\right\rangle=\chi\left(\mathcal{O}_{S}\right)+s_{1} \cdot O+s_{2} \cdot O-s_{1} \cdot s_{2}-\sum_{v \in \operatorname{Red}(\varphi)} \operatorname{Contr}_{v}\left(s_{1}, s_{2}\right)
$$

where $\operatorname{Contr}_{v}\left(s_{1}, s_{2}\right)$ is given by

$$
\operatorname{Contr}_{v}\left(s_{1}, s_{2}\right)=\left(s_{1} \cdot \Theta_{v, 1}, \ldots, s_{1} \cdot \Theta_{v, m_{v}-1}\right)\left(-A_{v}\right)^{-1}\left(\begin{array}{c}
s_{2} \cdot \Theta_{v, 1} \\
\vdots \\
s_{2} \cdot \Theta_{v, m_{v}-1}
\end{array}\right)
$$

As for explicit values of $\operatorname{Contr}_{v}\left(s_{1}, s_{2}\right)$, we refer to $[\mathbf{2 0},(8.16)]$.

1.2. Double cover construction of an elliptic surface.

For details about this subsection, see [13, Lectures III and IV]. Let $\varphi: S \rightarrow C$ be an elliptic surface. By our assumption, the generic fiber of φ can be considered as an elliptic curve over $\mathbb{C}(C)$, the rational function field of C. The inverse morphism with respect to the group law induces an involution $[-1]_{\varphi}$ on S. Let $S /\left\langle[-1]_{\varphi}\right\rangle$ be the quotient by $[-1]_{\varphi}$. The quotient surface $S /\left\langle[-1]_{\varphi}\right\rangle$ is known to be smooth and $S /\left\langle[-1]_{\varphi}\right\rangle$ can be blown down to its relatively minimal model W over C satisfying the following condition:

Let us denote

- $f: S \rightarrow S /\left\langle[-1]_{\varphi}\right\rangle$: the quotient morphism,
- $q: S /\left\langle[-1]_{\varphi}\right\rangle \rightarrow W$: the blowing-down, and
- $S \xrightarrow{\mu} S^{\prime} \xrightarrow{f^{\prime}} W$: the Stein factorization of $q \circ f$.

Then we have:

1. The branch locus $\Delta_{f^{\prime}}$ of f^{\prime} consists of a section Δ_{0} and the trisection T such that its singularities are at most simple singularities (see [8, Chapter II, Section 8] for simple singularities and their notation) and $\Delta_{0} \cap T=\emptyset$.
2. $\Delta_{0}+T$ is 2-divisible in $\operatorname{Pic}(W)$.
3. The morphism μ is obtained by contracting all the irreducible components of singular fibers not meeting O.

Conversely, if Δ_{0} and T on W satisfy the above condition, we obtain an elliptic surface $\varphi: S \rightarrow \mathbb{P}^{1}$, as the canonical resolution of a double cover $f^{\prime}: S^{\prime} \rightarrow W$ with $\Delta_{f^{\prime}}=\Delta_{0}+T$, and the diagram (see [10] for the canonical resolution):

Here q is a composition of blowing-ups so that $\widehat{W}=S /\left\langle[-1]_{\varphi}\right\rangle$. Hence any elliptic surface is obtained as above. In the following, we call the diagram above the double cover diagram for S.

In the case of $C=\mathbb{P}^{1}, W$ is the Hirzebruch surface, Σ_{d}, of degree $d=2 \chi\left(\mathcal{O}_{S}\right)>0$ and $\Delta_{f^{\prime}}$ is of the form $\Delta_{0}+T$, where Δ_{0} is a section with $\Delta_{0}^{2}=-d$ and $T \sim 3\left(\Delta_{0}+d \mathfrak{f}\right)$, \mathfrak{f} being a fiber of the ruling $\Sigma_{d} \rightarrow \mathbb{P}^{1}$. Moreover, $\operatorname{dim} H^{1}\left(S, \mathcal{O}_{S}\right)=0$ by Propositon 1.1.

Remark 1.5. (i) For each $v \in \operatorname{Sing}(\varphi)$, the type of $\varphi^{-1}(v)$ is determined by the type of singularity of T on \mathfrak{f}_{v} and the relative position between \mathfrak{f}_{v} and T (see [14, Table 6.2]).
(ii) Note that the covering transformation, σ_{f}, of f coincides with $[-1]_{\varphi}$.

2. $D_{2 n}$-covers.

In this section, we summarize some facts on Galois covers. We refer to $[\mathbf{2 1}]$ and $[\mathbf{7}$, Section 3] for details.

We start with terminology on Galois covers. Let X and Y be normal projective varieties with finite morphism $\pi: X \rightarrow Y$. We say that X is a Galois cover of Y if the induced field extension $\mathbb{C}(X) / \mathbb{C}(Y)$ by π^{*} is Galois, where $\mathbb{C}(\bullet)$ means the rational function field of \bullet. Note that the Galois group acts on X such that Y is obtained as the quotient space with respect to this action (cf. [22, Section 1]). If the Galois group $\operatorname{Gal}(\mathbb{C}(X) / \mathbb{C}(Y))$ is isomorphic to a finite group G, we call X a G-cover of Y. The branch locus of $\pi: X \rightarrow Y$, which we denote by Δ_{π} or $\Delta(X / Y)$, is the subset of Y consisting of points y of Y, over which π is not locally isomorphic. It is well-known that Δ_{π} is an algebraic subset of pure codimension 1 if Y is smooth ([32]).

Suppose that Y is smooth. Let B be a reduced divisor on Y whose irreducible decomposition $B=\sum_{i=1}^{r} B_{i}$. A G-cover $\pi: X \rightarrow Y$ is said to be branched at $\sum_{i=1}^{r} e_{i} B_{i}$ if (i) $\Delta_{\pi}=B$ (here we identify B with its support) and (ii) the ramification index along B_{i} is e_{i} for each i, where the ramification index means the one along the smooth part of B_{i} for each i. Note that the study of G-covers is related to that of the fundamental group of the complement of B, since we have the following proposition (see [7] for details):

Proposition 2.1 ([7, Proposition 3.6]). Under the notation as above, let γ_{i} be a meridian around B_{i}, and $\left[\gamma_{i}\right]$ denote its class in the topological fundamental group $\pi_{1}\left(Y \backslash B, p_{o}\right)$. If there exists a G-cover $\pi: X \rightarrow Y$ branched at $e_{1} B_{1}+\cdots+e_{r} B_{r}$, then there exists a normal subgroup H_{π} of $\pi_{1}\left(Y \backslash B, p_{o}\right)$ such that:
(i) $\left[\gamma_{i}\right]^{e_{i}} \in H_{\pi},\left[\gamma_{i}\right]^{k} \notin H_{\pi},\left(1 \leq k \leq e_{i}-1\right)$, and
(ii) $\pi_{1}\left(Y \backslash B, p_{o}\right) / H_{\pi} \cong G$.

Conversely, if there exists a normal subgroup H of $\pi_{1}\left(Y \backslash B, p_{o}\right)$ satisfying the above two conditions for H_{π}, then there exists a G-cover $\pi_{H}: X_{H} \rightarrow Y$ branched at $e_{1} B_{1}+$ $\cdots+e_{r} B_{r}$.

Let $D_{2 n}$ be the dihedral group of order $2 n$. In order to present $D_{2 n}$, we use the notation

$$
D_{2 n}=\left\langle\sigma, \tau \mid \sigma^{2}=\tau^{n}=(\sigma \tau)^{2}=1\right\rangle
$$

By a $D_{2 n}$-cover, we mean a Galois cover whose Galois group is isomorphic to $D_{2 n}$. Given a $D_{2 n}$-cover, we obtain a double cover, $D(X / Y)$, canonically by considering the $\mathbb{C}(X)^{\tau}$ normalization of Y, where $\mathbb{C}(X)^{\tau}$ denotes the fixed field of the subgroup generated by τ. The variety X is an n-fold cyclic cover of $D(X / Y)$ and we denote these covering morphisms by $\beta_{1}(\pi): D(X / Y) \rightarrow Y$ and $\beta_{2}(\pi): X \rightarrow D(X / Y)$, respectively. Here are two propositions for later use.

Proposition 2.2. Let n be an odd integer ≥ 3. Let Z be a smooth double cover of a smooth projective variety Y. We denote its covering morphism and covering transformation by f and σ_{f}, respectively. Let D be an effective divisor on Z satisfying the following conditions:
(i) D and $\sigma_{f}^{*} D$ have no common component.
(ii) If $D=\sum_{i} a_{i} D_{i}$ denotes its irreducible decomposition, then $\operatorname{gcd}\left(a_{i}, n\right)=1$ for every i.
(iii) $D-\sigma_{f}^{*} D$ is n-divisible in $\operatorname{Pic}(Z)$.

Then there exists a $D_{2 n}$-cover $\pi: X \rightarrow Y$ such that
(a) $\beta_{2}(\pi)$ is branched at $n\left(\left(D+\sigma_{f}^{*} D\right)_{\text {red }}\right)$, and
(b) $D(X / Y)=Z$ and $f=\beta_{2}(\pi)$.

Proof. By [21, Proposition 0.4], our statements except the ramification indices are straightforward. As for the ramification indices, it follows from the last line of the proof of [21, Proposition 0.4].

