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Abstract. It is shown that a space X is strongly paracompact if and
only if for every complete metric space (Y, ρ), every l.s.c. mapping from X into
the nonempty closed subsets of Y has a separable-valued Hausdorff continuous
section. Several applications are demonstrated as well.

1. Introduction.

All spaces in this paper are assumed to be Hausdorff topological spaces. For a space
Y , let 2Y be the power set of Y ; F (Y ) be the set of all nonempty closed subsets of Y ; and
C (Y ) — that of all compact members of F (Y ). For a set-valued mapping ϕ : X → 2Y

and subsets A ⊂ X and B ⊂ Y , let

ϕ[A] =
⋃
{ϕ(x) : x ∈ A}, and

ϕ−1[B] = {x ∈ X : ϕ(x) ∩B 6= ∅}.

A mapping ϕ : X → 2Y is lower semi-continuous, or l.s.c., if the set ϕ−1[U ] is open in
X for every open U ⊂ Y ; and ϕ is upper semi-continuous, or u.s.c., if the set ϕ#[U ] =
X \ ϕ−1[Y \ U ] = {x ∈ X : ϕ(x) ⊂ U} is open in X for every open U ⊂ Y . For
convenience, we say that ϕ is usco if it is u.s.c. and nonempty-compact-valued; and
that ϕ is continuous if it is both l.s.c. and u.s.c. A mapping ϕ : X → 2Y is a multi-
selection (or, a set-valued selection) for Φ : X → 2Y if ϕ(x) ⊂ Φ(x) for every x ∈ X;
and ϕ : X → 2Y is a section for Φ : X → 2Y if ϕ(x) ∩ Φ(x) 6= ∅ for every x ∈ X. If
ϕ is a section for Φ, then both ϕ and Φ must be nonempty-valued. Of course, every
nonempty-valued multi-selection for Φ is also a section for Φ.

For ε > 0 and a subset F of a metric space (Z, d), let Bd
ε (F ) be the open ε-

neighbourhood of F with respect to d, i.e. Bd
ε (F ) = {z ∈ Z : d(z, F ) < ε}. A subset

S ⊂ Z is totally ε-bounded (see, [9]) if there exists a finite subset F ⊂ S, with S ⊂ Bd
ε (F ).

It is well known that if d is a complete metric on Z, then a subset K ⊂ Z is compact if
and only if it is closed and totally bounded with respect to d (i.e., totally ε-bounded for
every ε > 0). Finally, recall that a metric d on Z is non-Archimedean, or an ultrametric,
[6], [10] if

d(x, y) ≤ max
{
d(x, z), d(z, y)

}
, for every x, y, z ∈ Z.
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A metrizable space Z is called non-Archimedean if it has a non-Archimedean metric
compatible with its topology. Often, a metric space (Z, d) is called ultrametric if d is an
ultrametric.

There is a natural relationship between covering properties of topological spaces
and multi-selections of set-valued mappings. A starting point for the present paper
is a recent result in this regard. Recall that a cover U of X is star-finite if the set
{W ∈ U : W ∩ U 6= ∅} is finite for every U ∈ U . A space X is strongly paracompact
(called, also, hypocompact) if every open cover of X has a star-finite open refinement.
Every strongly paracompact space is paracompact, but the converse is not necessarily
true, see [7, Exercises 5.3.F and 6.1.E]. The following theorem was proved in [9].

Theorem 1.1 ([9]). For a space X, the following are equivalent :

(a) X is strongly paracompact.
(b) If (Y, ρ) is a complete metric space and Φ : X → F (Y ) is an l.s.c. mapping, then

there exists a (complete) ultrametric space (Z, d), an usco mapping ψ : X → C (Z)
and a uniformly continuous map g : Z → Y such that g ◦ ψ : X → C (Y ) is a multi-
selection for Φ and the set ψ[ψ−1[S]] is totally ε-bounded whenever S ⊂ Z is totally
ε-bounded for some ε > 0.

Let W be a collection of subsets of a set X. If U, V ∈ W , then a finite sequence
W1,W2, . . . , Wk of elements of W is called a chain from U to V if U = W1, V = Wk and
Wi ∩Wi+1 6= ∅ for every i = 1, . . . , k − 1. A subset P ⊂ W is called connected if every
pair of elements of P is connected by a chain. The components of W are defined as
the maximal connected subsets of W . A space X is called super-paracompact (Pasynkov,
see [15]) if every open cover of X has an open refinement each component of which is
finite. In contrast to Theorem 1.1, components of covers were associated with sections
of set-valued mappings. The following theorem was proved in [2].

