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Abstract. In this paper, we study some dynamical properties of fixed-
point free homeomorphisms of separable metric spaces. For each natural num-
ber p, we define eventual colorings within p of homeomorphisms which are
generalized notions of colorings of fixed-point free homeomorphisms, and we
investigate the eventual coloring number C(f,p) of a fixed-point free homeo-
morphism f : X — X with zero-dimensional set of periodic points. In par-
ticular, we show that if dim X < oo, then there is a natural number p, which
depends on dim X, and X can be divided into two closed regions C7 and Cy
such that for each point « € X, the orbit {f*(2)}2° , of = goes back and forth
between C1 — C2 and C2 — C7 within the time p.

1. Introduction.

In this paper, we assume that all spaces are nonempty separable metric spaces
and maps are continuous functions. Let N be the set of all natural numbers, i.e.,
N =1{1,2,3,...}. For a (separable metric) space X, dim X denotes the topological
dimension of X. For each map f : X — X, let P(f) be the set of all periodic
points of f, i.e.,

P(f) = {x € X| fi(x) = x for some j € N}.

Let f: X — X be a fixed-point free closed map of a separable metric space
X, ie., f(x) # x for each x € X. In this paper, we assume that all maps are
closed maps, i.e., for any closed subset A of X, f(A) is closed in X. A subset C'
of X is called a color (see [9]) of f if f(C)NC = 0. Note that f(C)NC = 0 if
and only if C'N f~1(C) = (). We say that a cover C of X is a coloring of f if each
element C of C is a color of f. The minimal cardinality C(f) of closed (or open)
colorings of f is called the coloring number of f. The coloring number C(f) has
been investigated by many mathematicians (see [1]-[5] and [7]-[9]).
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THEOREM 1.1 (Lusternik and Schnirelman [7]). Let f : S™ — S™ be the
antipodal map of the n-dimensional sphere S™. Then C(f) =n+ 2.

THEOREM 1.2 (Aarts, Fokkink and Vermeer [1]). Let f : X — X be a fized-
point free involution of a (separable) metric space X with dim X =n < oco. Then
C(f)<n+2.

THEOREM 1.3 (Aarts, Fokkink and Vermeer [1]). Let f : X — X be a fized-
point free homeomorphism of a (separable) metric space X with dim X = n < co.
Then C(f) <n+3.

Now, similarly we will consider more general notion of color as follows: Let
f: X — X be a fixed-point free map of a space X and p € N. A subset C of X
is eventually colored within p of f if (_, f~*(C) = 0. Note that C' is a color of f
if and only if C' is eventually colored within 1. Then we have the following simple
proposition. For completeness, we give the proof.

PROPOSITION 1.4. Let f: X — X be a fixed-point free map of a separable
metric space X and p € N. Then the followings hold.

(1) A subset C of X is eventually colored within p of f if and only if each point
x € C wanders off C within p, i.e., for each v € C, fi(z) ¢ C with some
1< p.

(2) If a subset C of X satisfies the condition (\i_, f*(C) = 0, then C' is eventually
colored within p of f.

(3) If f is an injective map, then a subset C of X is eventually colored within p
of [ if and only if C satisfies the condition (V_, f*(C) = 0.

PROOF. We prove (1). In fact, it is easily seen that (\}_, f~*(C) # 0 if and
only if there is an element x € C such that fi(x) € C for any 0 < i < p. We prove
(2). Suppose, on the contrary, that there is a point x € C such that fi(z) € C for
each 0 <4 < p. Then fP(z) € (_, f*(C) = 0. This is a contradiction. Finally we
prove (3). We suppose that f is injective. Let C be eventually colored within p of
f. Suppose, on the contrary, that (;_, f*(C) # 0. Take a point y € (i_, f*(C).
Choose a point « € C such that fP(z) = y. Since f is injective, we see that
fi(x) € C for each 0 < i < p. This is a contradiction. O

REMARK. In general, the converse assertion of (2) in the proposition above
is not true. Let X = {a,b,c} be a set consisting three points and let f: X — X
be the map defined by f(a) =b, f(b) = ¢, f(¢) =b. Then C = {a,b} is eventually
colored within 2 of f, but (/_, f*(C) # 0 (p € N).

We define the eventual coloring number C(f,p) as follows. A cover C of
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X is called an eventual coloring within p if each element C of C is eventually
colored within p. The minimal cardinality C(f,p) of all closed (or open) eventual
colorings within p is called the eventual coloring number of f within p. Note that
C(f,1) = C(f). If there is some p € N with C(f,p) < oo, we say that f is
eventually colored. Similarly, we can consider the index C*(f,p) defined by

min {|C|; C is a closed (open) cover of X

P
such that for each C' € C, m fic) = (Z)}.