Proposition 2.3. Let n be an odd integer ≥ 3. Let $\pi: X \rightarrow Y$ be a $D_{2 n}$-cover such that both Y and $D(X / Y)$ are smooth. Let $\sigma_{\beta_{1}}$ be the covering transform of $\beta_{1}(\pi)$. If $\beta_{2}(\pi)$ is branched at $n \mathcal{D}$ for some non-empty reduced divisor \mathcal{D} on $D(X / Y)$, then there exists an effective divisor D, whose irreducible decomposition is $\sum_{i} a_{i} D_{i}$ satisfying the following conditions:
(i) D and $\sigma_{\beta_{1}}^{*} D$ have no common component.
(ii) $D-\sigma_{\beta_{1}}^{*} D$ is n-divisible in $\operatorname{Pic}(D(X / Y))$.
(iii) For every $i, \operatorname{gcd}\left(a_{i}, n\right)=1$.
(iv) $\mathcal{D}=\left(D+\sigma_{\beta_{1}}^{*} D\right)_{\text {red }}$.

Proof. The statement essentially follows from Proposition 0.5 and its proof in [21]. We, however, give another simple proof based on the idea of versal $D_{2 n}$-covers (see [26], [28] for versal Galois covers). By [28], there exists an element $\xi \in \mathbb{C}(X)$ such that the action of $D_{2 n}$ on ξ is given in such a way that:

$$
\left\{\begin{array}{l}
\xi^{\sigma}=\frac{1}{\xi} \\
\xi^{\tau}=\zeta_{n} \xi, \quad \zeta_{n}=\exp \left(\frac{2 \pi i}{n}\right)
\end{array}\right.
$$

By using ξ, we have $\mathbb{C}(D(X / Y))=\mathbb{C}(Y)\left(\xi^{n}\right), \mathbb{C}(X)=\mathbb{C}(Y)(\xi)$. Put $\theta=\xi^{n} \in$ $\mathbb{C}(D(X / Y))$. Let $(\theta),(\theta)_{0}$ and $(\theta)_{\infty}$ be the divisor of θ, the zero and polar divisors of θ, respectively. Write $(\theta)_{0}$ in such a way that

$$
(\theta)_{0}=\sum_{i} a_{i} D_{i}+n D^{\prime}
$$

where D_{i} 's are irreducible divisor on $D(X / Y)$ with $1 \leq a_{i}<n$ and D^{\prime} is an effective divisor on $D(X / Y)$. Since σ induces $\sigma_{\beta_{1}}$ on $D(X / Y)$ and $\theta^{\sigma}\left(=\theta^{\sigma_{\beta_{1}}}\right)=1 / \theta$, we have equalities of divisors:

$$
\begin{aligned}
(\theta)_{\infty} & =\sum_{i} a_{i} \sigma_{\beta_{1}}^{*} D_{i}+n \sigma_{\beta_{1}}^{*} D^{\prime} \\
(\theta) & =(\varphi)_{0}-(\varphi)_{\infty} \\
& =\sum_{i} a_{i}\left(D_{i}-\sigma_{\beta_{1}}^{*} D_{i}\right)+n\left(D^{\prime}-\sigma_{\beta_{1}}^{*} D^{\prime}\right) .
\end{aligned}
$$

Now we put $D=\sum_{i} a_{i} D_{i}$. Since we may assume that $(\theta)_{0}$ and $(\theta)_{\infty}$ have no common components, our statements (i) and (ii) follow. Also as $\mathbb{C}(X)=\mathbb{C}(D(X / Y))(\sqrt[n]{\theta})$ and X is the $\mathbb{C}(X)$-normalization of $D(X / Y)$ and the ramification index along D_{i} is $n / \operatorname{gcd}\left(a_{i}, n\right)$, our statements (iii) and (iv) follow.

Corollary 2.4. Under the same assumption of Proposition 2.3, if D is an irreducible divisor on Y such that $\left(\beta_{1}(\pi)\right)^{-1}(D) \subset \Delta_{\beta_{2}(\pi)}$, then $\beta_{1}(\pi)^{*} D$ consists of two
irreducible components. In particular, in the case of $\operatorname{dim} Y=2$, the intersection multiplicity at $x, I_{x}\left(D, \Delta_{\beta_{1}(\pi)}\right)$, is even for $\forall x \in D \cap \Delta_{\beta_{1}(\pi)}$.

Proof. The first statement is immediate from Proposition 2.3. For the second statement, let \widetilde{D} be the normalization of D. If there exists $x \in D \cap \Delta_{\beta_{1}(\pi)}$ such that $I_{x}\left(D, \Delta_{\beta_{1}(\pi)}\right)$ is odd, $\beta_{1}(\pi)$ induces a double cover of \widetilde{D} with non-empty branch set. This means $\beta_{1}(\pi)^{*} D$ is irreducible.

In [25], we introduce a notion of an elliptic $D_{2 n}$-cover, whose definition is as follows:
Definition 2.5. A $D_{2 n}$-cover $\pi: X \rightarrow Y$ is called an elliptic $D_{2 n}$-cover if it satisfies the following condition:

- $D(X / Y)$ has a structure of an elliptic fiber space $\varphi: D(X / Y) \rightarrow S$ over a projective variety S with a section $O: S \rightarrow D(X / Y)$.
- On the generic fiber $D(X / Y)_{\eta}$, the group law is given by regarding O as the zero element. The involution on $D(X / Y)_{\eta}$ induced by the covering transformation $\sigma_{\beta_{1}(\pi)}$ coincides with the inversion with respect to the group law on $D(X / Y)_{\eta}$.

In this article, we consider elliptic $D_{2 n}$-covers as follows:
(i) $D(X / Y)$ has an elliptic fibration $\varphi: D(X / Y) \rightarrow \mathbb{P}^{1}$.
(ii) $\beta_{1}(\pi): D(X / Y) \rightarrow Y$ coincides with $f: D(X / Y) \rightarrow \widehat{\Sigma}_{d}$ in the double cover diagram for $\varphi: D(X / Y) \rightarrow \mathbb{P}^{1}$.

3. Elliptic $D_{2 p}$-covers and p-divisibility of sections.

Let $\varphi: S \rightarrow \mathbb{P}^{1}$ be an elliptic surface over \mathbb{P}^{1}. Let $f: S \rightarrow \widehat{\Sigma}_{d}$ be the double cover appearing in the double cover diagram (1.1) for S.

We first note that, by its definition, any elliptic $D_{2 p}$-cover (p : odd prime) $\pi_{p}: X_{p} \rightarrow$ $\widehat{\Sigma}_{d}$ satisfies the following conditions:

- $S=D\left(X_{p} / \widehat{\Sigma}_{d}\right)$ and $\beta_{1}\left(\pi_{p}\right)=f$.
- The branch locus of $\beta_{2}\left(\pi_{p}\right)$ is of the form

$$
\mathcal{D}+\sigma_{f}^{*} \mathcal{D}+\Xi+\sigma_{f}^{*} \Xi
$$

where

1. all irreducible components of \mathcal{D} are horizontal with respect to the elliptic fibration and there is no common component between \mathcal{D} and $\sigma_{f}^{*} \mathcal{D}$, and
2. all irreducible component of Ξ are vertical and there is no common component between Ξ and $\sigma_{f}^{*} \Xi$.

Remark 3.1. (i) By Remark 1.5 (ii) and [11, Theorem 9.1], the action of σ_{f} on irreducible components of singular fibers is described as in the table below. We here use the labeling for irreducible components introduced in Section 1.1. Hence possible irreducible components of Ξ can be determined.
(ii) Under the above notation, the case when $\mathcal{D}=\emptyset$ (resp. $=$ a section) is considered in the author's previous works ([21], [22], [23], [24]) (resp. [25]).

Type of a singular fiber	The action on irreducible component
I_{n}	$\Theta_{0} \mapsto \Theta_{0}$
	$\Theta_{i} \mapsto \Theta_{n-i} \quad i=1, \ldots, n-1$
$\mathrm{I}_{n}^{*}(n$: even $)$	$\Theta_{i} \mapsto \Theta_{i} \quad \forall i$
	$\Theta_{i j} \mapsto \Theta_{i j} \quad \forall i, j$
$\mathrm{I}_{n}^{*}(n:$ odd $)$	$\Theta_{i} \mapsto \Theta_{i} \quad i \neq 1,3$
	$\Theta_{1} \mapsto \Theta_{3} \quad \Theta_{3} \mapsto \Theta_{1}$
IV	$\Theta_{i} \mapsto \Theta_{i} \forall i$
	$\Theta_{0} \mapsto \Theta_{0}$
	$\Theta_{1} \mapsto \Theta_{2} \quad \Theta_{2} \mapsto \Theta_{1}$
IV *	$\Theta_{i} \mapsto \Theta_{i} \quad i=0,3,6$
	$\Theta_{1} \mapsto \Theta_{2} \quad \Theta_{2} \mapsto \Theta_{1}$
	$\Theta_{4} \mapsto \Theta_{5} \quad \Theta_{5} \mapsto \Theta_{4}$

In the following, we always assume that
(*) $\mathcal{D} \neq \emptyset$.
The proposition below, which is a generalization of [25, Propositions 4.1 and 4.2], plays an important role in this article:

Theorem 3.2. Let p be an odd prime. Let C_{1}, \ldots, C_{r} be irreducible horizontal divisors on S such that $\sum_{i=1}^{r} C_{i}$ and $\sum_{i=1}^{r} \sigma_{f}^{*} C_{i}$ have no common component. Then (I) and (II) in the below are equivalent:
(I) Put $\mathcal{C}=\sum_{i=1}^{r} C_{i}$. There exists an elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ such that