Theorem 1.2 ([2]). A space X is super-paracompact if and only if for every com-
pletely metrizable space Y , every l.s.c. mapping Φ : X → F (Y ) has a continuous section
ϕ : X → C (Y ).

Turning to the main purpose of this paper, let us remark that strong paracompact-
ness can also be expressed in terms of components of covers. Namely, according to [7,
Lemma 5.3.9 and Theorem 5.3.10] (see, also, [1, Theorem 2.3]), a space X is strongly
paracompact iff every open cover of X admits an open refinement with countable com-
ponents. So, it is natural to expect that strongly paracompact spaces possess a similar
characterisation in terms of sections. Indeed, the following theorem will be proved in
this paper.

Theorem 1.3. A space X is strongly paracompact if and only if for every complete
metric space (Y, ρ), every l.s.c. mapping Φ : X → F (Y ) has a ρ-continuous section
ϕ : X → L (Y ).

Here, L (Y ) = {S ∈ F (Y ) : S is Lindelöf}, while a mapping ϕ : X → F (Y ) is
called ρ-continuous (sometimes, also, Hausdorff continuous) if for every ε > 0, every
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x ∈ X has a neighbourhood U such that

ϕ(x) ⊂ Bρ
ε (ϕ(z)) and ϕ(z) ⊂ Bρ

ε (ϕ(x)), for every z ∈ U .

Let us remark, that if ϕ : X → C (Y ) is continuous and Y is metrizable, then ϕ

is ρ-continuous for every compatible metric ρ on Y . That is, Theorem 1.3 is a natural
continuation of Theorem 1.2.

A word should be said also for the paper itself. Theorem 1.3 is proved in Section
3, see Corollary 3.5; the preparation for this proof is done in the next section. The last
Section 4 contains several applications of Theorem 1.3 and the technique developed in
this paper, see Corollaries 4.2, 4.3 and 4.4, also Theorems 4.5 and 4.6.

2. Additive sieves on complete metric spaces.

A partially ordered set (T,¹) is a tree if {s ∈ T : s ¹ t} is well-ordered for every
t ∈ T . For a tree (T,¹), we use T (0) to denote the set of the minimal elements of T .
Given an ordinal α, if T (β) is defined for every β < α, then T (α) denotes the minimal
elements of T \ ⋃{T (β) : β < α}. The set T (α) is called the αth-level of T , while the
height of T is the least ordinal α such that T =

⋃{T (β) : β < α}. We say that (T,¹) is
an α-tree if its height is α. A maximal linearly ordered subset of a tree (T,¹) is called a
branch, and B(T ) is used to denote the set of all branches of T . A tree (T,¹) is pruned
if each element of T has a successor in T , i.e. if for every s ∈ T there exists t ∈ T , with
s ≺ t. In these terms, an ω-tree (T,¹) is pruned if each branch β ∈ B(T ) is infinite.

Following Nyikos [17], for a tree (T,¹) and t ∈ T , let

O(t) = {β ∈ B(T ) : t ∈ β}. (2.1)

If (T,¹) is a pruned ω-tree, then the family {O(t) : t ∈ T} is a base for a completely
metrizable non-Archimedean topology on B(T ). We will refer to this topology as the
branch topology, and to the resulting topological space as the branch space. Throughout
this paper, B(T ) will be always endowed with the branch topology when it comes to
consider it as a topological space. It is well known that the branch space B(T ) is
compact if and only if all levels of (T,¹) are finite.

For a tree (T,¹) and t ∈ T , the node of t in T is the subset node(t) ⊂ T of all
immediate successors of t. For convenience, let node(∅) = T (0). Given a set Y and a
pruned ω-tree (T,¹), a mapping S : T → 2Y is a sieve on Y if Y = S [node(∅)] and
S (t) = S [node(t)] for every t ∈ T .

To every mapping S : T → 2Y defined on a tree (T,¹), we associate another one
ΩS : B(T ) → 2Y , called the polar mapping, by letting

ΩS (β) =
⋂
{S (t) : t ∈ β}, β ∈ B(T ). (2.2)

The value ΩS (β) for a branch β ∈ B(T ) is called the polar of β by S . We will also
associate the mapping S : T → 2Y , defined by S (t) = S (t), t ∈ T , which will play the
role of a pointwise closure of S .
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A sieve S : T → 2Y on a space Y is locally finite (discrete, etc.) provided that each
cover {S (t) : t ∈ T (n)}, n < ω, is locally finite (discrete, etc.). Suppose that (Y, ρ) is
a complete metric space. According to [13, Lemma 2.2], Y has a nonempty-open-valued
locally finite sieve M : T → 2Y with diamρ(M (t)) < 2−n for every t ∈ T (n) and n < ω.
By Cantor’s intersection theorem, each polar ΩM (β) =

⋂
t∈β M (t), β ∈ B(T ), will be a

singleton, hence ΩM : B(T ) → 2Y will be singleton-valued. Since every singleton-valued
mapping has the same graph as a single-valued one (representing the same relation), we
will make no difference between such mappings. Thus, in this case, the polar mapping
ΩM : B(T ) → 2Y is a usual map. The following proposition now follows immediately
by (2.1) and (2.2).

