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Abstract. We are concerned with rigorously defined, by time slicing
approximation method, Feynman path integral

R
Ωx,y

F (γ)eiνS(γ)D(γ) of a

functional F (γ), cf. [13]. Here Ωx,y is the set of paths γ(t) in Rd starting

from a point y ∈ Rd at time 0 and arriving at x ∈ Rd at time T , S(γ) is the
action of γ and ν = 2πh−1, with Planck’s constant h. Assuming that p(γ) is
a vector field on the path space with suitable property, we prove the following
integration by parts formula for Feynman path integrals:
Z

Ωx,y

DF (γ)[p(γ)]eiνS(γ)D(γ)

= −
Z

Ωx,y

F (γ)Div p(γ)eiνS(γ)D(γ)− iν

Z

Ωx,y

F (γ)DS(γ)[p(γ)]eiνS(γ)D(γ).

(1)

Here DF (γ)[p(γ)] and DS(γ)[p(γ)] are differentials of F (γ) and S(γ) evalu-
ated in the direction of p(γ), respectively, and Div p(γ) is divergence of vector
field p(γ). This formula is an analogy to Elworthy’s integration by parts for-
mula for Wiener integrals, cf. [1]. As an application, we prove a semiclassical
asymptotic formula of the Feynman path integrals which gives us a sharp in-
formation in the case F (γ∗) = 0. Here γ∗ is the stationary point of the phase
S(γ).

1. Time slicing approximation of Feynman path integral.

Let [0, T ], T > 0, be an interval. Let L(t, ẋ, x) = (1/2)|ẋ|2 − V (t, x) be the
Lagrangian function with real potential V (t, x), (t, x) ∈ [0, T ]×Rd.

A path γ is a continuous map γ : [0, T ] 3 t → γ(t) ∈ Rd starting from γ(0)
at time 0 and reaching γ(T ) at time T . In the following, we always assume that
d = 1 for the sake of simplicity of notation.

We write X = L2([0, T ]). For any f, g ∈ X we write (f, g)X for the inner
product of f, g and ‖f‖X for the norm of f in X . Let H = H1([0, T ]) be the

2010 Mathematics Subject Classification. Primary 81S40; Secondary 35A08, 46T12, 58D30,
81Q20.

Key Words and Phrases. Feynman path integrals, integration by parts, quantum mechanics,
Feynman propagator, Schrödinger equation, semiclassical techniques, Wiener integrals.

http://dx.doi.org/10.2969/jmsj/06541273


1274 D. Fujiwara

real L2-Sobolev space of order 1 equipped with the usual norm ‖ ‖H. For any
x, y ∈ R, we write Hx,y = {γ ∈ H : γ(0) = y, γ(T ) = x}. Hx,y is an infinite
dimensional differentiable manifold. Its tangent space at γ ∈ Hx,y is identified
with the Hilbert space H0 = H1

0 ([0, T ]) = {γ ∈ H; γ(0) = γ(T ) = 0} equipped
with the inner product

(h1, h2)H0 =
∫ T

0

d

dt
h1(t)

d

dt
h2(t) dt.

We denote the norm in H0 by‖h‖H0 for h ∈ H0. The cotangent space of Hx,y at γ

is identified with H0 via the inner product of H0. There are continuous canonical
inclusions H0 ⊂ H ⊂ X .

The action S(γ) of a path γ ∈ H in the interval [0, T ] is the functional on H:

S(γ) =
∫ T

0

L

(
t,

d

dt
γ(t), γ(t)

)
dt. (2)

It is Fréchet differentiable and its differential DS(γ) of S(γ) restricted to Hx,y is
a cotangent vector, whose value evaluated at a tangent vector h ∈ H0 is

DS(γ)[h] =
∫ T

0

(
d

dt
γ(t)

d

dt
h(t)− ∂xV (t, γ(t))h(t)

)
dt, for ∀ h ∈ H0.

A stationary point γ∗ of S(γ) on Hx,y is the solution of Euler’s equation with
boundary conditions:

d2

dt2
γ(t) + ∂xV (t, γ(t)) = 0, for 0 < t < T, (3)

γ(0) = y, γ(T ) = x. (4)

The solution γ∗ of Euler’s equation is called a classical path or a classical orbit
starting from (0, y) and arriving at (T, x).

Throughout this paper we always assume the potential V (t, x) has the fol-
lowing properties: For any integer k ≥ 0 there exists a positive constant vk such
that

∣∣∂k
xV (t, x)

∣∣ ≤ vk(1 + |x|)max {0,2−k}, for any x ∈ R. (5)

For the sake of simplicity we assume that v0 ≤ v1 ≤ v2 ≤ · · · .
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We fix a positive constant µ so that

µ2v2 < 4 and µv2 < 1. (6)

If T ≤ µ, then for any x, y ∈ R the solution γ∗(t) of two points boundary value
problem of the Euler’s equation (3) exists uniquely and attains the minimum of
the action. We write S(T, 0, x, y) = S(γ∗), because it is a function of (T, x, y).

Let ∆ be an arbitrary division of the interval [0, T ] such that

∆ : 0 = T0 < T1 < · · · < TJ < TJ+1 = T. (7)

We set τj = Tj − Tj−1, j = 1, 2, . . . , J + 1, and |∆| = max {τj ; 1 ≤ j ≤ J + 1}.
For j = 1, 2, . . . , J , choose arbitrary point xj ∈ R and set x0 = y, xJ+1 = x.

We denote by γ∆ the path such that

γ∆(Tj) = xj , j = 0, 1, 2, . . . , J + 1,

and

d2

dt2
γ(t) + ∂xV (t, γ(t)) = 0, Tj−1 < t < Tj , for j = 1, 2, . . . , J + 1.

γ∆ is a path which may have edges at t = Tj , j = 1, 2, . . . , J . We call such a
path a piecewise classical path or a piecewise classical path associated with the
division ∆. We sometimes express its dependency on (xJ+1, xJ , . . . , x0) by writing
γ∆(t, xJ+1, xJ , . . . , x0) or γ∆(xJ+1, xJ , . . . , x0). It is clear that γ∆ ∈ Hx,y.

The set Γ(∆) of all piecewise classical paths associated with the division ∆
forms a differentiable manifold of dimension J + 2, which is embedded in Hilbert
space H. The correspondence γ∆ → (xJ+1, . . . , x0) is a global coordinate system
of Γ(∆). We write Γx,y(∆) = Γ(∆) ∩Hx,y.

If a functional F (γ) of γ is given, F (γ∆) is a function of (xJ+1, xJ , . . . , x1, x0),
which we sometimes write F∆ as an abbreviation. For example the action S(γ∆)
of γ∆(xJ+1, xJ , . . . , x0) is a function of (xJ+1, xJ , . . . , x1, x0) if ∆ is fixed.

S(γ∆(xJ+1, xJ , . . . , x0)) =
∫ T

0

L

(
t,

d

dt
γ∆(t), γ∆(t)

)
dt

=
J+1∑

j=1

∫ Tj

Tj−1

L

(
t,

d

dt
γ∆(t), γ∆(t)

)
dt. (8)
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Feynman [2] introduced the notion of his path integral

∫

Ωx,y

F (γ)eiνS(γ)D(γ)

by the following formula:

∫

Ωx,y

F (γ)eiνS(γ)D(γ) = lim
|∆|→0

I[F∆](∆; ν, T, 0, x, y), (9)

where

I[F∆](∆; ν, T, 0, x, y) =
J+1∏

j=1

(
ν

2πiτj

)1/2 ∫

RJ

F (γ∆(xJ+1, xJ , . . . , x1, x0))

× eiνS(γ∆(xJ+1,xJ ,...,x1,x0))
J∏

j=1

dxj . (10)

We call I[F∆](∆; ν, T, 0, x, y) time slicing approximation of path integral. Math-
ematically, the multiple integral on the right hand side of (10) is not absolutely
convergent. We consider it as an oscillatory integral, cf. [11], [12].

Following Kumano-go [13] we say that the functional F (γ) is F-integrable
if the limit on the right hand side of (9) exists. F (γ) ≡ 1 was proved to be F-
integrable, cf. [4], [10] and [6]. More general sufficient conditions for the limit (9)
to exist was studied first by [13], cf. also [7].

Now we introduce seminorms which are convenient for us to describe class of
functionals F (γ) discussed in this paper.

Let α = (αJ+1, αJ , . . . , α2, α1, α0) be a multi-index. Then we write m(α) for
max{αj ; 0 ≤ j ≤ J + 1}. Let Y be a Banach space equipped with norm ‖ ‖Y . Let
∆ be a division of [0, T ], γ∆ and (xJ+1, xJ , . . . , x1, x0) be as before. Assume that
the map G : Γ(∆) 3 γ∆ → G(γ∆) ∈ Y is infinitely differentiable with respect to
(xJ+1, . . . , x0). Let K be a non-negative integer, m be a non-negative constant
and X ≥ 1 be a constant. Then we define a seminorm of G(γ∆):

‖G(γ∆)‖{Y;∆,m,K,X}

= max
α

sup
x

(1 + |x0|+ var(γ∆))−m

∥∥∥∥
( J+1∏

j=0

X−|αj |∂αj
xj

)
G(γ∆)

∥∥∥∥
Y
, (11)
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where var(γ∆) =
∑J+1

j=1 |xj − xj−1|, max is taken over all multi-indices α with
m(α) ≤ K and sup is taken over all (xJ+1, . . . , x0) ∈ RJ+2. Moreover if G(γ) is
defined on H, then we define

‖G‖{Y;m,K,X} = sup
∆
‖G‖{Y;∆,m,K,X}, (12)

where sup is taken over all divisions ∆ of [0, T ]. In particular, if Y = C or = R,
we simply write ‖G‖{∆,m,K,X} or ‖G‖{m,K,X}.

We usually write an element h ∈ H as a function h(s) ∈ X of a variable, say,
s ∈ [0, T ]. We denote this natural embedding by ρ̃ : H → X when we need to
emphasize it. We denote the restriction of ρ̃ to H0 by ρ. The symbol ρ∗ : X → H0

expresses the adjoint of ρ.
Suppose that a functional F (γ) restricted to Hx,y is Fréchet differentiable

at γ. Then DF (γ) denotes its differential, which is a cotangent vector ∈ H0.
DF (γ)[h] is the value of DF (γ) at the tangent vector h ∈ H0, i.e., DF (γ)[h] =
(DF (γ), h)H0 . Moreover, if there exists a density fγ(s) with respect to some
positive Borel measure ϕ on [0, T ] such that

DF (γ)[h] =
∫ T

0

fγ(s)ρh(s) dϕ(s), for ∀h ∈ H0,

then we often denote fγ(s) by δF (γ)/δγ(s) or (δ/δγ(s))F (γ).

Definition 1.1. Let m be a non-negative constant. We call F (γ) an m-
smooth functional if F (γ) satisfies all of the following conditions.

F-I: F (γ) is an infinitely differentiable map from H to C.
F-2: There exist a positive Borel measure ϕ in [0, T ] such that for any γ ∈ H the

differential DF (γ) has its density δF (γ)/δγ(s) with respect to ϕ, that is,

DF (γ)[h] =
∫ T

0

δF (γ)
δγ(s)

ρh(s) dϕ(s), for ∀γ ∈ H, ∀h ∈ H0.

