Surface links with free abelian groups

By Inasa Nakamura

(Received Apr. 25, 2012)

Abstract. It is known that if a classical link group is a free abelian group, then its rank is at most two. It is also known that a k-component 2-link group (k > 1) is not free abelian. In this paper, we give examples of T^2 -links each of whose link groups is a free abelian group of rank three or four. Concerning the T^2 -links of rank three, we determine the triple point numbers and we see that their link types are infinitely many.

Introduction.

A classical link is the image of a smooth embedding of a disjoint union of circles into the Euclidean 3-space \mathbb{R}^3 . The link group is the fundamental group of the link exterior. It is known [13, Theorem 6.3.1] that if a classical link group is a free abelian group, then its rank is at most two. A surface link is the image of a smooth embedding of a closed surface into the Euclidean 4-space \mathbb{R}^4 . A 2-link (resp. T^2 -link) is a surface link whose components are homeomorphic to 2-spheres (resp. tori). It is known [7, Chapter 3, Corollary 2] that a k-component 2-link group for k > 1 is not a free abelian group. The aim of this paper is to give concrete examples of T^2 -links whose link groups are free abelian.

It is known (see Remark 2.1) that a T^2 -link called a "Hopf 2-link" [5] has a free abelian group of rank two. We give T^2 -links with a free abelian group of rank three (Theorem 2.2). We also give a T^2 -link with a free abelian group of rank four (Theorem 2.3). These T^2 -links are "torus-covering T^2 -links", which are T^2 -links in the form of unbranched coverings over the standard torus.

Further we study the T^2 -links given in Theorem 2.2 i.e. T^2 -links each of whose link groups is a free abelian group of rank three. We determine the triple point number of each T^2 -link (Theorem 3.1), by which we can see that their link types are infinitely many. The triple point number of each T^2 -link is a multiple of four, and it is realized by a surface diagram in the form of a covering over the torus. For other examples of surface links (not necessarily orientable) which realize large triple point numbers, see [6], [9], [12], [16], [17], [19].

The paper is organized as follows. In Section 1, we review the definition of a toruscovering T^2 -link, and we review a formula how to calculate its link group. In Section 2, we show Theorems 2.2 and 2.3. In Section 3, we show Theorem 3.1.

²⁰¹⁰ Mathematics Subject Classification. Primary 57Q45; Secondary 57Q35.

Key Words and Phrases. surface link, link group, triple point number.

This research was supported by Grant-in-Aid for JSPS Fellow (24.9014) and iBMath through the fund for Platform for Dynamic Approaches to Living System from MEXT.

1. A torus-covering T^2 -link and its link group.

In this section, we give the definition of a torus-covering T^2 -link $S_m(a, b)$, which is determined from a pair of commuting *m*-braids *a* and *b* called basis braids. For the definition of a torus-covering link whose component might be of genus more than one, see [15]. We can compute the link group of $S_m(a, b)$ by using Artin's automorphism associated with *a* or *b* [15].

1.1.

Let T be the standard torus in \mathbb{R}^4 , i.e. the boundary of an unknotted solid torus in $\mathbb{R}^3 \times \{0\} \subset \mathbb{R}^4$. Let N(T) be a tubular neighborhood of T in \mathbb{R}^4 .

DEFINITION 1.1. A torus-covering T^2 -link is a surface link F in \mathbb{R}^4 such that F is embedded in N(T) and $p|_F : F \to T$ is an unbranched covering map, where $p : N(T) \to T$ is the natural projection.

Let us consider a torus-covering T^2 -link F. Let us fix a point x_0 of T, and take a meridian \mathbf{m} and a longitude \mathbf{l} of T with the base point x_0 . A meridian is an oriented simple closed curve on T which bounds a 2-disk in the solid torus whose boundary is Tand which is not null-homologous in T. A longitude is an oriented simple closed curve on T which is null-homologous in the complement of the solid torus in the three space $\mathbb{R}^3 \times \{0\}$ and which is not null-homologous in T. The intersections $F \cap p^{-1}(\mathbf{m})$ and $F \cap p^{-1}(\mathbf{l})$ are closures of classical braids. Cutting open the solid tori at the 2-disk $p^{-1}(x_0)$, we obtain a pair of classical braids. We call them basis braids [15]. The basis braids of a torus-covering T^2 -link are commutative, and for any commutative braids aand b, there exists a unique torus-covering T^2 -link with basis braids a and b [15, Lemma 2.8]. For commutative m-braids a and b, we denote by $\mathcal{S}_m(a, b)$ the torus-covering T^2 -link with basis m-braids a and b.

