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Abstract. Let G be a group acting continuously on a space X and let
X/G be its orbit space. Determining the topological or cohomological type
of the orbit space X/G is a classical problem in the theory of transformation
groups. In this paper, we consider this problem for cohomology lens spaces.
Let X be a finitistic space having the mod 2 cohomology algebra of the lens

space L2m−1
p (q1, . . . , qm). Then we classify completely the possible mod 2

cohomology algebra of orbit spaces of arbitrary free involutions on X. We also
give examples of spaces realizing the possible cohomology algebras. In the
end, we give an application of our results to non-existence of Z2-equivariant
maps Sn → X.

1. Introduction.

Lens spaces are odd dimensional spherical space forms described as follows.
Let p ≥ 2 be a positive integer and q1, q2, . . . , qm be integers coprime to p, where
m ≥ 1. Let S2m−1 ⊂ Cm be the unit sphere and let ι2 = −1. Then the map

(z1, . . . , zm) 7→ (
e2πιq1/pz1, . . . , e

2πιqm/pzm

)

defines a free action of the cyclic group Zp on S2m−1. The orbit space is called
a lens space and is denoted by L2m−1

p (q1, . . . , qm). It is a compact Hausdorff
orientable manifold of dimension (2m−1). Lens spaces are objects of fundamental
importance in topology, particularly in low dimensional topology and have been
very well studied. The purpose of this paper is to study these spaces in the context
of topological transformation groups.

Let G be a group acting continuously on a space X with orbit space X/G.
Determining the orbit space X/G is a classical problem in the theory of transfor-
mation groups. Determining the homeomorphism or homotopy type of the orbit
space is often difficult and hence a weaker problem is to determine the possible
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cohomology algebra of the orbit space. Orbit spaces of free actions of finite groups
on spheres have been studied extensively by Livesay [14], Rice [20], Ritter [21],
Rubinstein [23] and many others. However, not much is known if the space is a
compact manifold other than a sphere. Tao [28] determined orbit spaces of free
involutions on S1 × S2. Later Ritter [22] extended the results to free actions of
cyclic groups of order 2n. Dotzel and others [10] determined the cohomology alge-
bra of orbit spaces of free Zp (p prime) and S1 actions on cohomology product of
two spheres. Recently, the author [26] determined the cohomology algebra of orbit
spaces of arbitrary free involutions on cohomology product of two real or complex
projective spaces. This was extended to product of finitely many projective spaces
by Ashraf [1]. In this paper, we consider this problem for cohomology lens spaces.
Throughout the paper the group actions will be assumed to be continuous.

The mod p cohomology algebra of orbit spaces of free Zp-actions on cohomol-
ogy lens spaces was determined recently in [25] for odd primes p. We consider the
case of free involutions on cohomology lens spaces. Orbit spaces of involutions on
three dimensional lens spaces have been investigated in the literature [12], [18].
For the lens space L3

p(q), where p = 4k for some k, Kim [12] showed that the orbit
space of any sense-preserving free involution on L3

p(q) is the lens space L3
2p(q

′),
where q′q ≡ ±1 or q′ ≡ ±q mod p. Myers [18] showed that every free involution
on a three dimensional lens space is conjugate to an orthogonal free involution, in
which case the orbit space is again a lens space (see Remark 6.2).

Let X '2 L2m−1
p (q1, . . . , qm) mean that there is an abstract isomorphism of

graded algebras

H∗(X;Z2) ∼= H∗(L2m−1
p (q1, . . . , qm);Z2

)
.

We call such a space a mod 2 cohomology lens space and refer to dimension of
L2m−1

p (q1, . . . , qm) as its dimension. This class of spaces is a big generalization of
the class of spaces homotopy equivalent to lens spaces. Two non-trivial examples
of this case are S1 ×CPm−1 and the Dold manifold P (1,m− 1) corresponding to
the case 4 | p (see Section 6).

Recall that, a finitistic space is a paracompact Hausdorff space whose every
open covering has a finite dimensional open refinement, where the dimension of a
covering is one less than the maximum number of members of the covering which
intersect non-trivially (the notion of a finitistic spaces is due to Swan [24]). It is
a large class of spaces including all compact Hausdorff spaces and all paracom-
pact spaces of finite covering dimension. Finitistic spaces are the most suitable
spaces for studying cohomology theory of transformation groups on general spaces,
because of their compatibility with the Čech cohomology theory (see [4] for a de-
tailed account of results). Note that the lens space L2m−1

p (q1, . . . , qm) is a compact
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Hausdorff space and hence is finitistic.
From now onwards, for convenience, we write L2m−1

p (q) for L2m−1
p (q1, . . . , qm).

We consider free involutions on finitistic mod 2 cohomology lens spaces and classify
the possible mod 2 cohomology algebra of orbit spaces. More precisely, we prove
the following theorem.

Main Theorem. Let G = Z2 act freely on a finitistic space X '2 L2m−1
p (q).

Then H∗(X/G;Z2) is isomorphic to one of the following graded commutative al-
gebras:

(1) Z2[x]/〈x2m〉,
where deg(x) = 1.

(2) Z2[x, y]/〈x2, ym〉,
where deg(x) = 1 and deg(y) = 2.

(3) Z2[x, y, z]/〈x3, y2, zm/2〉,
where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

(4) Z2[x, y, z]/〈x4, y2, zm/2, x2y〉,
where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

(5) Z2[x, y, w, z]/〈x5, y2, w2, zm/4, x2y, wy〉,
where deg(x) = 1, deg(y) = 1, deg(w) = 3, deg(z) = 8 and 4 | m.

