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The Stokes flow around a rotating body in the whole space
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Abstract. We analyze in weighted L?-spaces the linearized system of
partial differential equations arising from the motion of a rotating obstacle in a
fluid. We prove some existence, uniqueness and regularity results of decaying
or growing weak solutions. Two auxiliary equations are also considered and
treated.

1. Introduction.

The motion of a rotating rigid body in a viscous incompressible fluid occupying
an unbounded domain 2 C R™, n = 3 or 2, can be modelled by the modified
Navier-Stokes equations

%—?—VAu—i—u.Vu—(wXa:).Vu+wxu+Vp:f in Q x (0,400), (L.1)

divu =0,

completed with initial and boundary conditions when € # R™, and with the
asymptotic condition

|u| — 0 when |z] — +o0. (1.2)

Here uw and p denote the unknown velocity and the pressure, f is the prescribed
external force and w = |w[(0,0,1)T # 0 is the angular velocity. System (1.1)
is obtained by rewriting usual Navier-Stokes equations in a rotating coordinate
system attached to the rigid body. Neglecting the nonlinear terms and considering
only the stationary problem yield the modified Stokes system

—VvAu — (wx z)Vut+wxu+Vp=f inQ,

(1.3)
divu =0 1in Q.

In the two dimensional case (n = 2), the product w x a, a = (a1,as) € R?, must
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be understood in the following sense
T
w X a=|w|(—az,a1)".

We henceforth suppose without loss that v = 1. We deal with the following system
inR*", n=2or3

—Au— (wxz)Vutwxu+Vp=jf inR"
1.4
divu =g in R". (L4)

From a mathematical viewpoint, analyzing equations (1.4) is an important step in
studying the system (1.1) which attracted the attention of several authors in the
two last decades; see for example [17], [18], [19], [10], [8], [21], [7], [9], [11] and
references therein.

In [8], authors considered equations (1.4) when f belongs to L(R™)™ and Vg,
(wxx)g € LYR™™, 1 < ¢ < 400. They prove the existence of a weak solution
(u,p) € L}, (R™)™ x Li, (R™) satisfying the estimate

loc loc

IV2ull Lo gnyns + 11Vl Lagnyn S I FllLaqnyn +11Vg + (@ X @)gllLagenyn,  (1.5)

where here and henceforth the notation A < B means that there exists a constant
¢ independent of the involved functions such that A < ¢B.
In [20], Hishida proved the existence, uniqueness and L7 estimates

[Vl La@nyn + [Pl La@n)
S la-ra@ny + 19llLa@gnyn + [[(w X @) gl -0 rny, (1.6)

where H~14(R™) denotes the dual of the homgeneous space H4 (R™) (the com-
pletion of 6 (R") with repsect to the norm ||.|[a(gn)). This result is generalized
in Farwig and Hishida [7] where existence is proved in Lorentz spaces.

In Farwig et al. [9], estimate (1.5) when g = 0 was extended to weighted L¢
spaces. More precisely, given a weight function w belonging to a special class, and
assuming that

/ w(zx)| flidz < +oo,
RTL

the authors proved the existence of a solution (u,p) € Li, (R™)" x L}

loc loc (Rn) of
(1.4) satisfying
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i, j<n

0*u

8zi6‘zj

q
da:+/ w(ac)\Vp\quS/ w(z)|fledz.
R R™

In particular, this estimate holds when w is of the form w(x) = (x)* with

11 11 11
—min | —, = <2 < min —, =) =1—max|(=,- . (1.7)
q 2 ng q’ 2 2'q

Notice that here and henceforth (x) stands for the basic weight

n 1/2
() = (14 /)% and |z| = (Zx?) : (1.8)

i=1

Unfortunately, this last result does not give any information on the behavior of u
and its lower derivatives when |x| goes to infinity.

We finally mention the work of Galdi [10] in which the existence, uniqueness
of a solution (u,p) satisfying the estimate

(@) [u(@)] + (2)*([Vu(@)] + [p(@)]) + (2)°|Vp(x)| < C, ace.

was proved (here C' denotes a constant).

In the present paper we propose a different approach for treating system (1.4).
This approach, based on the use of a suitable family of weighted spaces, allows to
extend some of the above results to a larger class of asymptotic behaviors. That
is, we look for weak solutions satisfying conditions of the form

(@) 2w e LIRY)",  (2)*'Vu e LIR")™,
(@)"V?u e LR, (z)*1pe LIR),
for several values of k € Z. We deal by the way with the first equation of (1.4),
forgetting the pressure and the condition divw = 0, that is

—Av—(wxz)Vo+wxv=Ff in R" (1.9)
and with the scalar equation

Ap+ (wxx).Vp=h in R". (1.10)
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Equations (1.9) and (1.10) are in fact intimately linked; roughly speaking, one can
observe that if v is solution of (1.9), then divwv and v.w, when n = 3, are solutions
of (1.9) with h = —div f and h = — f.w respectively. Conversely, if ¢ is solution
of (1.10), then V¢ is solution of (1.9) with f = —Vh.

