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Umbilics of surfaces in the Minkowski 3-space
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Abstract. We prove that any closed and convex surface in the
Minkowski 3-space of class C3 has at least two umbilic points. This shows
that the Carathéodory conjecture for surfaces in the Euclidean 3-space is true
for surfaces in the Minkowski 3-space.

1. Introduction.

The Carathéodory conjecture states that any smooth closed and convex sur-
face in the Euclidean 3-space has at least two umbilic points. Various attempts
were made to prove this conjecture (see for example [4] for a survey article and [3]
for the latest results on the problem using the mean curvature flow on the space
of oriented lines in R3).

We prove in this paper that any closed and convex surface in the Minkowski
3-space of class C3 has at least two umbilic points (Theorem 3.3). For ovaloids,
we can even specify the nature of the umbilic points (Theorem 3.4). We give some
preliminaries in Section 2 and prove the main results in Section 3.

2. Preliminaries.

The Minkowski space (R3
1, 〈, 〉) is the vector space R3 endowed with the pseudo-

scalar product 〈u,v〉 = −u0v0 + u1v1 + u2v2, for any u = (u0, u1, u2) and v =
(v0, v1, v2) in R3

1. We say that a non-zero vector u ∈ R3
1 is spacelike if 〈u,u〉 > 0,

lightlike if 〈u,u〉 = 0 and timelike if 〈u,u〉 < 0. The norm of a vector u ∈ R3
1 is

defined by ‖u‖ =
√
|〈u,u〉|. The set of all lightlike vectors form the lightcone

LC∗ = {u ∈ R3
1 \ {0} | 〈u,u〉 = 0}.

The lightcone can be considered as the cone in R3 minus the origin given by

{(u0, u1, u2) ∈ R3 \ {(0, 0, 0)} | −u2
0 + u2

1 + u2
2 = 0}.
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A plane P v
c = {u ∈ R3

1 | 〈u,v〉 = c}, for some constant c ∈ R, is called
respectively, spacelike, timelike or lightlike if v is timelike, spacelike or lightlike.
Fixing v and varying c gives a family of parallel planes with P v

0 passing through
the origin (i.e., is a vector space). The vector v is called the “normal” vector to
P v

c . Every non-zero vector in a spacelike plane P v
0 is spacelike. There are two

linearly independent lightlike vectors in a timelike plane P v
0 and a unique lightlike

vector in a lightlike plane P v
0 . The normal vector v is transverse to P v

c if this
plane is spacelike or timelike but determines the unique lightlike direction in P v

0

if the plane P v
c is lightlike.

Let S be a surface in R3
1 (of class C3). The pseudo-scalar product in R3

1

induces a metric on S. If S is closed, then this metric must be degenerate at some
point on S (see for example Lemma 3.1). This happens at points p on S where
the tangent space TpS is a lightlike plane. We call the locus of points where the
induced metric on S is degenerate the Locus of Degeneracy and denote it by LD.

Let x : U ⊂ R2 → S be a local parametrisation of S and let

E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉

denote the coefficients of the first fundamental form of S with respect to x. We
identify the LD and its pre-image in U by x. Then the LD (in U) is the zero
set of the C2-function δ(u, v) = (F 2 − EG)(u, v). Therefore, the LD is a closed
subset of S. We observe that the LD of a generic closed surface is a smooth curve,
but we do not make the genericity assumption here. We can have, for instance, a
convex surface with an LD that has interior points.