δF (γ)/δγ(s) is a continuous function of s ∈ [0, T ] if each γ ∈ H is fixed.
F-3: The map H 3 γ → δF (γ)/δγ(s) ∈ C([0, T ]) is infinitely differentiable, where

C([0, T ]) is the Banach space of continuous functions in [0, T ] equipped with
the maximum norm ‖f‖C([0,T ]) = maxt∈[0,T ] |f(t)| for any f ∈ C([0, T ]).

F-4: For any non-negative integer K there are positive constants AK and XK such
that for any K = 0, 1, 2, . . . ,
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AK = ‖F (γ)‖{m,K,XK} +
∥∥∥∥

δF (γ)
δγ(s)

∥∥∥∥
{C([0,T ]);m,K,XK}

< ∞. (13)

Remark 1. Let µ be so small that v2µ
2 < 4 and v2µ < 1. If T ≤ µ,

N. Kumano-go gave a fairly large class of Feynman path integrable functionals
including those functionals which are m-smooth. See [13] and also [7].

2. Divergence operator.

2.1. Some operators of trace class.
We write ω = π/T and for n = 1, 2, 3, . . . ,

en(t) =

√
2
T

sinnωt, ϕn(t) = ρϕn(t) =

√
2
T

(nω)−1 sinnωt. (14)

The system {en, n = 1, 2, 3, . . . } is a complete orthonormal system, c.o.n.s. in
short, in X and {ϕn, n = 1, 2, 3, . . . } is a c.o.n.s. of H0. Clearly,

ρϕn = (nω)−1en, ρ∗en = (nω)−1ϕn.

ρρ∗en(t) = (nω)−2en(t). (15)

Let I1 be the ideal of trace class operators in X equipped with trace norm
‖ ‖I1 and I2 be the ideal of Hilbert-Schmidt class operators equipped with norm
‖ ‖I2 .

The following Proposition is known.

Proposition 2.1.

1. ρρ∗ ∈ I1 and ‖ρρ∗‖I1 =
∑∞

n=1(nω)−2.
2. ρρ∗ coincides with the Green operator G0 of Dirichlet boundary value problem

of ordinary differential equation: For all f ∈ X ,

− d2

dt2
G0f(t) = f(t), (16)

G0f(0) = 0, G0f(T ) = 0.

For any f ∈ X ,

G0f(s) =
∫ T

0

g0(s, t)f(t) dt,
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where g0(s, t) is the Green function

g0(s, t) =

{
T−1s(T − t) if 0 ≤ s ≤ t ≤ T ,

T−1t(T − s) if 0 ≤ t < s ≤ T .
(17)

We have

∂sg0(s, t) =

{
T−1(T − t) if 0 ≤ s < t ≤ T ,

−T−1t if 0 ≤ t < s ≤ T .
(18)

It is clear that for any (s, t) ∈ [0, T ]× [0, T ],

|∂sg0(s, t)| ≤ 1 (19)

and for any (s, t) ∈ [0, T ]× [0, T ],

g0(s, t) =
∫ s

0

∂sg0(σ, t) dσ.

Let ∂sG0 be the operator in X :

∂sG0f(s) =
∫ T

0

∂sg0(s, t)f(t)dt, for f ∈ X . (20)

Since

∫ T

0

∫ T

0

|∂sg0(s, t)|2 dsdt =
T 2

6
,

we have

Proposition 2.2. ∂sG0 ∈ I2. And ‖∂sG0‖I2 = T/
√

6.

Let B : X → X be a bounded linear operator. Then we have the following

Proposition 2.3. ρ∗Bρ ∈ I1 and ρρ∗B ∈ I1. Their traces are equal :

tr ρ∗Bρ = tr ρρ∗B.

Proof is clear.
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Propositions 2.2 and 2.3 imply that there exist k(s, t) ∈ L2([0, T ]× [0, T ]) and
h(s, t) ∈ L2([0, T ]× [0, T ]) such that for any f ∈ X ,

ρρ∗Bf(s) =
∫ T

0

k(s, t)f(t) dt, ∂sG0Bf(s) =
∫ T

0

h(s, t)f(t) dt.

We shall prove next Lemma.

Lemma 2.4. For any s ∈ [0, T ] and for almost all t ∈ [0, T ]

∫ s

0

h(σ, t) dσ = k(s, t).

Proof of Lemma. For any f ∈ X it is clear that both ∂sg0(s, t)(Bf)(t)
and h(s, t)f(t) ∈ L1([0, T ]× [0, T ]). Therefore, for any s ∈ [0, T ],

∫ T

0

( ∫ s

0

h(σ, t)f(t) dσ

)
dt =

∫ s

0

( ∫ T

0

h(σ, t)f(t) dt

)
dσ

=
∫ s

0

( ∫ T

0

∂sg0(σ, t)(Bf)(t) dt

)
dσ =

∫ T

0

( ∫ s

0

∂sg0(σ, t)(Bf)(t) dσ

)
dt

=
∫ T

0

g0(s, t)(Bf)(t) dt =
∫ T

0

k(s, t)f(t) dt.

This proves Proposition 2.4. ¤

We have

Proposition 2.5. For almost all t ∈ [0, T ], k(t, t) is well defined and

∫ T

0

|k(t, t)|2 dt < ∞, (21)

tr ρρ∗B =
∫ T

0

k(t, t) dt. (22)

Proof of Proposition 2.5. For almost t ∈ [0, T ]

k(t, t) =
∫ t

0

h(s, t)ds
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is well-defined because of Lemma 2.4. Inequality (21) is proved in the following
way.

∫ T

0

|k(t, t)|2 dt =
∫ T

0

∣∣∣∣
∫ t

0

h(s, t) ds

∣∣∣∣
2

dt

≤
∫ T

0

t

∫ t

0

|h(s, t)|2 dsdt ≤ T

∫∫

[0,T ]×[0,T ]

|h(s, t)|2 dsdt < ∞.

We shall prove (22). Since {en;n = 1, 2, 3, . . . } is a c.o.n.s. of X , we can write

Bf(s) =
∞∑

m,n=1

bmn(en, f)X em(s). (23)

We have

∫ T

0

k(t, t)dt =
∫ T

0

( ∫ t

0

h(s, t) ds

)
dt =

∫ T

0

∫ T

0

h(s, t)χ(s, t) dsdt,

where χ(s, t) is the characteristic function of the set {(s, t) ∈ R2 : 0 ≤ s ≤ t, 0 ≤
t ≤ T}. Let

f0(s) =

√
1
T

, and fm(s) =

√
2
T

cos(mωs) for m = 1, 2, 3, . . . .

Then the system {f0, f1, f2, . . . } is a c.o.n.s. of X . Thus {fm(s) ⊗ en(t) : m =
0, 1, 2, . . . and n = 1, 2, 3, . . . } is a c.o.n.s. of L2([0, T ] × [0, T ]). We have expan-
sions

h(s, t) =
∞∑

m=1

∞∑
n=1

1
mω

fm(s)bmnen(t),

and

χ(s, t) =
∞∑

n=1

√
2
(−1)n+1

nω
f0(s)en(t) +

∞∑
m=1

∞∑
n=1

1
mω

δmnfm(s)en(t).

Therefore,
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∫ T

0

∫ T

0

h(s, t)χ(s, t)dsdt =
∞∑

m=1

∞∑
n=1

1
mω

bmn
1

mω
δmn =

∞∑
m=1

1
(mω)2

bmm

= trρρ∗B.

We have proved Proposition 2.5. ¤

2.2. Divergence of a vector field.
Let p : H 3 γ → p(γ) ∈ H0. Then p(γ) restricted to Hx,y is a tangent vector

field on Hx,y. We write as usual p(γ, s) = ρp(γ)(s). We have ∂sp(γ, s) ∈ X .
We use the symbol L(X ) for the Banach space of all bounded linear operators

in X equipped with operator norm.

Definition 2.6 (Admissible vector field). We say that p(γ) is an admissible
vector field if p(γ) has the following properties:

1. There exists a C1 map q : H → X such that

p(γ) = ρ∗q(γ), for any γ ∈ Hx,y.

2. When we restrict q(γ) to Hx,y, the Fréchet differential Dq(γ) : H0 3 h →
Dq(γ)[h] ∈ X can be boundedly extended to a bounded linear map B(γ) in X ,
that is, for any h ∈ H0,

Dq(γ)[h] = B(γ)ρh.

We often write δq(γ)/δγ for B(γ).
Let Dp(γ) : H0 → H0 be Fréchet differential of p(γ) restricted to Hx,y at

γ ∈ Hx,y. Then it is clear that for all h ∈ H0,

Dp(γ)[h] = ρ∗B(γ)ρh.

That is, for all h1, h2 ∈ H0,

(Dp(γ)[h1], h2)H0 = (B(γ)ρh1, ρh2)X .

Definition 2.7 (Divergence of a vector field). Suppose that p(γ) is an
admissible vector field. We define its divergence Div p(γ) at γ ∈ Hx,y by the
following equality:

Div p(γ) = tr ρ∗B(γ)ρ = tr ρ∗
δq(γ)
δγ

ρ.
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Let p(γ) be an admissible vector field. The map ρρ∗B(γ) is an operator of
trace class. We denote its kernel function by δp(γ, s)/δγ(t), i.e.,

ρ(Dp(γ)[h])(s) =
∫ T

0

δp(γ, s)
δγ(t)

ρh(t) dt.

It is clear that for any h ∈ H0,

∫ T

0

δp(γ, s)
δγ(t)

ρh(t) dt = Dp(γ, s)[h].

On account of Proposition 2.5 in the previous subsection we have the following

Proposition 2.8. Assume p(γ) is an admissible vector field. Then

Div p(γ) =
∫ T

0

δp(γ, t)
δγ(t)

dt.

The notion of admissible vector field defined above is an analogy to infinites-
imal version of “admissible transformation” in the case of Wiener integral. cf.
[14].

3. Statement of main theorem.

Definition 3.1. Let m′ be a non-negative number. We say that the vector
field p(γ) is an m′-admissible vector field if it has all the following properties:

P1: p is an infinitely differentiable map p : H 3 γ → p(γ) ∈ H0 of which the
restriction to Hx,y is admissible for any fixed x, y ∈ R, that is, there is a C∞

map q : H → X such that p(γ) = ρ∗q(γ) for γ ∈ Hx,y and that for all h ∈ H0,
Dq(γ)[h] = B(γ)ρh, where B(γ) ∈ L(X ).

P2: The map H 3 γ → B(γ) ∈ L(X ) is infinitely differentiable. For any non-
negative integer K there exists a positive constant YK such that

BK = ‖q(γ)‖{X ;m′,K,YK} + ‖B(γ)‖{L(X );m′,K,YK} < ∞. (24)

Let µ be as in (6). Our main theorem is the following

Theorem 3.2 (Integration by parts). Let T ≤ µ. Suppose that F (γ) is
an m-smooth functional and that p(γ) is an m′-admissible vector field. We fur-
ther assume that two of DF (γ)[p(γ)], F (γ)Div p(γ) and F (γ)DS(γ)[p(γ)] are F-
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integrable. Then the rest is also F-integrable and the following equality holds.

∫

Ωx,y

DF (γ)[p(γ)]eiνS(γ)D(γ)

= −
∫

Ωx,y

F (γ)Div p(γ)eiνS(γ)D(γ)− iν

∫

Ωx,y

F (γ)DS(γ)[p(γ)]eiνS(γ)D(γ).

(25)

Let F (γ) ≡ 1. Then we have the following corollary, which will be used in
Section 5.1.