1.2.

We can compute the link group of a torus-covering T^2 -link $\mathcal{S}_m(a, b)$ [15]. As preliminaries, we will give the definition of Artin's automorphism (see [11]). Let c be an m-braid in a cylinder $D^2 \times [0, 1]$, and let Q_m be the starting point set of c. Let $\{h_u\}_{u \in [0,1]}$ be an isotopy of D^2 rel ∂D^2 such that $\bigcup_{u \in [0,1]} h_u(Q_m) \times \{u\} = c$. Let $\mathcal{A}^c : (D^2, Q_m) \to (D^2, Q_m)$ be the terminal map h_1 , and consider the induced map $\mathcal{A}^c_* : \pi_1(D^2 - Q_m) \to \pi_1(D^2 - Q_m)$. It is known [1] that \mathcal{A}^c_* is uniquely determined from c. We call \mathcal{A}^c_* Artin's automorphism associated with c. Note that $\pi_1(D^2 - Q_m)$ is naturally isomorphic to the free group F_m generated by the standard generators x_1, x_2, \ldots, x_m of $\pi_1(D^2 - Q_m)$. By \mathcal{A}^c_* , the braid group B_m acts on $\pi_1(D^2 - Q_m)$. It is presented by

$$\mathcal{A}_*^{\sigma_i}(x_j) = \begin{cases} x_j x_{j+1} x_j^{-1} & \text{if } j = i \\ x_{j-1} & \text{if } j = i+1 \\ x_j & \text{otherwise} \end{cases}$$

$$\mathcal{A}_{*}^{\sigma_{i}^{-1}}(x_{j}) = \begin{cases} x_{j+1} & \text{if } j = i \\ x_{j}^{-1}x_{j-1}x_{j} & \text{if } j = i+1 \\ x_{j} & \text{otherwise} \end{cases}$$

and

where i = 1, 2, ..., m - 1 and j = 1, 2, ..., m.

It is known [15, Proposition 3.1] that the link group of $\mathcal{S}_m(a, b)$ is presented by

$$\pi_1(\mathbb{R}^4 - \mathcal{S}_m(a, b)) = \langle x_1, \dots, x_m \mid x_j = \mathcal{A}^a_*(x_j) = \mathcal{A}^b_*(x_j), \text{ for } j = 1, 2, \dots, m \rangle.$$

2. T^2 -links whose link groups are free abelian.

In this section we show Theorems 2.2 and 2.3: There are torus-covering T^2 -links with a free abelian group of rank three (Theorem 2.2) or four (Theorem 2.3).

REMARK 2.1. A Hopf 2-link [5] is a T^2 -link which is the product of a classical Hopf link in B^3 with S^1 , embedded into \mathbb{R}^4 via an embedding of $B^3 \times S^1$ into \mathbb{R}^4 , where B^3 is a 3-ball and S^1 is a circle. There are two link types according to the embedding of $B^3 \times S^1$, called a standard Hopf 2-link and a twisted Hopf 2-link [5]. A standard (resp. twisted) Hopf 2-link is the spun T^2 -link (resp. the turned spun T^2 -link) of a classical Hopf link [14], [2], [3]. It is known [14], [2], [3] that the link group of the spun T^2 -link or the turned spun T^2 -link of a classical link L is isomorphic to the classical link group of L. Thus we can see that a Hopf 2-link has a free abelian link group of rank two.

Let $\sigma_1, \sigma_2, \ldots, \sigma_{m-1}$ be the standard generators of B_m .

THEOREM 2.2. The link group of $S_3(\sigma_1^2 \sigma_2^{2n}, \Delta)$ is a free abelian group of rank three, where n is an integer and Δ is a full twist of a bundle of three parallel strings.