Proposition 2.1. Let (Y, ρ) be a complete metric space, and let M : T → 2Y be
a nonempty-open-valued sieve on Y such that diamρ(M (t)) < 2−n for every t ∈ T (n)
and n < ω. Then, the polar mapping ΩM : B(T ) → C (Y ) is singleton-valued and
ρ
(
ΩM (γ),ΩM (η)

) ≤ 2−n, whenever γ, η ∈ O(t), t ∈ T (n) and n < ω. In particular, ΩM

is continuous.

We now turn to the main purpose of this section.
For a space Z, the degree of compactness of Z (see, [5]) is defined as the least cardinal

number k(Z) such that every open cover of Z has an open refinement of cardinality
< k(Z). In these terms, a space Z is compact iff k(Z) ≤ ω; and Z is Lindelöf iff
k(Z) ≤ ω1. Let τ be an infinite cardinal number. For a space Y and a set D, let

Fτ (Y ) = {S ∈ F (Y ) : k(S) ≤ τ},
[D]<τ = {S ⊂ D : 1 ≤ |S| < τ}.

Then, C (Y ) = Fω(Y ) and L (Y ) = Fω1(Y ), see [16]. If D is endowed with the discrete
topology, we also have that [D]<τ = Fτ (D).

Given a pruned ω-tree (T,¹), let

Hτ [T ] =
⋃
{[T (n)]<τ : n < ω}. (2.3)

Define a relation ¹ on Hτ [T ] by letting for σ, µ ∈ Hτ [T ] that σ ≺ µ if

µ ⊂
⋃
{node(s) : s ∈ σ} and µ ∩ node(s) 6= ∅, s ∈ σ. (2.4)

Next, extend this relation to a partial order on Hτ [T ] by making it transitive. Thus, we
get a pruned ω-tree (Hτ [T ],¹) because so is T . Let us observe that, with respect to this
partial order, for each branch β ∈ B(Hτ [T ]),

⋃
β is a pruned subtree of T such that( ⋃

β
) ∩ T (n) 6= ∅, n < ω. In particular, we have that

B
(⋃

β
)
⊂ B(T ), β ∈ B(Hτ [T ]). (2.5)

We may regard the tree (Hτ [T ],¹) as some kind of “Vietoris-like” hypertree of T , in fact
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the order defined in (2.4) is reassembling the definition of the Vietoris topology. We are
going to prove the following theorem.

Theorem 2.2. Let (Y, ρ) be a complete metric space, and M : T → 2Y be a
nonempty-open-valued locally finite sieve on Y such that diamρ(M (t)) < 2−n, for every
t ∈ T (n) and n < ω. Whenever τ is an infinite regular cardinal number, define another
sieve R : Hτ [T ] → 2Y on Y by R(σ) = M [σ], for every σ ∈ Hτ [T ]. Then, the polar
mapping ΩR : B(Hτ [T ]) → 2Y is Fτ (Y )-valued and ρ-continuous.

Proof. First of all, let us observe that

ΩR(β) = ΩM

[
B

( ⋃
β

)]
, for every β ∈ B(Hτ [T ]). (2.6)

Indeed, by (2.5), B
( ⋃

β
) ⊂ B(T ) and the inclusion ΩM

[
B

( ⋃
β

)] ⊂ ΩR(β) now follows
by the definition of R. To see the converse, take a point y ∈ ΩR(β) and consider the
subtree K(y) =

{
t ∈ ⋃

β : y ∈ M (t)
}

of
⋃

β. Since M is locally finite, each K(y)∩T (n),
n < ω, is nonempty and finite. Hence, by Köning’s lemma (see, Lemma 5.7 in Chapter II
of [11]), the subtree K(y) contains an infinite branch γ ∈ B(K(y)) ⊂ B

( ⋃
β

) ⊂ B(T ).
Therefore, y ∈ ΩM (γ) ⊂ ΩM

[
B

( ⋃
β

)]
.

To show that ΩR : B(Hτ [T ]) → Fτ (Y ), take a branch β ∈ B(Hτ [T ]), and consider
the corresponding subtree

⋃
β ⊂ T . If τ = ω, then each lever of

⋃
β is finite (by (2.3))

and, as mentioned before, the branch space B
( ⋃

β
)

is compact. Consequently, by (2.6)
and Proposition 2.1,

ΩR(β) = ΩM

[
B

( ⋃
β

)]
∈ C (Y ) = Fω(Y ).

