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Abstract. We prove that the strong polarized relation
`θ
ω

´ → `θ
ω

´1,1

2
,

applied simultaneously for every θ ∈ [ℵ1, 2ℵ0 ], is consistent with ZFC. Con-

sequently,
`inv

ω

´ → `inv
ω

´1,1

2
is consistent for every cardinal invariant of the

continuum. Some results in this direction are generalized to higher cardinals.

Nous prouvons que la relation polarisée forte
`θ
ω

´ → `θ
ω

´1,1

2
, appliquée si-

multanément à chaque cardinal θ ∈ [ℵ1, 2ℵ0 ], est en accord avec ZFC. Par

conséquent, la relation
`inv

ω

´→ `inv
ω

´1,1

2
est en accord avec ZFC pour chaque

caractéristique sur le continu. Nous étudions plusieurs généralisations pour
certains cardinaux élevés.

Introduction.

The strong polarized relation
(
λ
κ

) → (
λ
κ

)1,1

2
means that for every function c : λ×κ → 2

there are A ⊆ λ and B ⊆ κ such that |A| = λ, |B| = κ and c ¹ (A×B) is constant. The
history of this relation begins with [8], and later [7]. A comprehensive discussion on the
basic results for this relation appears in [19]. For a modern discussion see [16].

Cardinal invariants of the continuum are discussed in [1]. Every cardinal invariant
isolates some property of the continuum (i.e., ω2,ω ω, or [ω]ω and so forth) and seeks for
the minimal cardinality of a set with this property. The value of each cardinal invariant
belongs to the interval [ℵ1, c], and except of the trivial invariants (which are the first
uncountable cardinal, and c), the value of each invariant can fall on a large spectrum of
cardinals in this interval. We are interested in the following general problem, from [9]:

Problem 0.1. Cardinal invariants and the polarized relation.
Let inv be a cardinal invariant of the continuum. Is the relation

(
inv
ω

) → (
inv
ω

)1,1

2

consistent with ZFC?

Since the continuum hypothesis implies
(ℵ1
ℵ0

)
9

(ℵ1
ℵ0

)1,1

2
(as proved in [8]), and

inv = ℵ1 for every cardinal invariant under the continuum hypothesis, we know that
the negative relation

(
inv
ω

)
9

(
inv
ω

)1,1

2
is always consistent. This is the background be-

hind Problem 0.1.
In [13] it is proved that

(
c
ω

) → (
c
ω

)1,1

2
is consistent with ZFC, and one can judge

c as a cardinal invariant, giving a positive answer (in this case) for the above problem.
But in the model constructed in [13] there exists an uncountable cardinal θ < c so that
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(
θ
ω

)
9

(
θ
ω

)1,1

2
. This gives rise to the following:

Problem 0.2. Simultaneous positive relations.
Is the relation

(
θ
ω

) → (
θ
ω

)1,1

2
consistent with ZFC for every θ ∈ [ℵ1, 2ℵ0 ] simultane-

ously?

By the way we mention that the opposite situation holds in the Cohen model.
Namely, adding λ-many Cohen reals implies

(
θ
ω

)
9

(
θ
ω

)1,1

2
for every θ ∈ [ℵ1, 2ℵ0 ]. An

explicit proof can be found in [11, Remark 1.4].
Let us state the known results so far. By [13], if κ < s then

(
κ
ω

) → (
κ
ω

)1,1

2
if and

only if cf(κ) > ℵ0. Hence forcing ℵ0 < cf(inv) ≤ inv < s settles Problem 0.1 for such
an invariant (the cofinality requirement is easy, in general). For instance, it gives the
consistency of

(
b
ω

) → (
b
ω

)1,1

2
, as well as

(
a
ω

) → (
a
ω

)1,1

2
, due to [17] (chapter VI, Section 6).

So we focus on invariants above s. In a sense, s is a natural invariant for getting
‘downward positive relations’ like

(
κ
ω

) → (
κ
ω

)1,1

2
, whenever κ < s. Here we shall see

that the reaping number r is a natural invariant for ‘upward positive relations’, namely(
κ
ω

) → (
κ
ω

)1,1

2
for every κ > r whose cofinality is large enough.