Pei [6] defined an RP 2-valued Gauss map on S. In x(U), this is simply the
map PN : x(U) → RP 2 which associates to a point p = x(q) the projectivisation
of the vector (xu×xv)(q), where “×” denotes the wedge product in R3

1. Away from
the LD, the RP 2-valued Gauss map can be identified with the de Sitter Gauss
map x(U1) → S2

1 on the Lorentzian part of the surface and with the hyperbolic
Gauss map x(U2) → H2(−1) on its Riemannian part. (Here U1 and U2 are open
sets with U = U1 ∪ U2 ∪ LD.) Both maps are given by N = xu × xv/||xu × xv||.
The shape operator Ap(v) = −dNp(v) is a self-adjoint operator on x(U) \ LD.
We denote by

l = −〈Nu,xu〉 = 〈N ,xuu〉,
m = −〈Nu,xv〉 = 〈N ,xuv〉,
n = −〈Nv,xv〉 = 〈N ,xvv〉

the coefficients of the second fundamental form on x(U) \ LD. When Ap has real



Umbilics of surfaces in the Minkowski 3-space 725

eigenvalues, we call them the principal curvatures and their associated eigenvectors
the principal directions of S at p. We observe that there are always two principal
curvatures at points in the Riemannian part of S but this is not true at points in
its Lorentzian part ([5]). The lines of principal curvature, which are the integral
curves of the principal directions, are solutions of the binary quadratic differential
equation (BDE for short)

(Gm− Fn)dv2 + (Gl − En)dvdu + (Fl − Em)du2 = 0. (1)

The discriminant of the above equation, which is the set points in U\LD where
it determines a unique direction, is denoted the Lightlike Principal Locus (LPL)
in [5]. It is the zero set of the function ((Gl−En)2−4(Gm−Fn)(Fl−Em))(u, v).

A spacelike umbilic point (resp. timelike umbilic point) is a point in the Rie-
mannian part (resp. Lorentzian part) of the surface where the coefficients of equa-
tion (1) vanish simultaneously. (The coefficients of a BDE are its coefficients when
viewed as a quadratic form in du and dv.) Spacelike and timelike umbilic points
can also be characterised as the points p where the shape operator Ap is a multiple
of the identity map.

One can extend the lines of principal curvature across the LD as follows ([5]).
As equation (1) is homogeneous in l, m, n, we can multiply these coefficients by
‖xu × xv‖ and substitute them by

l̄ = 〈xu × xv,xuu〉, m̄ = 〈xu × xv,xuv〉, n̄ = 〈xu × xv,xvv〉.

This substitution does not alter the pair of foliations on x(U) \ LD. The new
equation is defined on the LD and defines the same pair of foliations associated to
the de Sitter (resp. hyperbolic) Gauss map on the Lorentzian (resp. Riemannian)
part of x(U). The extended lines of principal curvature are the solution curves of
the BDE

(Gm̄− Fn̄)dv2 + (Gl̄ − En̄)dudv + (F l̄ − Em̄)du2 = 0. (2)

We still call the directions determined by equation (2) at points on the LD prin-
cipal directions. We do not have a shape operator at points on the LD. For
this reason, we define a lightlike umbilic point as a point on the LD where the
coefficients of equation (2) vanish simultaneously.

We say that a point on S is an umbilic point if it is either a spacelike, timelike
or lightlike umbilic point. Thus, a point p = x(q) is an umbilic point if and only
if all the coefficients of equation (2) vanish at q.
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Remark 2.1. The lines of principal curvatures on a generic surface in R3
1

are studied in [5]. On the Riemannian part of a generic surface, the LPL, when
not empty, consists of isolated points which are spacelike umbilic points. Away
from these points, there are always two orthogonal spacelike principal directions.
On the Lorentzian part of a generic surface, the LPL, when not empty, is a smooth
curve except at isolated points where it has Morse singularities of node type. The
singular points of the LPL are precisely the timelike umbilic points. The regular
points of the LPL consist of points where the principal directions coincide and
become lightlike. There are two principal directions on one side of the LPL and
none on the other. When there are two of them, they are orthogonal and one is
spacelike while the other is timelike.

Equation (2) determines two directions in TpS at most points p on the LD.
One of these directions is the unique lightlike direction in TpS and the other is a
spacelike. The two directions coincide and become the unique lightlike direction
in TpS at isolated points p on the LD. Generic surfaces do not have lightlike
umbilic points. The generic local topological configurations of the lines of principal
curvature at points on the LPL and on the LD are given in [5].