Corollary 3.3. Assume that p(γ) is an m′-admissible vector field and
that DS(γ)[p(γ)] is F-integrable. Then Div p(γ) is F-integrable and the following
equality holds:

∫

Ωx,y

DS(γ)[p(γ)]eiνS(γ)D(γ) = −(iν)−1

∫

Ωx,y

Div p(γ)eiνS(γ)D(γ). (26)

The following case was proved earlier by N. Kumano-go in [7].

Remark 2. If p(γ, s) is independent of γ, i.e., p(γ, s) = h(s) then Div p(γ) =
0 and the above formula (25) reduces to

∫

Ωx,y

DF (γ)[h]eiνS(γ)D(γ) = −iν

∫

Ωx,y

F (γ)DS(γ)[h]eiνS(γ)D(γ). (27)

4. Proof of main theorem.

4.1. Outline of the proof.
Throughout this section ∆ denotes an arbitrary division of the interval [0, T ]

as in Section 1. We use the notation, for example, (xJ+1, xJ , . . . , x0), γ∆ and
α = (αJ+1, αJ , . . . , α2, α1, α0) etc. as in Section 1. We write

N(∆) =
J+1∏

j=1

(
ν

2πiτj

)1/2

,

and y∆,j = p(γ∆, Tj), j = 0, 1, . . . , J + 1. Clearly y∆,0 = 0 = y∆,J+1. Since
definition of oscillatory integral on finite dimensional space RJ implies that
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∫

RJ

J∑

j=1

∂xj

(
F (γ∆)y∆,je

iνS(γ∆)
) J∏

j=1

dxj = 0,

we have

N(∆)
∫

RJ

J∑

j=1

∂xj
(F (γ∆))y∆,je

iνS(γ∆)
J∏

j=1

dxj

= −N(∆)
∫

RJ

F (γ∆)
J∑

j=1

∂xj
(y∆,j)eiνS(γ∆)

J∏

j=1

dxj

− iνN(∆)
∫

RJ

F (γ∆)
J∑

j=1

y∆,j∂xj
S(γ∆)eiνS(γ∆)

J∏

j=1

dxj .

Our main theorem follows from the above formula if we prove the following
lemmas.

Lemma 4.1 (First equality). There holds the equality :

J∑

j=1

y∆,j∂xj
S(γ∆) = DS(γ∆)[p(γ∆)].

Lemma 4.2 (Second equality). The following equality holds.

lim
|∆|→0

(
N(∆)

∫

RJ

J∑

j=1

∂xj (F (γ∆))y∆,je
iνS(γ∆)

J∏

j=1

dxj

−N(∆)
∫

RJ

DF (γ∆)[p(γ∆)]eiνS(γ∆)
J∏

j=1

dxj

)
= 0.

Lemma 4.3 (Third equality). The following equality is true.

lim
|∆|→0

(
N(∆)

∫

RJ

F (γ∆)
J∑

j=1

∂xj (y∆,j)eiνS(γ∆)
J∏

j=1

dxj

−N(∆)
∫

RJ

F (γ∆)Div p(γ∆)eiνS(γ∆)
J∏

j=1

dxj

)
= 0.
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4.2. Basic facts.
Let ∆ be an arbitrary division of [0, T ]. We use notation in Section 1 such

as (xJ+1, xJ , . . . , x1, x0) and γ∆, etc. We summarize some properties of the norm
‖ ‖{∆,m,K,X}, etc. here.

Proposition 4.4. Let m,m′ ≥ 0, X, X ′ ≥ 1 be constants and K, K ′ be
non-negative integers.

1. If m ≥ m′, K ≤ K ′ and X ≥ X ′, then for any functional F (γ∆) on Γ(∆)

‖F (γ∆)‖{∆,m,K,X} ≤ ‖F (γ∆)‖{∆,m′,K′,X′}. (28)

2. For any functionals F, G on Γ(∆), we have

‖F (γ∆)G(γ∆)‖{∆,m+m′,K,X+Y }

≤ ‖F (γ∆)‖{∆,m,K,X}‖G(γ∆)‖{∆,m′,K,Y }. (29)

Proof. (28) is clear. We shall prove (29). Set

AK = ‖F (γ∆)‖{∆,m,K,X}, BK = ‖G(γ∆)‖{∆,m′,K,Y }.

Then, for any multi-index α = (αJ+1, αJ , . . . , α1, α0) with m(α) ≤ K,

∣∣∣∣
( J+1∏

j=0

∂αj
xj

)
F (γ∆)

∣∣∣∣ ≤ AK(1 + |x0|+ var(γ∆))mX |α|,

∣∣∣∣
( J+1∏

j=0

∂αj
xj

)
G(γ∆)

∣∣∣∣ ≤ BK(1 + |x0|+ var(γ∆))m′
Y |α|,

here and hereafter |α| = ∑J+1
j=0 |αj |. Leibniz’s rule gives

∣∣∂α
x F (γ∆)G(γ∆)

∣∣

≤
∑

β≤α

(
α

β

)∣∣∂β
xF (γ∆)

∣∣∣∣∂α−β
x G(γ∆)

∣∣

≤
∑

β≤α

(
α

β

)
AK(1 + |x0|+ var(γ∆))mX |β|BK(1 + |x0|+ var(γ∆))m′

Y |α−β|
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≤ AKBK(1 + |x0|+ var(γ∆))m+m′ ∑

β≤α

(
α

β

)
X |β|Y |α−β|

= AKBK(1 + |x0|+ var(γ∆))m+m′
(X + Y )|α|.

This proves (29). ¤

Corollary 4.5. If F (γ) is an m-smooth functional and G(γ) is an m′-
smooth functional, then the product F (γ)G(γ) is (m + m′)-smooth.

Proposition 4.6. Let Y,Z be Banach spaces. Let L(Y,Z) be the Banach
space of bounded linear operators from Y to Z equipped with the operator norm.
Suppose ∆ be a division of the interval [0, T ] and F : Γ(∆) 3 γ∆ → F (γ∆) ∈ Y
and R : Γ(∆) 3 γ∆ → R(γ∆) ∈ L(Y,Z) are C∞ maps.

1. If R(γ∆) ≡ R does not depend on γ∆, then

‖R(γ∆)F (γ∆)‖{Z;∆,m,K,XK} ≤ ‖R‖L(Y,Z)‖F (γ∆)‖{Y;∆,m,K,XK}.

2. In general,

‖R(γ∆)F (γ∆)‖{Z;∆,m+m′,K,XK+YK}

≤ ‖R(γ∆)‖{L(Y,Z);∆,m′,K,YK}‖F (γ∆)‖{Y;∆,m,K,XK}.

If F (γ), R(γ) are C∞-map from H to Y and L(Y,Z). Then

‖R(γ)F (γ)‖{Z;m+m′,K,XK+YK}

≤ ‖R(γ)‖{L(Y,Z);m′,K,YK}‖F (γ)‖{Y;m,K,XK}.

Proof of Proposition. First part of the proposition is clear. To prove
the second part we have only to mimic the proof of Proposition 4.4. ¤

The following special cases are also useful.

Proposition 4.7. Besides the assumption of previous proposition, we sup-
pose that R(γ∆) depends only on three variables xj−1, xj , xj+1, i.e., ∂xk

R(γ∆) = 0
for k 6= j − 1, j, j + 1, and

‖R(γ∆)‖{L(Y,Z);∆,m′,K,1} < ∞.

Then
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‖R(γ∆)F (γ∆)‖{Z;∆,m+m′,K,X} ≤ 23K‖R‖{L(Y,Z);∆,m′,K,1}‖F (γ)‖{Y;∆,m,K,X}.

Proof of Proposition 4.7. Let α be a multi-index with m(α) ≤ K. By
Leibniz’s rule and assumption,

∂α
x R(γ∆)F (γ∆) =

∑

β≤α

(
α

β

)
∂β

xR(γ∆)∂α−β
x F (γ∆)

=
∗∑ (

αj−1

βj−1

)(
αj

βj

)(
αj+1

βj+1

)
∂β∗

x R(γ∆)∂α−β∗
x F (γ∆),

where
∑∗ means summation over only those multi-indices that is of the form

β∗ = (0, 0, . . . , 0, βj−1, βj , βj+1, 0, 0, . . . , 0).
Let ‖R(γ∆)‖{L(Y,Z);∆,m′,K,1} = BK and ‖F (γ∆)‖{Y;∆,m,K,X} = AK . Then

∥∥∂α
x R(γ∆)F (γ∆)

∥∥
Z

≤
∗∑ (

αj−1

βj−1

)(
αj

βj

)(
αj+1

βj+1

)
(1 + |x0|+ var(γ∆))m′

BK

× (1 + |x0|+ var(γ∆))mX |α|−|β∗|AK

≤ (1 + |x0|+ var(γ∆))m+m′
∗∑ (

αj−1

βj−1

)(
αj

βj

)(
αj+1

βj+1

)
BKAKX |α|−|β∗|

≤ (1 + |x0|+ var(γ∆))m+m′
AKBKX |α|

( ∗∑ (
αj−1

βj−1

)(
αj

βj

)(
αj+1

βj+1

))

≤ (1 + |x0|+ var(γ∆))m+m′
AKBKX |α|23K ,

because X ≥ 1. Proposition 4.7 has been proved. ¤

Let f : H 3 γ → f(γ) ∈ X and u(γ) = ρρ∗f(γ). We use the symbols f(γ, s)
and u(γ, s) for the functions which represent elements f(γ) ∈ X and u(γ) ∈ X ,
respectively. Let m ≥ 0. Suppose that for any positive integer K there exists a
positive XK such that for any division ∆ of [0, T ]

AK = ‖f(γ∆)‖{X ;∆,m,K,XK} < ∞.

Then we can apply Proposition 2.1 and have the following facts.

Proposition 4.8. u(γ) = G0f(γ). u(γ, 0) = u(γ, T ) = 0. There hold the
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following estimates:

sup
s∈[0,T ]

‖u(γ∆, s)‖{∆,m,K,XK} ≤ T 3/2AK , (30)

sup
s∈[0,T ]

∥∥∥∥
d

ds
u(γ∆, s)

∥∥∥∥
{∆,m,K,XK}

≤ T 1/2AK . (31)

Proof of Proposition. Proposition 2.1 implies the first part of proposi-
tion. Since (19) means ∂sG0 : X → C([0, T ]) is a bounded linear map with norm
less than T 1/2, (31) holds. (30) follows easily from this. ¤

4.3. Proof of the first equality.
We prove Lemma 4.1.
Since γ∆(t) is a piecewise classical path with edges at t = Tj for j = 1, 2, . . . , J ,

integration by parts gives

DS(γ∆)[p(γ∆)] =
∫ T

0

d

dt
γ∆(t)

d

dt
p(γ∆, t)dt−

∫ T

0

∂xV (t, γ∆(t))p(γ∆, t)dt

=
J+1∑

j=1

(
d

dt
γ∆(Tj − 0)p(γ∆, Tj)− d

dt
γ∆(Tj−1 + 0)p(γ∆, Tj−1)

)

=
J∑

j=1

∂xj
S(γ∆)y∆,j .