- $D\left(X_{p} / \widehat{\Sigma}_{d}\right)=S$ and $\beta_{1}\left(\pi_{p}\right)=f$.
- $\beta_{2}\left(\pi_{p}\right)$ is branched at

$$
p\left(\left(\mathcal{C}+\sigma_{f}^{*} \mathcal{C}+\Xi+\sigma_{f}^{*} \Xi\right)_{\mathrm{red}}\right)
$$

for some effective divsior Ξ on S such that irreducible components of Ξ are all vertical and there is no common component between Ξ and $\sigma_{f}^{*} \Xi$.
(II) Let $s\left(C_{i}\right)=\tilde{\psi}\left(C_{i}\right)(i=1, \ldots, r)$. There exist integers $a_{i}(i=1, \ldots, r)$ such that

- $1 \leq a_{i}<p(i=1, \ldots, r)$ and
- $\sum_{i=1}^{r}\left[a_{i}\right] s\left(C_{i}\right)$ is p-divisible in $\operatorname{MW}(S)$, i.e.,

$$
\sum_{i=1}^{r}\left[a_{i}\right] s\left(C_{i}\right) \in[p] \operatorname{MW}(S):=\{[p] s \mid s \in \operatorname{MW}(S)\} .
$$

Proof. (I) \Rightarrow (II) Let D be the effective divisor in Proposition 2.3. We put $D=D_{\text {hor }}+D_{\text {ver }}$, where the irreducible components of $D_{\text {hor }}$ are all horizontal, while
those of $D_{\text {ver }}$ are all in fibers of φ. By Proposition 2.3 (iv), $\left(D_{\text {hor }}+\sigma_{f}^{*} D_{\mathrm{hor}}\right)_{\text {red }}=$ $\sum_{i=1}^{r} C_{i}+\sum_{i=1}^{r} \sigma_{f}^{*} C_{i}$.

Claim. We may assume that $D_{\text {hor }}$ is of the form $D_{\text {hor }}=\sum_{i=1}^{r} a_{i} C_{i}\left(0 \leq a_{i}<p\right)$.
Proof of Claim. If $\sigma_{f}^{*} C_{i}$ is an irreducible component of D_{hor}, then we consider

$$
D_{\mathrm{hor}}^{\prime}:=D_{\mathrm{hor}}+\left(p-a_{i}\right) C_{i}-a_{i} \sigma_{f}^{*} C_{i}
$$

and put $D^{\prime}=D_{\text {hor }}^{\prime}+D_{\text {ver }}$. Then we infer that D^{\prime} also satisfies all four conditions in Proposition 2.3. After repeating this process finitely many times, we can choose $D_{\text {hor }}$ as in Claim.

We first recall that the irregularity of S is 0 by Proposition 1.1, since we always assume that $\operatorname{Sing}(\varphi) \neq \emptyset$ and the base curve is \mathbb{P}^{1}. Hence linear equivalence coincides with algebraic equivalence on S. By Claim and Proposition 2.3 (iii), there exists $\mathcal{L} \in \operatorname{Pic}(S)$ such that

$$
\sum_{i=1}^{r} a_{i}\left(C_{i}-\sigma_{f}^{*} C_{i}\right)+D_{\mathrm{ver}}-\sigma_{f}^{*} D_{\mathrm{ver}} \sim p \mathcal{L}
$$

where \sim means linear equivalence of divisors. This implies

$$
\tilde{\psi}\left(\sum_{i=1}^{r} a_{i}\left(C_{i}-\sigma_{f}^{*} C_{i}\right)\right)=[p] \tilde{\psi}(\mathcal{L}) \quad \text { in } \operatorname{MW}(S) .
$$

As $\tilde{\psi}\left(\sigma_{f}^{*} C_{i}\right)=[-1] s\left(C_{i}\right)$, we have

$$
\tilde{\psi}\left(\sum_{i=1}^{r} a_{i}\left(C_{i}-\sigma_{f}^{*} C_{i}\right)\right)=[2]\left(\left[a_{1}\right] s\left(C_{1}\right) \dot{+} \cdots \dot{+}\left[a_{r}\right] s\left(C_{r}\right)\right) .
$$

Since p is an odd prime, we infer that $\left[a_{1}\right] s\left(C_{1}\right) \dot{+} \cdots \dot{+}\left[a_{r}\right] s\left(C_{r}\right) \in[p] \operatorname{MW}(S)$.
$(\mathrm{II}) \Rightarrow(\mathrm{I})$ Our proof is similar to that of [25, Proposition 4.2]. By Lemma 1.4, we have

$$
C_{i} \sim s\left(C_{i}\right)+\left(d_{i}-1\right) O+n_{i} F+\sum_{v \in \operatorname{Red}(\varphi)} \sum_{j=1}^{m_{v}-1} b_{v, j}^{(i)} \Theta_{v, i}
$$

This implies

$$
\sum_{i=1}^{r} a_{i} C_{i} \sim \sum_{i=1}^{r} a_{i} s\left(C_{i}\right)+\sum_{i=1}^{r} a_{i}\left(\left(d_{i}-1\right) O+n_{i} F+\sum_{v \in \operatorname{Red}(\varphi)} \sum_{j=1}^{m_{v}-1} b_{v, j}^{(i)} \Theta_{v, j}\right)
$$

By our assumption, there exists s_{o} such that $\sum_{i=1}^{r}\left[a_{i}\right] s\left(C_{i}\right)=[p] s_{o}$ in MW (S). By Theorem 1.3, this implies that

$$
\sum_{i=1}^{r} a_{i} s\left(C_{i}\right) \sim p s_{o}+\left(-p+\sum_{i=1}^{r} a_{i}\right) O+n_{o} F+\sum_{v \in \operatorname{Red}(\varphi)} \sum_{j=1}^{m_{v}-1} c_{v, j} \Theta_{v, j}
$$

for some integers $n_{o}, c_{v, j}$. Hence we have

$$
\begin{aligned}
\sum_{i=1}^{r} a_{i} C_{i} \sim & p s_{o}+\left(-p+\sum_{i=1}^{r} a_{i} d_{i}\right) O+\left(n_{o}+\sum_{i} a_{i} n_{i}\right) F \\
& +\sum_{v \in \operatorname{Red}(\varphi)} \sum_{j=1}^{m_{v}-1}\left(c_{v, j}+\sum_{i=1}^{r} a_{i} b_{v, j}^{(i)}\right) \Theta_{v, j}
\end{aligned}
$$

and put

$$
D^{\prime}:=\sum_{i=1}^{r} a_{i} C_{i}+\sum_{v \in \operatorname{Red}(\varphi)} \sum_{j=1}^{m_{v}-1}\left(c_{v, j}+\sum_{i=1}^{r} a_{i} b_{v, j}^{(i)}\right) \sigma_{f}^{*} \Theta_{v, j} .
$$

Then we have

$$
D^{\prime}-\sigma_{f}^{*} D^{\prime} \sim p\left(s_{o}-\sigma_{f}^{*} s_{o}\right)
$$

The left hand side of the above equivalence contains some redundancy in the sum for $\Theta_{v, i}$ and $\sigma_{f}^{*} \Theta_{v, i}$. By taking the action of σ_{f} on $\Theta_{v, i}$'s (see Remark 1.5) into account, we can find divisors $D=\sum_{i=1}^{r} a_{i} C_{i}+\sum_{j} k_{j} \Xi_{j}$ and Ξ^{\prime} on S such that
(i) all Ξ_{j} and all irreducible components of Ξ^{\prime} are those in fibers not meeting O,
(ii) D and $\sigma_{f}^{*} D$ have no common component,
(iii) $1 \leq k_{j}<p$, and
(iv) $D^{\prime}-\sigma_{f}^{*} D^{\prime}=D-\sigma_{f}^{*} D+p \Xi^{\prime}$.

Now we easily infer that D satisfies the three conditions in Proposition 2.2 for p.
 sections $s_{1}, s_{2} \in \operatorname{MW}(S)$ such that $s_{i} \notin[p] \operatorname{MW}(S)(i=1,2)$. There exists an elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ such that the horizontal part of $\Delta_{\beta_{2}\left(\pi_{p}\right)}$ is

$$
s_{1}+s_{2}+\sigma_{f}^{*}\left(s_{1}+s_{2}\right)
$$

if and only if the images $\bar{s}_{i}(i=1,2)$ of $s_{i}(i=1,2)$ in $\mathrm{MW}(S) \otimes \mathbb{Z} / p \mathbb{Z}$ are linearly dependent over $\mathbb{Z} / p \mathbb{Z}$.

Proof. Since $p \quad$ 价 $\mathrm{MW}_{\text {tor }}$), we have $\operatorname{MW}(S) /[p] \operatorname{MW}(S) \cong \operatorname{MW}(S) \otimes \mathbb{Z} / p \mathbb{Z} \cong$ $(\mathbb{Z} / p \mathbb{Z})^{\oplus r}$. By our assumption, $\bar{s}_{i} \neq 0(i=1,2)$. If \bar{s}_{1} and \bar{s}_{2} are linearly dependent, we
have $\bar{s}_{1}+c \bar{s}_{2}=0$ for some non-zero $c \in \mathbb{Z} / p \mathbb{Z}$. This means that there exists an integer $a(0<a<p)$ such that $s_{1} \dot{+}[a] s_{2} \in[p] \operatorname{MW}(S)$. Hence the existence of $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ as above follows from Theorem 3.2. Conversely if $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ exists, then $s_{1} \dot{+}[a] s_{2} \in$ $[p] \operatorname{MW}(S)$ for some integer $a(0<a<p)$ by Thorem 3.2. This shows that \bar{s}_{1} and \bar{s}_{2} are linearly dependent.