An auxiliary objective is to give a complete characterization of the null spaces
associated to the systems (1.4) and (1.9) and to the scalar equation (1.10). The
nonlinear case will be treated in a forthcoming paper.

It is worth noting that the case of the usual Stokes equation (when w = 0),
was treated with success using the same functional framework; see, e.g., [13],
[14], [12], [1], [3], [5] and [6]. However, when w # 0 the problem contains some
additional technical difficulties, since the term —(w x ) Vu+w x u has unbounded
and non decreasing coefficients.

The outline of this paper is as follows. In the next section we display formal
properties of the scalar and vectorial operators involved in the above systems. A
short review of the weighted Sobolev spaces we use here is given. In Section 3, we
state the main results. Sections 4 is devoted to proofs.

2. Preliminaries.

Throughout all the paper n belongs to {2,3}.

2.1. Some operators and their formal properties.

Let us examine here the operators involved in equations (1.4) and some of
their formal properties. In what follows, Dy and L stand for the scalar differential
operators defined formally by

D9¢ = ((:\) X :B)V(ZS, Li =A+ |w|D9,

where ¢ is an arbitrary scalar function and @ = w/|w|. In terms of cylindrical
coordinates (r,0,23) when n = 3 or polar coordinates (r,8) when n = 2, Dy¢ is
nothing but the angular derivative of ¢, say Dy = Oyo.

Consider also the vectorial operators Z, £y defined formally by

Fv=-0xv+(@xz)Vv, Li=A+|wZ,
where v is an arbitrary vector field. We can write when n =3

cosf —sinf 0
Zv = 0(0)Dg(O(0)'v) with O(f) = | sinf cosf 0 |. (2.1)
0 0 1
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Here follows some formal observations concerning the operator Z:

(a) Firstly, when n = 3, the identity
curl[(@ x &) X v] = —=(@ x ).V + © x v + (dive)(© x x)
gives a new expression of Z
Zv = curljv x (@0 x )] + (dive)(@ x x).
When n = 2, one obtains the similar formula
Zv = curl(z.v) + (dive)(® x x).

Consequently,

div (Zv) = Dy(divv), (%#v).o = Dy(v.@). (2.2)
If ¢ is a scalar function, then

NG =V [Dyg|, Z(¢pv) = ¢Zv + (Dpo)v. (2.3)

The formal identities (2.2) and (2.3) illustrate the particular link between
operators Z and Dy. Similarly, we have

div (Zyv) = Lidive, V(Li¢)=21Ve, Li(¢w)=(Lid)w. (2.4)

Thus, if v is solenoidal, then so are Zv and Z, v.
(b) Dy and # commute with the Laplacian and with Fourier transform %

[A,Dg]l =0, [F,Dg]=0, [AZ]=0, [F,%]=0.
(¢) # commutes with the curl, namely
[curl, Z] = 0. (2.5)

Notice by the way that Z is a surfacic operator which involves only tangential
derivative on the unit sphere. Moreover, one can prove that

LI = ZI = imI), LT = BT = imTy", LN = ZN]" = imN}",
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where (I7") >0, im|<t+1, (T}")e>1,m|<e and (INJ™) g>1,m|<¢—1 are vectorial spherical
harmonics (see, e.g., [22]).

We now introduce some polynomial spaces which will be useful in studying
the kernels of the operators £+ and L. For a given integer ¢, we denote by D,
(resp. D2) the subspace of P, composed of those polynomials (resp. harmonic
polynomials) whose angular derivative with respect to € vanishes. Namely,

Dy ={$p € Py | Dgp =0}, D ={¢ € PP | Dy =0} ={¢ € D | Ap = 0}.

In terms of cylindrical (or polar) coordinates (r, 6, x3), Dy is composed of polyno-
mials ¢ of P, which do not depend on #. When n = 3, a function ¢ belongs to Dy
if and only if ¢ € Py and ¢(z1, 22, 23) = p(a? + 23, x3) for some convenient poly-
nomial ¢ of two variables. When n = 2, the elements of D, are radial polynomials,
and ]D)eA is reduced to constant functions.

A closer investigation of the kernel of the operators Zy and L. reveals the
utility of the following operator II defined on the polynomial ring: given a poly-
nomial P, set

1 2m
OP(xq,22,23) = o / P(N/xf + a3 cos O, \/x? + 3 sin97x3>d9. (2.6)
0

(the variable x3 is dropped when n = 2).

In Lemma 4.2 hereafter, we prove that ITP is also a polynomial function. Since
ITP does not depend on 6, one has obviously DyIl = 0, IIDg = 0. A remarkable
property of the operator II is the commutation identity

[A,T1] = 0.

In other words, II can be considered as a linear map from Py (resp. IP’kA), keZ,
into itself, or from Py, into Dy, (resp. into D).