We consider here closed and convex surfaces in R3
1. Convexity is an affine

property so is independent of the metric (Euclidean or Lorentzian) in R3.
We also consider some special convex surfaces. An ovaloid in the Euclidean

space R3 is defined as a surface with everywhere strictly positive Gaussian cur-
vature K. We do not have the concept of Gaussian curvature of a surface in the
Minkowski space R3

1 at point on the LD. (In fact, for generic surfaces, the Gaus-
sian curvature tends to infinity as a point on the LD is approached from either the
Riemannian or the Lorentzian part of the surface; see [7].) However we can still
define the concept of ovaloids using the contact of the surface with planes (which
is an affine property of the surface).

Let P v
c = {p ∈ R3 | 〈p, v〉 = c} be a plane in R3

1. The contact of a surface S

with P v
c is measured by the singularities of the height function h : S → R, given

by

h(p) = 〈p, v〉.

We say that the contact is of type A+
1 at p ∈ S if p ∈ P v

c and the height
function h has a Morse singularity of index 0 or 2 at p, i.e., h can be written in
some local coordinate system at p in S in the form ±(u2 + v2). For this, it is
necessary and sufficient for the Taylor polynomial of degree 2 of h at p to be a
strictly positive or a strictly negative quadratic form.

We say that a closed and convex surface S is an ovaloid if it has an A+
1 -contact

with its tangent plane TpS at all p ∈ S. An example of an ovaloid in the Minkowski
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space R3
1 is (the “Euclidean sphere”)

S2 =
{
(u0, u1, u2) ∈ R3

1 | u2
0 + u2

1 + u2
2 = 1

}
.

The surface S2 ⊂ R3
1 has two umbilic points ([5, Section 4.4]), so is not a

totally umbilic surface. (See [2] for the study of geodesics on an ellipsoid in R3
1.)

A surface S is locally convex at p ∈ S if there exists a neighbourhood V of p

in S such that V is contained in one of the closed half-spaces determined by the
tangent plane TpS. A convex surface is of course locally convex. Given a local
parametrisation x : U → S of the surface S and q0 = (u0, v0) ∈ U , the height
function h along the “normal vector” v = (xu × xv)(q0) at q0 can be considered
locally as a map U → R, given by h(u, v) = 〈x(u, v),v〉. The Taylor polynomial
of degree 2 of h at q0 = (u0, v0) ∈ U is given by

1
2
(
huu(q0)(u− u0)2 + 2huv(q0)(u− u0)(v − v0) + hvv(q0)(v − v0)2

)

and a necessary condition for S to be locally convex at p0 = x(q0) is that

(h2
uv − huuhvv)(q0) ≤ 0.

The above condition is true at any point on S including points on the LD.

3. The main results.

The proof of the main result relies on the structure of the LD and on the
directions determined by equation (2) on this set.

Lemma 3.1. The LD of a closed surface S in R3
1 of class C1 is the union

of at least two disjoint non-empty closed subsets of S.

Proof. The LD is the set of points on S where the tangent plane to S

is lightlike. Lightlike planes are those tangent to the lightcone LC∗ and a key
observation is that these planes can be captured by changing the metric on R3.

We change the metric in R3 and consider S ⊂ R3
1 as a surface S̃ in the

Euclidean space R3. Since S̃ is closed, the image of its Gauss map N : S̃ → S2 is
the whole sphere S2.

The unit Euclidean normals to the tangent planes to LC∗ (viewed as a cone
in R3, see Section 1) trace the two circles u0 = ±1/

√
2 on S2. The LD of S is

precisely the pre-image of the two circles u0 = ±1/
√

2 by the Gauss map N on
S̃. Therefore, the LD consists of at least two disjoint non-empty closed subsets of
S. ¤
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Lemma 3.2. Let S be a closed and convex surface in R3
1 of class C3and

x : U → S a local parametrisation of S.