=0

By the definitions, we see that C(f,p) < C*(f,p). In section 3, we show that
C(f,p) = CT(f,p) if X is compact.

In this paper, we need the following notions. A finite cover C of X is a
closed partition of X provided that each element C of C is closed, int(C) # () and
CNC" =bd(C)Nbd(C’) for any C,C" € C. Let B be a collection of subsets of
a space X with dim X = n < co. Then we say that B is in general position in X
provided that if S C B with |S| = m, then dim({S] S € §}) < max{—1,n—m}.
By a swelling of a family {As}secs of subsets of a space X, we mean any family
{Bs}ses of subsets of X such that A; C Bs (s € S) and for every finite set of
indices s1,89,...,5m € 9,

ﬁ As, # 0 if and only if ﬁ Bs, # 0.

=1 i=1

Conversely, for any cover {Bs}ses of X, a cover {A;}ses of X is a shrinking of
{Bs}ses if As C Bs (s € S). The following facts are well-known;

(1) for any locally finite collection F of closed subsets of a space X, F has a
swelling consisting of open subsets of X (e.g., see [9, Proposition 3.2.1]) and

(2) for any open cover U of X, U has a closed shrinking cover of X (e.g., see [9,
Proposition A.7.1]).

Hence we see that if f: X — X is a closed map and a closed finite cover B of X
is an eventual coloring of f, then we can find an open swelling C of B which is an
eventual coloring of f.
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2. Eventual coloring numbers of fixed-point free homeomor-
phisms.

In this section, we will define an index ¢, (k). For each n = 0,1,2,..., and
each k = 0,1,2,...,n+ 1, we define the index ¢, (k) as follows: Put ¢,(0) = 1.
For each k =1,2,...,n+ 1, by induction on k we define the index ¢, (k) by

on(k) =20n(k —1) +[n/(n+2—k)]- (pn(k — 1) +1),

where [x] = max{m € NU{0}| m < z} for x € [0,00). Note that ©,(1) =2 (n 2 0)
and ¢,(2) = 7 (n > 1). Also, note that ¢2(3) = 30, ¢©,(3) = 22 (n )
p3(4) = 113, p4(4) =90 and @4(5) = 544.

In this paper, we need the following two lemmas whose proofs are some mod-
ifications of the proofs of Kulesza [6, Lemma 3.3 and Lemma 3.5].

LEMMA 2.1 (cf. [6, Lemma 3.3]). LetC = {C;| 1 <i < m} be an open cover
of a separable metric space X with dimX =n < oo and let B={B;| 1 <i <m}
be a closed shrinking of C. Suppose that O is an open set in X and Z is a zero-
dimensional subset of O. Then there is an open shrinking C' = {C{] 1 <1i < m}
of C such that for each i < m,

(0) B cCl,

(1) C;=C; ifbd(C;)NO =10,

(2) CIN(X-0)=C;N(X -0),

(3) bd(C') (X =0) chd(Ci) N (X - 0),

(4) bd(C/HH)NZ =10, and

(5) {bd(C")NO| C" €'} is in general position.

PRrROOF. First, we will construct Cj. Consider the subspace
Y1 = cl(C1) Nel(0) — (bd(O) Nbd(Ch))

of X. Put £y = Y1 N(bd(O)U By) and F; = Y; Nbd(C}). Then F; and F are
disjoint closed subsets of Y7. Then we can take a closed separator (or partition)
S1 between E; and Fy in Y] such that dimS; < n—1and S1NZ = 0 (eg,
see [9, Lemma 3.1.4]). Hence we have open subsets G; and H; of Y7 such that
-5 = G1UH1, GiNH; = @ and G1D FEi,Hy D Fy. Put C{ = (Cl—O)UGl.
Then C] is an open set of X. By the construction, we see that C] satisfies the
conditions (0)—(4).
We proceed by induction on i. Now we suppose that there are C} (j <i—1)
satisfying the conditions (0)-(4) and {bd(C}) N O] 1 < j < i — 1} is in general
position. Consider the subspace Y; = cl(C; N cl(0)) — (bd(O) N bd(C;)) of X.
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Put E; = Y; N (bd(O) U B;) and F; = Y; Nbd(C;). Then E; and F; are disjoint
closed subsets of Y;. We can choose a zero-dimensional F,, set Z’ of O such that
if § ¢ {ONbd(C))| j < i— 1} with |S| = m, then dim({S| S € S} — Z') <
max{—1,n —m — 1} (e.g., see [9, Lemma 3.11.16]). Then we can take a closed
separator S; between E; and F; in Y; such that dim S; < n—1and S;N(ZUZ’) = (.
Then we have open subsets G; and H; of Y; such that Y; —S; = G;UH;, G;NH; =0
and G; D E;, H; D F;. Put C] = (C; — O) UG;. By the construction, we see that
C'={C}| 1 <i < m} satisfies the desired conditions. O