PROOF. Put $S_n = S_3(\sigma_1^2 \sigma_2^{2n}, \Delta)$. Let us compute the link group $G_n = \pi_1(\mathbb{R}^4 - S_n)$ by applying [15, Proposition 3.1]. Let x_1, x_2 and x_3 be the generators. Then the relations concerning the basis braid $\sigma_1^2 \sigma_2^{2n}$ are

$$x_1 x_2 = x_2 x_1, (2.1)$$

$$(x_2 x_3)^{|n|} = (x_3 x_2)^{|n|}.$$
(2.2)

The other relations concerning the other basis braid Δ are

$$\begin{aligned} x_1 &= (x_1 x_2 x_3) x_1 (x_1 x_2 x_3)^{-1}, \\ x_2 &= (x_1 x_2 x_3) x_2 (x_1 x_2 x_3)^{-1}, \\ x_3 &= (x_1 x_2 x_3) x_3 (x_1 x_2 x_3)^{-1}, \end{aligned}$$

which are

$$x_1 x_2 x_3 = x_2 x_3 x_1, \tag{2.3}$$

$$x_2(x_1x_2x_3) = (x_1x_2x_3)x_2, (2.4)$$

$$x_3 x_1 x_2 = x_1 x_2 x_3. (2.5)$$

By (2.1), (2.3) is deformed to $x_2x_1x_3 = x_2x_3x_1$; hence

$$x_1 x_3 = x_3 x_1. (2.6)$$

Similarly, by (2.4) and (2.1),

$$x_2 x_3 = x_3 x_2. (2.7)$$

We can see that all the relations are generated by the three relations (2.1), (2.6) and (2.7). Thus we have

$$G_n = \langle x_1, x_2, x_3 \mid x_1 x_2 = x_2 x_1, x_2 x_3 = x_3 x_2, x_3 x_1 = x_1 x_3 \rangle,$$

which is a free abelian group of rank three.

THEOREM 2.3. The link group of $S_4(\sigma_1^2 \sigma_2^2 \sigma_3^2, \Delta)$ is a free abelian group of rank four, where Δ is a full twist of a bundle of 4 parallel strings.

PROOF. Similarly to the proof of Theorem 2.2, by [15, Proposition 3.1], for generators x_1 , x_2 , x_3 and x_4 , we have the following relations:

$$x_i x_{i+1} = x_{i+1} x_i, (2.8)$$

where i = 1, 2, 3, and

$$x_i = (x_1 x_2 x_3 x_4) x_i (x_1 x_2 x_3 x_4)^{-1}, (2.9)$$

where i = 1, 2, 3, 4. Using $x_1x_2 = x_2x_1$ and $x_3x_4 = x_4x_3$ of (2.8), the latter four relations (2.9) are deformed as follows:

$$x_1 x_3 x_4 = x_3 x_4 x_1, (2.10)$$

$$x_2 x_3 x_4 = x_3 x_4 x_2, (2.11)$$

$$x_3 x_1 x_2 = x_1 x_2 x_3, (2.12)$$

$$x_4 x_1 x_2 = x_1 x_2 x_4. \tag{2.13}$$

By $x_2x_3 = x_3x_2$ of (2.8), (2.11) is deformed to $x_3x_2x_4 = x_3x_4x_2$; hence

$$x_2 x_4 = x_4 x_2. (2.14)$$

250

Similarly, by $x_2x_3 = x_3x_2$ of (2.8) and (2.12),

$$x_3 x_1 = x_1 x_3, \tag{2.15}$$

and by (2.14) and (2.13),

$$x_4 x_1 = x_1 x_4. (2.16)$$

We can see that all the relations are generated by the relations (2.8), (2.14), (2.15) and (2.16). Thus the link group is a free abelian group of rank four.

3. The triple point numbers of the T^2 -links with a free abelian group of rank three.

The triple point number of a surface link F is the minimal number of triple points among all the surface diagrams of F. In this section we study the T^2 -links given in Theorem 2.2 i.e. T^2 -links each of whose link group is a free abelian group of rank three.