Inasmuch as r < s is consistent with ZFC, we can cover simultaneously every θ ∈
[ℵ1, 2ℵ0 ]. In the model of [2], ℵ1 = r < s = ℵ2 = c. This gives a positive answer to
Problem 0.2, hence also to Problem 0.1, since every cardinal invariant falls into {ℵ1,ℵ2}
in this model.

Another result is related to d. It is not known, yet, if one can increase the continuum
above ℵ2 while keeping r < s. Anyhow, dealing with the dominating number d one can
force r < d for every prescribed regular value of d above ℵ1, as proved in [3]. Consequently,
the relation

(
d
ω

) → (
d
ω

)1,1

2
is consistent with ZFC for arbitrarily large d.

Can we generalize these results to uncountable cardinals? We need some large
cardinal assumptions. If λ is a supercompact cardinal we can force rλ = uλ = λ+,
yielding positive relation for every regular cardinal above λ+. We believe that some
sort of large cardinals assumption is needed, yet supercompactness is not vital. We still
do not know what happens in the general case of an uncountable λ. If µ is a singular
cardinal (a limit of strongly inaccessibles, or a parallel assumption) then we can increase
2µ and prove

(
θ
µ

) → (
θ
µ

)1,1

2
for many θ-s in the interval (µ, 2µ].

We use standard notation. We employ the letters θ, κ, λ, µ, χ for infinite cardinals,
and α, β, γ, δ, ε, ζ for ordinals. Topological cardinal invariants of the continuum are de-
noted as in [18] and [1]. We denote the continuum by c. For A,B ⊆ λ we denote almost
inclusion by ⊆∗, so A ⊆∗ B means |A \ B| < λ. For a regular cardinal κ we denote the
ideal of bounded subsets of κ by Jbd

κ . Given a product of regular cardinals, we denote
its true cofinality by tcf.

We adopt the Jerusalem notation in forcing notions, namely p ≤ q means that the
condition q gives more information than the condition p. We shall use Mathias forcing,
relativized to some ultrafilter, and we assume throughout the paper that every ultrafilter
is uniform (hence, in particular, non-principal).

We thank the referee for many comments, mathematical corrections and a meaning-
ful improvement of the exposition.
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1. Cardinal invariants.

Let us begin with basic definitions of some cardinal invariants. We introduce the
general definition, applied to every infinite cardinal λ (but in most cases, the definition
makes sense only for regular cardinals). Omitting the subscript means that λ = ℵ0. Here
is the first definition:

Definition 1.1. The splitting number sλ.

(ℵ) Suppose B ∈ [λ]λ and S ⊆ λ. S splits B if |S ∩B| = |(λ \ S) ∩B| = λ.
(i) {Sα : α < κ} is a splitting family in λ if for every B ∈ [λ]λ there exists an ordinal

α < κ so that Sα splits B.
(ג) The splitting number sλ is the minimal cardinality of a splitting family in λ.

The following claim is explicit in [13] only for the case λ = ℵ0 (by our convention,
the splitting number is denoted by s in this case). Claim 1.3 of [11] is also related (but
deals with a variant of s, called the strong splitting number). For completeness, we
repeat the proof here, this time in the general context of sλ. Notice that the assumption
λ < sλ in the following claim implies that λ is weakly compact (we consider ℵ0 as a
weakly compact cardinal). A proof appears in [20] for the case λ is regular. We do not
know what happens when λ is singular (although in some cases a similar result can be
proved).

Claim 1.2. The downward positive relation.
Suppose λ = cf(λ) < µ < sλ. Then

(
µ
λ

) → (
µ
λ

)1,1

2
if and only if cf(µ) 6= λ.

Proof. Assume cf(µ) 6= λ. Let c : µ× λ → 2 be any coloring. Set Sα = {γ ∈ λ :
c(α, γ) = 0} for every α < µ. We collect these sets into the family F = {Sα : α < µ}.
Since |F| ≤ µ < sλ we infer that F is not a splitting family.