Lemma 4.1 has been proved. ¤

4.4. Proof of the second equality.
Let AK ,m, XK be as in Definition 1.1 and BK ,m′, YK be as in Definition 3.1.

We know

J∑

j=1

∂xj
F (γ∆)y∆,j =

J∑

j=1

DF (γ∆)[ζ∆,j ]y∆,j , (32)

where ζ∆,j(t) = ∂xj
γ∆(t), for t ∈ [0, T ], j = 1, 2, . . . , J . The function ζ∆,j is a

piecewise smooth curve which may have edges at t = Tj−1, Tj , Tj+1. It is clear
that

ζ∆,j(s) = 0, for s 6∈ (Tj−1, Tj+1). (33)
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and for t ∈ (Tj−1, Tj)∪(Tj , Tj+1), ζ∆,j satisfies differential equation of Jacobi-field

d2

dt2
ζ∆,j(t) + ∂2

xV (t, γ∆(t))ζ∆,j(t) = 0, (34)

and boundary conditions

ζ∆,j(Tj−1) = 0, ζ∆,j(Tj) = 1 ζ∆,j(Tj+1) = 0. (35)

By definition

∂xk
ζ∆,j(t) = 0, for t ∈ [0, T ], if |j − k| > 1, (36)

∂xj−1ζ∆,j(t) = 0, for t 6∈ [Tj−1, Tj ], (37)

∂xj+1ζ∆,j(t) = 0, for t 6∈ [Tj , Tj+1]. (38)

ζ∆,j is very close to the following piecewise linear function e∆,j . For j = 1, 2, . . . , J

e∆,j(t) =





0 if t /∈ (Tj−1, Tj+1),

τ−1
j (t− Tj−1) if t ∈ [Tj−1, Tj ],

τ−1
j+1(Tj+1 − t) if t ∈ [Tj , Tj+1].

And

e∆,0(t) =

{
0 if t /∈ (T0, T1),

τ−1
1 (T1 − t) if t ∈ [T0, T1],

e∆,J+1(t) =

{
0 if t /∈ (TJ , TJ+1),

τ−1
T+1(t− TJ) if t ∈ [TJ , TJ+1].

It is easy to see (cf. for example [3], or [6]) that for any α, β there exists
constant Cαβ such that the following estimate holds: For j = 1, 2, 3, . . . , J + 1,

∣∣∂α
xj−1

∂β
xj

(e∆,j(t)− ζ∆,j(t))
∣∣ ≤ Cαβτ2

j for t ∈ [Tj−1, Tj ] (39)

and for j = 0, 1, 2, . . . , J ,

∣∣∂α
xj

∂β
xj+1

(e∆,j(t)− ζ∆,j(t))
∣∣ ≤ Cαβτ2

j+1 for t ∈ [Tj , Tj+1]. (40)
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It is clear that for t 6∈ (Tj−1, Tj) ∪ (Tj , Tj+1)

e∆,j(t)− ζ∆,j(t) = 0. (41)

Therefore, for any K = 0, 1, 2, . . . there exists a positive constant CK independent
of ∆ such that for any t ∈ [0, T ]

‖e∆,j(t)− ζ∆,j(t)‖{∆,0,K,1} ≤ CK

(
τ2
j χ[Tj−1,Tj ](t) + τ2

j+1χ[Tj ,Tj+1](t)
)
. (42)

Here χ[Tj−1,Tj ](t) is the characteristic function of the interval [Tj−1, Tj ].

Remark 3. We can choose constant Cαβ so that it depends only on
v2, v3, . . . , v|α|+|β|+2 and does neither depend on ∆ nor on xj−1, xj , xj+1.

The function e∆,j is independent of {xj}j=0,1,...,J+1 and the collection of
functions {e∆,j} is a partition of unity on [0, T ], i.e., for any t ∈ [0, T ],

J+1∑

j=0

e∆,j(t) ≡ 1. (43)

Using this and the fact that y∆,0 = y∆,J+1 = 0, we have

DF (γ∆)[p(γ∆)]−
J∑

j=1

DF (γ∆)[y∆,jζ∆,j ]

=
J+1∑

j=0

DF (γ∆)[(p(γ∆)− y∆,j)e∆,j ] +
J∑

j=1

DF (γ∆)[y∆,j(e∆,j − ζ∆,j)].

In the following we write ZK = XK + YK and m1 = m + m′ and N(T, x, y) =
(ν/2πiT )1/2(1 + |x| + |y|)m1 for brevity. Then Lemma 4.2 follows from the case
α = β = 0 of the next Lemma.

Lemma 4.9.1 For any non-negative integers α, β there exist a positive con-
stant C and a positive integer K independent of division ∆, ν and x, y ∈ R such
that

1Statements of Lemma 4.9 and Lemma 4.10 in the first version of manuscript are corrected
following kind advice by prof. N. Kumano-go. The author expresses sincere thanks to him.
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∣∣∣∣∂α
x ∂β

y

(
e−iνS(γ∗)N(∆)

∫

RJ

DF (γ∆)
[ J+1∑

j=0

(p(γ∆)− y∆,j)e∆,j

]
eiνS(γ∆)

J∏

j=1

dxj

)∣∣∣∣

≤ C|N(T, x, y)|AKBKϕ([0, T ])|∆|. (44)
∣∣∣∣∂α

x ∂β
y

(
e−iνS(γ∗)N(∆)

∫

RJ

J∑

j=1

DF (γ∆)[y∆,j(e∆,j − ζ∆,j)]eiνS(γ∆)
J∏

j=1

dxj

)∣∣∣∣

≤ C|N(T, x, y)|AKBKϕ([0, T ])|∆|2. (45)

Here ϕ([0, T ]) is the measure of the set [0, T ] with respect to ϕ.

We will prove these estimates by means of stationary phase method over a
space of large dimension. cf. [5], [13] and [8].

We now begin the proof of (44). Replacing f(γ) by q(γ) and AK by BK of
(24), we can apply Proposition 4.8, because p(γ) = ρρ∗q(γ). We have

p(γ∆, t)− y∆,j =
∫ t

Tj

d

ds
p(γ∆, s) ds =

∫ t

Tj

∂sG0q(γ∆)(s) ds.

And we obtain by (31), for t ∈ [Tj−1, Tj ]

‖p(γ∆, t)− y∆,j‖{∆,m′,K,YK} ≤ −
∫ t

Tj

∥∥∥∥
d

ds
p(γ∆, s)

∥∥∥∥
{∆,m′,K,YK}

ds

≤ −
∫ t

Tj

T 1/2BK ds ≤ τjT
1/2BK .

Similar estimate holds in the case t ∈ [Tj , Tj+1]. Therefore, by Proposition 4.6,
there exists a positive constant C which may depend on T but not on ∆, K and
j such that

‖(p(γ∆, t)− y∆,j)e∆,j(t)‖{∆,m′,K,YK} ≤
{

CBKτj for t ∈ [Tj−1, Tj ],

CBKτj+1 for t ∈ [Tj , Tj+1].
(46)

Writing

u(γ∆, t) =
J+1∑

j=0

(p(γ∆, t)− y∆,j)e∆,j(t),
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we have for any fixed t ∈ [Tj−1, Tj ],

‖u(γ∆, t)‖{∆,m′,K,YK}

= ‖(p(γ∆, t)− y∆,j−1)e∆,j−1(t) + (p(γ∆, t)− y∆,j)e∆,j(t)‖{∆,m′,K,YK}

≤ 2CBKτj .

Thus,

‖u(γ∆)‖{C([0,T ]);∆,m′,K,YK} ≤ 2CBK |∆|.

Since m1 = m + m′, ZK = XK + YK , we have

∥∥∥∥DF (γ∆)
[ J+1∑

j=0

(p(γ∆)− y∆,j)e∆,j

]∥∥∥∥
{∆,m1,K,ZK}

≤
∥∥∥∥

∫ T

0

δF (γ∆)
δγ(t)

u(γ∆, t) dϕ(t)
∥∥∥∥
{∆,m1,K,ZK}

≤
∥∥∥∥

δF (γ∆)
δγ

∥∥∥∥
{L1([0,T ],ϕ);∆,m,K,XK}

‖u(γ∆)‖{C([0,T ]);∆,m′,K,YK}

≤ CAKBKϕ([0, T ])|∆|. (47)

In order to apply stationary phase method we need still more information.
cf.[5], [13] and [8]. Let ∆ be an arbitrary division of interval [0, T ] as is given in
(7). Let ∆1 be any division of [0, T ] which is coarser than ∆, in other words, ∆ be
a refinement of ∆1. Then there is a subset {i1, i2, . . . , is} of {1, 2, 3, . . . , J} such
that division points of ∆1 are

∆1 : T0 = Ti0 < Ti1 < · · · < Tis
< Tis+1 = TJ+1. (48)

We set is+1 = J + 1 and i0 = 0.
Let γ∆1(t) = γ∆1(xis+1 , xis

, . . . , xi1 , xi0)(t) be an arbitrary piecewise classical
path associated with the division ∆1. We can identify this with the piecewise
classical path γ∆ ∈ Γ(∆) with the property γ∆(t) ≡ γ∆1(t) for any t ∈ [0, T ]. We
denote this identification map by ι : Γ(∆1) → Γ(∆). Let f : Γ(∆) → C be a
function defined on Γ(∆). We use the symbol ι∗f for the pull back of f by ι.

We wish to prove that for any K = 0, 1, 2, . . . ,
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∥∥∥∥ι∗DF (γ∆)
[ J+1∑

j=0

(p(γ∆)− y∆,j)e∆,j

]∥∥∥∥
{∆1,m1,K,ZK}

≤ CAKBKϕ([0, T ])|∆|,

with positive constant C independent of ∆.
Since e∆,j(t) does not depend on xj , j = 0, 1, 2, . . . , J + 1,

ι∗e∆,j(t) = e∆,j(t), for t ∈ [0, T ], j = 0, 1, . . . , J + 1. (49)

and

ι∗p(γ∆, t)− y∆,j = p(γ∆1 , t)− p(γ∆1 , Tj).

It is clear that

‖ι∗(p(γ∆, t)− y∆,j)e∆,j‖{∆1,m′,K,YK} ≤
{

CBKτj for t ∈ [Tj−1, Tj ],

CBKτj+1 for t ∈ [Tj , Tj+1].

Therefore, mimicking discussion following (46), we have

∥∥∥∥ι∗
J+1∑

j=0

(p(γ∆, t)− y∆,j)e∆,j

∥∥∥∥
{C([0,T ]);∆1,m′,K,YK}

≤ 2CBK |∆|.

Clearly,

∥∥∥∥ι∗
δF (γ∆)
δγ(t)

∥∥∥∥
{L1([0,T ],ϕ);∆1,m,K,XK}

=
∥∥∥∥

δF (γ∆1)
δγ(t)

∥∥∥∥
{L1([0,T ],ϕ);∆1,m,K,XK}

≤ AKϕ([0, T ]).

Therefore, there exists a positive constant C independent of ∆1,∆ such that

∥∥∥∥ι∗DF (γ∆)
[ J+1∑

j=0

(p(γ∆)− y∆,j)e∆,j

]∥∥∥∥
{∆1,m1,K,ZK}

≤
∥∥∥∥ι∗

δF (γ∆)
δγ(t)

∥∥∥∥
{L1([0,T ],ϕ);∆1,m,K,XK}

×
∥∥∥∥ι∗

J+1∑

j=0

(p(γ∆, t)− y∆,j)e∆,j

∥∥∥∥
{C([0,T ]);∆1,m′,K,YK}
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≤ CAKBKϕ([0, T ])|∆|. (50)

Since we have obtained (47) and (50), we can apply stationary phase method to
the oscillatory integral:

N(∆)
∫

RJ

DF (γ∆)
[ J+1∑

j=0

(p(γ∆)− y∆,j)e∆,j

]
eiνS(γ∆)

J∏

j=1

dxj .