4. Applications.

Let $\varphi: S \rightarrow \mathbb{P}^{1}$ be an elliptic surface and we keep our notation for the double cover diagram for S in Section 1.2. We fix an isomorphism $\operatorname{MW}(S) \cong M_{o} \oplus \mathrm{MW}_{\text {tor }}, M_{o} \cong \mathbb{Z}^{\oplus r}$, $r=\operatorname{rank} \mathrm{MW}(S)$. Let us start with the following proposition:

Proposition 4.1. Choose $s \in M_{o}$ such that $M_{o} / \mathbb{Z} s$ is free. For any finite number of odd prime numbers p_{1}, \ldots, p_{l}, there exists a section $s_{p_{1}, \ldots, p_{l}}$ satisfying the following conditions:
(i) $\left\langle s_{p_{1}, \ldots, p_{l}}, s_{p_{1}, \ldots, p_{l}}\right\rangle=\left(p_{1} \cdots p_{l}\right)^{2}\langle s, s\rangle$.
(ii) For any odd prime $p \notin\left\{p_{1}, \ldots, p_{l}\right\}$, there exists an elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ such that

- $D\left(X_{p} / \widehat{\Sigma}_{d}\right)=S, \beta_{1}\left(\pi_{p}\right)=f$, and
- $\beta_{2}\left(\pi_{p}\right)$ is branched at $p\left(s+s_{p_{1}, \ldots, p_{l}}+\sigma_{f}^{*}\left(s+s_{p_{1}, \ldots, p_{l}}\right)+\Xi_{o}\right)$, where all irreducible components of Ξ_{o} are those of the singular fibers not meeting O.
(iii) For $p \in\left\{p_{1}, \ldots, p_{l}\right\}$, there exists no elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ as in (ii)
(iv) $\left\{s_{p_{1}, \ldots, p_{l}},[-1] s_{p_{1}, \ldots, p_{l}}\right\}$ is unique up to torsion elements.

Proof. Define $s_{p_{1}, \ldots, p_{l}}:=\left[\Pi_{i=1}^{r} p_{i}\right] s$. By Theorem 3.2, our statements (i), (ii) and (iii) are immediate. Suppose that $s^{\prime} \in \mathrm{MW}(S)$ satisfies the statements (i), (ii) and (iii). Put $s^{\prime}=s_{o}^{\prime}+t_{o}^{\prime}, s_{o}^{\prime} \in M_{o}, t_{o}^{\prime} \in \mathrm{MW}_{\text {tor }}$. Since $M_{o} / \mathbb{Z} s$ is free, we can choose a free basis of M_{o} such that $s_{1}=s, \ldots, s_{r}, r=\operatorname{rank} \operatorname{MW}(S)$. By Theorem 3.2, for $p \notin\left\{p_{1}, \ldots, p_{l}\right\}$, there exists an integer $a_{1}\left(1 \leq a_{1}, a_{2}<p\right)$ such that

$$
\left[a_{1}\right] s \dot{+}\left[a_{2}\right] s_{o}^{\prime} \equiv 0 \bmod p M_{o}
$$

Hence we infer that $s_{o}^{\prime}=\left[b_{1}\right] s_{1}+p\left(\sum_{i=2}^{r}\left[b_{i}\right] s_{i}\right)$ for some integers b_{1}, \ldots, b_{r}. Since p is any odd prime $\notin\left\{p_{1}, \ldots, p_{l}\right\}$, we infer $b_{i}=0(2 \leq i \leq r)$. Thus

$$
\left\langle s_{o}^{\prime}, s_{o}^{\prime}\right\rangle=b_{1}^{2}\langle s, s\rangle=\left(p_{1} \cdots p_{l}\right)^{2}\langle s, s\rangle .
$$

Since $\langle s, s\rangle \neq 0$ by the basic properties of \langle,$\rangle (see Section 1), we have b_{1}= \pm p_{1} \cdots p_{l}$. Hence s^{\prime} is equal to $[\pm 1] s_{p_{1}, \ldots, p_{l}}$ up to torsion elements.

The following theorem is essential to prove Theorem 5.
Theorem 4.2. Choose $s_{1}, s_{2} \in M_{o}$ so that s_{1} and s_{2} are a part of a basis of $\mathbb{Z}^{\oplus r}$, i.e., $M_{o} / \mathbb{Z} s_{1}+\mathbb{Z} s_{2}$ is free of rank $r-2$. Put $s_{3}:=[2] s_{1}$. For any odd prime p with p 狽 $\left(\mathrm{MW}_{\text {tor }}\right)$, we have the following:

- There exists an elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ such that the horizontal part of the branch locus of $\beta_{2}\left(\pi_{p}\right)$ is $s_{1}+s_{3}+\sigma_{f}^{*}\left(s_{1}+s_{3}\right)$.
- There exists no elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{d}$ such that the horizontal part of the branch locus of $\beta_{2}\left(\pi_{p}\right)$ is $s_{2}+s_{3}+\sigma_{f}^{*}\left(s_{2}+s_{3}\right)$.

Proof. We apply Theorem 3.3 to s_{1}, s_{3} and s_{2}, s_{3}.
By Proposition 2.1 and Theorem 4.2, we have:
Corollary 4.3. Let T be the trisection on Σ_{d} appearing in the double cover diagram for S. Put $\Delta_{i}:=q \circ f\left(s_{i}\right)(i=1,2,3)$. Then there exists a $D_{2 p}$-cover of Σ_{d} branched at $2\left(\Delta_{0}+T\right)+p\left(\Delta_{1}+\Delta_{3}\right)$, while there exists no $D_{2 p}$-cover of Σ_{d} branched at $2\left(\Delta_{0}+T\right)+p\left(\Delta_{2}+\Delta_{3}\right)$. In particular, there exists no homeomorphism $h:\left(\Sigma_{d}, \Delta_{0}+\Delta_{1}+\Delta_{3}+T\right) \rightarrow\left(\Sigma_{d}, \Delta_{0}+\Delta_{2}+\Delta_{3}+T\right)$ such that $f\left(\Delta_{0}\right)=\Delta_{0}$ and $f(T)=T$.

Proof. Since every vertical component of $\Delta_{\beta_{2}\left(\pi_{p}\right)}$ is mapped to a singular point of T, our statement for $D_{2 p}$-covers follows. The last statement follows from Proposition 2.1.

We end this section by considering the case when S is a rational elliptic surface. In this case, as $\chi\left(\mathcal{O}_{S}\right)=1$, the ruled surface in the the double cover diagram (1.1) for S is Σ_{2}. Hence we have the following diagram:

Write $q:=q_{1} \circ \cdots \circ q_{r}: \widehat{\Sigma}_{2}=\Sigma_{2}^{(r)} \rightarrow \cdots \rightarrow \Sigma_{2}^{(1)} \rightarrow \Sigma_{2}^{(0)}=\Sigma_{2}$, where q_{i} is a blowing up at a point at $\Sigma_{2}^{(i-1)}$. Put $\Delta_{f^{\prime}}=\Delta_{0}+T$. In the following, we assume that
T has a node x_{o}.
Note that this is equivalent to the fact that S has a singular fiber of type I_{2} or III by [14, Table 6.2]. We may assume that q_{1} is a blowing-up at x_{o}. Let E_{1} be the exceptional divisor of q_{1} and let \bar{f}_{o} and \bar{T} be the proper transforms of a fiber, \mathfrak{f}_{o}, through x_{o} and T, respectively. Then we have the following picture:

Note that if \mathfrak{f}_{o} meets both of the local branches of T at x_{o} transversely, we have the case (a), while if \mathfrak{f}_{o} is tangent to one of the local branches of T at x_{o}, we have the case (b).

Blow down $\overline{\mathfrak{f}}_{o}$ and Δ_{0} in this order. Then the resulting surface is \mathbb{P}^{2}. We denote this composition of blowing downs by $\bar{q}_{1}: \Sigma_{2}^{(1)} \rightarrow \mathbb{P}^{2}$ and put $\mathcal{Q}:=\bar{q}_{1}(T)$. Then \mathcal{Q} is a reduced quartic with the distinguished point $z_{o}:=\bar{q}_{1}\left(\mathfrak{f}_{o} \cup \Delta_{0}\right)$. Note that $\bar{q}_{1}\left(E_{1}\right)$ is the tangent line $L_{z_{o}}$ of \mathcal{Q} at z_{o}. Put $\bar{q}:=\bar{q}_{1} \circ q_{2} \circ \cdots \circ q_{r}$ and we have the following diagram:

The case (a).

The case (b).

Here $\bar{q}: S \rightarrow S^{\prime \prime}$ is the Stein factorization of $\bar{q} \circ f$. Note that $S^{\prime \prime}$ is a double cover with branch locus \mathcal{Q} and that the pencil of lines through z_{o} gives rise to the elliptic fibration of S. Now we have the following proposition.