2.2. Weighted spaces.

Here, we introduce the spaces we need for treating equations (1.4), (1.9) and
(1.10). In the sequel ¢ stands for a real verifying 1 < ¢ < +00. We denote by ¢’
its conjugate defined by (1/q) + (1/¢’) = 1. Given an integer k € Z, P, (resp. P£)
stands for the space of polynomials (resp. harmonic polynomials) of degree less
or equal to k. We denote by Hj, the space of homogenous polynomials of degree
equal to k.

Given two integers m > 0 and k € Z, define
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W YR™) = {u e Z'(R") | Vu e N, |u| <m, (x)lHI=mFTkDry € LIR™)}.

This space is equipped with the norm |lullymagn) = (3|, 1< || ()l =m+k

-DH uHLq(Rn )1/4. This definition can be extended to negative values of m; for

m < 0, W;"%(R") stands for the dual space of W_;" o (R™). The following alge-
braic and topological inclusions hold true

CCWMURY) € WPTRYRY) - C W (R C W (R ©
Notice that elements of W,""4(R™), m, k € Z, are tempered distributions.

Spaces W;™" provide a valuable framework for describing the growth or the
decay of functions at large distances. Giving a detailed account of their properties
is beyond the scope of this paper. However, let us underline that they were em-
ployed in a host of papers for solving numerous problems in unbounded domains,
especially in hydrodynamics. See, e.g., [16], [15], [2], [3], [4] and references therein.

We shall often use the following property: for all j € Z and P € P;\P;_,

PeW™(R") < j<(m—k), (2.7)

where for each integer «, (o) = o — d with

[

In other words, (m — k) is the highest degree of the polynomials contained in
Wm4(R™). By the way, we set here and subsequently (a)* = o — d*, with

. n
d = [q,} +1. (2.9)
Notice that 1 < d < n and 1 < d* < n. Observe also that there is no reason to
mix up the notations (a) and («)*, in which « is real, with the basic weight (x).
Finally, for all integers m € Z, we consider the space
Vm7q R” {'u c qu(Rn)n |<%~>,U c Wm Q’q(R")"}

equipped with the norm

1/q
— q
[ollvzmaany = {101 + 1200 o b
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When m > 0 and k € Z, define (V,""?(R™))* as the dual space of V,""?(R™). We
have the imbeddings V" (R™)—W ™7 (R™)—s (V™4 (R™))*.

3. The main results.

We expose in this section the main results of the paper. The first result
(Theorem 3.1) gives a characterization of solutions to equations (1.9), (1.4) or
(1.9), when the data is zero. The second and the third results (Theorems 3.3 and
3.5) concern the existence and uniqueness of solutions of the pressureless equation
(1.9) and those of the original system (1.4). Corollary 3.4 is devoted to the scalar
equation (1.9). The proofs of these results are given in Section 4.

Define the null spaces

M} (Zs) = {v e WL (R")" | Lrv =0},

Ng(g ) = {(v,0) € WS (R x W VIR | —ZLv + VO =0, dive =0},

Ki(L+) = {¢p € W2 (R") | L+¢ = 0}.
In [8], in proof of Theorem 1.1, the authors proved that a tempered distribution
v satisfying .Z;v = 0 is necessarily polynomial. The same conclusion holds for
a pair (v,0) of tempered distributions satisfying — %, v + V6 = 0 and dive =
0. Since elements of W, "?(R") are tempered distributions for m, k € Z, the
spaces M} (Zy), N{(Z+) and K{ (L) are composed of polynomial functions. With
property (2.7) we easily get

M (Diﬂi) = {’U S (]P)g)n ‘ .ﬁ,ﬂi’v = 0}
NI(Zy) ={(v,0) € (P)" xPyq | —Z1rv+ VO =0, dive = 0},
Ki(Ls) ={p € Py | Lrp=0}.

It follows that these spaces are finite dimensional and independent of the parameter
m. This parameter m is dropped in the notations M (Z4), N} (%) and K} (Z4).

The following result gives a complete characterization of the space M} (%),
N}(Zy) and K} (L4.).

THEOREM 3.1. Let k € Z be an integer and set £ = (—k). Then,

e Ki(L_)=KI(Ly) =D and MJ(£)) = M(£L.).
o When n = 3, M}(Zy) is composed of the polynomial vector functions of the
form
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p=Va+wxVE+yo, (3.1)

with «, 8 € ]D)ZA+1 and v € D2 Similarly, N} (L) is composed of the pairs of
the form

v=VA+® x V34 29& — V[(@.x)7],

. (3.2)
T = —2w.Vy =+ |w|DgA.

with \ € ID)ZAJr1 + ]P’?fl, a, B € ]DEA+1 and v € ]DEA.
o Whenn =2, Mi(%Z}) = {0} while N} (L) is composed of the pairs of the form

v=V\ 7=+|wDyA, (3.3)

where \ € IP’ZA_l.
REMARK 3.2.  When n =2, D C Py for all k € Z.

THEOREM 3.3.  Let k be an integer such that k € {—1,0,1,2,3} ifn =3 and
k €{0,2} if n = 2. Suppose that ¢ ¢ {n,n/(n —1)} and

(a) 1<q¢g<3ifk=-1(n=3),
(b) ¢ >3/2ifk=3 (n=23).