Let B ∈ [λ]λ exemplify this fact. It means that B ⊆∗ Sα or B ⊆∗ (λ \ Sα) for every
α < µ. At least one of these options occurs µ-many times, so without loss of generality
B ⊆∗ Sα for every α < µ. By the very definition of almost inclusion, for every α < µ

there exists βα < λ such that B \ βα ⊆ Sα (here we use the regularity of λ). Since
cf(µ) 6= λ there exists β < λ, and H0 ∈ [µ]µ so that βα ≤ β for every α ∈ H0.

Let H1 be B \ β, so H1 ∈ [λ]λ. Suppose α ∈ H0, γ ∈ H1. By the definition of H1,
γ ∈ B \ β = B \ βα, and since α ∈ H0 we conclude that c(α, γ) = 0, completing this
direction.

Now assume that cf(µ) = λ. Choose a disjoint decomposition {Aγ : γ < λ} of
µ, such that |Aγ | < µ for every γ < λ. Without loss of generality, the union of every
subcollection of less than λ-many Aγ-s has size less than λ. Here we use the assumption
cf(µ) = λ. For every α < µ let ξ(α) be the unique ordinal so that α ∈ Aξ(α). Define
c : µ× λ → 2 as follows. For α ∈ µ ∧ β ∈ λ let:

c(α, β) = 0 ⇔ β ≤ ξ(α).

We claim that c exemplifies our claim. Indeed, assume that |H0| = µ and |H1| = λ.
Choose (α, β) ∈ H0 × H1, and suppose c(α, β) = 0. It means that β ≤ ξ(α). But
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ξ(α) is an ordinal below λ, and H1 is unbounded in λ, hence one can pick an ordinal
β′ ∈ H1 so that β′ > ξ(α). It follows that c(α, β′) = 1, so the product H0 ×H1 is not
monochromatic in this case. Now suppose c(α, β) = 1. It means that ξ(α) < β. Clearly,
there is some α′ ∈ H0 so that ξ(α′) ≥ β. Consequently, c(α′, β) = 0, so again H0 ×H1

is not monochromatic, and the proof is completed. ¤

For the next claim we need the following definition:

Definition 1.3. The reaping number.
Let λ be an infinite cardinal.

(ℵ) {Tα : α < κ} is an unreaped family if there is no S ∈ [λ]λ so that S splits Tα for
every α < κ.

(i) The reaping number rλ is the minimal cardinality of an unreaped family.

Our second claim works in the opposite direction to the first claim:

Claim 1.4. The upward positive relation.
Suppose rλ < µ ≤ 2λ, λ is a regular cardinal. Then

(
µ
λ

) → (
µ
λ

)1,1

2
whenever cf(µ) >

rλ.

Proof. Let A ⊆ [λ]λ exemplify rλ. It means that |A| = rλ, and there is no single
B ∈ [λ]λ which splits all the members of A.

Assume c : µ×λ → 2 is any coloring. For every α < µ let Bα = {β < λ : c(α, β) = 0}.
Choose Aα ∈ A such that Aα ⊆∗ Bα or Aα ⊆∗ λ \ Bα. Without loss of generality,
Aα ⊆∗ Bα for every α < µ, so one can choose an ordinal βα < λ so that Aα \ βα ⊆ Bα.

As cf(µ) > rλ, there are H ∈ [µ]µ, β < λ and A ∈ A such that α ∈ H ⇒ βα = β and
Aα = A. It follows that c ¹ (H ×A \ β) = 0, so the proof is completed. ¤

Combining the above claims, we can prove the main theorem of this section:

Theorem 1.5. The main theorem.
It is consistent that

(
θ
ω

) → (
θ
ω

)1,1

2
for every ℵ1 ≤ θ ≤ 2ℵ0 .

Proof. In the model of [2] we have r = u = ℵ1, while s = c = ℵ2. By Claim 1.2
we conclude that

(ℵ1
ℵ0

) → (ℵ1
ℵ0

)1,1

2
, and by virtue of Claim 1.4 we have

(ℵ2
ℵ0

) → (ℵ2
ℵ0

)1,1

2
, so

we are done. ¤

Corollary 1.6. Polarized relations and cardinal invariants.
Let inv be any cardinal invariant of the continuum. Then

(
inv
ω

) → (
inv
ω

)1,1

2
is con-

sistent with ZFC. ¤

Notice that c = ℵ2 in the model of [2]. Dealing with the dominating number d,
the model in [3] supplies u = µ0 < µ1 = d for every pair of regular cardinals (µ0, µ1).
It follows that

(
d
ω

) → (
d
ω

)1,1

2
is consistent for arbitrarily large value of d, as r ≤ u. We

conclude with another open problem from [9]:

Question 1.7. The splitting number and the pseudointersection number.
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(a) Is it consistent that p = s and
(

p
ω

) → (
p
ω

)1,1

2
?