Proposition 4.4. Let s_{1}, s_{2} and s_{3} be sections as in Corollary 4.2 and put $\mathcal{C}_{i}:=$ $\bar{q}\left(s_{i}\right)(i=1,2,3)$. There is no homeomorphism $h:\left(\mathbb{P}^{2}, \mathcal{Q}+\mathcal{C}_{1}+\mathcal{C}_{3}\right) \rightarrow\left(\mathbb{P}^{2}, \mathcal{Q}+\mathcal{C}_{2}+\mathcal{C}_{3}\right)$ such that $h(\mathcal{Q})=\mathcal{Q}$. In particular, if (i) $\mathcal{Q}+\mathcal{C}_{1}+\mathcal{C}_{3}$ and $\mathcal{Q}+\mathcal{C}_{2}+\mathcal{C}_{3}$ have the same combinatorics and (ii) the set of irreducible components of \mathcal{Q} is invariant under the induced bijection $\varphi_{\operatorname{Irr}}: \operatorname{Irr}\left(\mathcal{Q}+\mathcal{C}_{1}+\mathcal{C}_{2}\right) \rightarrow \operatorname{Irr}\left(\mathcal{Q}+\mathcal{C}_{2}+\mathcal{C}_{3}\right)$ for any equivalence of the combinatorics between $\mathcal{Q}+\mathcal{C}_{1}+\mathcal{C}_{3}$ and $\mathcal{Q}+\mathcal{C}_{2}+\mathcal{C}_{3}$, then $\left(\mathcal{Q}+\mathcal{C}_{1}+\mathcal{C}_{3}, \mathcal{Q}+\mathcal{C}_{2}+\mathcal{C}_{3}\right)$ is a Zariski pair.

Proof. Our statement is immediate from Proposition 2.1 and Corollary 4.2 and the following lemma.

Lemma 4.5. Let p be an odd prime. For $i=1,2$, there exists a $D_{2 p}$-cover ϖ_{p} : $\mathcal{X}_{p} \rightarrow \mathbb{P}^{2}$ of \mathbb{P}^{2} branched at $2 \mathcal{Q}+p\left(\mathcal{C}_{i}+\mathcal{C}_{3}\right)$ if and only if there exists an elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{2}$ of $\widehat{\Sigma}_{2}$ such that the horizontal part of $\Delta_{\beta_{2}\left(\pi_{p}\right)}$ is $s_{i}+s_{3}+\sigma_{f}^{*}\left(s_{i}+s_{3}\right)$.

Proof. Suppose that there exists a $D_{2 p}$-cover $\varpi_{p}: \mathcal{X}_{p} \rightarrow \mathbb{P}^{2}$ branched at $2 \mathcal{Q}+$ $p\left(\mathcal{C}_{i}+\mathcal{C}_{3}\right)$. Let $\varpi_{p}^{(i)}: \mathcal{X}_{p}^{(i)} \rightarrow \Sigma_{2}^{(i)}$ be the induced $D_{2 p}$-cover, i.e., $\mathcal{X}_{p}^{(i)}$ is the $\mathbb{C}\left(\mathcal{X}_{p}\right)$ normalization of $\Sigma_{2}^{(i)}$. Since $D\left(\mathcal{X}_{p} / \mathbb{P}^{2}\right)=S^{\prime \prime}$ and $\beta_{1}\left(\varpi_{p}\right)=f^{\prime \prime}, D\left(\mathcal{X}_{p}^{(1)} / \Sigma_{2}^{(1)}\right)$ is the $\mathbb{C}\left(S^{\prime \prime}\right)$-normalization of $\Sigma_{2}^{(1)}$. Hence $\Delta_{\beta_{1}\left(\varpi_{p}^{(1)}\right)}=\Delta_{0}+\bar{T}$ as $\bar{q}_{1}^{*} \mathcal{Q}=\Delta_{0}+\bar{T}+2 \overline{\mathcal{F}}_{o}$. This implies that $D\left(\mathcal{X}_{p}^{(r)} / \widehat{\Sigma}_{2}\right)=S$ and $\beta_{1}\left(\varpi_{p}^{(r)}\right)=f$. As $\mathcal{C}_{i}=\bar{q} \circ f\left(s_{i}\right)(i=1,2,3), \varpi_{p}^{(r)}$: $\mathcal{X}_{p}^{(r)} \rightarrow \widehat{\Sigma}_{2}$ is an elliptic $D_{2 p}$-cover such that the horizontal part of $\Delta_{\beta_{2}\left(\varpi_{p}^{(r)}\right)}$ is $s_{i}+s_{3}+$ $\sigma_{f}^{*}\left(s_{i}+s_{3}\right)$. Conversely, suppose that there exists an elliptic $D_{2 p}$-cover $\pi_{p}: X_{p} \rightarrow \widehat{\Sigma}_{2}$ such that the horizontal part of $\Delta_{\beta_{2}\left(\pi_{p}\right)}$ is $s_{i}+s_{3}+\sigma_{f}^{*}\left(s_{i}+s_{3}\right)$. Since E_{1} gives rise to an irreducible component " Θ_{1} " of singular fiber of type I_{2} or III, the preimage of E_{1} in $\widehat{\Sigma}_{2}$ is not contained in the branch locus of π_{p} by Corollary 2.4 and Remark 1.5. Now let \bar{X}_{p} be the Stein factorization of $\bar{q} \circ \pi_{p}$. Then the induced $D_{2 p}$-cover $\bar{\pi}_{p}: \bar{X}_{p} \rightarrow \mathbb{P}^{2}$ is branched at $2 \mathcal{Q}+p\left(\mathcal{C}_{i}+\mathcal{C}_{3}\right)$.

5. Proof of Theorem 5.

Proof of Theorem 5 (i). Put $\mathcal{Q}=C_{1}+L_{1}+L_{2}$ and choose a point $z_{o} \in C_{1} \cap C_{2}$ as the distinguished point. Let $f_{\mathcal{Q}}^{\prime \prime}: S_{\mathcal{Q}}^{\prime \prime} \rightarrow \mathbb{P}^{2}$ be a double cover with branch locus \mathcal{Q} and let $\varphi_{z_{o}}: S_{\left(\mathcal{Q}, z_{o}\right)} \rightarrow \mathbb{P}^{1}$ be the rational elliptic surface as in Section 4. By our construction of $S_{\mathcal{Q}, z_{o}}$, both L_{3} and L_{4} give rise to sections, which we denote by $s_{L_{i}}^{+}$and $s_{L_{i}}^{-}\left(=\sigma_{f}^{*} s_{L_{i}}^{+}=[-1] s_{L_{i}}\right)(i=3,4)$, respectively. Reducible singular fibers of $\varphi_{z_{o}}$ are of type I_{2} or III depending on z_{0}. As the difference between I_{2} and III does not affect computation below, we may assume that all reducible singular fibers are of type I_{2}. By labeling singular fibers suitably, we may assume that $s_{L_{i}}^{+}(i=3,4)$ and reducible singular fibers meet as in the following picture:

Here we assume that $\Theta_{1,0}$ and O come from z_{0}. By the explicit formula of \langle,\rangle , we have

$$
\left\langle s_{L_{i}}^{ \pm}, s_{L_{i}}^{ \pm}\right\rangle=\frac{1}{2},(i=3,4) \quad\left\langle s_{L_{3}}^{+}, s_{L_{4}}^{+}\right\rangle=0 .
$$

By $[\mathbf{1 6}], \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right) \cong\left(A_{1}^{*}\right)^{\oplus 2} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2}$ and we may assume that

$$
\left(A_{1}^{*}\right)^{\oplus 2} \cong \mathbb{Z} s_{L_{3}}^{+} \oplus \mathbb{Z} s_{L_{4}}^{+}
$$

and that the 2-torsions sections arise from C_{1}, L_{1} and L_{2}.
As for $(\bar{q} \circ f)^{*}\left(C_{2}\right)$, it also gives rise to two sections $s_{C_{2}}^{ \pm}$. Since C_{2} does not pass through any singularities of \mathcal{Q} and $s_{C_{2}}^{ \pm} O=0$, we have $\left\langle s_{C_{2}}^{ \pm}, s_{C_{2}}^{ \pm}\right\rangle=2$.

On the other hand, any element $s \in \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)$ with $\langle s, s\rangle=2$ is of the form

$$
[2] s_{L_{i}}^{ \pm} \dot{+} \tau, \quad(i=3,4) \quad \tau \in \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)_{\text {tor }}
$$

If $\tau \neq 0$, then $s_{C_{2}}^{ \pm}$meets $\Theta_{i, 1}$ for some i by considering the addition on singular fibers (see [11, Theorem 9.1] or [27, Section 1]). Hence, by the explicit formula for \langle,$\rangle , we have$ $s_{C_{2}}^{ \pm} O \neq 0$. On the other hand, $s_{C_{2}}^{ \pm} O=0$ by our construction. Thus we infer $\tau=0$ and we may assume that $s_{C_{2}}^{+}=[2] s_{L_{3}}^{+}$after relabeling \pm, L_{3} and L_{4}, if necessary. Therefore

$$
s_{C_{2}}^{+} \dot{+}[p-2] s_{L_{3}}^{+} \in[p] \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)
$$

for any odd prime p, while

$$
s_{C_{2}}^{+} \dot{+}[k] s_{L_{4}}^{+} \notin[p] \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)
$$

for any odd prime p and $1 \leq k \leq p-1$. As for any equivalence of the combinatorics between $\mathcal{Q}+C_{2}+L_{3}$ and $\mathcal{Q}+C_{2}+L_{4},\left\{C_{1}, L_{1}, L_{2}\right\}$ is invariant under the induced bijection $\varphi_{\mathrm{Irr}}: \operatorname{Irr}\left(\mathcal{Q}+C_{2}+L_{3}\right) \rightarrow \operatorname{Irr}\left(\mathcal{Q}+C_{2}+L_{4}\right)$, by Proposition 4.4, we infer that $\left(\mathcal{Q}+C_{2}+L_{3}, \mathcal{Q}+C_{2}+L_{4}\right)$ is a Zariski pair.