(1) The singular points of δ = F 2 − EG on the LD are lightlike umbilic points.
(2) The unique lightlike principal direction in TpS at the regular points of δ on

the LD is transverse to the LD.

Proof. If E(q) = 0 or G(q) = 0 at q ∈ U with x(q) ∈ LD, then F (q) = 0.
Therefore, we cannot have E(q) = G(q) = 0 at points on the LD. We assume,
without loss of generality, that G 6= 0 on U .

The lightlike directions at points in x(U) are solutions of the equation

Gdv2 + 2Fdudv + Edu2 = 0,

and the unique lightlike direction on the LD is parallel to Gxu − Fxv. This is
a smooth vector field on x(U), so we can re-parametrise x(U) so that one of the
coordinate curves are the integral curves of this vector field. That is, we can choose
a local parametrisation of S, that we still denote by x, so that the unique lightlike
direction on the LD is along xu. With this parametrisation, that we use in the
rest of the proof, E = F = 0 on the LD.

(1) The function δ is singular on the LD if and only if (−EuG,−EvG) = (0, 0).
The coefficients of equation (2) become (Gm̄,Gl̄, 0) on the LD, and on this set we
also have xu × xv = λxu for some non-zero function λ. Therefore,

l̄ = 〈xu × xv,xuu〉 = λ〈xu,xuu〉 =
1
2
λEu,

and similarly,

m̄ = 〈xu × xv,xuv〉 = λ〈xu,xuv〉 =
1
2
λEv.

Thus, the coefficients of equation (2) at points on the LD are
(λEvG,λEuG, 0), and this is (0, 0, 0) at a point q ∈ LD if and only if the δ is
singular at q.

(2) Suppose now that δ is regular on the LD (so the LD is a regular curve).
Then we have either Eu 6= 0 or Ev 6= 0 on this curve. We consider the contact
of S with its tangent plane Tp0S at p0 = x(q0) ∈ LD. The Taylor polynomial
of degree 2 of the height function h(u, v) = 〈x(u, v),xu(q0)〉 along the lightlike
“normal vector” xu(q0) at q0 is given by
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1
2
(
huu(q0)(u− u0)2 + 2huv(q0)(u− u0)(v − v0) + hvv(q0)(v − v0)2

)
,

with

huu(q0) = 〈xuu(q0),xu(q0)〉 =
1
2
Eu(q0),

huv(q0) = 〈xuv(q0),xu(q0)〉 =
1
2
Ev(q0),

hvv(q0) = 〈xvv(q0),xu(q0)〉 =
(

Fv − 1
2
Gu

)
(q0).

The lightlike direction xu(q0) is tangent to the LD at p0 = x(q0) if and
only if Eu(q0) = 0. But as S is convex, (h2

uv − huuhvv)(q0) = (E2
v − 2(Fv −

(Gu/2))Eu)(q0)/4 ≤ 0, so Eu(q0) = 0 implies Ev(q0) = 0, and consequently the
LD is singular. Therefore, Eu 6= 0 at regular points of δ on the LD, that is, the
lightlike principal direction is transverse to the LD at the regular points of δ on
this set. ¤

Theorem 3.3. Let S be a closed and convex surface of class C3 in R3
1. Then

S has at least two umbilic points.

Proof. Consider the C3-function f : S → R given by f(p) = p0 for any
p = (p0, p1, p2) ∈ S. It has a global minimum pmin and a global maximum pmax

(these points need not be unique). The tangent planes to S at pmin and pmax

are spacelike (both are given by u0 = 0). Therefore, pmin and pmax belong to
the Riemannian part of S. Suppose that they belong to the same Riemannian
connected component R of S. Let γ : [0, 1] → R be a continuous path in R with
γ(0) = pmin and γ(1) = pmax, and consider the Gauss map N : S̃ → S2 as in the
proof of Lemma 3.1. The continuous curve N ◦ γ satisfies N ◦ γ(0) = (−1, 0, 0)
and N ◦ γ(1) = (1, 0, 0), so there exists t0 ∈ (0, 1) such that N ◦ γ(t0) belongs the
equator u0 = 0 on S2. Therefore, the tangent space to S at γ(t0) is a timelike
plane, which is a contradiction as R is supposed to be Riemannian.