THEOREM 3.1. The triple point number of $S_n = S_3(\sigma_1^2 \sigma_2^{2n}, \Delta)$ given in Theorem 2.2 is 4n for n > 0 and 4(1 - n) for $n \leq 0$. Further it is realized by a surface diagram in the form of a covering over T, in other words, by a 3-chart on T which presents S_n . Thus T^2 -links with a free abelian group of rank three are infinitely many.

Here, a 3-chart [11] is a finite graph with certain additional data, which we review in Section 3.1.

This section is organized as follows. In Section 3.1, we review a surface diagram and an *m*-chart on *T* which presents a torus-covering T^2 -link (see [15], [11]). In Section 3.2, we review the result of [16] which gives lower bounds of triple point numbers. In Section 3.3, we prove Theorem 3.1.

3.1. Surface diagrams and *m*-charts presenting torus-covering T^2 -links.

The notion of an *m*-chart on a 2-disk was introduced by Kamada [8] (see also [11]) to present a surface braid i.e. a 2-dimensional braid in a bi-disk (see [18], [11]). An *m*-chart on a disk is obtained from the singularity set of a surface diagram of a surface braid. By a minor modification, we can define an *m*-chart on *T* presenting a torus-covering link [15].

For a torus-covering T^2 -link F, we consider a surface diagram in the form of a covering over the torus, as in Section 3.1.1.. Given F, we obtain such a surface diagram D, and from D we obtain a graph called an m-chart on T (without black vertices). Conversely, an m-chart on T without black vertices presents such a surface diagram and hence a torus-covering T^2 -link.

3.1.1. Surface diagrams.

We review a surface diagram of a surface link F (see [4]). For a projection π : $\mathbb{R}^4 \to \mathbb{R}^3$, the closure of the self-intersection set of $\pi(F)$ is called the singularity set. Let π be a generic projection, i.e. the singularity set of the image $\pi(F)$ consists of double

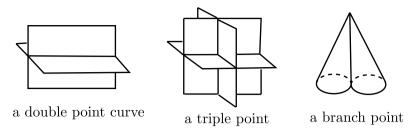


Figure 3.1. The singularity of a surface diagram.

points, isolated triple points, and isolated branch points; see Figure 3.1. The closure of the singularity set forms a union of immersed arcs and loops, which we call double point curves. Triple points (resp. branch points) form the intersection points (resp. the end points) of the double point curves. A *surface diagram* of F is the image $\pi(F)$ equipped with over/under information along each double point curve with respect to the projection direction.

Throughout this paper, we consider the surface diagram of a torus-covering T^2 -link F by the projection which projects $N(T) = I \times I \times T$ to $I \times T$ for an interval I, where we identify N(T) with $I \times I \times T$ in such a way as follows. Since T is the boundary of the standard solid torus in $\mathbb{R}^3 \times \{0\}$, the normal bundle of T in $\mathbb{R}^3 \times \{0\}$ is a trivial bundle. We identify it with $I \times T$. Then we identify N(T) with $I \times I \times T$, where the second I is an interval in the fourth axis of \mathbb{R}^4 . Perturbing F if necessary, we can assume that this projection is generic. We call this surface diagram the surface diagram of F in the form of a covering over the torus.

3.1.2. From surface diagrams to m-charts on T.

Given a torus-covering T^2 -link F, we obtain a graph on T from the surface diagram in the form of a covering over the torus, as follows. Now we have $\operatorname{Sing}(\pi(F))$ in $I \times T$. By the definition of a torus-covering T^2 -link, $\operatorname{Sing}(\pi(F))$ consists of double point curves and triple points, and no branch points. We can assume that the singular set of the image of $\operatorname{Sing}(\pi(F))$ by the projection to T consists of a finite number of double points such that the preimages belong to double point curves of $\operatorname{Sing}(\pi(F))$. Thus the image of $\operatorname{Sing}(\pi(F))$ by the projection to T forms a finite graph Γ on T such that the degree of its vertex is either 4 or 6. An edge of Γ corresponds to a double point curve, and a vertex of degree 6 corresponds to a triple point.