Proof for Theorem 5 (ii). Put $\mathcal{Q}=C_{1}+C_{2}$ and choose a point $z_{o} \in C_{1} \cap C_{3}$ as the distinguished point. Let $f_{\mathcal{Q}}^{\prime \prime}: S_{\mathcal{Q}}^{\prime \prime} \rightarrow \mathbb{P}^{2}$ be a double cover with branch locus \mathcal{Q} and let $\varphi_{z_{o}}: S_{\left(\mathcal{Q}, z_{o}\right)} \rightarrow \mathbb{P}^{1}$ be the rational elliptic surface as in Section 4. By our construction of $S_{\mathcal{Q}, z_{o}}, L_{0}, L_{1}$ and L_{2} give rise to sections, which we denote by $s_{L_{i}}^{+}$and $s_{L_{i}}^{-}\left(=\sigma_{f}^{*} s_{L_{i}}^{+}=[-1] s_{L_{i}}\right)(i=0,1,2)$, respectively. Likewise our proof for Theorem 5 (i), we may also assume that all reducible singular fibers are of type I_{2}. By labeling singular fibers suitably, we may assume that $s_{L_{i}}^{+}(i=0,1,2)$ and reducible singular fibers meet as in the following picture:

Here we assume that $\Theta_{1,0}$ and O come from z_{0}. By the explicit formula of \langle,\rangle , we have

$$
\left\langle s_{L_{i}}^{ \pm}, s_{L_{i}}^{ \pm}\right\rangle=\frac{1}{2},(i=0,1,2) \quad\left\langle s_{L_{i}}^{+}, s_{L_{j}}^{+}\right\rangle=0 .(i, j=0,1,2, i \neq j)
$$

By $[\mathbf{1 6}], \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right) \cong\left(A_{1}^{*}\right)^{\oplus 3} \oplus(\mathbb{Z} / 2 \mathbb{Z})$ and we may assume that

$$
\left(A_{1}^{*}\right)^{\oplus 3} \cong \mathbb{Z} s_{L_{0}}^{+} \oplus \mathbb{Z} s_{L_{1}}^{+} \oplus \mathbb{Z} s_{L_{2}}^{+}
$$

and that the unique 2-torsion section arises from C_{1}.
By [11, Theorem 9.1], [2] $s_{L_{i}}^{ \pm}(i=0,1,2)$ meet the identity component at each singular fiber. Hence by the explicit formula for \langle,$\rangle , we have [2] s_{L_{i}}^{ \pm} O=0$ for each i. This implies that, for each $i, C_{L_{i}}:=\bar{q} \circ f\left([2] s_{L_{i}}^{ \pm}\right)$is a conic not passing through P_{j} $(j=1,2,3,4)$. If $C_{L_{i}}$ and \mathcal{Q} has an intersection point at which intersection multiplicity is odd, then we easily see that the closure of $(\bar{q} \circ f)^{-1}\left(C_{L_{i}} \backslash z_{o}\right)$ is irreducible. This is impossible, as $C_{L_{i}}$ is the image of $[2] s_{L_{i}}^{ \pm}$. Hence we have three conic satisfying the first two conditions.

Conversely, suppose that there exists a conic C_{o} satisfying the first two conditions. We infer that C_{o} gives rise to two sections $s_{C_{o}}^{ \pm}$. Since C_{o} does not pass through any singularities of \mathcal{Q} and $s_{C_{o}}^{ \pm} O=0$, we have $\left\langle s_{C_{o}}^{ \pm}, s_{C_{o}}^{ \pm}\right\rangle=2$. On the other hand, any element $s \in \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)$ with $\langle s, s\rangle=2$ is of the form

$$
[2] s_{L_{i}}^{ \pm} \dot{+} \tau, \quad(i=0,1,2) \quad \tau \in \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)_{\text {tor }}
$$

By a similar argument to that in the case of Conic-line arrangement 1 , we infer that $\tau=0$. Hence $C_{L_{i}}(i=0,1,2)$ are only conics satisfying the first two conditions and no other such conics. Now we may assume that $C_{3}^{(i)}:=C_{L_{i}}$ and $s_{C_{3}^{(i)}}^{+}:=[2] s_{L_{i}}^{+}(i=0,1,2)$. For $i, j=0,1,2(i \neq j)$, we have

$$
s_{C_{3}^{(i)}}^{+} \dot{+}[p-2] s_{L_{i}}^{+} \in[p] \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)
$$

for any odd prime p, while

$$
s_{C_{3}^{(i)}}^{+} \dot{+}[k] s_{L_{j}}^{+} \notin[p] \operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right)
$$

for any odd prime p and $1 \leq k \leq p-1$.
Now suppose that both of $\mathcal{Q}+C_{3}^{(i)}+L_{i}$ and $\mathcal{Q}+C_{3}^{(i)}+L_{j}$ have the combinatorics for Conic-line arrangement 2 of the same type. Then, as for any equivalence of the combinatorics between $\mathcal{Q}+C_{3}^{(i)}+L_{i}$ and $\mathcal{Q}+C_{3}^{(i)}+L_{j}(i, j=0,1,2, i \neq j),\left\{C_{1}, C_{2}\right\}$ is invariant under the induced bijection $\varphi_{\mathrm{Irr}}: \operatorname{Irr}\left(\mathcal{Q}+C_{3}^{(i)}+L_{i}\right) \rightarrow \operatorname{Irr}\left(\mathcal{Q}+C_{3}^{(i)}+L_{j}\right)$, $\left(\mathcal{Q}+C_{3}^{(i)}+L_{i}, \mathcal{Q}+C_{3}^{(i)}+L_{j}\right)(i, j=0,1,2, i \neq j)$ are Zariski pairs by Proposition 4.4.

Remark 5.1. Let B be one of the conic-line arrangements as in Theorem 5. By Corollary 2.4, if there exists a $D_{2 p}$-cover $\pi: X \rightarrow \mathbb{P}^{2}$ with branch locus B, then $\Delta_{\beta_{1}(\pi)}=$ $L_{1}+L_{2}+C_{1}$ (resp. $C_{1}+C_{2}$) for Conic-line arrangement 1 (resp. 2). This means that the $D_{2 p}$-covers in our proof of Theorem 5 are the only possible ones. Therefore for the fundamental group $\pi_{1}\left(\mathbb{P}^{2} \backslash B, *\right)$, we infer that

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash\left(C_{1}+C_{2}+L_{1}+L_{2}+L_{3}\right), *\right) \not \neq \pi_{1}\left(\mathbb{P}^{2} \backslash\left(C_{1}+C_{2}+L_{1}+L_{2}+L_{4}\right), *\right)
$$

for Conic-line arrangement 1 , and

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash\left(C_{1}+C_{2}+C_{3}^{(i)}+L_{i}\right), *\right) \not \not \pi_{1}\left(\mathbb{P}^{2} \backslash\left(C_{1}+C_{2}+C_{3}^{(i)}+L_{j}\right), *\right) \quad(i \neq j)
$$

for Conic-line arrangement 2. In particular, the complements are not homeomorphic for both of Conic-line arrangements 1 and 2.

Example 5.2. Let $[T, X, Z]$ be homogeneous coordinates of \mathbb{P}^{2} and let $(t, x):=$ $(T / Z, X / Z)$ be affine coordinates for $\mathbb{C}^{2}=\mathbb{P}^{2} \backslash\{Z=0\}$ and consider a conic and four lines as follows:

$$
\begin{array}{ll}
C_{1}: x-t^{2}=0, & L_{1}: x-3 t+2=0, \quad L_{2}: x+3 t+2=0 \\
L_{3}: x-t-2=0, & L_{4}: x-1=0
\end{array}
$$

Note that $C_{1} \cap\left(L_{1} \cup L_{2}\right)=\{[\pm 1,1,1],[\pm 2,4,1]\}$. Put $\mathcal{Q}=C_{1}+L_{1}+L_{2}$ and choose $[0,1,0]$ as the distinguished point z_{o}. Let $S_{\left(\mathcal{Q}, z_{o}\right)}$ be the rational elliptic surface obtained as in Section 4. Then its generic fiber is an elliptic curve over $\mathbb{C}(t)$ given by the Weierstrass equation:

$$
y^{2}=\left(x-t^{2}\right)(x-3 t+2)(x+3 t+2) .
$$

Under this setting, we may assume that the sections $s_{L_{i}}^{ \pm}(i=3,4)$ are as follows:

$$
s_{L_{3}}^{ \pm}=(t+2, \pm 2 \sqrt{2}(t-2)(t+1)), \quad s_{L_{4}}^{ \pm}=(1, \pm 3(t+1)(t-1)) .
$$

Hence we have

$$
[2] s_{L_{3}}^{+}=\left(\frac{9}{8} t^{2}, \frac{1}{32} \sqrt{2} t\left(9 t^{2}-16\right)\right), \quad[2] s_{L_{4}}^{+}=\left(t^{2}+\frac{1}{4}, \frac{1}{2} t^{2}-\frac{9}{8}\right)
$$

Now put

$$
C_{2}: x-\frac{9}{8} t^{2}=0, \quad C_{2}^{\prime}: x-t^{2}-\frac{1}{4}=0
$$

Then $\left(\mathcal{Q}+C_{2}+L_{3}, \mathcal{Q}+C_{2}+L_{4}\right)$ is a Zariski pair for Conic-line arrangement 1 of type (a), and $\left(\mathcal{Q}+C_{2}^{\prime}+L_{3}, \mathcal{Q}+C_{2}^{\prime}+L_{4}\right)$ is a Zariski pair for Conic-line arrangement 1 of type (b).