LEMMA 2.2 (cf. [6, Lemma 3.5]). Suppose that f : X — X is a fized-point
free homeomorphism of a separable metric space X such that dimX = n < oo
and dim P(f) < 0. Let C = {C;] 1 < i < m} be an open cover of X and let
B ={B;| 1 <i<m} be a closed shrinking of C. Then for any k € N, there is an
open shrinking C' = {C}| 1 <i <m} of C such that

(0) B; C Cl,
(1) {f7(bd(C")| C" € C',—k < j <k} is in general position,
(2) bd(C")NP(f) =0 for each C" € C'.

PrOOF. The proof is a modification of the proof of [6, Lemma 3.5]. We
proceed by induction on k. First we will show that the case k = 0 is true. In fact,
if we put O = X and Z = P(f), we see that the case k = 0 follows from Lemma
2.1. Now we suppose that the result for the case k — 1 is true. We may assume
that there is an open shrinking D = {D;| 1 <i < m} of C such that

(0) B C D;,
(1) {f7(bd(D))| D € D,—k+1<j <k—1} is in general position,
(2) bd(D)N P(f) =0 for each D € D.

Put F = J{bd(D)| D € D}. Since F N P(f) = 0, we can choose a star finite
open cover O = {0j| j € N} of F such that O; N F # ( and f?(O;) N f1(0;) =0
for each 7 € N and for p # ¢, —2k < p, ¢ < 2k. We will construct a sequence
{D@)| j = 0,1,2,...} of open shrinkings of C = {C;| 1 < i < m} such that
D(j+1)is a Shrlnkmg of D(j) for each j satisfying the following conditions:

() D) = (DG 1< < m)

(b) Bi C D(j);

(c) D(0) =D.

(d) DG = 1) N (X = 0;) = D(G)i N (X = 05), bd(D(j — 1)) N (X = O5) D
bd(D(j);) N (X —0;), and if bd(D(j —1);)NO; = @, then bd(D(j ))ﬂO =0.

(e) Bj = {fP(bd(D))| D € D(j), —k+1 < p < k=1}U{f*(bd(D)N(U;—, Op)| D
€ D(5)} U {f¥(bd(D)) N ( —10p)| D € D(j)} is in general posmlon.

(f) bd(D)NP(f) =10 for D € D(j).
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Also, we proceed by induction on j. Suppose that we have D(j). We will
construct D(j + 1). For each p with —k < p < k, consider the collection S, =
{BN fP(0;4+1)| B € B;}. Then there is a zero-dimensional Fy-set Z, of fP(O0,1)
such that if S C S, |S| = m, then dim(S — Z,) < max{—1,n —m — 1}. Let
Z = (Ul;:_k f72(Z,)) U (P(f) N Oj41). Note that Z is a zero-dimensional Fi,-set
of O;4+1. Now, we use the same arguments as in the proof of Lemma 2.1. First, we
construct D(j+1); and by induction on 4, we can construct D(j+1); (2 < i < m).
Consequently we obtain D(j +1) = {D(j+1);| 1 <i < m}. By the constructions
and the similar arguments to the proof of [6, Lemma 3.5], we see that D(j + 1)
satisfies the conditions (a)—(f).

Now, we obtain the above {D(j)| 7 =0,1,2,... } satisfying the conditions (a)—
(f). Then we put C] = (;2, D(j): for each i = 1,2,...,m. Since O is star finite
and by the construction of {D(j)|j =0,1,2,...}, wesee that C' = {C}| 1 <i < m}
is an open cover of X. Also we see that C’ satisfies the desired conditions. O

The following result is the main theorem of this paper.

THEOREM 2.3 (cf. [1]). Let f: X — X be a fized-point free homeomorphism
of a separable metric space X with dim X =n < co. If dim P(f) <0, then

Cfypn(k)) <n+3—k

for each k =0,1,2,...,n+ 1.

REMARK. If we do not assume dim P(f) < 0, the above theorem is not true.
Let f:.S™ — S™ be the antipodal map of the n-dimensional sphere S™. Note that
P(f)=5"and C(f,p) =C(f,1) =n+ 2 for any p € N.