In case τ > ω, it follows by (2.1) that w
(
B

( ⋃
β

))
< τ because each level of

⋃
β has

a cardinality < τ (by (2.3)) while τ has an uncountable cofinality. Then, by (2.6),
ΩR(β) ∈ Fτ (Y ) because ΩM is singleton-valued and continuous, see Proposition 2.1.

To show finally that the polar mapping ΩR is ρ-continuous, take ε > 0, m < ω

with 2−m < ε, and σ ∈ Hτ [T ](m). Also, let α,β ∈ O(σ) ⊂ B(Hτ [T ]) and y ∈ ΩR(β).
By (2.6), there exists a branch γ ∈ B(

⋃
β) ⊂ B(T ) such that ΩM (γ) = {y}. Since

σ ∈ α ∩ β because α,β ∈ O(σ), there now exist t ∈ γ ∩ σ and η ∈ B(
⋃

α) with t ∈ η.
Then, γ, η ∈ O(t) and, by Proposition 2.1, we have ρ

(
ΩM (γ),ΩM (η)

) ≤ 2−m < ε.
According to (2.6), this implies that ΩR(β) ⊂ Bρ

ε

(
ΩR(α)

)
. By the same argument as

above, we can show that ΩR(α) ⊂ Bρ
ε

(
ΩR(β)

)
. Thus, ΩR is ρ-continuous, see (2.1). ¤

3. Refining additive sieves and pseudo-sections.

Given a cardinal number τ , to each family U of subsets of a set X we will associate
another family U τ defined by U τ =

{ ⋃
W : W ∈ [U ]<τ

}
. In what follows, it will be

convenient to each space X to associate a topological invariant sp(X) defined as the least
cardinal number τ with the property that for every open cover U , the cover U τ has a
pairwise disjoint open refinement. As the reader may guess, sp(X) indicates the degree
of strong paracompactness of X. Indeed, according to [3, Proposition 2.3] (see, also, [4,



528 V. Gutev

Theorem 2.2]) and [1, Theorem 2.3], we have the following basic example illustrating the
relationship of sp(X) with super-paracompactness and strong paracompactness.

Proposition 3.1. For a space X, the following holds:

(a) sp(X) ≤ ω if and only if X is super-paracompact.
(b) sp(X) ≤ ω1 if and only if X is strongly paracompact.

The cardinal invariant sp(X) allows to construct special refinements of the “hyper”-
sieves considered in the previous section.

Proposition 3.2. Let X be a space such that sp(X) ≤ τ for an infinite regular
cardinal τ , and let S : T → 2X be an open-valued sieve on X. Define a sieve P :
Hτ [T ] → 2X by P(σ) = S [σ], for every σ ∈ Hτ [T ]. Then, there exists a discrete open-
valued sieve L : Hτ [T ] → 2X which is a multi-selection for P, i.e. L (σ) ⊂ P(σ) for
every σ ∈ Hτ [T ].

Proof. Consider the cover U0 =
{
P(σ) : σ ∈ Hτ [T ](0)

}
of X, and observe

that U τ
0 = U0 because τ is regular. Since sp(X) ≤ τ , X has a pairwise disjoint open

cover
{
L (σ) : σ ∈ Hτ [T ](0)

}
with L (σ) ⊂ P(σ), σ ∈ Hτ [T ](0). Take an element

σ ∈ Hτ [T ](0), and consider the cover Uσ =
{
P(η)∩L (σ) : η ∈ node(σ)

}
of L (σ). Just

like before, we have that U τ
σ = Uσ. Since L (σ) is a clopen subset of X, we also have that

sp(L (σ)) ≤ τ . Hence, L (σ) has a pairwise disjoint open cover {L (η) : η ∈ node(σ)}
such that L (η) ⊂ P(η) ∩ L (σ) for η ∈ node(σ). We may proceed by induction on
the levels Hτ [T ](n), n < ω, of the tree Hτ [T ] to finalise the construction of the sieve
L : Hτ [T ] → 2X . ¤

We now turn to the main result of this section. In this result, and what follows, for
a metric space (Y, ρ) and subsets B,C ⊂ Y , let

Dρ(B,C) = inf{ρ(y, z) : y ∈ B and z ∈ C}.

Theorem 3.3. For a space X and an infinite regular cardinal number τ , the fol-
lowing are equivalent :

(a) sp(X) ≤ τ .
(b) Whenever (Y, ρ) is a complete metric space and Φ : X → F (Y ) is an l.s.c. mapping,

there exists a non-Archimedean completely metrizable space Z, a continuous map g :
X → Z and a ρ-continuous mapping ψ : Z → Fτ (Y ) such that Dρ(ψ(g(x)),Φ(x)) =
0 for every x ∈ X.