Example 5.3. We keep the same coordinates as Example 5.2.
Conic-line arrangement 2 of type (a). Consider two conics and two lines:

$$
\begin{array}{ll}
C_{1}: x-t^{2}+2=0, & C_{2}: x^{2}-2 x+t^{2}-4=0, \\
L_{1}: x-t=0, & L_{2}: x-3 t+4=0 .
\end{array}
$$

Note that $C_{1} \cap C_{2}=\{[\pm 2,2,1],[\pm 1,-1,1]\}$. Put $\mathcal{Q}=C_{1}+C_{2}$ and choose $[0,1,0]$ as the distinguished point z_{o}. Let $S_{\left(\mathcal{Q}, z_{o}\right)}$ be the rational elliptic surface obtained as before. Then its generic fiber is an elliptic curve over $\mathbb{C}(t)$ given by the Weierstrass equation:

$$
y^{2}=\left(x-t^{2}+2\right)\left(x^{2}-2 x+t^{2}-4\right) .
$$

Then we may assume that the sections $s_{L_{2}}^{ \pm}(i=1,2)$ are as follows:

$$
s_{L_{1}}^{ \pm}=(t, \pm \sqrt{-2}(t+1)(t-2)), \quad s_{L_{2}}^{ \pm}=(3 t-4, \pm \sqrt{-10}(t-1)(t-2)) .
$$

Thus we have

$$
[2] s_{L_{1}}^{+}=\left(\frac{1}{2} t^{2}-2,-\frac{1}{4} \sqrt{-2} t\left(t^{2}-4\right)\right), \quad[2] s_{L_{2}}^{+}=\left(\frac{1}{10} t^{2}-2,-\frac{3}{100} \sqrt{-10} t\left(t^{2}+20\right)\right)
$$

Now we put

$$
C_{3}: x-\frac{1}{2} t^{2}+2=0, \quad C_{3}^{\prime}: x-\frac{1}{10} t^{2}+2=0 .
$$

Then both $\left(\mathcal{Q}+C_{3}+L_{1}, \mathcal{Q}+C_{3}+L_{2}\right)$ and $\left(\mathcal{Q}+C_{3}^{\prime}+L_{1}, \mathcal{Q}+C_{3}^{\prime}+L_{2}\right)$ are Zariski pairs for Conic-line arrangement 2 of type (a).

Conic-line arrangement 2 of type (b). Consider two conics and two lines:

$$
\begin{array}{ll}
C_{1}: x-t^{2}+2=0, & C_{2}: x^{2}-2 x+t^{2}-4=0 \\
L_{1}: x-t=0, & L_{2}: x+1=0
\end{array}
$$

Put $\mathcal{Q}=C_{1}+C_{2}$ and choose $[0,1,0]$ as the distinguished point z_{o}. Let $S_{\left(\mathcal{Q}, z_{o}\right)}$ be the rational elliptic surface obtained as before. Then its generic fiber is an elliptic curve over $\mathbb{C}(t)$ given by the Weierstrass equation:

$$
y^{2}=\left(x-t^{2}+2\right)\left(x^{2}-2 x+t^{2}-4\right) .
$$

Then we may assume that the sections $s_{L_{2}}^{ \pm}(i=1,2)$ is as follows:

$$
s_{L_{2}}^{ \pm}=(-1, \pm \sqrt{-1}(t-1)(t+1)) .
$$

Thus we have

$$
[2] s_{L_{2}}^{+}=\left(t^{2}-\frac{17}{4}, \frac{3}{8} \sqrt{-1}\left(4 t^{2}-19\right)\right) .
$$

Now we put

$$
C_{3}: x-t^{2}+\frac{17}{4}=0
$$

As C_{3} is tangent to C_{1} (resp. C_{2}) at one point (resp. two distinct points), we infer that $\left(\mathcal{Q}+C_{3}+L_{1}, \mathcal{Q}+C_{3}+L_{2}\right)$ is a Zariski pair for Conic-line arrangement 2 of type (b).

Conic-line arrangement 2 of type (c). Consider two conics and two lines:

$$
\begin{array}{ll}
C_{1}: x-t^{2}+\frac{1}{2}=0, & C_{2}: x^{2}-x+t^{2}=0 \\
L_{1}: x=\frac{1}{\sqrt{2}}, & L_{2}: \frac{\sqrt{2}}{4}\left(\sqrt{-1} c_{1}-c_{2}\right) x+t-\frac{1}{4}\left(\sqrt{-1} c_{1}+c_{2}\right)=0
\end{array}
$$

where $c_{1}=\sqrt{2+2 \sqrt{2}}, c_{2}=\sqrt{-2+2 \sqrt{2}}$. Note that

$$
C_{1} \cap C_{2}=\{[\pm \sqrt{-1 / 2+1 / \sqrt{2}}, 1 / \sqrt{2}, 1],[\pm \sqrt{-1 / 2-1 / \sqrt{2}},-1 / \sqrt{2}, 1]\}
$$

Put $\mathcal{Q}=C_{1}+C_{2}$ and choose $[0,1,0]$ as the distinguished point z_{o}. Let $S_{\left(\mathcal{Q}, z_{o}\right)}$ be the rational elliptic surface obtained as before. Then its generic fiber is an elliptic curve over $\mathbb{C}(t)$ given by the Weierstrass equation:

$$
y^{2}=\left(x-t^{2}-\frac{1}{2}\right)\left(x^{2}-x+t^{2}\right)
$$

Then we may assume that the sections $s_{L_{1}}^{ \pm}$are as follows:

$$
s_{L_{1}}^{ \pm}=\left(\frac{1}{\sqrt{2}}, \pm \frac{\sqrt{-1}}{2}\left(-2 t^{2}-1+\sqrt{2}\right)\right) .
$$

Thus we have

$$
[2] s_{L_{1}}^{+}=\left(t^{2}, \sqrt{-\frac{1}{2}} t^{2}\right)
$$

Now we put

$$
C_{3}: x-t^{2}=0
$$

Then $\left(\mathcal{Q}+C_{3}+L_{1}, \mathcal{Q}+C_{3}+L_{2}\right)$ is a Zariski pair for Conic-line arrangement 2 of type (c).

Remark 5.4. Note that we have examples with real equations in Examples 5.2 and 5.3 except the case of Conic-line arrangement 2 of type (c).

We end this section by giving another example of a Zariski pair whose irreducible components are all rational curves:

Proposition 5.5. Let \mathcal{Q} be an irreducible quartic with a \mathbb{D}_{4} singularity, P. Let z_{o} be a point on \mathcal{Q} such that the tangent line $L_{z_{o}}$ at z_{o} meets \mathcal{Q} with two other distinct points. Let L_{1}, L_{2} and L_{3} be the three tangent lines which meet \mathcal{Q} at P with multiplicity 4 (i.e., the tangent lines to the smooth branches). Then there exist three conics $C_{i}(i=1,2,3)$ satisfying the following properties:
(i) (a) $z_{o} \in C_{i}$, (b) $P \notin C_{i}$ and (c) for $\forall x \in C_{i} \cap \mathcal{Q}, I_{x}\left(C_{i}, \mathcal{Q}\right)$ is even.
(ii) For any odd prime p, there exists a $D_{2 p}$-cover of \mathbb{P}^{2} branched at $2 \mathcal{Q}+p\left(C_{i}+L_{i}\right)$ for each $i=1,2,3$, while there exists no $D_{2 p}$-cover of \mathbb{P}^{2} branched at $2 \mathcal{Q}+p\left(C_{i}+L_{j}\right)$ for any $i, j(i \neq j)$.

Proof. (i) Let $f_{\mathcal{Q}}^{\prime \prime} \rightarrow \mathbb{P}^{2}$ be a double cover with branch locus \mathcal{Q} and let $\varphi_{z_{o}}$: $S_{\left(\mathcal{Q}, z_{o}\right)} \rightarrow \mathbb{P}^{1}$ be the rational elliptic surface obtained as in Section 4. By our assumption on \mathcal{Q} and z_{o}, the configuration of reducible singular fiber of $\varphi_{z_{o}}$ is $\mathrm{I}_{0}^{*}, \mathrm{I}_{2}$ and three lines $L_{i}(i=1,2,3)$ give rise to sections $s_{L_{i}}^{ \pm}(i=1,2,3)$, respectively. By labeling irreducible components of singular fibers suitably, we have the following picture for $s_{L_{i}}^{+}(i=1,2,3)$:

By the explicit formula for \langle,$\rangle , we have$

$$
\left\langle s_{L_{i}}^{+}, s_{L_{i}}^{+}\right\rangle=\frac{1}{2}(i=1,2,3), \quad\left\langle s_{L_{i}}^{+}, s_{L_{j}}^{+}\right\rangle=0(i \neq j) .
$$

By [16], we have $\operatorname{MW}\left(S_{\left(\mathcal{Q}, z_{o}\right)}\right) \cong\left(A_{1}^{*}\right)^{\oplus 3}$. Hence we may assume that

$$
\operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right) \cong \mathbb{Z} s_{L_{1}}^{+} \oplus \mathbb{Z} s_{L_{2}}^{+} \oplus \mathbb{Z} s_{L_{3}}^{+}
$$

By the lattice structure of $\operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right)$, all elements $s \in \operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right)$ with $\langle s, s\rangle=2$
given by $[2] s_{L_{i}}^{ \pm}(i=1,2,3)$. By [11, Theorem 9.1], $[2] s_{L_{i}}^{ \pm}(i=1,2,3)$ meet the identity component at each singular fiber. Hence, $[2] s_{L_{i}}^{ \pm} O=0(i=1,2,3)$ by the explicit formula for \langle,$\rangle . By our construction of S_{\left(\mathcal{Q}, z_{o}\right)}, \Delta_{i}:=q \circ f\left([2] s_{L_{i}}^{ \pm}\right) \sim \Delta_{0}+2 \mathfrak{f}(i=1,2,3)$. Hence $C_{i}:=\bar{q} \circ f\left([2] s_{L_{i}}^{ \pm}\right)(i=1,2,3)$ are all conic and $z_{o} \in C_{i}, P \notin C_{i}$. Moreover as $[2] s_{L_{i}}^{+} \neq[2] s_{L_{I}}^{-}(i=1,2,3)$, our assertion for the intersection multiplicities follows.
(ii) By Corollary 4.2 and Lemma 4.5, our statement follows.