PrOOF OF THEOREM 2.3. We proceed by induction on k. In the case k =
0, Theorem 2.3 follows from Theorem 1.3. Now we suppose that Theorem 2.3
holds for k& — 1. We have an open cover C = {C;] 1 < i <n+3-(k—-1)}
of X which is an eventual coloring within ¢, (k — 1). Take a closed shrinking
B={B;]1<i<n+3—(k—1)} of C. By use of Lemma 2.2, we have an open
cover C' = {Cl|1<i<n+3—(k—1)} such that

(0) B; C Cl,

(1) {f7(bd(C")| C"€C,0<j < pul(k—1)+[n/(n+2—k)] (pn(k—1)+1)} is
in general position,

(2) bd(C")NP(f) =0 for each C" € C'.

Put K; = cl(C)) for 1 <i<n+3—(k—1)andlet £ = {K;|] 1 <i <
n+3—(k—1)}. Put
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1=Ky, L; = CI(KZ - (Kl UKy U--- UKifl)) (Z > 2)

Then the collection £ = {L;| 1 <i <n+3— (k—1)}is a closed partition of X
and L satisfies the condition; for 1 <iy <ig < -+ <ip <n+3—(k—1),

bd(L;,) N bd(Li,) N---bd(L;,, ) C bd(K;,) Nbd(K;,) N---Nbd(K;,, ;).

Put D = L, 43_(x—1) € L. Let x € D. Since D is eventually colored within
on(k —1), we see that |J;| > [n/(n+ 2 — k)] + 1, where

Ty = {10 < gulb—1)+[n/(n+2—B)] - (pa(k—1) + 1) and f3(z) ¢ D}.
For each j € J,, put
I(5)={ie{1,2,...,n+3—k}| f/(z) € L;}.
Suppose, on the contrary, that |I(j)] =n+3 —k for all j € J,. Then

n+3—k n+3—k n+2—k n+2—k

() Li= () bdL:i)c () bdE:)c () bd(C).

Since {f7(bd(C"))| C" € C",0 < j < pu(k = 1) +[n/(n+2 k)] (pu(k —1) + 1)}
is in general position, we see that ([n/(n+ 2 — k)] + 1)(n + 2 — k) < n. However,
we have the following inequality

([n/(n+2-K)]+1)(n+2—k) >n+1.

This is a contradiction. Hence there is some j(x) € J, such that |I(j(x))] <
n+3—k. We choose L;(,) such that 1@ () ¢ L;(z). Take an open neighborhood
U(x) of z in D such that f7(® (cl(U(z)))N (DU Lj(z)) = 0. Consider the collection
U = {U(x)|z € D} and take a locally finite closed refinement W of U. For each
W € W, we can choose U(z) such that W C U(x). Put j(W) = i(z). For each
1<j<n+3—k put E; = J{W e W| j(W) =j} and define F; = L; U E;. We
will show that Fj is eventually colored within ¢, (k).

Let y € Fj(= L; U E;). If y € E;, then we can choose W € W and U(z) e U
such that y € W C U(z). Then j(z) < pp(k—1)+[n/(n+2—k)] - (pn(k—1)+1)
and fi@(y) ¢ (L; UD). If y € L;, we can choose p < ¢, (k — 1) such that
y = fP(x) ¢ L;. If ¢ ¢ E;, then fP(z) ¢ F;. Finally, if y/ € Ej;, the previous
argument shows that there is ¢ < ¢, (k—1)+[n/(n+2—k)]- (pn(k—1) +1) such
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that f9(y') ¢ F;. Hence fP*4(y) ¢ F; and p+ ¢ < ¢, (k). Then the closed cover
F ={F;|1<j<n+3—k}of X is an eventual coloring within ¢, (k). This
implies that C(f, ¢n(k)) < n+ 3 — k. This completes the proof. O

COROLLARY 2.4. Let f: X — X be a fized-point free homeomorphism of a
separable metric space X with dim X =n < co. If dim P(f) < 0, then C(f,2) <
n+2 (n>0)and C(f,7) <n+1(n>1).

Now we have the following general problem for eventual coloring numbers.

PrROBLEM 2.5. For each n > 0 and each 1 < k < n + 1, determine the
minimal number m,, (k) of natural numbers p satisfying the condition; if f : X — X

is any fixed-point free homeomorphism of a separable metric space X such that
dim X = n and dim P(f) <0, then C(f,p) <n+3—k.

Next, we will consider another index 7, (k) defined by 7,(k) = k(2n +1) + 1
for each n=0,1,2,..., and each kK =0,1,2,...,n+ 1.

THEOREM 2.6. Let f: X — X be a fized-point free homeomorphism of a
separable metric space X with dim X = n < oo. If dim P(f) <0, then

C(f,ma(k)) <n+3—k

for each k=0,1,2,....,n+ 1.