As a consequence, for any non-negative integers α, β there exist a positive constant
C and a positive integer K independent of ∆ such that

∣∣∣∣∂α
x ∂β

y

(
e−iνS(γ∗)N(∆)

∫

RJ

DF (γ∆)
[ J+1∑

j=0

(p(γ∆)− y∆,j)(e∆,j)
]
eiνS(γ∆)

J∏

j=1

dxj

)∣∣∣∣

≤ C|N(T, x, y)|AKBKϕ([0, T ])|∆|.

We have proved (44).

Now we prove (45). By virtue of (39), Proposition 4.7 and (31), there exists
a positive constant CK for each non-negative integer K such that for any fixed
t ∈ [Tj−1, Tj ], j = 1, 2, 3, . . . , J ,

‖y∆,j(e∆,j(t)− ζ∆,j(t))‖{∆,m′,K,YK}

≤ 23K‖e∆,j(t)− ζ∆,j(t)‖{∆,0,K,1}‖p(γ∆, Tj)‖{∆,m′,K,YK}

≤ CKBKτ2
j ,

and for t ∈ [Tj , Tj+1], j = 1, 2, 3, . . . , J

‖y∆,j(e∆,j(t)− ζ∆,j(t))‖{∆,m′,K,YK} ≤ CKBKτ2
j+1.

Obviously, for t /∈ (Tj−1, Tj+1)

‖y∆,j(e∆,j(t)− ζ∆,j(t))‖{∆,m′,K,YK} = 0.

Therefore,

∥∥∥∥
J∑

j=1

(y∆,j(e∆,j − ζ∆,j))
∥∥∥∥
{C([0,T ]);∆,m′,K,YK}

≤ 2CKBK |∆|2.
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This leads to

∥∥∥∥DF (γ∆)
[ J∑

j=1

(y∆,j(e∆,j − ζ∆,j))
]∥∥∥∥
{∆,m1,K,ZK}

≤
∥∥∥∥

∫ T

0

δF (γ∆)
δγ(t)

( J∑

j=1

(y∆,j(e∆,j(t)− ζ∆,j(t))
)

dϕ(t)
∥∥∥∥
{∆,m1,K,ZK}

≤
∥∥∥∥

δF (γ∆)
δγ(t)

∥∥∥∥
{L1([0,T ],ϕ);∆,m,K,XK}

∥∥∥∥
J∑

j=1

(y∆,j(e∆,j − ζ∆,j))
∥∥∥∥
{C([0,T ]);∆,m′,K,YK}

≤ CKAKBKϕ([0, T ])|∆|2, (51)

with some positive constant CK independent of ∆.
Let ∆1 be any division of [0, T ] which is coarser than ∆. Now we discuss

the pull back of DF (γ∆)[
∑J

j=1(y∆,j(e∆,j − ζ∆,j))]. The pull back ι∗ζ∆,j vanishes
outside (Tj−1, Tj+1) and satisfies differential equation of Jacobi field and boundary
value:

d2

dt2
ι∗ζ∆,j(t) + ∂2

xV (t, γ∆1(t))ι
∗ζ∆,j(t) = 0, t ∈ (Tj−1, Tj) ∪ (Tj , Tj+1),

ι∗ζ∆,j(Tj−1) = ι∗ζ∆,j(Tj+1) = 0, and ι∗ζ∆,j(Tj) = 1.

Therefore, the estimates (39), (40) and (42) replaced ζ∆,j by ι∗ζ∆,j hold with the
same constants Cα,β and CK . We have clearly

e∆,j(t)− ι∗ζ∆,j(t) = 0 if t /∈ [Tj−1, Tj+1]. (52)

And

‖e∆,j(t)− ι∗ζ∆,j(t)‖{∆,0,K,1} ≤
{

CKτ2
j for t ∈ [Tj−1, Tj ],

CKτ2
j+1 for t ∈ [Tj , Tj+1].

(53)

Thus we can obtain in the same way as in (51)

∥∥∥∥ι∗DF (γ∆)
[ J∑

j=1

(y∆,j(e∆,j − ζ∆,j))
]∥∥∥∥
{∆1,m′,K,ZK}

≤ CKAKBKϕ([0, T ])|∆|2,

(54)
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with some positive constant CK independent of ∆.
It follows from (54), (51) and stationary phase method that for any non-

negative integers α and β, there exists a positive integer K and a positive constant
C such that

∣∣∣∣∂α
x ∂β

y

(
e−iνS(γ∗)N(∆)

∫

RJ

J∑

j=1

DF (γ∆)[y∆,j(e∆,j − ζ∆,j)]eiνS(γ∆)
J∏

j=1

dxj

)∣∣∣∣

≤ C|N(T, x, y))|AKBKϕ([0, T ])|∆|2.

This proves (45). We have proved Lemma 4.9. Therefore, proof of Lemma
4.2 has been completed. ¤

4.5. Proof of the third equality.
Let B(γ) ∈ L(X ) be as in Definition 3.1. We can use Propositions 2.3, 2.5,

2.8 and Lemma 2.4. Let us denote the kernel function of ρρ∗B(γ) = G0B(γ) by
k(γ, s, t) and that of ∂sG0B(γ) by h(γ, s, t). We know

k(γ, s, t) =
∫ s

0

h(γ, σ, t) dσ, for almost all t ∈ [0, T ], (55)

Div p(γ) =
∫ T

0

k(γ, t, t) dt,

∫

Q

|h(γ, s, t)|2 dsdt ≤ ‖∂sG0‖2I2
‖B(γ)‖2L(X ). (56)

Here and hereafter we write Q = [0, T ]× [0, T ].
Inequality (56) and inequality (24) in Definition 3.1 for p(γ) implies that for

any division ∆ of [0, T ]

‖h(γ∆, s, t)‖{L2(Q);∆,m′,K,YK} ≤ BK‖∂sG0‖I2 . (57)

It is clear from (55) that for almost all t ∈ [0, T ], k(γ, s, t) is continuous in s. Since
the range of G0 is in H0, we have

k(γ, 0, t) = k(γ, T, t) = 0 for almost all t ∈ [0, T ]. (58)

We know

∂xj
y∆,j = Dy∆,j [∂xj

γ∆] = D(ρρ∗q(γ∆)(Tj))[ζ∆,j ] =
∫ T

0

k(γ∆, Tj , t)ζ∆,j(t) dt.
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Using partition of unity {e∆,j} again and (58), we have

Div p(γ∆)−
J∑

j=1

∂xj y∆,j

=
J+1∑

j=0

∫ T

0

k(γ∆, t, t)e∆,j(t) dt−
J∑

j=1

∫ T

0

k(γ∆, Tj , t)ζ∆,j(t) dt

=
J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dt

+
J∑

j=1

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt.

Lemma 4.3 follows from the case α = β = 0 of the next Lemma.

Lemma 4.10. For any non-negative integers α, β there exist a positive con-
stant C and a positive integer K independent of ∆ such that

∣∣∣∣∂α
x ∂β

y

(
e−iνS(γ∗)N(∆)

∫

RJ

F (γ∆)eiνS(γ∆)

×
J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dt
J∏

j=1

dxj

)∣∣∣∣

≤ C|N(T, x, y)|‖∂sG0‖I2AKBKT 1/2|∆|1/2, (59)

and

∣∣∣∣∂α
x ∂β

y

(
e−iνS(γ∗)N(∆)

∫

RJ

F (γ∆)eiνS(γ∆)

×
∫ T

0

J∑

j=1

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t)) dt

J∏

j=1

dxj

)∣∣∣∣

≤ C|N(T, x, y)|AKBK‖∂sG0‖I2T
3/2|∆|3/2. (60)

Proof of Lemma 4.10. We begin with the proof of (59). Using (55), we
have
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∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dt

=
∫ T

0

∫ t

Tj

h(γ∆, s, t)e∆,j(t) dsdt

= −
∫

Q−j

h(γ∆, s, t)e∆,j(t) dsdt +
∫

Q+
j

h(γ∆, s, t)e∆,j(t) dsdt,

where Q−j is the triangle {(s, t) ∈ Q; t ≤ s ≤ Tj , Tj−1 ≤ t ≤ Tj} and Q+
j =

{(s, t) ∈ Q;Tj ≤ s ≤ t, Tj ≤ t ≤ Tj+1}. We denote characteristic functions of Q−j
and Q+

j by χ−j (s, t) and χ+
j (s, t), respectively. Then

J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t)) e∆,j(t) dt

=
∫

Q

( J+1∑

j=0

(χ+
j (s, t)− χ−j (s, t))e∆,j(t)h(γ∆, s, t)

)
dsdt

= (χ(∆), h(γ∆))L2(Q),

here χ(∆) ∈ L2(Q) is the function χ(∆, s, t) =
∑J+1

j=0 (χ+
j (s, t) − χ−j (s, t))e∆,j(t)

and ( , )L2(Q) is the inner product in the space L2(Q). χ(∆) does not depend on
(xJ+1, xJ , . . . , x1, x0). Its norm ‖χ(∆)‖L2(Q) is majorized as

‖χ(∆)‖2L2(Q) =
J+1∑

j=0

∫

Q−j ∪Q+
j

e∆,j(t)2 dsdt

≤
J∑

j=1

1
2
(
τ2
j + τ2

j+1

)
+

1
2
(
τ2
1 + τ2

J+1

) ≤ |∆|T.

Hence,

∥∥∥∥
J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dt

∥∥∥∥
{∆,m′,K,YK}

≤ |∆|1/2T 1/2‖h(γ∆, s, t)‖{L2(Q);∆,m′,K,Yk} ≤ ‖∂sG0‖I2BKT 1/2|∆|1/2.

Therefore,
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∥∥∥∥
J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dtF (γ∆)
∥∥∥∥
{∆,m1,K,ZK}

≤
∥∥∥∥

J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dt

∥∥∥∥
{∆,m′,K,YK}

‖F (γ∆)‖{∆,m,K,XK}

≤ ‖∂sG0‖I2AKBKT 1/2|∆|1/2. (61)

Let ∆1 be an arbitrary division of [0, T ] coarser than ∆ and ι : Γ(∆1) → Γ(∆)
be the embedding. Then we obtain that

∥∥∥∥ι∗
J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dt

∥∥∥∥
{∆1,m′,K,YK}

=
∥∥(χ(∆, s, t), h(γ∆1 , s, t))L2(Q)

∥∥
{∆1,m′,K,YK}

≤ ‖∂sG0‖I2‖B(γ∆1)‖{L(X );∆1,m′,K,YK}|∆|1/2T 1/2

≤ ‖∂sG0‖I2BKT 1/2|∆|1/2.

Therefore,

∥∥∥∥ι∗
J+1∑

j=0

∫ T

0

(k(γ∆, t, t)− k(γ∆, Tj , t))e∆,j(t) dtF (γ∆)
∥∥∥∥
{∆1,m1,K,ZK}

≤
∥∥∥∥

J+1∑

j=0

∫ T

0

(k(γ∆1 , t, t)− k(γ∆1 , Tj , t))e∆,j(t) dt

∥∥∥∥
{∆1,m′,K,YK}

× ‖F (γ∆1)‖{∆1,m,K,XK}

≤ ‖∂sG0‖I2AKBKT 1/2|∆|1/2. (62)

(59) follows from (61), (62) and stationary phase method.