(c) Whenever (Y, ρ) is a complete metric space and Φ : X → F (Y ) is an l.s.c. mapping,
there exists a ρ-continuous mapping ϕ : X → Fτ (Y ) such that Dρ(ϕ(x),Φ(x)) = 0
for every x ∈ X.

Proof. (a) ⇒ (b). Let sp(X) ≤ τ , (Y, ρ) be a complete metric space, and let
Φ : X → F (Y ) be an l.s.c. mapping. Take a nonempty-open-valued locally finite sieve
M : T → 2Y on Y such that diamρ(M (t)) < 2−n for every t ∈ T (n) and n < ω, see
Section 2. Next, let R : Hτ [T ] → 2Y be defined as in Theorem 2.2, i.e. by R(σ) = M [σ],
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σ ∈ Hτ [T ]. Define an open-valued sieve S : T → 2X on X by S (t) = Φ−1[M (t)], t ∈ T .
Finally, define P : Hτ [T ] → 2X by P(σ) = S [σ], σ ∈ Hτ [T ], and then observe that

P(σ) = Φ−1[R(σ)], σ ∈ Hτ [T ]. (3.1)

By Proposition 3.2, X has an open-valued discrete sieve L : Hτ [T ] → 2X such that
L is a multi-selection for P. Consider the inverse polar mapping fL : X → 2B(Hτ [T ])

defined by fL (x) = Ω−1
L [{x}], x ∈ X. Since each family {L (σ) : σ ∈ Hτ [T ](n)},

n < ω, is pairwise disjoint, the mapping fL is singleton-valued. It is also continuous
because f−1

L [O(σ)] = L (σ) for every σ ∈ Hτ [T ], see (2.1). We are going to show that
Z = B(Hτ [T ]), g = fL and ψ = ΩR are as required. By Theorem 2.2, ψ : Z → Fτ (Y )
and is ρ-continuous. Take a point x ∈ X, and let β ∈ B(Hτ [T ]) be a branch such that
x ∈ L (σ) for every σ ∈ β. Write β = {σn : n < ω}, where σn ∈ Hτ [T ](n) for each
n < ω. Since L (σ) ⊂ P(σ) for every σ ∈ β, by (3.1), for every n < ω there exists
tn ∈ σn such that Φ(x)∩M (tn) 6= ∅. Take a branch γn ∈ B

( ⋃
β

)
, with tn ∈ γn. Then,

∅ 6= ΩM (γn) ⊂ ΩR(β) = ψ(g(x)) and ΩM (γn) ⊂ M (tn).

Since diamρ(M (tn)) < 2−n for every n < ω, it follows that Dρ(ψ(g(x)),Φ(x)) = 0, and
the proof of this implication is completed.

Since (b) ⇒ (c) is obvious by taking ϕ = ψ ◦ g, we complete the proof by showing
that (c) ⇒ (a). Take an open cover U of X, and endow it with the discrete metric
ρ(V, U) = 1 if V, U ∈ U are distinct elements. Next, define a mapping Φ : X → F (U )
by Φ(x) = {U ∈ U : x ∈ U}, x ∈ X. Since Φ is l.s.c., by (c), there is a ρ-continuous
mapping ϕ : X → Fτ (U ) such that Dρ(ϕ(x),Φ(x)) = 0 for every x ∈ X. According to
the definition of ρ, this implies that ϕ is a section for Φ. Consider the family Γ = {ϕ(x) :
x ∈ X} ⊂ Fτ (U ) = [U ]<τ . Next, for every G ∈ Γ, let VG = {x ∈ X : ϕ(x) = G }. By the
definition of ρ, we have that Bρ

1 (ϕ(x)) = ϕ(x) for every x ∈ X. Since ϕ is ρ-continuous,
each VG , G ∈ Γ, is a clopen subset of X. Finally, observe that WG = Φ−1[G ] =

⋃
G ∈ U τ

for every G ∈ Γ because Γ ⊂ [U ]<τ . If x ∈ VG for some G ∈ Γ, then ϕ(x) = G and
ϕ(x) ∩ Φ(x) 6= ∅. Hence, it follows that Φ(x) ∩ G 6= ∅ and, therefore, x ∈ WG . Thus,
{VG : G ∈ Γ} is a refinement of U τ . That is, sp(X) ≤ τ . ¤

The following is an immediate consequence of Theorem 3.3; it follows by Proposition
3.1 and the fact that F ∩K 6= ∅ provided that F is a nonempty closed subset of (Y, ρ),
K is a nonempty compact subset of Y and Dρ(F, K) = 0.