Our theorem generalizes the results known for orbit spaces of free involutions
on the three dimensional lens space L3

p(q), to that of the large class of finitistic
spaces X '2 L2m−1

p (q1, . . . , qm) (see Remarks 5.4, 6.1 and 6.2).
The paper is organized as follows. We recall the cohomology of lens spaces

in Section 2 and give an example of a free involution in Section 3. After recalling
some preliminary results in Section 4, we prove the main theorem in a sequence
of propositions in Section 5. In Section 6, we provide some examples realizing
the possible cohomology algebras. Finally, in Section 7, we give an application to
Z2-equivariant maps from Sn to X and also suggest another possible application
to parametrized Borsuk-Ulam problem.

2. Cohomology of lens spaces.

The homology groups of a lens space can be easily computed using its cell
decomposition (see for example [11, p. 144]) and are given by

Hi

(
L2m−1

p (q);Z
)

=





Z if i = 0, 2m− 1

Zp if i is odd and 0 < i < 2m− 1

0 otherwise.
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If p is odd, then the mod 2 cohomology groups are

Hi
(
L2m−1

p (q);Z2

)
=

{
Z2 if i = 0, 2m− 1

0 otherwise.

And if p is even, then

Hi
(
L2m−1

p (q);Z2

)
=

{
Z2 if 0 ≤ i ≤ 2m− 1

0 otherwise.

3. Free involutions on lens spaces.

We now construct a free involution on the lens space L2m−1
p (q). Let q1, . . . , qm

be odd integers coprime to p. Consider the map Cm → Cm given by

(z1, . . . , zm) 7→ (
e2πιq1/2pz1, . . . , e

2πιqm/2pzm

)
.

This map commutes with the Zp-action on S2m−1 defining the lens space and hence
descends to a map

α : L2m−1
p (q) → L2m−1

p (q)

such that α2 = identity. Thus α is an involution. Denote an element of L2m−1
p (q)

by [z] for z = (z1, . . . , zm) ∈ S2m−1. If α([z]) = [z], then

(
e2πιq1/2pz1, . . . , e

2πιqm/2pzm

)
=

(
e2πιkq1/pz1, . . . , e

2πιkqm/pzm

)

for some integer k. Let 1 ≤ i ≤ m be an integer such that zi 6= 0, then e2πιqi/2pzi =
e2πιkqi/pzi and hence e2πιqi/2p = e2πιkqi/p. This implies

qi

2p
− kqi

p
=

qi(1− 2k)
2p

is an integer, a contradiction. Hence the involution α is free. Observe that the
orbit space of the above involution is L2m−1

p (q)/〈α〉 = L2m−1
2p (q).
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4. Preliminary results.

In this section, we recall some basic facts that we will use in the rest of the
paper without mentioning explicitly. We refer to [4], [16] for the details of most
of the content in this section. Throughout we will use Čech cohomology. Let the
group G = Z2 act on a space X. Let

G ↪→ EG −→ BG

be the universal principal G-bundle. Consider the diagonal action of G on X×EG.
Let

XG = (X × EG)/G

be the orbit space corresponding to the diagonal action. Then the projection
X × EG → EG is G-equivariant and gives a fibration

X ↪→ XG −→ BG

called the Borel fibration [6, Chapter IV]. We will exploit heavily the Leray spectral
sequence associated to the Borel fibration X ↪→ XG −→ BG, as given in the
following theorem.

Proposition 4.1 ([16, Theorem 5.2]). Let X
i

↪→ XG
ρ−→ BG be the Borel

fibration associated to a G-space X. Then there is a first quadrant spectral sequence
of algebras {Er

∗,∗, dr}, converging to H∗(XG;Z2) as an algebra, with

E2
k,l = Hk(BG;Hl(X;Z2)),

the cohomology of the base BG with locally constant coefficients Hl(X;Z2) twisted
by a canonical action of π1(BG).

The graded commutative algebra H∗(XG;Z2) is isomorphic to the graded
commutative algebra TotE∗,∗

∞ , the total complex of E∗,∗
∞ , given by

(
TotE∗,∗

∞
)q =

⊕

k+l=q

Ek,l
∞ .

If the fundamental group π1(BG) = Z2 acts trivially on the cohomology H∗(X;Z2),
the system of local coefficients is constant by [16, Proposition 5.5] and hence we
have
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E2
k,l ∼= Hk(BG;Z2)⊗H l(X;Z2).

Also, note that H∗(XG) is a H∗(BG)-module with the multiplication given by

(b, x) 7→ ρ∗(b)x

for b ∈ H∗(BG) and x ∈ H∗(XG). Here the product on the right hand side is the
cup product.

Proposition 4.2 ([16, Theorem 5.9]). The edge homomorphisms

Hk(BG;Z2) = Ek,0
2 −→ Ek,0

3 −→ · · · −→ Ek,0
k −→ Ek,0

k+1 = Ek,0
∞ ⊂ Hk(XG;Z2)

and

H l(XG;Z2) −→ E0,l
∞ = E0,l

l+1 ⊂ E0,l
l ⊂ · · · ⊂ E0,l

2 = H l(X;Z2)

are the homomorphisms

ρ∗ : Hk(BG;Z2) → Hk(XG;Z2) and i∗ : H l(XG;Z2) → H l(X;Z2).

Now we recall some results regarding Z2-actions on finitistic spaces.

Proposition 4.3 ([4, Chapter VII, Theorem 1.5]). Let G = Z2 act freely
on a finitistic space X. Suppose that Hj(X;Z2) = 0 for all j > n. Then
Hj(XG;Z2) = 0 for j > n.

Let h : XG → X/G be the map induced by the G-equivariant projection
X × EG → X. Then the following is true.

Proposition 4.4 ([4, Chapter VII, Proposition 1.1]). Let G = Z2 act freely
on a finitistic space X. Then

h∗ : H∗(X/G;Z2)
∼=−→ H∗(XG;Z2).

In fact X/G and XG have the same homotopy type.