Corollary 5.6. If L_{i} and $L_{j}(i \neq j)$ meet C_{i} transversely, then $\left(\mathcal{Q}+L_{i}+C_{i}, \mathcal{Q}+\right.$ $\left.L_{j}+C_{i}\right)$ is a Zariski pair.

Proof. Since the combinatorics of $\mathcal{Q}+L_{i}+C_{i}$ and $\mathcal{Q}+L_{j}+C_{i}$ are the same, our assertion follows from Proposition 5.5.

REMARK 5.7. First examples of Zariski pairs whose are all rational curves appeared in [4].

Example 5.8. We keep the same coordinates as in Examples 5.2 and 5.3. Consider Q, L_{1} and L_{2} as follows:

$$
\begin{gathered}
\mathcal{Q}: f_{\mathcal{Q}}(t, x):=x^{3}+\frac{343}{64}\left(\frac{121}{49} t^{2}+\frac{768}{2401} t\right) x^{2}+\frac{343}{64}\left(\frac{384}{2401} t^{2}+\frac{92}{49} t^{3}\right) x+\frac{35}{16} t^{4}+\frac{1}{7} t^{3}=0 \\
L_{1}: x+t=0, \quad L_{2}: x-\frac{\zeta_{3}-2}{7} t=0, \zeta_{3}=\exp (2 \pi i / 3)
\end{gathered}
$$

\mathcal{Q} is irreducible and has a \mathbb{D}_{4} singularity at $(0,0)$. Both L_{1} and L_{2} meet \mathcal{Q} at $(0,0)$ with multiplicity 4 . Choose $[0,1,0]$ as the distinguished point z_{o}. Let $S_{\left(\mathcal{Q}, z_{o}\right)}$ be the rational elliptic surface obtained as before. Then its generic fiber is an elliptic curve over $\mathbb{C}(t)$ given by the Weierstrass equation $y^{2}=f_{\mathcal{Q}}(t, x)$. Under these circumstances, we have

$$
s_{L_{1}}^{ \pm}=\left(-t, \pm \frac{\sqrt{343}}{8} t^{2}\right), \quad s_{L_{2}}^{ \pm}=\left(\frac{\zeta_{3}-2}{7} t, \pm \frac{\sqrt{71+39 \sqrt{-3}}}{8 \sqrt{14}} t^{2}\right)
$$

Then we have

$$
[2] s_{L_{1}}^{+}=\left(\frac{144}{16807}-\frac{127}{343} t-\frac{19}{28} t^{2},-\frac{\sqrt{7}\left(55296+1947456 t+1450204 t^{2}+167649825 t^{3}\right)}{184473632}\right)
$$

Now put

$$
C: x-\frac{144}{16807}+\frac{127}{343} t+\frac{19}{28} t^{2}=0
$$

Since one can see that both of L_{1} and L_{2} meet C with two distinct points, $\mathcal{Q}+C+L_{1}$ and $\mathcal{Q}+C+L_{2}$ have the same combinatorics. By Corollary 5.6, $\left(\mathcal{Q}+C+L_{1}, \mathcal{Q}+C+L_{2}\right)$ is a Zariski pair.

References

[1] M. Amram, D. Garber and M. Teicher, Fundamental groups of tangent conic-line arrangements with singularities up to order 6, Math. Z., 256 (2007), 837-870.
[2] M. Amram, D. Garber and M. Teicher, On the fundamental group of the complement of two tangent conics and an arbitrary number of tangent lines, arXive:math/0612346v2.
[3] M. Amram, M. Teicher and A. M. Uludag, Fundamental groups of some quadric-line arrangements, Topology Appl., 130 (2003), 159-173.
[4] E. Artal and J. Carmona, Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan, 50 (1998), 521-543.
[5] E. Artal, J. Carmona, J. I. Cogolludo and M. Á. Marco, Topology and combinatorics of real line arrangements, Compos. Math., 141 (2005), 1578-1588.
[6] E. Artal, J. Carmona, J. I. Cogolludo and M. Á. Marco, Invariants of combinatorial line arrangements and Rybnikov's example, In: Singularity Theory and Its Applications, Sapporo, 2003, (eds. S. Izumiya, G. Ishikawa, H. Tokunaga, I. Shimada and T. Sano), Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2007, pp. 1-34.
[7] E. Artal Bartolo, J. I. Cogolludo and H. Tokunaga, A survey on Zariski pairs, In: Algebraic Geometry in East Asia-Hanoi 2005, (eds. K. Konno and V. Nguyen-Khac), Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008, pp. 1-100.
[8] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact complex surfaces, 2nd Enlarged Edition, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, 2004.
[9] M. Friedman and D. Garber, On the structure of conjugation-free fundamental groups of conicline arrangements, arXive:math/1111.5291.
[10] E. Horikawa, On deformation of quintic surfaces, Invent. Math., 31 (1975), 43-85.
[11] K. Kodaira, On compact analytic surfaces II, III, Ann. of Math., 77 (1963), 563-626; 78 (1963), 1-40.
[12] R. Miranda, The moduli of Weierstrass fibrations over \mathbb{P}^{1}, Math. Ann., 255 (1981), 379-394.
[13] R. Miranda, The Basic Theory of Elliptic Surfaces, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989.
[14] R. Miranda and U. Persson, On extremal rational elliptic surfaces, Math. Z., 193 (1986), 537-558.
[15] M. Namba and H. Tsuchihashi, On the fundamental groups of Galois covering spaces of the projective plane, Geom. Dedicata, 104 (2004), 97-117.
[16] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul., 40 (1991), 83-99.
[17] M. Oka, Zariski pairs on sextics. II, In: Singularity theory, Marseille, 2005, (eds. D. Chéniot, N. Dutertre, C. Murolo, D. Trotman, and A. Pichon), World Sci. Publ., Hackensack, NJ, 2007, 837-863.
[18] U. Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z., 205 (1990), 1-47.
[19] G. L. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl., 45 (2011), 137-148.
[20] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul., 39 (1990), 211-240.
[21] H. Tokunaga, On dihedral Galois coverings, Canad. J. Math., 46 (1994), 1299-1317.
[22] H. Tokunaga, Dihedral coverings branched along maximizing sextics, Math. Ann., 308 (1997), 633-648.
[23] H. Tokunaga, Some examples of Zariski pairs arising from certain elliptic K3 surfaces, Math. Z., 227 (1998), 465-477.
[24] H. Tokunaga, Some examples of Zariski pairs arising from certain elliptic K3 surfaces. II: Degtyarev's conjecture, Math. Z., 230 (1999), 389-400.
[25] H. Tokunaga, Dihedral covers and an elementary arithmetic on elliptic surfaces, J. Math. Kyoto Univ., 44 (2004), 55-270.
[26] H. Tokunaga, Two-dimensional versal G-covers and Cremona embeddings of finite groups, Kyushu J. Math., 60 (2006), 439-456.
[27] H. Tokunaga, Some sections on rational elliptic surfaces and certain special conic-quartic configurations, Kodai Math. J., 35 (2012), 78-104.
[28] H. Tsuchihashi, Galois coverings of projective varieties for dihedral and symmetric groups, Kyushu J. Math., 57 (2003), 411-427.
[29] J.-G. Yang and J. Xie, Discriminantal groups and Zariski pairs of sextic curves, Geom. Dedicata, 158 (2012), 235-259.
[30] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929), 305-328.
[31] O. Zariski, The topological discriminant group of a Riemann surface of genus p, Amer. J. Math., 59 (1937), 335-358.
[32] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. U.S.A., 44 (1958), 791-796.

Hiro-o Tokunaga
Department of Mathematics and Information Sciences Tokyo Metropolitan University 1-1 Minami-Ohsawa, Hachiohji Tokyo 192-0397, Japan
E-mail: tokunaga@tmu.ac.jp

Note added in proof. After this paper was accepted, the author was informed that examples of Zariski pairs of degree 6 for conic arrangements had been already known. They are given explicitly in $[\mathbf{1 7}$, Section 6] or [29, Section 5.1].

[^0]: 2010 Mathematics Subject Classification. Primary 14E20; Secondary 14J27.
 Key Words and Phrases. dihedral cover, Mordell-Weil group, elliptic surface, Zariski pair.
 This research was partly supported by the research grant 22540052 from JSPS.