For such a graph Γ obtained from the surface diagram, we give orientations and labels to the edges of Γ , as follows. Let us consider a path l in T such that $l \cap \Gamma$ is a point P of an edge e of Γ . Then $F \cap p^{-1}(l)$ is a classical m-braid with one crossing in $p^{-1}(l)$ such that P corresponds to the crossing of the m-braid. Let σ_i^{ϵ} $(i \in \{1, 2, ..., m - 1\}, \epsilon \in \{+1, -1\})$ be the presentation of $F \cap p^{-1}(l)$. Then label the edge e by i, and moreover give e an orientation such that the normal vector of l corresponds (resp. does not correspond) to the orientation of e if $\epsilon = +1$ (resp. -1). We call such an oriented and labeled graph an m-chart of F (without black vertices).

In general, we define an m-chart on T as follows.

DEFINITION 3.2. Let m be a positive integer, and let Γ be a finite graph on T. Then Γ is called an *m*-chart on T if it satisfies the following conditions:

- (i) Every edge is oriented and labeled by an element of $\{1, 2, \ldots, m-1\}$.
- (ii) Every vertex has degree 1, 4, or 6.
- (iii) The adjacent edges around each vertex are oriented and labeled as shown in Figure 3.2, where we depict a vertex of degree 1 (resp. 6) by a black vertex (resp. white vertex).

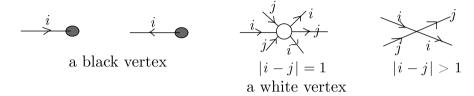


Figure 3.2. Vertices in an *m*-chart.

A black vertex presents a branch point; see [11]. When an *m*-chart on *T* without black vertices is given, we can reconstruct a torus-covering T^2 -link [15] (see also [11]).

Two *m*-charts on *T* are *C*-move equivalent [15] (see also [8], [10], [11]) if they are related by a finite sequence of ambient isotopies of *T* and CI, CII, CIII-moves. We show several examples of CI-moves in Figure 3.3; see [11] for the complete set of CI-moves and CII, CIII-moves. For two *m*-charts on *T*, their presenting torus-covering links are equivalent if the *m*-charts are C-move equivalent [15] (see also [8], [10], [11]).

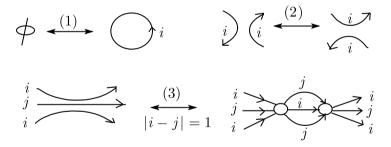


Figure 3.3. CI-moves. We give only several examples.

3.2. Triple point numbers.

For a surface link F, we denote by t(F) the triple point number of F. It is shown [16] that for a pure *m*-braid b ($m \ge 3$) and an integer n, a lower bound of $t(\mathcal{S}_m(b, \Delta^n))$ is given by using the linking numbers of \hat{b} , and for a particular b, we can determine the triple point number. Here \hat{b} denotes the closure of b.

For a pure 3-braid b, it follows from [16] that we can give a lower bound of $t(S_3(b, \Delta))$ as follows. We define the *i*th component of \hat{b} by the component constructed by the *i*th string of \hat{b} (i = 1, 2, 3). For positive integers *i* and *j* with $i \neq j$, the *linking number* of the *i*th and *j*th components of a classical link *L*, denoted by $\text{Lk}_{i,j}(L)$, is the total number of positive crossings minus the total number of negative crossings of a diagram of L such that the under-arc (resp. over-arc) is from the *i*th (resp. *j*th) component. Put $\mu = \sum_{i < j} |\text{Lk}_{i,j}(\hat{b})|$, and put $\nu = \nu_{1,2,3} + \nu_{2,3,1} + \nu_{3,1,2}$, where $\nu_{i,j,k} = \min_{i,j,k} \{|\text{Lk}_{i,j}(\hat{b})|, |\text{Lk}_{j,k}(\hat{b})|\}$ if $\text{Lk}_{i,j}(\hat{b})\text{Lk}_{j,k}(\hat{b}) > 0$ and otherwise zero. Then, by [16],

$$t(\mathcal{S}_3(b,\Delta)) \ge 4(\mu - \nu)$$

In particular, let b be a 3-braid presented by a braid word which is an element of a monoid generated by σ_1^2 and σ_2^{-2} ; note that b is a pure braid. Then

$$t(\mathcal{S}_3(b,\Delta)) = 4\mu_3$$

and the triple point number is realized by a surface diagram in the form of a covering over the torus [16].