Corollary 3.4. For a space X, the following are equivalent :

(a) X is super-paracompact.
(b) Whenever Y is a completely metrizable space and Φ : X → F (Y ) is an l.s.c. map-

ping, there exists a non-Archimedean completely metrizable space Z, a continuous
map g : X → Z and a continuous mapping ψ : Z → C (Y ) such that ψ ◦g is a section
for Φ.

(c) Whenever Y is a completely metrizable space, every l.s.c. Φ : X → F (Y ) has a
continuous section ϕ : X → C (Y ).
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Corollary 3.4 provides an alternative proof of Theorem 1.2; while this proof is similar
to that one given in [2], the theorem is now obtained as a special case of a more general
result. Indeed, by Theorem 3.3 we get also the following slight generalisation of Theorem
1.3.

Corollary 3.5. For a space X, the following are equivalent :

(a) X is strongly paracompact.
(b) Whenever (Y, ρ) is a complete metric space and Φ : X → F (Y ) is an l.s.c. mapping,

there exists a non-Archimedean completely metrizable space Z, a continuous map
g : X → Z and a ρ-continuous mapping ψ : Z → L (Y ) such that the composition
ψ ◦ g : X → L (Y ) is a section for Φ.

(c) Whenever (Y, ρ) is a complete metric space and Φ : X → F (Y ) is an l.s.c. mapping,
there exists a ρ-continuous mapping ϕ : X → L (Y ) such that Dρ(ϕ(x),Φ(x)) = 0
for every x ∈ X.

Proof. (a) ⇒ (b). Let X be a strongly paracompact space, (Y, ρ) be a complete
metric space, and let Φ : X → F (Y ) be an l.s.c. mapping. Since X is paracompact
(being strongly paracompact), by [12, Theorem 1.1], Φ has an l.s.c. multi-selection Ψ :
X → C (Y ). By Proposition 3.1, sp(X) ≤ ω1. Hence, by Theorem 3.3, there exists a
non-Archimedean completely metrizable space Z, a continuous map g : X → Z and a
ρ-continuous mapping ψ : Z → Fω1(Y ) = L (Y ) such that Dρ(ψ(g(x)),Ψ(x)) = 0 for
every x ∈ X. Since Ψ is compact-valued, it follows that ψ ◦ g is a section for Ψ, hence
for Φ as well.

The implication (b) ⇒ (c) is obvious, while (c) ⇒ (a) follows by Proposition 3.1 and
Theorem 3.3. The proof is completed. ¤

Remark 3.6. Let Y be a completely metrizable space, and let ρ be a metric on
Y compatible with the topology of Y . Then, there exists another compatible metric d

on Y such that d is complete and ρ ≤ d. If ϕ : X → F (Y ) is a d-continuous mapping,
then it will be also ρ-continuous because Bd

ε (A) ⊂ Bρ
ε (A) for every A ⊂ Y . In particular,

Theorems 1.3 and 3.3, also Corollary 3.5, will remain valid provided that Y is only
assumed to be completely metrizable and ρ is a compatible metric on it.

4. Some possible applications.

Given a metric space (Y, ρ), let us recall some natural ways of introducing a topology
on F (Y ). Using the metric ρ on Y , F (Y ) can be equipped with the topology τH(ρ)

generated by the Hausdorff distance

H(ρ)(S, T ) = sup{ρ(S, y) + ρ(y, T ) : y ∈ S ∪ T}, S, T ∈ F (Y ).

Using only the topology of Y , F (Y ) can be equipped with the Vietoris topology τV

generated by all collections of the form

〈V 〉 =
{

S ∈ F (Y ) : S ⊂
⋃

V and S ∩ V 6= ∅, whenever V ∈ V
}

,
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where V runs over the finite families of open subsets of Y . It is well known that these
two topologies coincide on the subfamily C (Y ) of all nonempty compact subsets of Y ,
but, in general, τH(ρ) and τV are not comparable.

Suppose that X is a space, and ϕ : X → F (Y ) is ρ-continuous. Then, ϕ is con-
tinuous as a single-valued map from X to the space (F (Y ), τH(ρ)). If X is Lindelöf
and ϕ : X → L (Y ), then ϕ(X) = {ϕ(x) : x ∈ X} ⊂ L (Y ) is also Lindelöf, hence
it is separable because (L (Y ), τH(ρ)) is metrizable. So, there exists a countable subset
A ⊂ X such that {ϕ(a) : a ∈ A} is dense in ϕ(X). Since each ϕ(a), a ∈ A, is also
separable (as a subset of Y ), it implies that ϕ[A] is itself separable. Since it is dense in
ϕ[X] =

⋃{ϕ(x) : x ∈ X}, so is ϕ[X]. Thus, we have the following simple proposition.