Proposition 4.5 ([4, Chapter VII, Theorem 1.6]). Let G = Z2 act freely
on a finitistic space X. Suppose that

∑
i≥0 rank(Hi(X;Z2)) < ∞ and the induced

action on H∗(X;Z2) is trivial. Then the Leray spectral sequence associated to
X ↪→ XG −→ BG does not degenerate at the E2 term.
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Recall that, for G = Z2, we have

H∗(BG;Z2) ∼= Z2[t],

where t is a homogeneous element of degree one. From now onwards our cohomol-
ogy groups will be with Z2 coefficients and we will suppress it from the cohomology
notation.

5. Proof of the Main Theorem.

This section is divided into three subsections according to the various values
of p. The main theorem follows from a sequence of propositions proved in this
section.

5.1. When p is odd.
Recall that, for p odd, we have L2m−1

p (q) '2 S2m−1. It is well known that
the orbit space of any free involution on a mod 2 cohomology sphere is a mod
2 cohomology real projective space of same dimension (see for example Bredon
[5, p. 144]). For the sake of completeness, we give a quick proof using the Leray
spectral sequence.

Proposition 5.1. Let G = Z2 act freely on a finitistic space X '2 Sn,
where n ≥ 1. Then

H∗(X/G;Z2) ∼= Z2[x]/〈xn+1〉,

where deg(x) = 1.

Proof. Note that Ek,l
2 is non-zero only for l = 0, n. Therefore the differ-

entials dr = 0 for 2 ≤ r ≤ n and for r ≥ n + 2. As there are no fixed points, the
spectral sequence does not degenerate and hence

dn+1 : Ek,n
n+1 → Ek+n+1,0

n+1

is non-zero and it is the only non-zero differential. Thus E∗,∗
∞ = E∗,∗

n+2 and

Hj(XG) = Ej,0
∞ =

{
Z2 if 0 ≤ j ≤ n

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ ⊂ H1(XG) be determined by t⊗1 ∈ E1,0

2 . Since the cup
product
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x ^ (−) : Hj(XG) → Hj+1(XG)

is an isomorphism for 0 ≤ j ≤ n− 1, we have xj 6= 0 for 1 ≤ j ≤ n. Therefore

H∗(XG) ∼= Z2[x]/〈xn+1〉,

where deg(x) = 1. As the action of G is free, H∗(X/G) ∼= H∗(XG). This gives
the case (1) of the main theorem. ¤

5.2. When p is even and 4 - p.
Let p be even, say p = 2p′ for some integer p′ ≥ 1. Since q1, . . . , qm are

coprime to p, all of them are odd. Also all of them are coprime to p′. Note that
L2m−1

p (q) = L2m−1
2p′ (q) = L2m−1

p′ (q)/〈α〉, where α is the involution on L2m−1
p′ (q) as

defined in Section 3. When 4 - p, we have p′ is odd and hence L2m−1
p′ (q) '2 S2m−1.

This gives L2m−1
p (q) '2 RP 2m−1. Therefore it amounts to determining the mod

2 cohomology algebra of orbit spaces of free involutions on odd dimensional mod
2 cohomology real projective spaces.

Proposition 5.2. Let G = Z2 act freely on a finitistic space X '2 RP 2m−1,
where m ≥ 1. Then

H∗(X/G;Z2) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2.

Proof. Clearly the proposition is obvious for m = 1. Assume that m > 1.
Let a ∈ H1(X) be the generator of the cohomology algebra H∗(X). As there
are no fixed points, the spectral sequence does not degenerate at the E2 term.
Therefore d2(1⊗ a) = t2 ⊗ 1. One can see that

d2 : Ek,l
2 → Ek+2,l−1

2

is the trivial homomorphism for l even and an isomorphism for l odd. This gives

Ek,l
3 =

{
Z2 if k = 0, 1 and l = 0, 2, . . . , 2m− 2

0 otherwise.

Note that dr = 0 for all r ≥ 3 and for all k, l as Ek+r,l−r+1
r = 0. Hence

E∗,∗
∞ = E∗,∗

3 and
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Hj(XG) =

{
E0,j
∞ if j even

E1,j−1
∞ if j odd.

Therefore the additive structure of H∗(XG) is given by

Hj(XG) =

{
Z2 if 0 ≤ j ≤ 2m− 1

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ be determined by t ⊗ 1 ∈ E1,0

2 and x2 ∈ E2,0
∞ = 0.

The element 1 ⊗ a2 ∈ E0,2
2 is a permanent cocycle and determines an element

y ∈ E0,2
∞ = H2(XG). Also i∗(y) = a2 and E0,2m

∞ = 0 implies ym = 0. Since the
cup product by x

x ^ (−) : Hj(XG) → Hj+1(XG)

is an isomorphism for 0 ≤ j ≤ 2m − 2, we have xyj 6= 0 for 0 ≤ j ≤ m − 1.
Therefore we have

H∗(XG) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2. As the action of G is free, we have H∗(X/G) ∼=
H∗(XG). This is the case (2) of the main theorem. ¤

Remark 5.3. It is well known that there is no free involution on a finitistic
space X '2 RP 2m. For, by the Floyd’s Euler characteristic formula [4, p. 145]

χ(X) + χ(XG) = 2χ(X/G),

χ(X) must be even, which is a contradiction.

Remark 5.4. The above result follows easily for free involutions on RP 3.
Let there be a free involution on RP 3. This lifts to a free action on S3 by a group
H of order 4 and RP 3/Z2 = S3/H. There are only two groups of order 4, namely,
the cyclic group Z4 and Z2⊕Z2. By Milnor [17], Z2⊕Z2 cannot act freely on S3.
Hence H must be the cyclic group Z4. Now by Rice [20], this action is equivalent
to an orthogonal free action and hence RP 3/Z2 = L3

4(q).