Let R1 (resp. R2) denotes the Riemannian connected component of S which
contains pmin (resp. pmax) and let L1 (resp. L2) be its boundary. The sets L1 and
L2 are part of the LD. It follows from the proof of Lemma 3.1 that L1 and L2 are
disjoint sets (L1 is part of the pre-image of the circle u0 = −1/

√
2 by the Gauss

map N , and L2 is part of the pre-image of the circle u0 = 1/
√

2 by N).
We consider local parametrisations of S at points on L1 and L2. If δ =

F 2 − EG is singular on L1 and L2, then the singular points are lightlike umbilic
points (Lemma 3.2(1)). As L1 and L2 are disjoint, we get at least two umbilic
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points on S.
Suppose that δ is regular on L1 (so L1 is a regular curve; it is also a closed

curve). The surface S being closed and convex is homeomorphic to a 2-sphere.
Thus R1 is homeomorphic to a disc. Consider the direction field in R1 given by
equation (2) and which agrees with the unique lightlike direction in TpS for all
p ∈ L1. This direction field is transverse to L1 (Lemma 3.2(2)), so by Poincaré-
Hopf theorem it must have at least one singularity in R1. This singularity is a
spacelike umbilic point as R1 is a Riemannian region. We proceed similarly if δ is
regular on L2 to get a second umbilic point of S. If δ is singular at a point on L2,
the singularity is a lightlike umbilic point and gives a second umbilic point of S.

¤

We showed in [5, Section 4.4] that (the Euclidean sphere) S2 has exactly two
umbilic points and both of them are spacelike. We have the following general
result.

Theorem 3.4. The umbilic points of an ovaloid in R3
1 of class C3 are all

spacelike and there are at least two of them.

Proof. We change the metric in R3 and consider an ovaloid S ⊂ R3
1 as

a surface S̃ in the Euclidean space R3. The fact that the contact of S with
its tangent plane (which is independent of the metric) is A+

1 implies that the
Gaussian curvature of S̃ is strictly positive. By Hadamard’s theorem, the Gauss
map N : S̃ → S2 is a diffeomorphism ([1]). This implies that the LD of S is the
union of two regular (non-empty) disjoint closed curves. These split the surface
into three parts, two of them are Riemannian and one is Lorentzian. By Lemma
3.2(2), the unique lightlike principal direction on the LD is transverse to the LD.
By Poincaré-Hopf theorem, there is at least one spacelike umbilic point in each
Riemannian disc of S.

We now show that there are no timelike umbilic points on S. The timelike
umbilic points occur in the Lorentzian part of the surface, so we can take a local
parametrisation x : U ⊂ R2 → R3

1 where the coordinate curves are lightlike
(Theorem 3.1 in [5]). Then E = G = 0 in U . The equation of the lines of principal
curvature simplifies to ndv2 − ldu2 = 0, so the timelike umbilic points are the
solutions of l = n = 0.

Let q0 = (u0, v0) ∈ U and consider the height function h on x(U) along the
unit normal vector N(q0) = (xu × xv/||xu × xv||)(q0). The Taylor polynomial of
h(u, v) = 〈x(u, v),N(q0)〉 at q0 is given by

1
2
(
l(q0)(u− u0)2 + 2m(q0)(u− u0)(v − v0) + n(q0)(v − v0)2

)
,
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where l, m, n are the coefficients of the second fundamental form. As S is an
ovaloid, (m2 − nl)(q) < 0 for any q ∈ U and consequently l(q)n(q) 6= 0 at any
q ∈ U . This proves that there are no timelike umbilic points on S. ¤
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