Proposition 4.1. Let X be a Lindelöf space, (Y, ρ) be a metric space, and let
ϕ : X → L (Y ) be ρ-continuous. Then, ϕ[X] ∈ L (Y ).

This implies the following characterisation of Lindelöf spaces.

Corollary 4.2. A space X is Lindelöf if and only if for every completely metriz-
able space Y and every l.s.c. Φ : X → F (Y ), there exists a separable subset B ⊂ Y such
that B ∩ Φ(x) 6= ∅ for every x ∈ X, i.e. X = Φ−1[B].

Proof. Suppose that X is Lindelöf, (Y, ρ) is complete metric and Φ : X → F (Y )
is l.s.c. Then, X is strongly paracompact [18, Corollary 1] (see, also, [7, Corollary 5.3.11])
and, by Theorem 1.3, the mapping Φ has a ρ-continuous section ϕ : X → L (Y ). By
Proposition 4.1, B = ϕ[X] is a separable subset of Y such that B∩Φ(x) ⊃ ϕ(x)∩Φ(x) 6= ∅
for every x ∈ X. Conversely, take an open cover U of X, endow it with the discrete
topology, and define an l.s.c. Φ : X → F (U ) by Φ(x) = {U ∈ U : x ∈ U}, x ∈ X.
If V ⊂ U is a separable subset (hence, countable) such that X = Φ−1[V ], then V is a
countable subcover of X. The proof is completed. ¤

Corollary 4.2 can be compared with [19, Proposition 3.4] that a space X is Lindelöf
if and only if for every completely metrizable space Y and every l.s.c. Φ : X → F (Y ),
there exists a pair of mappings 〈ϕ,ψ〉 : X → C (Y ) such that ϕ is l.s.c., ψ is u.s.c.,
ϕ(x) ⊂ ψ(x) ⊂ Φ(x) for all x ∈ X, and ψ[X] is separable. It also implies a part of [5,
Theorem 10] that a space X is Lindelöf if and only if for every completely metrizable
space Y , every l.s.c. Φ : X → F (Y ) has a selection g : X → Y such that g(X) is
separable.

Our next application provides a simple proof of a result of Smirnov [18, Theorem
5] (see, also, [14, Theorem 10.3]).

Corollary 4.3. For every strongly paracompact metrizable space X there exists
a non-Archimedean metrizable space Z and a continuous map g : X → Z such that each
g−1(z), z ∈ Z, is separable.

Proof. Let ρ be a metric on X compatible with the topology of X, and let (Y, ρ)
be the completion of (X, ρ). Consider the l.s.c. mapping Φ : X → F (Y ) defined by
Φ(x) = {x}, x ∈ X. By Corollary 3.5, there exists a non-Archimedean metrizable space
Z, a continuous map g : X → Z and a ρ-continuous mapping ψ : Z → L (Y ) such that
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ϕ = ψ ◦ g : Z → L (Y ) is a section for Φ. Then, g is as required. To this end, it
suffices to show that g−1(z) ⊂ ψ(z), z ∈ Z. Indeed, take a point z ∈ Z and x ∈ g−1(z).
Then, ∅ 6= ϕ(x) ∩ Φ(x) = ψ(g(x)) ∩ Φ(x) = ψ(z) ∩ Φ(x), and we have x ∈ ψ(z) because
Φ(x) = {x}. Thus, each g−1(z), z ∈ Z, is separable, and the proof is completed. ¤

Exactly the same proof but now using Corollary 3.4 instead of Corollary 3.5, gives
the following

Corollary 4.4. For every super-paracompact metrizable space X there exists a
non-Archimedean metrizable space Z and a continuous map g : X → Z such that each
g−1(z), z ∈ Z, is compact.

Recall that a mapping Φ : Z → F (Y ) from a space Z to the subsets of a metric
space (Y, ρ) is ρ-u.s.c. (respectively, ρ-l.s.c.) if for every ε > 0, every z0 ∈ Z has
a neighbourhood U such that Φ(z) ⊂ Bρ

ε (Φ(z0)) (respectively, Φ(z0) ⊂ Bρ
ε (Φ(z))) for

every z ∈ U . A mapping Φ : Z → F (Y ) is ρ-continuous iff it is both ρ-l.s.c. and ρ-u.s.c.
We conclude this paper with another interesting application of Theorem 1.3.