5.3. When 4 | p.
As above L2m−1

p (q) = L2m−1
2p′ (q) = L2m−1

p′ (q)/〈α〉. Since 4 | p, p′ is even, the
cohomology groups Hi(L2m−1

p′ (q)) = Z2 for each 0 ≤ i ≤ 2m− 1 and 0 otherwise.
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The Smith-Gysin sequence of the orbit map η : L2m−1
p′ (q) → L2m−1

2p′ (q), which is a
0-sphere bundle, is given by

0 → H0
(
L2m−1

2p′ (q)
) η∗→ H0

(
L2m−1

p′ (q)
) τ→ H0

(
L2m−1

2p′ (q)
) ^u−→ H1

(
L2m−1

2p′ (q)
) η∗→ · · ·

· · · ^u−→ H2m−1
(
L2m−1

2p′ (q)
) η∗→ H2m−1

(
L2m−1

p′ (q)
) τ→ H2m−1

(
L2m−1

2p′ (q)
) → 0,

where τ is the transfer map. The cup square u2 of the characteristic class u ∈
H1(L2m−1

2p′ (q)) is zero by the exactness of the sequence. This gives the cohomology
algebra

H∗(L2m−1
2p′ (q)

) ∼= ∧[u]⊗ Z2[v]/〈vm〉 ∼= Z2[u, v]/〈u2, vm〉,

where u ∈ H1(L2m−1
2p′ (q)) and v ∈ H2(L2m−1

2p′ (q)).
Two non-trivial examples of this case are S1×CPm−1 and the Dold manifold

P (1,m− 1). We will elaborate these examples in Section 6.
Let u, v be generators of H∗(X) = H∗(L2m−1

2p′ (q)) as above. As the group
G = Z2 acts freely on X with trivial action on H∗(X), the spectral sequence does
not degenerate at the E2 term. If d2 = 0, then d3 6= 0, otherwise, the spectral
sequence degenerate at the E2 term. Thus we have the following proposition.

Proposition 5.5. Let G = Z2 act freely on a finitistic space X '2

L2m−1
p (q), where 4 | p. Let {E∗,∗

r , dr} be the Leray spectral sequence associated

to the fibration X
i

↪→ XG
ρ−→ BG. If u, v are generators of H∗(X) such that

d2 = 0, then

H∗(X/G;Z2) ∼= Z2[x, y, z]/〈x3, y2, zm/2〉,

where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

Proof. As d2 = 0, we have that d3 6= 0, otherwise, the spectral sequence
degenerate at the E2 term. Since d3(1⊗ u) = 0, we must have d3(1⊗ v) = t3 ⊗ 1.
By the multiplicative property of d3, we have

d3(1⊗ vq) =

{
t3 ⊗ vq−1 if 0 < q < m odd

0 if 0 < q < m even.

Similarly
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d3(1⊗ uvq) =

{
t3 ⊗ uvq−1 if 0 < q < m odd

0 if 0 < q < m even.

This shows that

d3 : Ek,l
3 → Ek+3,l−2

3

is an isomorphism for l = 4q +2, 4q +3 and zero for l = 4q, 4q +1. Also note that
vm = 0. If m is odd, then

0 = d3(1⊗ vm) = d3

(
(1⊗ vm−1)(1⊗ v)

)
= t3 ⊗ vm−1,

a contradiction. Hence m must be even, say m = 2n for some n ≥ 1. Therefore

Ek,l
4 =

{
Ek,l

3 if k = 0, 1, 2 and l = 4q, 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

Note that dr = 0 for all r ≥ 4 and for all k, l as Ek+r,l−r+1
r = 0. Therefore

E∗,∗
∞ = E∗,∗

4 and the additive structure of H∗(XG) is given by

Hj(XG) =





Z2 if j = 4q, 4q + 3, where 0 ≤ q ≤ n− 1

Z2 ⊕ Z2 if j = 4q + 1, 4q + 2, where 0 ≤ q ≤ n− 1

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ be determined by t ⊗ 1 ∈ E1,0

2 . As E3,0
∞ = 0, we have

x3 = 0. Note that 1 ⊗ u ∈ E0,1
2 is a permanent cocycle and hence determines an

element, say y ∈ E0,1
∞ . Also i∗(y) = u and E0,2

∞ = 0 implies y2 = 0. Similarly
1 ⊗ v2 is a permanent cocycle and therefore it determines an element, say z ∈
E0,4
∞ = H4(XG). Also i∗(z) = v2 and E0,4n

∞ = 0 implies zm/2 = 0. Since the cup
product by x

x ^ (−) : Hj(XG) → Hj+1(XG)

is an isomorphism for 0 ≤ j ≤ 2m − 2, we have xzr 6= 0 for 0 ≤ r ≤ (m − 1)/2.
Therefore

H∗(XG) ∼= Z2[x, y, z]/〈x3, y2, zm/2〉,
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where deg(x) = 1, deg(y) = 1 and deg(z) = 4. As the action of G is free, we have
H∗(X/G) ∼= H∗(XG). This is the case (3) of the main theorem. ¤

Next, we consider d2 6= 0, for which we have the following possibilities:

(A) d2(1⊗ u) = t2 ⊗ 1 and d2(1⊗ v) = t2 ⊗ u,
(B) d2(1⊗ u) = t2 ⊗ 1 and d2(1⊗ v) = 0 and
(C) d2(1⊗ u) = 0 and d2(1⊗ v) = t2 ⊗ u.

We consider the above possibilities one by one. We first observe that the
possibility (A) does not arise. Suppose that d2(1⊗u) = t2⊗1 and d2(1⊗v) = t2⊗u.
By the multiplicative property of d2, we have

d2(1⊗ vq) =

{
t2 ⊗ uvq−1 if 0 < q < m odd

0 if 0 < q < m even

and d2(1⊗ uvq) = t2 ⊗ vq for 0 < q < m. This shows that

d2 : Ek,l
2 → Ek+2,l−1

2

is an isomorphism if l even and 4 - l or l odd. And d2 is zero if 4 | l. Just as in
the previous proposition, m must be even, say m = 2n for some n ≥ 1. This gives

Ek,l
3 =

{
Ek,l

2 if k = 0, 1 and l = 4q, where 0 ≤ q ≤ n− 1

0 otherwise.