Let f € WI(R™)"™. Then, equation (1.9) has at least one solution u € V;>*(R™)
if and only if

Vpe M, (Z-), (f,p)=0. (3.4)
This solution is unique up to elements of M _,(%}) and

et g 1= @llyzacen) S 1o
k—2

Moreover, divu =0 if div f = 0.

COROLLARY 3.4. Suppose that k and q satisfy assumptions of Theorem 3.3
with n = 3. Let h € W,S’q(R3). Then, equation (1.10) has at least one solution
xS W,f’q(R?’) if and only if

V0 € DGy, (h,0) =0. (3.5)
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Moreover, this solution is unique up to elements of D2A+<7k) and

inf  {[l¢ — pllyw2ams) + [1Do(d = p)lwoamsyt < Ihllyyogays-
PEDS, K K K

Concerning the smoothness of solutions, we state this

THEOREM 3.5. Let k € Z and m > 0 be two integers, with k satisfying
assumptions of Theorem 3.3. Let f € W[ (R™)"™ and g € W, 1 9(R") such that
Dog € W, V4(R™) and

Y(p,m) €N, (L), (£,p) = (9,m) =0. (36)
YAE PGy sy s (div f 4 Dog, A) =0. (3.7)
Then, there exists a pair (u,p) € Vkm+2’q(R”)” X W,:n+1’q(R") solution of (1.4).

Moreover, this solution is unique up to elements of Ni _ —,(Z+) and the following
estimate holds

inf u— A||ymr2.amnyn + [P — m+1,q pn
et (1= Mleagaays + 19 = plypeesagany

_m_2(°g+
< fllwgea ey + gl ooy + [ Doglgm-1.0gamy (3.8)
Moreover, this result remains valid if m = —1 and g = 0.

REMARK 3.6. Condition (3.6) is automatically fulfilled if m > 2, since
NI (22) = {(0,0)}. If (~k) < —1, then MJ(Z,) = {0}, NL(Z,) = {(0,0)}
and K{ (L) = {0}.

If (—k) = 0, then M (Z;) = {0} when n = 2 and M7 (%} ) = span(®@) when
n = 3. In both the cases, Nf (£} ) = M} (Z}) x {0} and K{ (L) =R.

If (k) = 1 and n = 3, then M} (.Z} ) is composed of all the polynomial vector
functions of the form v = a@ + b X  + cx + d(x.©)@, K} (L) = span(@.xz) & R
and NY(Z}) = M22(Z,) x R, with M{*(Z,) = {v € M{(Z,) | dive = 0}. We
retrieve the result of Farwig and al. [8].

The following tables summarize the possible values of (—k) and (k)*, when k
and ¢ are satisfying assumptions of Theorems 3.3 and 3.5.
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Table 1. Possible values of (—k) and (k)* when n = 2.

k 0 2
q 72 72
(k) {=2,-1} {=3,-4}
(g {=2-1} {0,1}

Table 2. Possible values of (—k) and (k)* when n = 3.

k -1 0 1 2 3

q <3 > 3/2
(—k) -1 {-2,-1} {-3,-2} {-4,-3} -4
(ky*  {-3,-2} {-3,-2,-1} {-2,-1,0} {-1,0,1} {oO,1}

4. The proofs.

4.1. Description of the nullspaces. Proof of Theorem 3.1.
The main objective of this section is to give an explicit characterization of the
nullspaces M{ (%), N} (%) and K} (L1). We start with

LEMMA 4.1.  Let A and B be two linear maps from the space (Pg)%, £, > 1,
into itself such that

— A and B commute,
— ker B? = ker B,
— For each k € [2,(], A(Hy)* C (Hi—2)* and B(Hy)® C (Hy)®.

Then, ker(A + B) = ker AN ker B.

PrOOF OF LEMMA 4.1. Let ¥ € ker(A + B). Since (P¢)° = (Hp)®* +--- +
(Hy)*, one can decompose ¥ into the form: ¥ = Zi:o U}, where Uy, € (Hy)® for
each k < . The identity (A + B)¥ = 0 becomes

BY,=0, BV, =0, and A\I/k+2 + BU,, =0 for each kK < /¢ — 2.
Thus, B2V, 5 = —BAV, = —A(B¥;) = 0. Hence ¥, 5 € ker B? = ker B and

BY, 5 = 0. Similarly B¥,_3 = 0. Going down step by step, one deduces easily
that BU; = 0 for each k£ < £. Thus, BY =0 and AV = 0. O

LEmMMA 4.2.  Let £ € Z. Then, II is a projection of Py and
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I(P,) =D, (I —)(Pe) = Do(Pe),
I(PP) =D, (I -I)(PY) = De(PP). (4.1)

PROOF OF LEMMA 4.2. Let P = XFXJ X5 with k4 j +m < £. In terms
of cylindrical coordinates (r, 8, z3) one can write

P(x) = 51" (cos )" (sin0), @ = (11,22, 23) € R®.