(b) Is it consistent that c = s > ℵ2 and
(

s
ω

) → (
s
ω

)1,1

2
(hence

(
θ
ω

) → (
θ
ω

)1,1

2
whenever

cf(θ) > ℵ0)?

Notice that in the above models we have p < s, so a different method is required for
this problem. Nevertheless, we believe that a positive answer is consistent for both parts
of the question.

Added in Proof. Part (a) has been solved by Brendle and Raghavan in [4].

2. Large cardinals.

In this section we deal with uncountable cardinals, with respect to the problems
in the previous section. As can be seen, we need some large cardinals assumption. We
distinguish two cases. In the first one, λ is a regular cardinal. In this case we shall
assume that λ is a supercompact cardinal, aiming to show that many polarized relations
are consistent, above λ. Secondly, we deal with a singular cardinal.

Let us begin with the regular case. We shall make use of the Mathias forcing,
generalized for uncountable cardinals. Notice that for the combinatorial theorems we
need a specific version of the Mathias forcing, relativized to some ultrafilter. We begin
with the definition of this forcing notion:

Definition 2.1. The generalized Mathias forcing.
Let λ be a supercompact (or even just measurable) cardinal, and D a nonprincipal

λ-complete ultrafilter on λ. The forcing notion Mλ
D consists of pairs (a,A) such that

a ∈ [λ]<λ, A ∈ D. For the order, (a1, A1) ≤ (a2, A2) if and only if a1 ⊆ a2, A1 ⊇ A2 and
a2 \ a1 ⊆ A1.

Notice thatMλ
D is λ+-centered as always (a,A1) ‖ (a,A2) and there are only λ = λ<λ

many a-s. It follows that Mλ
D is λ+-cc. Also, Mλ

D is < λ-directed closed (here we
employ the λ-completeness of the ultrafilter D). We emphasize that these properties are
preserved by < λ-support iterations, hence such an iteration collapses no cardinals.

If Mλ
D is a λ-Mathias forcing, then for defining the Mathias λ-real we take a generic

G ⊆ Mλ
D, and define xG =

⋃{a : (∃A ∈ D)((a,A) ∈ G)}. As in the original Mathias
forcing, xG is endowed with the property xG ⊆∗ A ∨ xG ⊆∗ λ \ A for every A ∈ [λ]λ of
the ground model. Let us mention another cardinal invariant:

Definition 2.2. The ultrafilter number uλ.
Let λ be a regular cardinal, and F a filter on λ.

(ℵ) A base A for F is a subfamily of F such that for every X ∈ F there is some Y ∈ A
with the property Y ⊆∗ X.

(i) The ultrafilter number uλ is the minimal cardinality of a filter base, for some uniform
ultrafilter on λ.

One can show that uλ > λ for every λ. The following claim employs known facts,
so we give just an outline of the proof:
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Claim 2.3. Polarized relations above a supercompact cardinal.
Suppose λ is a supercompact cardinal. Then the following hold :

(a) For every µ = cf(µ) ∈ [λ+, 2λ], one can force sλ = µ without changing the value of
2λ.

(b) One can force uλ = λ+ while 2λ is arbitrarily large.

Outline of proof. For (a) we iterate Mλ
D, the length of the iteration being µ.

We assume without loss of generality that λ is Laver-indestructible, so in particular it
remains supercompact (hence measurable) along the iteration. It enables us to choose a
λ-complete ultrafilter at any stage, hence the forcing does not collapse cardinals. We use
< λ-support. It follows that sλ equals µ in the forcing extension. For a detailed proof
see also [13].