Note that dr = 0 for all r ≥ 3 and for all k, l as Ek+r,l−r+1
r = 0. Therefore

E∗,∗
∞ = E∗,∗

3 and

Hj(XG) =

{
Z2 if l = 4q, 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

In particular, this shows that H2m−1(X/G) ∼= H2m−1(XG) = 0. But the
Smith-Gysin sequence

· · · → H2m−1(X/G)
η∗→ H2m−1(X) τ→ H2m−1(X/G) → 0

implies that H2m−1(X) = 0, which is a contradiction. Hence this possibility does
not arise.
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For the possibility (B), we have the following proposition.

Proposition 5.6. Let G = Z2 act freely on a finitistic space X '2

L2m−1
p (q), where 4 | p. Let {E∗,∗

r , dr} be the Leray spectral sequence associated

to the fibration X
i

↪→ XG
ρ−→ BG. If u, v are generators of H∗(X) such that

d2(1⊗ u) 6= 0 and d2(1⊗ v) = 0, then

H∗(X/G;Z2) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2.

Proof. Let d2(1⊗ u) = t2 ⊗ 1 and d2(1⊗ v) = 0. Consider

d2 : Ek,l
2 → Ek+2,l−1

2 .

If l = 2q, then d2(tk ⊗ vq) = 0 and if l = 2q + 1, then d2(tk ⊗ uvq) = tk+2 ⊗ vq for
0 ≤ q ≤ m− 1. This gives

Ek,l
3 =

{
Ek,l

2 if k = 0, 1 and l = 0, 2, . . . , 2m− 2

0 otherwise.

Note that

dr : Ek,l
r → Ek+r,l−r+1

r

is zero for all r ≥ 3 and for all k, l as Ek+r,l−r+1
r = 0. This gives E∗,∗

∞ = E∗,∗
3 . But

Hj(XG) =

{
E0,j
∞ if j even

E1,j−1
∞ if j odd.

Therefore

Hj(XG) =

{
Z2 if 0 ≤ j ≤ 2m− 1

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ be determined by t ⊗ 1 ∈ E1,0

2 . As E2,0
∞ = 0, we have

x2 = 0. Note that 1 ⊗ v is a permanent cocycle and therefore it determines an
element, say y ∈ E0,2

∞ = H2(XG). Also i∗(y) = v and E0,2m
∞ = 0 implies ym = 0.

Since the cup product by x
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x ^ (−) : Hj(XG) → Hj+1(XG)

is an isomorphism for 0 ≤ j ≤ 2m − 2, we have xyr 6= 0 for 0 ≤ r ≤ m − 1.
Therefore

H∗(XG) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2. As the action of G is free, H∗(X/G) ∼= H∗(XG).
Again we get the case (2) of the main theorem. ¤

Finally, for the possibility (C), we have the following proposition.

Proposition 5.7. Let G = Z2 act freely on a finitistic space X '2

L2m−1
p (q), where 4 | p. Let {E∗,∗

r , dr} be the Leray spectral sequence associated

to the fibration X
i

↪→ XG
ρ−→ BG. If u, v are generators of H∗(X) such that

d2(1 ⊗ u) = 0 and d2(1 ⊗ v) 6= 0, then H∗(X/G;Z2) is isomorphic to one of the
following graded commutative algbras:

( i ) Z2[x, y, z]/〈x4, y2, zm/2, x2y〉,
where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

( ii ) Z2[x, y, w, z]/〈x5, y2, w2, zm/4, x2y, wy〉,
where deg(x) = 1, deg(y) = 1, deg(w) = 3, deg(z) = 8 and 4 | m.

Proof. Let d2(1⊗ u) = 0 and d2(1⊗ v) = t2 ⊗ u. The derivation property
of the differential gives

d2(1⊗ vq) =

{
t2 ⊗ uvq−1 if 0 < q < m odd

0 if 0 < q < m even.

Also d2(1⊗ uvq) = 0 for 0 < q < m. Note that vm = 0. If m is odd, then

0 = d2(1⊗ vm) = d2

(
(1⊗ vm−1)(1⊗ v)

)
= t2 ⊗ uvm−1,

a contradiction. Hence m must be even, say m = 2n for some n ≥ 1. From this
we get

d2 : Ek,l
2 → Ek+2,l−1

2

is an isomorphism if l even and 4 - l, and is zero if l odd or 4 | l. This gives
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(?) Ek,l
3 =





Ek,l
2 if k ≥ 0 arbitrary and l = 4q, 4q + 3, where 0 ≤ q ≤ n− 1

Ek,l
2 if k = 0, 1 and l = 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

We now consider the differentials one by one. First, we consider

d3 : Ek,l
3 → Ek+3,l−2

3 .

Clearly d3 = 0 for all k and for l = 4q, 4q + 3 as Ek+3,l−2
3 = 0 in this case. For

k = 0, 1 and for l = 4(q + 1) + 1 = 4q + 5,

d3 : Ek,4q+5
3 → Ek+3,4q+3

3

is also zero, because if a ∈ Ek,4q+5
3 and d3(a) = [tk+3 ⊗ uv2q+1], then for b =

[t2 ⊗ 1] ∈ E2,0
3 , we have ab ∈ Ek+2,4q+5

3 = 0 and hence

0 = d3(ab) = d3(a)b + ad3(b) = d3(a)b + 0 = [tk+5 ⊗ uv2q+1],

which is a contradiction. Hence d3 = 0 for all k, l.
Next we break the remaining proof in the following two cases:

(a) d4 : E0,3
4 → E4,0

4 is non-zero.
(b) d4 : E0,3

4 → E4,0
4 is zero.