Next we shall prove (60). We denote the characteristic function of the interval
[0, Tj ] by χ[0,Tj ](s). Then

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t)) dt

=
(
χ[0,Tj ](s)(e∆,j(t)− ζ∆,j(t)), h(γ∆, s, t)

)
L2(Q)

.
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Since ∂xk
χ[0,Tj ](s)(e∆,j(t) − ζ∆,j(t)) = 0 for k 6= j − 1, j, j + 1, Proposition 4.7

leads us to

∥∥(χ[0,Tj ](s)(e∆,j(t)− ζ∆,j(t)), h(γ∆, s, t))L2(Q)

∥∥
{∆,m′,K,YK}

≤ 23K‖χ[0,Tj ](s)(e∆,j(t)− ζ∆,j(t))‖{L2(Q);∆,0,K,1}‖h(γ∆, s, t)‖{L2(Q);∆,m′,K,YK}

≤ 23KCK‖∂sG0‖I2BK

(
τ2
j + τ2

j+1

)
(τj + τj+1)1/2T 1/2,

with some positive constant CK . Therefore,

∥∥∥∥
J∑

j=1

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt

∥∥∥∥
{∆,m′,K,YK}

≤
J∑

j=1

∥∥∥∥
∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt

∥∥∥∥
{∆,m′,K,YK}

≤
J∑

j=1

23KCK‖∂sG0‖I2BK

(
τ2
j + τ2

j+1

)
(τj + τj+1)1/2T 1/2

≤ CK‖∂sG0‖I2BKT 3/2|∆|3/2,

here and hereafter we denote various positive constants which are different from
place to place but may depend on K by the same symbol CK . Consequently,

∥∥∥∥F (γ∆)
J∑

j=1

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt

∥∥∥∥
{∆,m1,K,ZK}

≤ ‖F (γ∆)‖{∆,m,K,XK}

∥∥∥∥
J∑

j=1

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt

∥∥∥∥
{∆,m′,K,YK}

≤ CK‖∂sG0‖I2AKBKT 3/2|∆|3/2. (63)

Let ∆1 be any division of [0, T ] coarser than ∆. Then we shall prove similar
estimate for the pull-back

ι∗F (γ∆)
J∑

j=1

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt

= F (γ∆1)
J∑

j=1

∫ T

0

k(γ∆1 , Tj , t)(e∆,j(t)− ι∗ζ∆,j(t))dt.
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Since the estimate (53) holds, we have

∥∥∥∥ι∗F (γ∆)
J∑

j=1

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt

∥∥∥∥
{∆,m1,K,ZK}

≤ CK‖∂sG0‖I2AKBKT 3/2|∆|3/2. (64)

Using (63) and (64), we can apply stationary phase method. As a result,
for any non-negative integers α, β, there exist a positive integer K and a positive
constant C such that

∣∣∣∣∂α
x ∂β

y

(
e−iνS(γ∗)N(∆)

∫

RJ

F (γ∆)eiνS(γ∆)

×
J∑

j=1

∫ T

0

k(γ∆, Tj , t)(e∆,j(t)− ζ∆,j(t))dt
J∏

j=1

dxj

)∣∣∣∣

≤ C|N(T, x, y)|‖∂sG0‖I2AKBKT 3/2|∆|3/2. (65)

We have proved (60). Lemma 4.10 has been proved. ¤

Therefore, Lemma 4.3 is proved. ¤

We have completed proof of our main Theorem 3.2. ¤

5. Application to semiclassical asymptotic behaviour of Feynman
path integrals.

5.1. A sharper asymptotic formula.
We always assume T < µ. Let F (γ) be an m-smooth functional. Then

semiclassical asymptotic formula was proved by Kumano-go [13].

∫

Ωx,y

F (γ)eiνS(γ)D(γ)

=
(

ν

2πiT

)1/2

D(T, 0, x, y)−1/2eiνS(γ∗)(F (γ∗) + ν−1r(ν, T, 0, x, y)
)
, (66)

where γ∗ is the classical path connecting (T, x) and (0, y) in time-space and
D(T, 0, x, y) is Van Vleck-Morette determinant, cf. [15], and also [6].

If F (γ∗) = 0, then the main term of the right hand side of (66) vanishes. What
happens in that case? Even in this case integration by parts formula enables us
to get a sharper information if the following additional assumption is satisfied.
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Assumption 5.1. We assume F (γ) has all of the following properties:

1. F (γ) is a real valued m-smooth functional. For fixed γ, DF (γ)[h] =∫ T

0
(δF (γ)/δγ(s))ρh(s) ds for any h ∈ H0 and δF (γ)/δγ(s) ∈ X as a func-

tion of s, which we write δF (γ)/δγ. The map H 3 γ → δF (γ)/δγ ∈ X is a C∞

map. There exists a C∞ map H 3 γ → A(γ) ∈ L(X ) such that for any h ∈ H0,

D
δF (γ)

δγ
[h] = A(γ)ρh.

2. For any K = 0, 1, 2, . . . , there exist positive constants AK and XK such that

AK =
∥∥∥∥

δF (γ)
δγ

∥∥∥∥
{X ;m,K,XK}

+ ‖A(γ)‖{L(X );m,K,XK} < ∞. (67)

We often use symbol δ2F (γ)/δγ(s)δγ(t) for the integral kernel of A(γ), if it
exists, i.e., for any f, g ∈ X

(A(γ)f, g)X =
∫ T

0

∫ T

0

δ2F (γ)
δγ(s)δγ(t)

f(s)g(t) dsdt.

Suppose that F (γ) satisfies Assumption 5.1 and F (γ∗) = 0. Then for any
γ ∈ Hx,y, γ − γ∗ ∈ H0 and

F (γ) =
∫ 1

0

DF (γθ)[γ − γ∗] dθ = (ρ(γ − γ∗), ζ(γ))X ,

where γθ = θγ + (1 − θ)γ∗, 0 ≤ θ ≤ 1, ( , )X is the inner product in X and
ζ(γ) ∈ X is the following function of t

ζ(γ, t) =
∫ 1

0

δF (γ)
δγ(t)

∣∣∣∣
γ=γθ

dθ. (68)

On the other hand, the fact DS(γ∗) = 0 implies that for all h ∈ H0,

DS(γ)[h] = DS(γ)[h]−DS(γ∗)[h]

= (γ − γ∗, h)H0 −
(
W̃ (γ)ρ(γ − γ∗), ρh

)
X . (69)

Here ( , )H0 is the inner product in Hilbert spaceH0 and W̃ (γ) is the multiplication
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operator X 3 h(s) → W̃ (γ, s)h(s) ∈ X with

W̃ (γ, s) =
∫ 1

0

∂2
xV (s, γθ(s)) dθ. (70)

It is clear that

sup
s∈[0,T ],γ∈H

∣∣W̃ (γ, s)
∣∣ ≤ v2. (71)

Now we can state our results in this section. Some of proofs are left to the
next subsection. We begin with

Proposition 5.2. If T ≤ µ, I − W̃ (γ)ρρ∗ is an invertible operator in X .

∥∥(I − W̃ (γ)ρρ∗)−1
∥∥
L(X )

≤
(

1− T 2

8
v2

)−1

.

Proposition 5.2 enables us to introduce the following vector field, which is the
key tool for our purpose.

p(γ) = ρ∗
(
I − W̃ (γ)ρρ∗

)−1
ζ(γ). (72)

Then

Proposition 5.3. Suppose that F (γ) satisfies Assumption 5.1 and F (γ∗) =
0. Then the following equality holds:

DS(γ)[p(γ)] = F (γ).

This implies that DS(γ)[p(γ)] is F -integrable.

Proof of Proposition 5.3. Since p(γ) ∈ H0, Equality (69) gives

DS(γ)[p(γ)] =
(
γ − γ∗, ρ∗(I − W̃ (γ)ρρ∗)−1ζ(γ)

)
H0

− (
W̃ (γ)ρ(γ − γ∗), ρρ∗(I − W̃ (γ)ρρ∗)−1ζ(γ)

)
X

=
(
ρ(γ − γ∗), (I − W̃ (γ)ρρ∗)−1ζ(γ)

)
X

− (
ρ(γ − γ∗), W̃ (γ)ρρ∗(I − W̃ (γ)ρρ∗)−1ζ(γ)

)
X



An integration by parts formula for Feynman path integrals 1305

= (ρ(γ − γ∗), ζ(γ))X

= F (γ),

because W̃ (γ) is a self-adjoint operator. Proposition 5.3 has been proved. ¤

As a consequence, we have

Proposition 5.4. Under the same assumption as in Proposition 5.3 the
following equality holds:

∫

Ωx,y

F (γ)eiνS(γ)D(γ) =
∫

Ωx,y

DS(γ)[p(γ)]eiνS(γ)D(γ). (73)

Note that both sides of (73) have definite meaning by virtue of Proposition
5.3.

We can show the following fact:

Proposition 5.5. If F (γ) satisfies Assumption 5.1 and F (γ∗) = 0, then
p(γ) defined by (72) is an m-admissible vector field.

Once Proposition 5.5 is proved, the next theorem follows easily from Corollary
3.3 and Proposition 5.4.

Theorem 5.6. Suppose that F (γ) satisfies the Assumption 5.1 with some
m ≥ 0. Suppose further that F (γ∗) = 0. Let ζ(γ) and p(γ) be as above. Then
Div p(γ) is F -integrable and

∫

Ωx,y

F (γ)eiνS(γ)D(γ) = −(iν)−1

∫

Ωx,y

Div p(γ)eiνS(γ)D(γ). (74)

Applying Kumano-go’s theorem of semiclassical asymptotics, c.f. [13], to
(74), we have the following theorem.

Theorem 5.7. Under the same assumption as in Theorem 5.6 the following
asymptotic formula holds:

∫

Ωx,y

F (γ)eiνS(γ)D(γ) =
(

ν

2πiT

)1/2

D(T, 0, x, y)−1/2eiνS(γ∗)

× (− (iν)−1 Div p(γ∗) + ν−2r(ν, T, 0, x, y)
)
.
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Here the remainder term r(ν, T, 0, x, y) has the following property : For any non-
negative integers α, β there exists a positive constant Cαβ such that

∣∣∂α
x ∂β

y r(ν, T, 0, x, y)
∣∣ ≤ Cαβ(1 + |x|+ |y|)m.

We now calculate Div p(γ∗). We write Gγ∗ = ρρ∗(I−W̃ (γ∗)ρ∗ρ)−1 = G0(I−
W̃ (γ∗)G0)−1. Since γ∗θ = γ∗, we have W̃ (γ∗, t) = ∂2

xV (t, γ∗(t)). Thus Gγ∗ =
G0(I − ∂2

xV (t, γ∗(t))G0)−1. We know that Gγ∗ is an operator of trace class. Let
Gγ(s, t) denote the Green function of the differential equation of Jacobi field at γ:

−
(

d2

dt2
+ ∂2

xV (t, γ(t))
)

u(t) = f(t), u(0) = 0 = u(T ). (75)

Then it is easy to see that the kernel function of Gγ∗ is nothing but Gγ∗(s, t).
Calculation shows:

Theorem 5.8. Under the same assumption as in Theorem 5.7

Div p(γ∗) =
1
2

∫ T

0

∫ T

0

δ

δγ(s)

(
Gγ∗(s, t)

δF (γ∗)
δγ(t)

)
dsdt

=
1
2

∫ T

0

∫ T

0

δGγ∗(s, t)
δγ(s)

δF (γ∗)
δγ(t)

dsdt +
1
2
trGγ∗A(γ∗). (76)

If in addition the operator A(γ∗) has the integral kernel δ2F (γ∗)/δγ(s)δγ(t), then

Div p(γ∗) =
1
2

∫ T

0

∫ T

0

δGγ∗(s, t)
δγ(s)

δF (γ∗)
δγ(t)

dsdt

+
1
2

∫ T

0

∫ T

0

Gγ∗(s, t)
δ2F (γ∗)

δγ(s)δγ(t)
dsdt.