Using this form, one can prove easily that IIP is a polynomial.
Now, observe first that T1QQ = @ when @ € ker Dy. It follows that IT and Dy
are two endomorphisms of P, satisfying

R(Dy) C kerII, ker Dy C R(II).

The rank-nullity theorem implies that these inclusions are equalities. The same
argument remains valid with IP’EA instead of Py (recall that II and Dy commute
with A). O

The following lemma is well known

LEMMA 4.3. Let 0 € Py, ¢ € Z. Then, there exists ¥ € Pyyo such that
AU = 0.

LEMMA 4.4. A(Dyyo) =Dy for l € Z.

PrOOF OF LEMMA 4.4. Let ¢ € Dy and let ¥y € Pyi5 such that AU, = ¢.
With ¥ = I[1¥; € Dy,2 one has AV = ¢. O

LEMMA 4.5. Let £ € Z. Then, {P € P, | D2P = 0} = D,.

LEMMA 4.6. Let v € (P,)™, £ € Z. The following assertions are equivalent

(i) Zv=0.
(ii) Z*v =0.

(iii) There exist two functions a, b € Dy_1 and a function ¢ € Dy such that
v=ax+bD X T+ D, (4.2)

(the term cw is dropped when n = 2).

PrOOF OF LEMMA 4.6. We give the proof only in the case n = 3.
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(i) = (ii) obvious.

(ii) = (i) Suppose that #%v = 0. According to formula (2.1), one has
D2(O') = 0. Let M = diag(r,r,1)O%v, with r = (22 + 23)'/2. Then, Mv €
Pry1 X Pry1 x Py and DZ(Mw) = 0. Thus, Dy(Mwv) = 0, thanks to Lemma 4.5.
It follows that Dy(O'v) = 0.

(ili) = (i) a direct calculus.

(i) = (iii) The equation Zv = 0 writes

DGUI = —U2, ngg = v, Dg’l)g =0.

It follows that v3 € D, and ngl + vy = 0. Using Fourier series in terms of 6,
one deduces that vy is of the form

v1 (21, T2, 23) = racos® + rbsin 6 = ax + by,
with a € Dy_1 and b € Dy_1. Thus,
vo(1, T2, x3) = —rbcosf + arsinf = —bx + ay.

The formula follows by setting ¢ = v3 — axs. O

LEMMA 4.7. Let m € }P’[A, Then, there exists v € Dyyo + ]P’éA such that
Ly~ =7 (respectively L_~v = ).

PROOF OF LEMMA 4.7. In view of Lemma 4.2, we can decompose 7 into
the form 7 = w9 +m1, with mo € ]D)ZA and m € Dy(P2). There exists ¢; € IP’ZA such
that Dg¢p1 = m1. On the other hand, according to Lemma 4.4, we can introduce
yet another function ¢g € Dy 9 picked so that A¢py = mp. The function ¢ = ¢gt¢1
satisfies

Lip=Ligg+ Lip1 = A¢o+ Doy = . O

PROOF OF THEOREM 3.1. We assume n = 3. The proof when n = 2 is
quite similar.

1. We know that
MZ(fi) = {’U S (]P)g)n | Liv = 0}.

Consider the linear operators A = A, B = +% defined on (P;)™. We know that
ker B? = ker B, thanks to Lemma 4.6.
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Let ¢ € (Py)" such that £y = 0. According to Lemma 4.1, we deduce that
Ap = 0 and Z¢p = 0. Moreover, in view of Lemma 4.6 there exist three
polynomial functions a, b € Dy_; and ¢ € Dy such that

Y =ar+bw X T+ .

The condition A = 0 writes in cylindrical coordinates
a b
A(ra) =—, A(rb)=-, A(c+axs)=0.
r r

Define in terms of cylindrical coordinates the functions

a(x) :/ ta(t,xg)dt—2/ / a(0,v)dvdu,
0 o Jo

Blx) = /07" tb(t, x3)dt — 2/:3 /Ou b(0, v)dvdu,

with r = (2% + x%)l/Q. One can prove easily that a, § € DeA+1~ Moreover,

gonoz+Gv><V6+<c—8a+ax3>C).
(91'3

Setting v = ¢ — (0a/Ox3) + axs ends the proof of the formula (3.1) in Theorem
3.1.

2. Let (v,7) € NF(Z,). Lemma 4.7 asserts that there exists two functions ¥g €
Dyy 1 and ¥y € P2 | such that Lo (Vo+¥y) =7. Weset o =v—V(¥g+¥;) €
(P¢)™. Then,

Lip=Lrv— V(Li(‘l’o + \Ifl)) =%v—Vr=0.
Thus, ¢ € Mf; (Zy). Hence, there exists a, 5 € ID)EA_H and v € ]D)eA such that

p=Va+wxVi+y&.

On the other hand, divy = —AW,. Hence
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621
Set A = o+ (z37/2) + Yo + ¥;1. Then, A € D2, | + P2 | and
v=VA+d x Vﬁﬂa—v(x;”),
Oy
™= Li(\Ifo + \I/l) = A\Ilo + Dg\Ifl =——4= D@/\
T3
This ends the proof. O
4.2.