(a) When d4 : E0,3
4 → E4,0

4 is non-zero.
Let d4([1⊗ uv]) = [t4 ⊗ 1]. This gives

d4 : Ek,l
4 → Ek+4,l−3

4

is an isomorphism for all k and for l = 4q + 3, where 0 ≤ q ≤ n − 1 and zero
otherwise. This gives

Ek,l
5 =





Ek,l
4 if k = 0, 1, 2, 3 and l = 4q, where 0 ≤ q ≤ n− 1

Ek,l
4 if k = 0, 1 and l = 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

It is clear that dr = 0 for all r ≥ 5 and for all k, l as Ek+r,l−r+1
r = 0. Hence,

E∗,∗
∞ = E∗,∗

5 and the additive structure of H∗(XG) is given by
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Hj(XG) =





Z2 if j = 4q, 4q + 3, where 0 ≤ q ≤ n− 1

Z2 ⊕ Z2 if j = 4q + 1, 4q + 2, where 0 ≤ q ≤ n− 1

0 otherwise.

We see that 1⊗v2 ∈ E0,4
2 and 1⊗u ∈ E0,1

2 are permanent cocycles. Hence, they
determine elements z ∈ E0,4

∞ ⊆ H4(XG) and y ∈ E0,1
∞ ⊆ H1(XG), respectively.

As H4(XG) = E0,4
∞ = E0,4

2 , we have i∗(z) = v2. Since E0,4n
∞ = 0, we get zn = 0.

Similarly, i∗(y) = u and E0,2
∞ = 0 implies y2 = 0.

Let x = ρ∗(t) ∈ E1,0
∞ ⊆ H1(XG) be determined by t⊗ 1 ∈ E1,0

2 . As E4,0
∞ = 0,

we have x4 = 0. Also, the cup product x2y ∈ E2,1
∞ = 0. Hence,

H∗(XG) ∼= Z2[x, y, z]/〈x4, y2, zm/2, x2y〉,

where deg(x) = 1, deg(y) = 1 and deg(z) = 4. As the action of G is free,
H∗(X/G) ∼= H∗(XG). This gives the case (4) of the main theorem.

(b) When d4 : E0,3
4 → E4,0

4 is zero.
We show that

d4 : Ek,l
4 → Ek+4,l−3

4

is zero for all k, l. Note that Ek+4,l−3
4 = 0 for all k and for l = 4q. Similarly

Ek+4,l−3
4 = 0 for k = 0, 1 and for l = 4q + 1. Now for any k and l = 4q + 3, we

have that

d4 : Ek,4q+3
4 → Ek+4,4q

4

is given by

d4

(
[tk ⊗ uv2q+1]

)
=

(
d4[tk ⊗ uv]

)
[1⊗ v2q] + [tk ⊗ uv]

(
d4[1⊗ v2q]

)
= 0.

This shows that d4 = 0 for all k, l.
Now we have the following two subcases:

(b1) d5 : E0,4
5 → E5,0

5 is non-zero.
(b2) d5 : E0,4

5 → E5,0
5 is zero.

(b1) When d5 : E0,4
5 → E5,0

5 is non-zero.
Let d5([1⊗ v2]) = [t5 ⊗ 1]. Then



Orbit spaces of free involutions on lens spaces 1071

d5([1⊗ v2q]) = q[t5 ⊗ v2(q−1)] =

{
[t5 ⊗ v2(q−1)] if 0 < q < m odd

0 if 0 < q < m even

and

d5([1⊗ uv2q+1]) = q[t5 ⊗ uv2q−1] =

{
[t5 ⊗ uv2q−1] if 0 < q < m odd

0 if 0 < q < m even.

Note that 1 ⊗ uvm+1 = 0 and hence 0 = d5([1 ⊗ uvm+1]) = n[t5 ⊗ uvm−1].
But this is possible only when 2 | n and hence 4 | m.

From above we obtain

Ek,l
6 =





Ek,l
5 if k = 0, 1, 2, 3, 4 and l = 8q, 8q + 3, where 0 ≤ q ≤ (n− 2)/2

Ek,l
5 if k = 0, 1 and l = 8q + 1, 8q + 5, where 0 ≤ q ≤ (n− 2)/2

0 otherwise.

One can see that dr = 0 for all r ≥ 6 and for all k, l as Ek+r,l−r+1
r = 0. Hence,

E∗,∗
∞ = E∗,∗

6 and the additive structure of H∗(XG) is given by

Hj(XG) =





Z2 if j = 8q, 8q + 7, where 0 ≤ q ≤ (n− 2)/2

Z2 ⊕ Z2 if 8q < j < 84q + 7, where 0 ≤ q ≤ (n− 2)/2

0 otherwise.

We see that 1 ⊗ v4 ∈ E0,8
2 , 1 ⊗ uv ∈ E0,3

2 and 1 ⊗ u ∈ E0,1
2 are permanent

cocycles. Hence, they determine elements z ∈ E0,8
∞ ⊆ H8(XG), w ∈ E0,3

∞ ⊆
H3(XG) and y ∈ E0,1

∞ ⊆ H1(XG), respectively. As H8(XG) = E0,8
∞ = E0,8

2 , we
have i∗(z) = v4. Also E0,2m

∞ = 0 implies zm/4 = 0. Similarly, i∗(w) = uv and
E0,6
∞ = 0 implies w2 = 0. Finally, i∗(y) = u and E0,2

∞ = 0 implies y2 = 0.
Let x = ρ∗(t) ∈ E1,0

∞ ⊆ H1(XG) be determined by t⊗ 1 ∈ E1,0
2 . As E5,0

∞ = 0,
we have x5 = 0. Also, the only trivial cup products are x2y ∈ E2,1

∞ = 0 and
wy ∈ E0,4

∞ = 0. Hence,

H∗(XG) ∼= Z2[x, y, w, z]/〈x5, y2, w2, zm/4, x2y, wy〉,

where deg(x) = 1, deg(y) = 1, deg(w) = 3 and deg(z) = 8. As the action of G is
free, H∗(X/G) ∼= H∗(XG). This gives the case (5) of the main theorem.
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(b2) When d5 : E0,4
5 → E5,0

5 is zero.
We show that

d5 : Ek,l
5 → Ek+5,l−4

5

is zero for all k, l. Note that Ek+5,l−4
5 = 0 for k = 0, 1 and for l = 4q + 1. For any

k and for l = 4q, 4q + 3, d5 is zero by the derivation property of d5 and the above
condition (b2). Hence d5 = 0 for all k, l.