3.3. Proof of Theorem 3.1.

Put $b = \sigma_1^2 \sigma_2^{2n}$. We use the notations given in Section 3.2. Since $Lk_{i,j}(\hat{b}) = 1$ (resp. n) if $\{i, j\} = \{1, 2\}$ (resp. $\{2, 3\}$) and otherwise zero, we can see that $\mu = 1 + |n|$.

Let us consider the case for $n \leq 0$. Since b has the presentation which is an element of a monoid generated by σ_1^2 and σ_2^{-2} , $t(S_n) = 4\mu$ by [16]; thus $t(S_n) = 4(1-n)$ $(n \leq 0)$, and the triple point number is realized by a surface diagram in the form of a covering over the torus by [16].

Let us consider the case for n > 0. Since $\operatorname{Lk}_{i,j}(\hat{b}) = 1$ (resp. n) if $\{i, j\} = \{1, 2\}$ (resp. $\{2, 3\}$) and otherwise zero, we can see that $\nu_{i,j,k} = 1$ if (i, j, k) = (1, 2, 3) and zero if (i, j, k) = (2, 3, 1) or (3, 1, 2); thus $\nu = 1$, and hence $t(S_n) \ge 4(\mu - \nu) = 4n$ by [16].

It remains to show that there is a surface diagram of S_n (n > 0) with 4n triple points. It suffices to draw a 3-chart Γ on T which presents S_n such that Γ has exactly 4nwhite vertices. We draw Γ which presents S_n , and deform it to a 3-chart with 4n white vertices by C-moves, as follows. First we draw Γ as a 3-chart which consists of 2n + 2parts as follows, where we assume that a full twist Δ has the presentation $\Delta = (\sigma_1 \sigma_2 \sigma_1)^2$.

- (i) The part of Γ with basis braids σ_1 and Δ . We have two copies.
- (ii) The part of Γ with basis braids σ_2 and Δ . We have 2n copies.

We draw the part (i) as in Figure 3.4 and we denote the white vertices by t_{i1} and t_{i2} as in Figure 3.4 for the *i*th copy (i = 1, 2). We draw the part (ii) as in Figure 3.5 and we denote the white vertices by t_{i1} and t_{i2} as in Figure 3.5 for the (i - 2)th copy

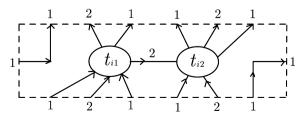


Figure 3.4. White vertices t_{i1} and t_{i2} (i = 1, 2).

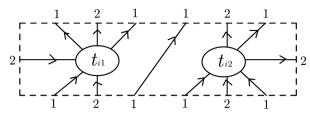


Figure 3.5. White vertices t_{i1} and t_{i2} (i = 3, 4, ..., 2n + 2), for n > 0.

(i = 3, 4, ..., 2n + 2). There are 4n + 4 white vertices in Γ . Let us apply a CI-move as in Figure 3.3 (3) to the pair $\{t_{21}, t_{31}\}$ of white vertices in Γ , and then to the pair $\{t_{(2n+2)2}, t_{12}\}$; then we can eliminate the four white vertices, and the resulting 3-chart has 4n white vertices. Hence $t(S_n) = 4n$ (n > 0), and the triple point number is realized by this 3-chart on T.

There is an oriented T^2 -link as in Figure 3.6 with a free abelian Remark 3.3. group of rank three and with the triple point number zero. It is a ribbon T^2 -link (see [4] for the definition of a ribbon surface link). We briefly show that the link group is free abelian, as follows. In the surface diagram, there are six broken sheets (see [4]), consisting of three pairs of a sheet attached with x_i and a small disk D_i such that each pair forms the *i*th component of the T^2 -link (i = 1, 2, 3). Let us attach y_i to each D_i . The link group has the presentation with generators x_i and y_i (i = 1, 2, 3) and the relations which are given around each double point curve (see [4], [11]). The singularity set consists of double point curves which form six circles. Around each circle in the *i*th component which does not bound D_i (i = 1, 2, 3), there are three broken sheets such that one is an over-sheet with x_i and the other two are under-sheets with the same generator x_{i+1} , where $x_4 = x_1$; together with the orientation, the relation is $x_i = x_{i+1}x_ix_{i+1}^{-1}$, see [4], [11]. Around each circle ∂D_i (i = 1, 2, 3), there are three broken sheets such that one is an over-sheet with x_{i+1} and the other two are under-sheets with x_i and y_i respectively, where $x_4 = x_1$; together with the orientation, the relation is $y_i = x_{i+1}x_ix_{i+1}^{-1}$, see [4], [11]. Thus the link group is a free abelian group of rank three.