For (b) we use an iteration of length λ+. But we choose the λ-complete ultrafilter
(at every stage) more carefully. Along the iteration we create a ⊆∗-decreasing sequence of
subsets of λ. This is done by choosing an ultrafilter which contains the sequence from the
previous stages. For the limit stages of the iteration, one has to employ the arguments
in [6]. The main point there is using some prediction principle on λ+ in order to make
sure that an appropriate ultrafilter is chosen enough times. At the end, we can show
that the sequence (of length λ+) generates an ultrafilter, hence uλ = λ+. We also refer
the reader to [5] for a detailed proof of this assertion. ¤

We indicate that the consistency of uλ = λ+ while 2λ is arbitrarily large is proved
for some singular cardinal λ in [14] (but here we deal with a supercompact cardinal).
Let us phrase the following conclusion from the above claim:

Conclusion 2.4. Many positive relations above a supercompact.
Suppose λ is a supercompact cardinal. Then the following hold:

(a) The positive relation
(
µ
λ

) → (
µ
λ

)1,1

2
is consistent simultaneously for every regular µ

above λ but 2λ.
(b) The positive relation

(
µ
λ

) → (
µ
λ

)1,1

2
is consistent simultaneously for every regular µ in

the interval (λ+, 2λ].

Proof. (a) is valid when sλ = 2λ and (b) holds in a model of rλ = λ+ (notice
that for getting merely rλ = λ+ we do not need the arguments of [6]). ¤

Question 2.5. Is it consistent that uλ < sλ (or at least rλ < sλ) for some un-
countable cardinal λ?

We turn now to the main theorem of this section. We show that getting a positive
polarized relation for many cardinals in the interval (µ, 2µ] is consistent for some singular
cardinal µ (under some pcf assumptions). In particular, it holds for µ+. We shall prove
the following:

Theorem 2.6. Polarized relations above a singular cardinal.
Assume κ = cf(µ) < µ < λ, and θ < κ. If ~ holds, then

(
λ
µ

) → (
λ
µ

)1,1

θ
holds, where

~ means the conjunction of the following :
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(a) 2κ < cf(λ),
(b) Jbd

κ ⊆ J is an ideal on κ,
(c) 〈λε : ε < κ〉 is an increasing sequence of cardinals which tends to µ,
(d) 2λε = λ+

ε for every ε < κ,
(e) λε is strongly inaccessible for every ε < κ,
(f) Υ` = tcf(

∏
ε<κ λ+`

ε , <J) is well defined for ` ∈ {0, 1},
(g) cf(λ) /∈ {Υ0,Υ1}.

Proof. Suppose a coloring c : λ × µ → θ is given. For every α < λ, ε < κ, ι < θ

we let Aα,ε,ι be {γ < λε : c(α, γ) = ι}. Fixing α and ε, we have produced a partition
{Aα,ε,ι : ι < θ} of λε into a small (i.e., just θ-many) number of sets. Enumerate P(λε)
as 〈Bε,i : i < λ+

ε 〉. For every α < λ and ι < θ we define a function gα,ι ∈
∏

ε<κ λ+
ε as

follows:

gα,ι(ε) = min{i < λ+
ε : Aα,ε,ι = Bε,i}.

Here we have used the assumption that 2λε = λ+
ε . For every α < λ let gα ∈

∏
ε<κ λ+

ε

be defined by gα(ε) = sup{gα,ι(ε) : ι < θ}. Note that gα(ε) is well defined since each λ+
ε

is regular (but all we need is θ < cf(λ+
ε ), to be used in the sequel).

Recall that Υ1 = tcf(
∏

ε<κ λ+
ε , <J) and cf(λ) 6= Υ1, hence there exist a function

g ∈ ∏
ε<κ λ+

ε and a set S1 of size λ so that α ∈ S1 ⇒ gα <J g. We may assume, without
loss of generality, that g(ε) > λε for every ε < κ. Denote the set {ε < κ : gα(ε) < g(ε)}
by uα, for every α < λ. Since 2κ < cf(λ), there are u ⊆ κ and S2 ∈ [S1]λ such that
u = κ mod J and α ∈ S2 ⇒ uα = u. Without loss of generality, u = κ.