Example 5.9 (Semiclassical limit of covariance matrix). For any a(s, t) ∈
C([0, T ]× [0, T ]) we set

F (γ) =
∫ T

0

∫ T

0

(γ(s)− γ∗(s))(γ(t)− γ∗(t))a(s, t) dsdt.

Then
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Div p(γ∗) =
1
2

∫ T

0

∫ T

0

Gγ∗(s, t)a(s, t) dsdt. (77)

Therefore, we have semiclassical asymptotic formula

∫

Ωx,y

( ∫ T

0

∫ T

0

(γ(s)− γ∗(s))(γ(t)− γ∗(t))a(s, t) dsdt

)
eiνS(γ)D(γ)

=
(

ν

2πiT

)1/2

D(T, 0, x, y)−1/2eiνS(γ∗)

×
(
− (iν)−1

( ∫ T

0

∫ T

0

Gγ∗(s, t)a(s, t) dsdt

)
+ ν−2r(ν, T, 0, x, y)

)
. (78)

Here the remainder term r(ν, T, 0, x, y) has the following property: For any non-
negative integers α, β there exists a positive constant Cαβ such that

∣∣∂α
x ∂β

y r(ν, T, 0, x, y)
∣∣ ≤ Cαβ(1 + |x|+ |y|)2.

This means that semiclassical limit of covariance matrix of Feynman path
integral equals −(iν)−1Gγ∗(s, t) after suitable normalization.

Proofs of Propositions 5.2, 5.5 and Theorem 5.8 will be given in the next
subsection.

5.2. Proof of a sharper asymptotic formula.
For any index 1 ≤ p ≤ ∞ and f ∈ Lp([0, T ]), we write ‖f‖Lp the norm of f

in Lp([0, T ]). Since |W̃ (γ)(t)| ≤ v2 for any γ ∈ H and t ∈ [0, T ],

‖W̃ (γ)f‖Lp ≤ v2‖f‖Lp , (1 ≤ p ≤ ∞).

We use the Green operator G0 defined by (16) in Section 2.1. Since the kernel
function g0(s, t) of G0 is given by (17), the following Lemma holds.

Lemma 5.10. Let p be 1 ≤ p ≤ ∞. It is clear that for any f ∈ C([0, T ]),

‖G0f‖Lp ≤ T 2

8
‖f‖Lp , ‖G0f‖C([0,T ]) ≤

1
4

√
T 3

3
‖f‖X , ‖G0f‖C([0,T ]) ≤

T

4
‖f‖L1 .

‖∂sG0f‖Lp ≤ T

2
‖f‖Lp , ‖∂sG0f‖C([0,T ]) ≤

√
T

3
‖f‖X , ‖∂sG0f‖C([0,T ]) ≤ ‖f‖L1 .
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In order to prove Proposition 5.2, we have only to prove the next proposition,
because ρρ∗ = G0 in X .

Proposition 5.11. Under the assumption that T ≤ µ the operator (I −
W̃ (γ)G0) is invertible in X . We have

∥∥(I − W̃ (γ)G0)−1f
∥∥
X ≤ c0‖f‖X ,

where

c0 =
(

1− v2T
2

8

)−1

.

Proof. Using Lemma 5.10, we have

∥∥W̃ (γ)G0f
∥∥
X ≤

v2T
2

8
‖f‖X .

Since T < µ, we have v2T
2/8 < 1/2. Thus (I − W̃ (γ)G0)−1 exists and

∥∥(I − W̃ (γ)G0)−1f
∥∥
X ≤ c0‖f‖X .

Proposition is proved. ¤

The crucial fact in this section is following

Proposition 5.12. For any K = 0, 1, 2, . . . , there exists a constant YK ≥ 1
independent of γ such that

∥∥(I − W̃ (γ)G0)−1
∥∥
{L(X );0,K,YK} ≤ c0.

Proof. Let ∆ be an arbitrary division of the interval [0, T ], i.e.,

∆ : 0 = T0 < T1 < T2 < · · · < TJ < TJ+1 = T.

We use the notation in Section 1, for example, (xJ+1, xJ , . . . , x1, x0) and γ∆, etc.
It is clear that

∂xj
W̃ (γ∆, t) = ζ∆,j(t)

∫ 1

0

∂3
xV (θγ∆(t) + (1− θ)γ∗(t))θ dθ, (79)
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where ζ∆,j(t) = ∂xj
γ∆(t). By (33)

∂xj
W̃ (γ∆, t) = 0, for t 6∈ [Tj−1, Tj+1]. (80)

If |j − k| ≥ 2, then ζ∆,j(t)ζ∆,k(t) ≡ 0 by (33) and ∂xk
ζ∆,j(t) ≡ 0 by (36).

Thus we have

∂xj ∂xk
W̃ (γ∆, t) = 0 for any t ∈ [0, T ] if |k − j| ≥ 2. (81)

We know from estimates (39) and (40) that there exists a positive constant Cα,β

independent of ∆ and of j such that for j = 0, 1, 2, . . . , J + 1 if α ≥ 1

∣∣∂α
xj

∂β
xj+1

ζ∆,j(t)
∣∣ ≤ Cα,βχ[Tj−1,Tj+1](t),

∣∣∂α
xj

∂β
xj−1

ζ∆,j(t)
∣∣ ≤ Cα,βχ[Tj−1,Tj+1](t).

Here χ[Tj−1,Tj+1](t) is the characteristic function of the interval [Tj−1, Tj+1]. Hence,
for any positive integer K there exists a positive constant CK independent of ∆
such that as far as 0 < αj ≤ K, αj+1 ≤ K, αj−1 ≤ K and t ∈ [0, T ]

∣∣∂αj
xj

∂αj+1
xj+1

W̃ (γ∆, t)
∣∣ +

∣∣∂αj
xj

∂αj−1
xj−1

W̃ (γ∆, t)
∣∣ ≤ CK χ[Tj−1,Tj+1](t). (82)

The constant CK depends on v3, v4, . . . , v2K+2 but not on vj , j ≥ 2K + 3.
For any f ∈ C([0, T ]) we write

u(γ∆, t) = (I − W̃ (γ∆, t)G0)−1f(t).

Proposition 5.12 follows from Proposition 5.11 and the next lemma, which
we shall prove by induction on the order relation “<” among multi-indices. Let
α = (αJ+1, αJ , . . . , α1, α0) and β = (βJ+1, βJ , . . . , β2, β1, β0) be multi-indices.
Recall that α > β if and only if αj ≥ βj for j = 0, 1, 2, . . . , J +1 and α 6= β. β < α

is equivalent to α > β

Lemma 5.13. Let CK be as in (82) and c0 be as in Proposition 5.12. Set
Y0 = 1 and for any positive integer K ≥ 1 define YK by

YK = max{YK−1, 22K−13−1/2c0CKT 2}. (83)

Then for any multi-index α we have

∥∥∂α
x u(γ∆)

∥∥
X ≤ Y

|α|
m(α)‖u(γ∆)‖X . (84)
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Proof. In the case α = 0, (84) is obviously true. Let multi-index α be such
as |α| ≥ 1. Suppose that the inequality (84) for any β with β < α is true, i.e.,

∥∥∂β
xu(γ∆)

∥∥
X ≤ Y

|β|
m(β)‖u(γ∆)‖X , if β < α. (85)

We shall prove (84) using (85). Obviously,

∂α
x

(
(I − W̃ (γ∆, t)G0)u(γ∆, t)

)
= ∂α

x f(t) = 0.

We set g(t) = (I − W̃ (γ∆)G0)∂α
x u(γ∆, t). Using Leibnitz’ rule, we have

g(t) =
∑

0≤β<α

(
α

β

)
∂α−β

x W̃ (γ∆, t)G0∂
β
xu(γ∆, t).

Since β < α, induction hypothesis implies ∂β
xu(γ∆) ∈ X on the right hand side of

the above equality. Hence G0∂
β
xu(γ∆) ∈ H0. Thus g(T ) = g(0) = 0.

If t 6= 0, then there exists some j ∈ {J +1, J, . . . , 2, 1} such that t ∈ (Tj−1, Tj ].
We know from (80) for any t ∈ [Tj−1, Tj ]

∂xk
W̃ (γ∆, t) = 0 t ∈ [Tj−1, Tj ] if k 6= j and k 6= j − 1.

Hence for any t ∈ (Tj−1, Tj ]

g(t) =
∗∑

0≤β∗<α

(
αj−1

βj−1

)(
αj

βj

)
∂α−β∗

x W̃ (γ∆, t)G0∂
β∗
x u(γ∆, t),

here sum
∑∗

0≤β∗<α is taken over all these β∗ = (βJ+1, βJ , . . . , β2, β1, β0) < α such
that βk = 0 unless k = j or k = j − 1, i.e., β∗ = (0, 0, . . . , 0, βj , βj−1, 0, . . . , 0).

We write K = m(α). By induction hypothesis ∂β∗
x u(γ∆) ∈ X . As a result of

this, Proposition 5.10 and (85),

∥∥G0∂
β∗
x u(γ∆)

∥∥
C([0,T ])

≤ 1
4

√
T 3

3

∥∥∂β∗
x u(γ∆)

∥∥
X ≤

1
4

√
T 3

3
Y
|α|−1
K ‖u(γ∆)‖X .

It follows from this and (82) that

∣∣∂α−β∗
x W̃ (γ∆, t)G0∂

β∗
x u(γ∆, t)

∣∣ ≤ 1
4

√
T 3

3
CKY

|α|−1
K ‖u(γ∆)‖X .
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Therefore, for any t ∈ (Tj−1, Tj ]

|g(t)| ≤
∗∑

0≤β∗<α

(
αj−1

βj−1

)(
αj

βj

)
1
4

√
T 3

3
CKY

|α|−1
K ‖u(γ∆)‖X

≤ 22K−2

√
T 3

3
CKY

|α|−1
K ‖u(γ∆)‖X .

Since the right hand side of this inequality does not depend on j, we have

|g(t)| ≤ 22K−2

√
T 3

3
CKY

|α|−1
K ‖u(γ∆)‖X , for any t ∈ [0, T ].

Consequently we have

‖g‖X ≤ 22K−23−1/2T 2CKY
|α|−1
K ‖u(γ∆)‖X . (86)

We use Proposition 5.11 and definition (83) of YK , and we obtain

∥∥∂α
x u(γ∆, t)

∥∥
X ≤ c022K−23−1/2T 2CKY

|α|−1
K ‖u(γ∆)‖X

≤ Y
|α|
K ‖u(γ∆)‖X .

Inequality (84) for α is proved. Induction process is over. Lemma 5.13 has
been proved. ¤

Proof of Proposition 5.12 has been completed. ¤

Now we begin proof of Proposition 5.5. Let us recall definition (72):

p(γ) = ρ∗q(γ),

q(γ) =
(
I − W̃ (γ)ρρ∗

)−1
ζ(γ),

ζ(γ) =
∫ 1

0

δF (γ)
δγ

∣∣∣∣
γ=θγ+(1−θ)γ∗

dθ.

We shall prove that p(γ) has property P1 of Definition 3.1 of m-admissibility.
Since F (γ) is m-smooth and satisfies (67), we know that δF (γ)/δγ ∈ X and

H 3 γ → δF (γ)/δγ ∈ X is an infinitely differentiable map. This implies that
ζ(γ) ∈ X and that the map: H 3 γ → ζ(γ) ∈ X is also an infinitely differentiable
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map. Obviously, γ → W̃ (γ) is also an infinitely differentiable map from H to
Ck([0, T ]) for any k = 0, 1, 2, . . . . Therefore, q(γ) ∈ X and H 3 γ → q(γ) ∈ X is
an infinitely differentiable map.