ACKNOWLEDGMENTS. The author would like to thank Professor Shin Satoh for his helpful comments.

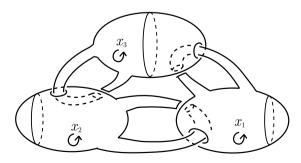


Figure 3.6. A ribbon T^2 -link with a free abelian group of rank three.

References

- [1] E. Artin, Theory of braids, Ann. of Math. (2), 48 (1947), 101–126.
- [2] J. Boyle, Classifying 1-handles attached to knotted surfaces, Trans. Amer. Math. Soc., 306 (1988), 475–487.
- [3] J. Boyle, The turned torus knot in S^4 , J. Knot Theory Ramifications, 2 (1993), 239–249.
- [4] J. S. Carter, S. Kamada and M. Saito, Surfaces in 4-space, Encyclopaedia Math. Sci., 142, Low-Dimensional Topology, III, Springer-Verlag, Berlin, 2004.
- [5] J. S. Carter, S. Kamada, M. Saito and S. Satoh, A theorem of Sanderson on link bordisms in dimension 4, Algebr. Geom. Topol., 1 (2001), 299–310.
- [6] J. S. Carter, K. Oshiro and M. Saito, Symmetric extensions of dihedral quandles and triple points of non-orientable surfaces, Topology Appl., 157 (2010), 857–869.
- [7] J. Hillman, 2-Knots and their Groups, Austral. Math. Soc. Lect. Ser., 5, Cambridge University Press, 1989.
- [8] S. Kamada, Surfaces in R⁴ of braid index three are ribbon, J. Knot Theory Ramifications, 1 (1992), 137–160.
- [9] S. Kamada, 2-dimensional braids and chart descriptions, In: Topics in Knot Theory, Erzurum, 1992, (ed. M. E. Bozhüyük), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., **399**, Kluwer Acad. Publ., Dordrecht, 1993, pp. 277–287.
- [10] S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications, 5 (1996), 517–529.
- S. Kamada, Braid and Knot Theory in Dimension Four, Math. Surveys and Monogr., 95, Amer. Math. Soc., Providence, RI, 2002.
- [12] S. Kamada and K. Oshiro, Homology groups of symmetric quandles and cocycle invariants of links and surface-links, Trans. Amer. Math. Soc., 362 (2010), 5501–5527.
- [13] A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, Basel, 1996, English translation of "Musubime Riron (Knot Theory)" (in Japanese), Springer-Verlag Tokyo, 1990, edited by A. Kawauchi.
- [14] C. Livingston, Stably irreducible surfaces in S⁴, Pacific J. Math., **116** (1985), 77–84.
- I. Nakamura, Surface links which are coverings over the standard torus, Algebr. Geom. Topol., 11 (2011), 1497–1540.
- I. Nakamura, Triple linking numbers and triple point numbers of certain T²-links, Topology Appl., 159 (2012), 1439–1447.
- [17] K. Oshiro, Triple point numbers of surface-links and symmetric quandle cocycle invariants, Algebr. Geom. Topol., 10 (2010), 853–865.
- [18] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv., 58 (1983), 1–37.
- [19] S. Satoh, Minimal triple point numbers of some non-orientable surface-links, Pacific J. Math., 197 (2001), 213–221.

Inasa Nakamura

Institute for Biology and Mathematics of Dynamical Cell Processes (iBMath) Interdisciplinary Center for Mathematical Sciences Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Tokyo 153-8914, Japan E-mail: inasa@ms.u-tokyo.ac.jp