Take a closer look at the collection {Bε,i : i < g(ε)} (for every ε < κ). By the
nature of the function g, this is a family of λε-many sets, hence we can enumerate its
members as {B1

ε,i : i < λε}. Notice that for every α ∈ S2, ε < κ and ι < θ we know that
Aα,ε,ι ∈ {B1

ε,i : i < λε}.
We need another round of unifying. By the same token as above, we define for every

α ∈ S2 and ι < θ the function hα,ι ∈
∏

ε<κ λε as follows:

hα,ι(ε) = min
{
i < λε : B1

ε,i = Aα,ε,ι

}
.

Now for α ∈ S2 set hα(ε) = sup{hα,ι(ε) + 1 : ι < θ} (for every ε < κ). Again, by
our assumptions, hα belongs to the product

∏
ε<κ λε for every α ∈ S2. Since cf(λ) 6= Υ0

(recall that Υ0 = tcf(
∏

ε<κ λε, <J)) we can choose a function h which bounds many hα-s.
In other words, there are h and S3 ∈ [S2]λ so that α ∈ S3 ⇒ hα <J h.

Let vα be the set {ε < κ : hα(ε) < h(ε)}, for every α ∈ S3. As before, since
2κ < cf(λ) one can find v ⊆ κ and S4 ∈ [S3]λ so that α ∈ S4 ⇒ vα = v. Without loss of
generality we assume, as usual, that v = κ.

For every ε < κ we define an equivalence relation Eε on λε as follows:

∀γ1, γ2 ∈ λε, γ1Eεγ2 ⇔
(
γ1 ∈ B1

ε,j ≡ γ2 ∈ B1
ε,j ,∀j < h(ε)

)
.
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Observe that Eε has less than λε equivalence classes for every ε < κ, since each
λε is an inaccessible cardinal. Consequently, we can choose an equivalence class Xε of
size λε in each Eε. For every α ∈ S4 let ια,ε < θ be the color associated with Xε (i.e.,
c(α, γ) = ια,ε for every γ ∈ Xε).

We arrived at the last stage of unifying ε-s. For every α ∈ S4 there is a color ια so
that the set wα = {ε < κ : ια,ε = ια} is of size κ. Hence there are a color ι < θ, w ∈ [κ]κ

and S5 ∈ [S4]λ such that α ∈ S5 ⇒ ια = ι, wα = w.
Set A = S5 and B =

⋃{Xε : ε ∈ w}. Clearly, A ∈ [λ]λ, B ∈ [µ]µ. We claim that
the product A × B exemplifies the positive relation

(
λ
µ

) → (
λ
µ

)1,1

2
. Indeed, if α ∈ A and

β ∈ B then α ∈ S5 and β ∈ Xε for some ε ∈ w. Consequently, ια = ι (for this specific
α) and c(α, β) = ια,ε = ια = ι so we are done. ¤

Corollary 2.7. Positive relation for successor of singular.
Suppose (κ, µ, µ+) satisfy ~ of Theorem 2.6 (stipulating µ+ = λ). Then

(
µ+

µ

) →
(
µ+

µ

)1,1

2
. In particular, this positive relation is consistent with ZFC.

Proof. We refer to [12], where the assumptions of the theorem are forced (and
in fact, much more), but see also the discussion following the next remark below. ¤

Remark 2.8. A similar result is forced in [12], under the assumption that µ is a
singular cardinal which is a limit of measurables. In the forcing extension of [12], one has
to admit the existence of a supercompact cardinal in the ground model. Nevertheless,
the polarized relation there is slightly stronger. Being a limit of measurables entails(
λ
µ

) → (
λ
µ

)1,<ω

2
there (which means that for every c : λ× [µ]<ω → 2 there are H0 ∈ [λ]λ,

H1 ∈ [µ]µ such that for every n ∈ ω, c ¹ (H0 × [H1]n) is constant).
We also indicate that the assumption 2λε = λ+

ε is stronger than needed here. The
value of 2λε can be replaced by a larger cardinal, provided that all the relevant products
have true cofinality. Anyhow, some restriction should be imposed. If 2λε = λ

+ζ(ε)
ε for

every ε < κ, and the sequence 〈ζ(ε) : ε < κ〉 tends to µ, then the argument breaks down.