The equation without pressure. Proof of Theorem 3.3.
We need the following result concerning Poisson’s equation in R™ (see Giroire
[15] when ¢ = 2 and n = 2 or 3, and Amrouche et al. [2] for the other cases).

PROPOSITION 4.8.  Let m € Z and k be two integers and g > 1 a real such
that

35_‘{1,...7“1} if k>0,
n

(4.3)
Ei‘{l,...,—kz—&-l} if k<0,

then the following operator is an isomorphism

A WRERUR™Y) PGy W PR LIPS
4.2.1. Some preliminary lemma.
LEMMA 4.9.

Suppose that n = 3 (resp. n = 2). Letk € Z and p € (P;)3
(resp. p € (Pi)?) such that divp = 0. Then, there exists a vector field m in

(Pxs1)3 (resp. a function ¢ in Pyy1) such that curlm = p (resp. curl o = p).

PrROOF OF LEMMA 4.9. When n = 3, one can take

xr3 T T3 t
m = (/ ’p2(l’1,$2,5)d5,/ pg(t,xz,())dt—/ Pl(xhﬂfzas)dsao) .
0 0 0

When n = 2, one can take ¢ =

— [ pa(t,0)dt + [ pa (21, 8)ds. 0
LEMMA 4.10. Let k € Z satisfying (4.3). Let z € W,c_l’q(R3)2 (resp. z €
Wk_l’q(RQF) such that divz =

0. Then, there exists v € W,S’Q(R3)3 (resp. 6 €
W,?’q(]R2)) such that curlv = z (resp. curl§ = z).



622 N. ABADA, T. Z. BOULMEZAOUD and N. KERDID

PRrROOF OF LEMMA 4.10. We give the proof only in the case n = 3. Suppose
first that z satisfies the following condition

Yh e (P2, (z, h) o =0, with = (k+1)*. (4.4)

®m)x W' (R)

According to Proposition 4.8, there exists a vectorial function u € VVk1 (R
such that —Awu = z in R™. Since, A(divu) = div(Au) = divz = 0, one has
divu € (P2)3 with s = (—k). Hence, by Lemma 4.9, there exists 8 € (Pyy1)? such
that

curl @ = Vdiv u.

Set v = curlu — 6. Then, curlv = curl(curlu — 8) = —Au = z. Now, let us come
back to the more general case in which z is not supposed satisfying (4.4). Let v a
cut-off function verifying

ve 2(R"), 0<v<1l wv=1in By, supp(v)C By,

where B; and B, are two balls centered at the origin such that |B;| # 0 and
Bi C By C R™. Consider the weighted bilinear form

(61,02), = /n v(x)0i(x).02(x)dx.

This bilinear form defines an inner product on Pp. We set G, = {Vq | ¢ € Ppy1}
and

Gj_ = {7 € (P/)n | Vq € PE—O—la (77V(1)V == 0}

Now, let pg be the unique element of (Py)™ verifying

Vp € G}, / v(z) curl po. curl pdz = (z,p). (4.5)

This is a finite dimensional problem which can be reduced to a linear system.
Moreover, let p € Gy such that v curl p = 0. Necessarily curl p = 0 everywhere in
R3 and p = V¢ for some ¢ € Py 1. The condition (p, V@), = 0 implies that ¢
is constant in B;. Moreover, ¢ is constant everywhere since it is polynomial, and
Vp = 0. In other words, the linear system (4.5) is invertible and has one and only
one solution pg. We set
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A =vcurl po.

Obviously A € W,S’Q(R”)3 (since A(z) = 0 if € R™\By). Consider now a vector
function » € (P2)". Since (P;)" = Gy @ G, there exists a function o € Pyy; and
a vector function p € Ggl such that

r=p+ Va.
Thus,
(z —curl A, T>W,jl’q,Wi’,3, =(z—cuwlA,p+ Va)
= (z,p) — A A curl pdz — (div (z — curl A), )

= (2z,p) — (veurl py, curl p), = 0.

The modified function z* = z —curl X verifies condition (4.4). It follows that there
exists v* in W,S’q(R”)" such that curlv* = z*. The vector field v = v* + A verifies

curlv = z. O

LEMMA 4.11.  Let m and k be two integers in Z satisfying condition (4.3).

Let z be a solenoidal vector field in W5 (R™)™. Then, the problem

curlv =z in R", dive =0, (4.6)

has a solution v € W::’:kl’q(R")” if and only if z satisfies

3
Vp € (Pﬁc)*ﬂ) , f{curlz,p) =0. (4.7)

Moreover, if (k)* <0, then (4.7) is automatically fulfilled.