Theorem 4.5. For a paracompact space X, the following are equivalent :

(a) X is strongly paracompact.
(b) For every complete metric space (Y, ρ) and ρ-u.s.c. mapping θ : X → L (Y ) there

exists a ρ-continuous mapping ψ : X → L (Y ) such that θ(x) ⊂ ψ(x) for all x ∈ X.
(c) For every complete metric space (Y, ρ) and usco mapping θ : X → C (Y ) there exists

a ρ-continuous mapping ψ : X → L (Y ) such that θ(x) ⊂ ψ(x) for all x ∈ X.

Proof. (a) ⇒ (b). Let X be strongly paracompact, (Y, ρ) be a complete metric
space, and θ : X → L (Y ) be ρ-u.s.c. If d is a metric on Y obtained by bounding ρ by any
constant, for instance d(y, z) = min{ρ(y, z), 1}, y, z ∈ Y , then a mapping ψ : X → F (Y )
is ρ-continuous if and only if it is d-continuous. Thus, to show (b), we may assume
that ρ is itself bounded. Consider the metric space (L (Y ), τH(ρ)), and define a mapping
Φ : X → 2L (Y ) by

Φ(x) = {K ∈ L (Y ) : θ(x) ⊂ K}, x ∈ X.

Then, Φ : X → F (L (Y )) is l.s.c. with respect to τH(ρ), see the proof of [8, Theorem
3.2]. Indeed, take x0 ∈ X, K0 ∈ Φ(x0) and ε > 0. Since θ(x0) ⊂ K0, it follows that
U0 = θ# [Bρ

ε (K0)] is a neighbourhood of x0. If x ∈ U0, then K = θ(x) ∪K0 ∈ Φ(x) and
H(ρ)(K, K0) < ε, and therefore Φ(x) ∩B

H(ρ)
ε (K0) 6= ∅. Thus, Φ is l.s.c.

Since (L (Y ),H(ρ)) is a complete metric space because so is (Y, ρ), by Theorem
1.3, Φ has a H(ρ)-continuous section ϕ : X → L (L (Y )). Define ψ : X → 2Y by
ψ(x) =

⋃
ϕ(x), x ∈ X, and let us show that the mapping ψ is as required in this part

of the proof. Take a point x0 ∈ X. By considering the identity mapping K −→ K,
K ∈ ϕ(x0), and applying Proposition 4.1, we get that ψ(x0) ∈ L (Y ). To show that ψ

is ρ-continuous, let ε > 0. Since ϕ is H(ρ)-continuous, x0 has a neighbourhood U such
that
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ϕ(x0) ⊂ B
H(ρ)
ε/2 (ϕ(x)) and ϕ(x) ⊂ B

H(ρ)
ε/2 (ϕ(x0)), x ∈ U.

According to the definition of H(ρ), whenever x ∈ U we have that

⋃
ϕ(x0) ⊂

⋃ {
Bρ

ε/2(K) : K ∈ ϕ(x)
} ⊂ Bρ

ε/2

( ⋃
ϕ(x)

)
,

and therefore ψ(x0) ⊂ Bρ
ε (ψ(x)). Similarly, ψ(x) ⊂ Bρ

ε (ψ(x0)), x ∈ U . Thus, ψ is
ρ-continuous. Finally, θ(x0) ⊂ ψ(x0) because θ(x0) ⊂ K for every K ∈ ϕ(x0).

Since (b)⇒ (c) is obvious, we complete the proof by showing that (c)⇒ (a). Suppose
that for every complete metric space (Y, ρ) and every usco mapping θ : X → C (Y ), there
exists a ρ-continuous mapping ψ : X → L (Y ) such that θ(x) ⊂ ψ(x) for all x ∈ X. Let
(Y, ρ) be a complete metric space and Φ : X → F (Y ) be an l.s.c. mapping. Since X is
paracompact, by [12, Theorem 1.1], Φ has an usco multi-selection θ : X → C (Y ). By
hypothesis, there exists a ρ-continuous mapping ψ : X → L (Y ) such that θ(x) ⊂ ψ(x)
for all x ∈ X. Since θ is a multi-selection for Φ, we get that ψ is a section for Φ, and, by
Theorem 1.3, X must be strongly paracompact. The proof is completed. ¤

Just like before, following the pattern of the proof of Theorem 4.5, we get also the
following characterisation of super-paracompact spaces.

Theorem 4.6. A paracompact space X is super-paracompact if and only if for
every completely metrizable space Y and usco mapping θ : X → C (Y ) there exists a
continuous mapping ψ : X → C (Y ) such that θ(x) ⊂ ψ(x) for all x ∈ X.

Acknowledgments. The author would like to express his best gratitude to Pro-
fessor David Buhagiar who made several valuable comments concerning the proof of
Theorem 2.2.
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