We can modify the proof above, to include another case. The consistency proof of
the assumptions below is similar to those of Theorem 2.6, yet comparing to [12] we need
less than supercompactness (in both theorems). A sufficient assumption in order to force
the assumptions of these theorems is the existence of a strong cardinal in the ground
model (and even slightly less, namely a τ -strong cardinal for some suitable τ). We hope
to shed light on this subject in [10].

Theorem 2.9. Positive relation for limit of strong limit cardinals.
Assume κ = cf(µ) < µ < λ, and θ < κ. If } holds, then

(
λ
µ

) → (
λ
µ

)1,1

θ
holds, where

} means the conjunction of the following :

(a) 2κ < cf(λ),
(b) Jbd

κ ⊆ J is an ideal on κ,
(c) 〈λε : ε < κ〉 is an increasing sequence of cardinals which tends to µ,
(d) 2λε = λ+

ε for every ε < κ,
(e) λε is strong limit and cf(λε) > κ for every ε < κ,
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(f)
∏

ε<κ cf(λε) < cf(λ),
(g) Υ` = tcf(

∏
ε<κ λ+`

ε , <J) is well defined for ` ∈ {0, 1},
(h) cf(λ) /∈ {Υ0,Υ1}.

Proof. Proceed as in the proof of Theorem 2.6, till the stage of defining the
equivalence relations Eε on each λε. At this stage we have isolated a large equivalence
class (for every ε < κ), using the regularity of λε. But here, λε is a singular cardinal, so
we have to be more careful.

For every ε < κ we choose a sequence 〈Xε,j : j < cf(λε)〉 so that each Xε,j is an
equivalence class of Eε, and Σ{|Xε,j | : j < cf(λε)} = λε. For every α ∈ S4, ε < κ and
j < cf(λε) we choose a color ια,ε,j < θ so that:

γ ∈ Xε,j ⇒ c(α, γ) = ια,ε,j .

We claim that there are S5 ∈ [S4]λ and a sequence of colors 〈ιε,j : ε < κ, j < cf(λε)〉
such that α ∈ S5 ⇒ ια,ε,j = ιε,j (here we use assumption (f) of the present theorem).
Moreover, there is a single color ι < θ so that Σ{|Xε,j | : ιε,j = ι, ε < κ, j < cf(λε)} = µ.
For this, notice that µ = Σε<κλε = Σε<κΣ{|Xε,j | : j < cf(λε)}.

Now we can define A = S5 and B =
⋃{Xε,j : ιε,j = ι, ε < κ, j < cf(λε)}. It follows

that A ∈ [λ]λ and B ∈ [µ]µ. Since the product A×B is monochromatic, we are done. ¤

Remark 2.10. The assumption
∏

ε<κ cf(λε) < cf(λ) ((f) in the last theorem) can
be omitted. We have to choose an equivalence class Xε of Eε of size at least (

∑
ζ<ε λζ)+

so that min(Xε) >
∑{λζ : ζ < ε}. But in some sense we get less.

We conclude this section with the following:

Proposition 2.11. It is consistent that there is a singular µ, κ = cf(µ), such that(
λ
µ

) → (
λ
µ

)1,1

2
holds for all λ ∈ (µ, 2µ].

Proof. By enlarging 2µ to a large enough value below µ+ω, one can choose two
sequences, 〈λε : ε < κ〉 and 〈κε : ε < κ〉 of inaccessibles (for simplicity) whose limit is
µ, and {Υλ̄

0 ,Υλ̄
1} ∩ {Υκ̄

0 ,Υκ̄
1} = ∅ (the ideal we use is Jbd

κ , see, for instance, the models
constructed in [15]). Notice that all the cardinals in the interval [µ+, 2µ] are regular.
Now use Theorem 2.6. ¤
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[ 6 ] M. Džamonja and S. Shelah, Universal graphs at the successor of a singular cardinal, J. Symbolic

Logic, 68 (2003), 366–388.

http://dx.doi.org/10.1016/0168-0072(87)90082-0
http://dx.doi.org/10.1007/BF02764864
http://dx.doi.org/10.1016/j.apal.2013.09.002
http://dx.doi.org/10.2178/jsl/1052669056


434 S. Garti and S. Shelah
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