PROOF. Suppose first that (4.6) admits at least one solution v €
ng_rkl (R™)™. Then, applying the curl operator to the identity curlv = z gives

—Av = curl z. (4.8)

Condition (4.7) follows immediately from Proposition 4.8.
Conversely, suppose that z satisfies (4.7). Then, from Proposition 4.8, there
exists at least one vector function v* € W 9(R™)" satisfying —Av* = curl z.
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Necessarily A(dive*) = 0 and, thus, dive* € Pé@' From lemma 4.3, there exists
a function 6 € P _j) 4o such that AV = dive*. The function v = v* — VUV is
solution of (4.6). O

4.2.2. Proof of Theorem 3.3.
e Suppose first that the following assumption holds

n

n n
2<k<§ and —k<a<—k+n. (4.9)

This assumption is equivalent to condition (1.7) with o = gk. It implies

Let us first prove the existence of a solution u € V,f’q(R") of (1.4). According to
Farwig et al. [9] problem (1.4) has at least one solution u; € L}, (R™)" satisfying

loc
2
v ul”wfv‘l(ﬂ{{n)n + ||=@U1|‘W,S,4(Rn)n S ||f||w£=q(Rn)n' (4.10)
and such that divu; = 0 if div f = 0. Unfortunately, there is no reason that
u; belongs to W 9(R™)™. Nevertheless, we shall use u; to get a solution in

VOQ’q(]R"). The starting point is the estimate (4.10). Since Awu,y € W,S’Q(R”),
and since the operator

A WEUR™) /PS> WU(R™),

is an isomorphism, there exists a function z in (sz “(R™))™ such that

Az = Auy,
and subject to the estimate
i — < <
sentd 12 = sl S 1Awlwpagnn S 1S lwgagn)- (4.11)

Let m = z — u;. Then, m is a harmonic tempered distribution. It follows
that m is polynomial. Estimates (4.10) and (4.11) give 97 ;m € W,S’q(]R”)”,
1 <4, 5 <n. Since W,S I(R™) does not contain non vanishing polynomial, we
deduce that 97 ;m =0, 1 < i, j <n, and m € (P;)". On the other hand, since
Ruy € WHI(RM™, Bz € WL (R™)™, one deduces that Zm € W%, (R™)". By
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virtue of (2.7), it results that
#m € Po—i—(a/g) = Po+ (-1 (4.12)
At this stage, three cases are distinguished
(1) If (—k) = —1. Then, P, ¢ W29 (R") and m € W2(R")". Tt follows that
u; = z — m belongs to W,?’q(R”)" and is a solution of (1.9).
(2) If (=k) = —2. Then, Py, (s = Py. From (4.12) we deduce that there exists
a constant vector ¢y such that
Ve e R", (Zm)(x) = co.
Taking & = 0 on the left hand side gives

cop = w x m(0).

Let dg = m(0). Then, dy € WS’Q(R") and Zidg = ¢ = ZLrm. Set
u=z—dy € W (R") gives

f+u = g+'ll/1 + erm — $+d() = g+'ll/1 = f,
and
divu = divu; = 0.

Hence, u is a solution of the problem (1.9).
(3) (—k) < —2. Then, P,_(_4) = {0}. From (2.7), we deduce that

Zm = 0.
Thus, Zyz = ZLius + Lrm = §f.
On the other hand, div z € Wkl’q(R") and A(div z) = A(divuy) = 0. Hence,

divz € Py_py = {0}. We conclude that z is a solution of (1.9) in W29 (R™).
o Consider now the second case in which k satisfies condition

2—g<k<2+g and —k+2<’<-k+2+n (4.13)
q

This condition means that k = 2 if n =2 and k € {1,2,3} if n = 3 with ¢ > 3/2
ifk=3and ¢ <3if k=1.
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Let ¢ = 2 — k. Then, ¢ satisfies assumption (4.9). Consider the operator £
defined from D(Z,) = V2Y(R") € W2H(R™)"™ into W U(R™). Let £} be its
dual operator defined from Weojg (R™)™ into Weo’q/ (R™™ (see, e.g., Yosida [23]).
From the formula

(v, %y z) L v, z)

Wy @y ey = W ) W (R
which is valid for v € Vf’q,(R”) and z € V2Y(R"), one deduces that Vf’q/ (R™) C
D(Z}) and

NONS Vf’q/ R"), ZLiv=2Lwv. (4.14)

From the first part of the proof we know that .Z_, considered as an operator
from V7 (R™) into W (R™)", is onto. It follows that R(Z}) = W,»* (R")™.
The Closed Range Theorem of Banach implies that

R(Zy) = WIIRM™ LMY, (L)

Consider now a vector function f € WX 4(R™)" L M‘f/_k(,f,) and let v €
Vlf’q(R")” such that Z,v = f. Suppose that div f = 0. Applying the diver-
gence operator to the identity Z;v = f gives

Lydive = 0. (4.15)
Thus, dive € K} _,(Ly) C P_gy = {0}. Hence, diveo = 0.

4.3. Application to the operator A+ (w X z).V. Proof of Corollary
3.4.

Assume that n = 3. Let h € W?(R3) and suppose that equation (1.10)
admits at least one solution u € W,? (R3). Multiplying by a function ¢ € ID)<A,€>, and
integrating over R3 gives conditions (3.5).