We have that d2, d3, d4 and d5 are all zero for the values of k and l given by
equation (?). Note that only 1⊗ u, 1⊗ v2 and 1⊗ uv survive to the E6 term. For
r ≥ 6, a typical non-zero element in Ek,l

r is of the form [tk ⊗ v2q], [tk ⊗ uv2q+1] or
[tk ⊗ uv2q] according as l = 4q, 4q + 3, 4q + 1 for 0 ≤ q ≤ n− 1, respectively. But
all these elements can be written as a product of previous three elements for which
dr = 0 for r ≥ 6. Hence E∗,∗

∞ = E∗,∗
3 . This gives Hj(XG) 6= 0 for j > 2m − 1

(in particular H2m(XG) 6= 0), which is a contradiction by Proposition 4.3. Hence
(b2) does not arise. ¤

With this we have completed the proof of the main theorem.

6. Examples realizing the cohomology algebras.

In this section we provide some examples realizing the possible cohomology
algebras of the main theorem.

• The case (1) of the main theorem can be realized by taking any free involu-
tion on a sphere.

• The Smith-Gysin sequence shows that the example discussed in Section 3
realizes the case (2). For another example, let X = S1 × CPm−1, where
m ≥ 2. The mod 2 cohomology algebra of X is given by

H∗(X) ∼= Z2[u, v]/〈u2, vm〉,

where deg(u) = 1 and deg(v) = 2. Note that X always admits a free
involution as S1 does so. Taking any free involution on S1 and the trivial
action on CPm−1 gives X/G = S1 × CPm−1. Hence

H∗(X/G) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 1. This also realizes the case (2) of the
main theorem.

• We now construct an example for the case (3). Let X be as above. If m is
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even, then CPm−1 always admits a free involution. In fact, if we denote an
element of CPm−1 by [z1, z2, . . . , zm−1, zm], then the map

[z1, z2, . . . , zm−1, zm] 7→ [−z2, z1, . . . ,−zm, zm−1]

defines an involution on CPm−1. Now if

[z1, z2, . . . , zm−1, zm] = [−z2, z1, . . . ,−zm, zm−1],

then there exits a λ ∈ S1 such that

(λz1, λz2, . . . , λzm−1, λzm) = (−z2, z1, . . . ,−zm, zm−1).

This gives z1 = z2 = · · · = zm−1 = zm = 0, a contradiction. Hence the
involution is free. The mod 2 cohomology algebra of orbit spaces of free
involutions on odd dimensional complex projective spaces was determined
by the author in [26, Corollary 4.7]. More precisely, it was proved that: For
any free involution on CPm−1, where m ≥ 2 is even, the mod 2 cohomology
algebra of the orbit space is given by

H∗(CPm−1/G) ∼= Z2[x, z]/〈x3, zm/2〉,

where deg(x) = 1 and deg(z) = 4. Taking the trivial involution on S1 and
a free involution on CPm−1, we have that X/G = S1 × (CPm−1/G). Using
the above result, we have

H∗(X/G) ∼= Z2[x, y, z]/〈x3, y2, zm/2〉,

where deg(x) = 1, deg(y) = 1 and deg(z) = 4. This realizes the case (3) of
the main theorem.

• We do not have examples realizing the cases (4) and (5) of the main theorem.
However, we feel that Dold manifolds may give some examples realizing these
cases. For integers r, s ≥ 0, a Dold manifold P (r, s) is defined as

P (r, s) = Sr × CP s/ ∼,

where ((x1, . . . , xr+1), [z1, . . . , zs+1]) ∼ ((−x1, . . . ,−xr+1), [z1, . . . , zs+1]).
Consider the equivariant projection Sr × CP s → Sr. On passing to or-
bit spaces, the Dold manifold can also be seen as the total space of the fiber
bundle
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CP s ↪→ P (r, s) → RP r.

The mod 2 cohomology algebra of a Dold manifold is well known [8] and is
given by

H∗(P (r, s);Z2) ∼= Z2[x, y]/〈xr+1, ys+1〉,

where deg(x) = 1 and deg(y) = 2. Note that the Dold manifold P (1,m −
1) '2 L2m−1

p (q) for 4 | p and can be considered as the twisted analogue of
X = S1 × CPm−1. For m even, the free involution on CPm−1 induces a
free involution on P (1,m− 1). We feel that some exotic free involutions on
P (1,m− 1) may possibly realize the cases (4) and (5) of the main theorem.

We conclude with the following remarks.

Remark 6.1. For the three dimensional lens space L3
p(q), where p = 4k

for some k, Kim [12, Theorem 3.6] has shown that the orbit space of any sense-
preserving free involution on L3

p(q) is the lens space L3
2p(q

′), where q′q ≡ ±1 or
q′ ≡ ±q mod p. Here an involution is sense-preserving if the induced map on
H1(L3

p(q);Z) is the identity map. This is the case (2) of the main theorem.

Remark 6.2. If T is a free involution on L3
p(q) where p is an odd prime,

then Zp and the lift of T to S3 generate a group H of order 2p acting freely
on S3. The involution T is said to be orthogonal if the action of H on S3 is
orthogonal. Myers [18] showed that every free involution on L3

p(q) is conjugate
to an orthogonal free involution. It is well known that there are only two groups
of order 2p, namely the cyclic group Z2p and the dihedral group D2p. But by
Milnor [17], the dihedral group cannot act freely and orthogonally on S3. Hence
H must be the cyclic group Z2p acting freely and orthogonally on S3. Therefore
the orbit space L3

p(q)/〈T 〉 = S3/H = L3
2p(q). Since p is odd, L3

p(q) '2 S3 and
L3

p(q)/〈T 〉 '2 RP 3, which is the case (1) of the main theorem.