Let YK be the constant in (83) and AK , XK be as in (67) of Assumption 5.1.

Lemma 5.14. There exists a positive constant c(m, v2) depending on m, v2

such that for any K = 0, 1, 2, . . . ,

‖q(γ)‖{X ;m,K,XK+YK} ≤ c(m, v2)AK < ∞.

Proof. By virtue of Proposition 4.6 and Proposition 5.12,

‖q(γ)‖{X ;m,K,XK+YK}

≤ ∥∥(I − W̃ (γ)G0)−1
∥∥
{L(X );0,K,YK}‖ζ(γ)‖{X ;m,K,XK} ≤ c0‖ζ(γ)‖{X ;m,K,XK}.

By definition of ζ(γ)

‖ζ(γ)‖{X ;m,K,XK} =
∥∥∥∥

∫ 1

0

δF (γθ)
δγ

dθ

∥∥∥∥
{X ;m,K,XK}

≤
∫ 1

0

∥∥∥∥
δF (γθ)

δγ

∥∥∥∥
{X ;m,K,XK}

dθ.

If γ ∈ Hx,y, then γθ ∈ Hx,y for any θ ∈ [0, 1]. Let ∆ be an arbitrary division of
the interval [0, T ]

∆ : 0 = T0 < T1 < T2 < · · · < TJ < TJ+1 = T.

We use the notation in Section 1, for example, (xJ+1, xJ , . . . , x1, x0) and γ∆, etc.
We write γ∆,θ = θγ∆ + (1− θ)γ∗, for 0 ≤ θ ≤ 1. Then

∥∥∥∥∂α
x

δF (γ∆,θ)
δγ

∥∥∥∥
X
≤ θ|α|(1 + |x0|+ var(γ∆,θ))mX

|α|
m(α)Am(α).

Since there exists some positive constant c(v2) depending on v2 such that

var(γ∗) ≤ c(v2)(1 + |xJ+1|+ |x0|),

we have

var(γ∗) ≤ 2c(v2)(1 + |x0|+ var(γ)), for any γ ∈ Hx,y. (87)

Thus
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(1 + |x0|+ var(γ∆,θ)) ≤ (1 + |x0|+ var(γ∆) + var(γ∗))

≤ (1 + 2c(v2))(1 + |x0|+ var(γ∆)). (88)

Therefore,

∥∥∥∥∂α
x

δF (γ∆,θ)
δγ

∥∥∥∥
X
≤ (1 + 2c(v2))m(1 + |x0|+ var(γ∆))mX

|α|
m(α)Am(α).

Thus

∥∥∥∥
δF (γθ)

δγ

∥∥∥∥
{X ;m,K,XK}

≤ (1 + 2c(v2))mAK .

Therefore,

‖ζ(γ)‖{X ;m,K,XK} ≤ (1 + 2c(v2))mAK .

Consequently, we have, by virtue of Proposition 5.12,

‖q(γ)‖{X ;m,K,XK+YK} ≤ c0(1 + 2c(v2))mAK .

Lemma 5.14 is now proved. ¤

Next we calculate Dq(γ)[h] for h ∈ H0. By definition of q(γ)

Dq(γ)[h] =
(
I − W̃ (γ)G0

)−1(
DW̃ (γ)[h]G0(I − W̃ (γ)G0)−1ζ(γ) + Dζ(γ)[h]

)

=
(
I − W̃ (γ)G0

)−1(
DW̃ (γ)[h]ρρ∗q(γ) + Dζ(γ)[h]

)
. (89)

Since W̃ (γ) is the multiplication operator: f(s) → ∫ 1

0
∂2

xV (γθ(s), s) dθf(s),

DW̃ (γ)[h](s)ρρ∗q(γ)(s) = U1(γ, s)ρρ∗q(γ)(s)ρh(s), (90)

where

U1(γ, s) =
∫ 1

0

∂3
xV (γθ(s), s)θ dθ.

Since
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|U1(γ, s)| ≤ v3, (91)

the map f(s) → U1(γ, s)ρρ∗q(γ)f(s) is a bounded linear map in X , which depends
smoothly on γ.

On the other hand, we have

Dζ(γ)[h] = Ã(γ)ρh, (92)

where

Ã(γ) =
∫ 1

0

θA(γθ) dθ. (93)

It follows from (89) and (92) that

Dq(γ)[h] = B(γ)ρh, (94)

here B(γ) is given by

B(γ)f =
(
I − W̃ (γ)G0

)−1(
U1(γ)ρρ∗q(γ) + Ã(γ)

)
f, for any f ∈ X . (95)

It is clear that B(γ) ∈ L(X ) and it is infinitely differentiable with respect γ ∈ H.
Therefore, we have proved that the vector field p(γ) has property P1.

We shall prove p(γ) has property P2.

Lemma 5.15. For any K = 0, 1, 2, . . . let ZK = XK + 2YK . Then for each
K, there exists positive constant CK such that

‖B(γ)‖{L(X );m,K,ZK} ≤ CKAK .

Proof. Using Proposition 4.6 and Proposition 5.12,

‖B(γ)‖{L(X );m,K,ZK}

≤
∥∥(I − W̃ (γ)G0)−1

∥∥
{L(X );0,K,YK}

∥∥U1(γ)ρρ∗q(γ) + Ã(γ)
∥∥
{L(X );m,K,XK+YK}

≤ c0

(‖U1(γ)ρρ∗q(γ)‖{L(X );m,K,XK+YK} + ‖Ã(γ)‖{L(X );m,K,XK+YK}
)
. (96)

Map X 3 f → U1(γ)ρρ∗q(γ)f ∈ X is the multiplication of two functions.
Let ∆ be an arbitrary division of [0, T ] and γ∆ be an arbitrary piecewise
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classical path. Then we have

∂xj
U1(γ∆, s) =

∫ 1

0

ζ∆,j(s)
(
∂4

xV (s, γ∆,θ(s))θ2
)
dθ.

Therefore, if |j − k| ≥ 2, then for any s ∈ [0, T ]

∂xj
∂xk

U1(γ∆, s) = 0.

In just the same way as (82), for any K = 1, 2, 3, . . . there exists a positive constant
CK such that we have

∣∣∂αj
xj

∂αj+1
xj+1

U1(γ∆, s)
∣∣ ≤ CKχ[Tj−1,Tj+1](s), (97)

if 0 < αj ≤ K and αj+1 ≤ K. Let s ∈ [0, T ]. Then we may assume s ∈ [Tj , Tj+1]
with some j.

∂α
x (U1(γ∆, s)ρρ∗q(γ∆)(s))

=
∗∑

β

(
αj

βj

)(
αj+1

βj+1

)
∂βj

xj
∂βj+1

xj+1
U1(γ∆, s)∂α−β

x ρρ∗q(γ∆)(s),

where
∑∗

β means the sum over those β = (0, 0, . . . , 0, βj , βj+1, 0, 0, . . . , 0). We set
C0 = v3 as in (91) and CK ,K = 1, 2, 3 be as in (97). If m(α) ≤ K, then (91) and
(97) give

∣∣∂α
x (U1(γ∆, s)ρρ∗q(γ∆)(s))

∣∣

≤
∗∑

β

(
αj

βj

)(
αj+1

βj+1

)∣∣∂βj
xj

∂βj+1
xj+1

U1(γ∆, s)
∣∣∣∣∂α−β

x ρρ∗q(γ∆)(s)
∣∣

≤
∗∑

β

(
αj

βj

)(
αj+1

βj+1

)
CK

∣∣∂α−β
x ρρ∗q(γ∆)(s)

∣∣

≤ 22KCK(1 + |x0|+ var(γ∆))m(XK + YK)|α|‖ρρ∗q(γ∆)‖{C([0,T ]);∆,m,K,XK+YK}.

The right hand side is independent of j. Using Lemma 5.14, we have proved
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‖U1(γ∆)ρρ∗q(γ∆)‖{L(X );∆,m,K,XK+YK}

≤ 22KCK‖ρρ∗q(γ∆)‖{C([0,T ]);∆,m,K,XK+YK}

≤ 22K−2CK
T 3/2

√
3

c0c(m, v2)AK . (98)

Next we discuss Ã(γ∆). We have, by (93) and (88),

‖Ã‖{L(X );∆,m,K,XK} ≤
∫ T

0

θ‖A(γθ)‖{L(X );∆,m,K,XK} dθ

≤ AK(1 + 2c(v2))m. (99)

Thus it follows from (96), (98) and (99) that

‖B(γ)‖{L(X );m,K,ZK} ≤ CKAK

with some positive constant CK . We have proved Lemma 5.15. ¤

We have proved that p(γ) has property P2. Therefore it is m-admissible, i.e.
we have proved Proposition 5.5.

Now we can apply integration by parts formula of Theorem 3.2. Thus we have
proved Theorem 5.6.

Applying Kumano-go’s result in [13] to Theorem 5.6, we obtain Theorem 5.7.
We have proved the sharp asymptotic formula up to the explicit expression of
Div p(γ∗).

Now we calculate Div p(γ∗) to prove Theorem 5.8. For that purpose we have
to calculate kernel function of ρρ∗B(γ∗).

If γ = γ∗, then γ∗θ = γ∗, for any θ ∈ [0, 1]. Then

ρρ∗B(γ∗) = Gγ∗U1(γ∗)Gγ∗ζ(γ∗) + Gγ∗Ã(γ∗), (100)

and

ζ(γ∗, t) =
∫ 1

0

δF (γ∗)
δγ(t)

dθ =
δF (γ∗)
δγ(t)

,

W̃ (γ∗, t) = ∂2
xV (t, γ∗(t)),
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U1(γ∗, t) =
∫ T

0

∂3
xV (t, γ∗(t))θ dθ =

1
2
∂3

xV (t, γ∗(t)),

Ã(γ∗) =
∫ 1

0

θA(γ∗) dθ =
1
2
A(γ∗).

Hence for any f ∈ X

Gγ∗U1(γ∗)Gγ∗ζ(γ∗)f(s)

=
∫ T

0

Gγ∗(s, t)
1
2
∂3

xV (t, γ∗(t))f(t)
∫ T

0

Gγ∗(t, t1)
δF (γ∗)
δγ(t1)

dt1dt

=
1
2

∫ T

0

∫ T

0

δ

δγ(t)
(Gγ(s, t1))

∣∣∣∣
γ=γ∗

f(t)
δF (γ∗)
δγ(t1)

dt1dt.

Therefore,

tr Gγ∗U1(γ∗)Gγ∗ζ(γ∗)

=
1
2

∫ T

0

Gγ∗(s, s)∂3
xV (s, γ∗(s))

∫ T

0

Gγ∗(s, t1)
δF (γ∗)
δγ(t1)

dt1ds

=
1
2

∫ T

0

∫ T

0

δ

δγ(s)
(Gγ∗(s, t1))

δF (γ∗)
δγ(t1)

dt1ds.

Therefore,

Div p(γ∗) =
1
2

∫ T

0

∫ T

0

δ

δγ(s)
(Gγ(s, t1))

∣∣∣∣
γ=γ∗

δF (γ∗)
δγ(t1)

dt1ds +
1
2
trGγ∗A(γ∗).

(76) of Theorem 5.8 has been proved.
The rest of Theorem 5.8 follows from this.
Theorem 5.8 has been proved. ¤
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