Conversely, suppose that (3.5) is fulfilled and let us prove that equation (1.10)
possesses at least one solution u depending continuously on h. Set f = h@. Using
the characterization (3.1), one can prove easily that f satisfies (3.4). Theorem 3.3
asserts that there exists a vector function v solution of the equation Z,v = f.
The function u = v.w0 (@ = e3) satisfies Lyu = h and
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wle%ff lu— ’YHW:"(‘(D@) + [[Do(u — ’7)||W,S’q(R3) < vlerg,? [[v— 'VW||V,€2=‘1(R3)

< ez 77 vy

with ¢ = 2+ (—k). This ends the proof of corollary.

4.4. Proof of Theorem 3.5.
In view of Proposition 4.8 and condition (3.7), equation

AV =div f + Ag+ Dpg, in R",
admits at least one solution ¥ € W;" TLI(R™). So we henceforth define
frF=f-vuw

Let r an «(Z-). From Theorem 3.1, we know that there exists three functions

AeDR, + P2, B€Ds, and v € DR, with £ = (k —m)*, such that
r=VA+w® x Vi+~w.
Then, divr = 0v/0z3 = (1/2)A(zg7). Thus,

(F7m) = (f,r) +(¥, divr)

= (f.7) + 5{0, Aw)
= (f.r) + 3(AV, a7)
= (f,7) + {div £+ Ag + Dyg, 79
1

(x37)> + <g, 687 > %<D997 z37y) =0,

S

since the pair (r — (1/2)V(z37), —0v/0x3) belongs to Nf,;fk(.jf_).
Notice also that

At this stage, four cases are distinguished
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Case 1: m = 0. Suppose that f belongs to W,g’q(R")". Theorem 3.3 asserts
that there exists a solenoidal vector field u satisfying

—$+’UJ = f*.
Taking the divergence of both the sides gives
Ly(divu —g) =0.

It follows that divu — g € D1A+<—k)’ thanks to theorem 3.1. From Lemma 4.4,
there exists s € D?ﬁr(f}c) such that As = divu — g. The pair (u— Vs, U) is clearly
solution of (1.4) in V2(R™).

Case 2: m = —1 and g = 0. Suppose that f belongs to ngl’q(R”)". Since
div f* = 0, it follows from Lemma 4.10 that there exists a vector function F' in
W,S’q (R™)™ such that curl F' = f*. We need the lemma

LEMMA 4.12.  Assume that (k)* < 1. Then, for each (v,m) € Nq_/k(fi),
there exists a vector field z € qulkfl(.i”i) such that v = curl z.

PRrROOF OF LEMMA 4.12. Let £ = (k)* and (v,7) € Nq_/k(.fi). We know
that v can be written into the form

v=VA+ & x V34 29& — V[(®.x)7],

with A € DZAH +IP’6A71, e ]D)ZA+1 and v € DZA. Since ¢ < 1, A and +y are of the form

Mz, 22, 23) = al(r2 — 237%) +bix3 + ¢,

v(x1, T2, T3) = azxs + ba,
with a1,b1, c1, a2 and by real coefficients. We set

b1 + b 2
x(z1,x9,x3) = —%(ng — r2) —ay <x3r2 — 3x§> — c123.

We have y € D2, ,. Let
z=—-0Bw+wxVy.

Then, z € M'I_/k_l(iﬂi) and curl z = v. O
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Consider now a pair (v,7) € Nik (Z-). From Lemma 4.12, there exists a vector
field w € qu/kfl(.i@) such that curl w = v. One has

(F,v) = (F,curlw)
= (curl F, w)
= (f*,w)=0.

According to the first part of the proof, there exists a pair (v,7) € WkQ’q (R™M)™ x
W 9(R™) verifying

—Zv+Vr=F inR" divv=0. (4.17)

We set u = curlv € W,i’q(R")”. Applying the curl operator to (4.17) gives
Ziu = f — Vp. We deduce that the pair (u,p) is a solution of the original
problem (1.4).

Case 3: m > 1 and g = 0. Let us prove by induction on m > 0 the following
proposition

(Pm) For each f € W"(R™), satisfying (3.6) and (3.7) with g = 0, problem
(1.4) admits at least one solution (u,p) € W, F>9(R™)™ x W, H9(R™) with p = 0
if div f = 0.

We know that (&) is true. Suppose that (£2,,) is true and let us prove
(Prms1). Let £ € WTHI(R™) and set b = curl f € W/"%(R™). This function h
satisfies conditions (3.6) and (3.7) (with g = 0) since for all (v,7) € Ngy;_k(.i”_),
(curlw,0) € N‘Tlr; 4+1-1(Z-). Induction hypothesis implies that there exists a pair
(z,p) € WT29IR™) x WTHY(R?) satisfying — %,z + Vi = h. Necessarily,
= 0 since divh = 0. By Lemma 4.10, there exists v € W,"*>%(R") such that
curlv = z and diveo = 0. Let

r=%v+ f.
We have
curlr = Z