7. An application to Z2-equivariant maps.

Let X be a paracompact Hausdorff space with a fixed free involution and let
Sn be the unit n-sphere equipped with the antipodal involution. Conner and Floyd
[7] asked the following question.

Question: For which integer n, is there a Z2-equivariant map from Sn to X, but
no such map from Sn+1 to X?

In view of the Borsuk-Ulam theorem, the answer to the question for X = Sn
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is n. Motivated by the classical results of Lyusternik- Shnirel’man [15], Borsuk-
Ulam [2], Yang [29], [30], [31] and Bourgin [3], Conner and Floyd defined the
index of the involution on X as

ind(X) = max{n | there exists a Z2-equivariant map Sn → X}.

It is natural to consider the purely cohomological criteria to study the above
question. The best known and most easily managed cohomology classes are the
characteristic classes with coefficients in Z2. Let w ∈ H1(X/G;Z2) be the Stiefel-
Whitney class of the principal G-bundle X → X/G. Generalizing the Yang’s index
[30], Conner and Floyd defined

co-indZ2(X) = largest integer n such that wn 6= 0.

Since co-indZ2(Sn) = n, by [7, (4.5)], we have

ind(X) ≤ co-indZ2(X).

Also, since X is paracompact Hausdorff, we can take a classifying map

c : X/G → BG

for the principal G-bundle X → X/G. If k : X/G → XG is a homotopy equiva-
lence, then ρk : X/G → BG also classifies the principal G-bundle X → X/G and
hence it is homotopic to c. Therefore it suffices to consider the map

ρ∗ : H1(BG;Z2) → H1(XG;Z2).

The image of the Stiefel-Whitney class of the universal principal G-bundle G ↪→
EG −→ BG is the Stiefel-Whitney class of the principal G-bundle X → X/G.

Let X '2 L2m−1
p (q) be a finitistic space with a free involution. The Smith-

Gysin sequence associated to the principal G-bundle X → X/G shows that the
Stiefel-Whitney class is non-zero.

In case (1), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x2m = 0. This
gives co-indZ2(X) = 2m− 1 and hence ind(X) ≤ 2m− 1. Therefore, in this case,
there is no Z2-equivariant map from Sn → X for n ≥ 2m.

Taking X = Sk with the antipodal involution, by Proposition 5.1, we obtain
the classical Borsuk-Ulam theorem, which states that: There is no map from
Sn → Sk equivariant with respect to the antipodal involutions when n ≥ k + 1.

In case (2), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x2 = 0. This
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gives co-indZ2(X) = 1 and ind(X) ≤ 1. Hence, there is no Z2-equivariant map
from Sn → X for n ≥ 2.

In case (3), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x3 = 0. This
gives co-indZ2(X) = 2 and ind(X) ≤ 2. Hence, there is no Z2-equivariant map
from Sn → X for n ≥ 3.

In case (4), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x4 = 0. This
gives co-indZ2(X) = 3 and hence ind(X) ≤ 3. Hence, there is no Z2-equivariant
map from Sn → X for n ≥ 4.

Finally, in case (5) of the main theorem, x ∈ H1(X/G;Z2) is the Stiefel-
Whitney class with x5 = 0. This gives co-indZ2(X) = 4 and hence ind(X) ≤ 4. In
this case also, there is no Z2-equivariant map from Sn → X for n ≥ 5.

Combining the above discussion, we have proved the following Borsuk-Ulam
type result.

Theorem 7.1. Let m ≥ 3 and X '2 L2m−1
p (q) be a finitistic space with a

free involution. Then there does not exist any Z2-equivariant map from Sn → X

for n ≥ 2m.

We end by pointing out another possible application of the main theorem.

Remark 7.2. The Borsuk-Ulam theorem has been extended to the setting
of fiber bundles by many authors. It is known as parametrization of the Borsuk-
Ulam theorem and a general formulation of the problem for free involutions is as
follows.

Problem: Let X ↪→ E → B be a fiber bundle and E′ → B be a vector bundle such
that Z2 acts fiber preservingly and freely on both E and E′ − 0, where 0 stands
for the zero section of the bundle E′ → B. For a fiber preserving Z2-equivariant
map f : E → E′, the parametrized Borsuk-Ulam problem is to estimate the
cohomological dimension of the zero set {x ∈ E | f(x) = 0} of f .

Dold [9] and Nakaoka [19] considered the problem when X is a cohomology
sphere. Using their method, Koikara and Mukerjee [13] proved a similar theo-
rem for X a product of spheres. Recently, the author [27] proved a parametrized
Borsuk-Ulam theorem when X is a cohomology projective space. The main ingre-
dient in these results is the knowledge of the cohomology algebra of X/Z2. We
expect that the results in this paper could be used for obtaining a parametrized
Borsuk-Ulam type theorem for lens space bundles.

Acknowledgements. The author would like to thank Professor Pedro
Luiz Queiroz Pergher for encouraging to publish results of this paper. The author
would also like to thank the referee for valuable comments which improved the



Orbit spaces of free involutions on lens spaces 1077

paper. Finally, the author would like to thank the Department of Science and
Technology of India for support via the INSPIRE Scheme IFA-11MA-01/2011 and
the SERC Fast Track Scheme SR/FTP/MS-027/2010.

References

[ 1 ] R. Ashraf, Singular cohomology rings of some orbit spaces defined by free involution on

CP(2m + 1), J. Algebra, 324 (2010), 1212–1218.

[ 2 ] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math., 20
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