ProOF. The proof is similar to the proof of Theorem 2.3. We proceed by
induction on k. In the case k = 0, Theorem 2.6 follows from Theorem 1.3. Now we
suppose that k& > 1 and there is an open cover C = {C;| 1 <i <n+3—(k—1)} of X
such that cl(C1), cl(C2) are eventually colored within 7,,(k—1) = (k—1)(2n+1)+1
and cl(C;) 3<i<n+3—(k—1)) are colored (=eventually colored within 1).
By use of Lemma 2.2, we may assume that

{f/(bd(C))| C €C,0<j<2n+1}
is in general position. In particular, {f7(bd(C1))| 0 < j < 2n + 1} is in general
position.
Put K; = cl(Cy) for 1 <i<nm+3—(k—1)andlet £ = {K;| 1 <i <
n+3—(k—1)}. Put
L1 = _Kvl7 Lz = CI(KZ - (Kl U K2 y---u Kifl)) (Z 2 2)

Then the collection £ ={L;| 1 <i<n+3— (k—1)} is a closed partition of X.
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Note that Ly N Ly C bd(C1). Let « € L3. Since Lg is colored, |J5(z)| > n + 1,
where J3(z) = {j| 0 < j < 2n+1 and fi(z) ¢ L3}. By the similar argument
to the proof of Theorem 2.3, we see that there is some j(z) € Js(z) such that
fi@)(z) ¢ Ly or f/®)(z) ¢ Ly. Also, by the similar argument to the proof of
Theorem 2.3, we have a closed cover

of X such that Fy, Fy are eventually colored within 7,,(k) = k(2n + 1) + 1 and F;
(3 <i<n+3—k) are colored. O

We have the following result which is the case C(f,p) = 2.

COROLLARY 2.7. Let f: X — X be a fized-point free homeomorphism of a
separable metric space X with dimX = n < oo. If dim P(f) < 0, then there is
some p € N with p < min{¢,(n+ 1), 7,(n+ 1)} such that

C(f,p) =2

In other words, X can be divided into two closed subsets Cy,Cy (i.e., X = C1UC3)
and there is some p € N such that if x € C; (i € {1,2}), there is a strictly
increasing sequence {ng(k)}?2, of natural numbers such that 1 < nz(1) < p,
ng(k+1) —ny(k) <p and if j € {1,2} with j # i, then

fr=® (@) € C; = Ci (k- odd), f"=M(x) € Ci = Cj (k= even).

By the above corollary, we see that m,, (k) < min{e,(k), 7,(k)}. We see that
wo(1) =2, v1(2) =7, v2(3) = 30, p3(4) = 113 and p4(5) = 544, Also, 19(1) = 2,
71(2) = 7, 2(3) = 16, 13(4) = 29 and 74(5) = 46. Hence we have the partial
answer to the above problem.

COROLLARY 2.8. Suppose that f : X — X is a fixed-point free homeomor-
phism of a separable metric space X and dim P(f) < 0.

(1) If dim X =0, then C(f,2) = 2.
(2) Ifdim X =1, then C(f,7) =
(3) If dim X = 2, then C(f,16) = 2.
(4) If dim X = 3, then C(f,29) =
(5) If dim X = 4, then C(f,46) =

(

In other words, mo(1) =2, m1(2) <7, ma(3) < 16, m3(4) <29 and my(5) < 46.



384 Y. IkEGami, H. KaTO and A. UEDA

3. Eventual coloring numbers of fixed-point free maps of compact
metric spaces.

In this section, we consider eventual coloring numbers of fixed-point free maps
of compact metric spaces. Let X be a compact metric space and let f : X — X
be a map. Counsider the inverse limit (X, f) of f, i.e.

(Xaf) = {(ml)?iol X; € X,f(xi) = T;—1 for 7 € N} C X = HXj.
=0

Then we have the shift homeomorphism f: (X,f) = (X, f) of f and the natural
projection p; : (X, f) — X; = X (j > 0) defined by

Fl@)2) = (F@)Zo, pi((@:)i2) = 2.

Note that p; - f = f-pj. Wesee that if f: X — X is a fixed-point free map
of a compact metric space X, then f (X, f) — (X, f) is a fixed-point free
homeomorphism. By a modification of the proof of [1, Theorem 6], we have the
following theorem which is a more precise result than [1, Theorem 6].

THEOREM 3.1.  Let f : X — X be a fized-point free map of a compact metric
space X and let f : (X, f) — (X, f) be the shift homeomorphism of f. Then for
peN,

C(f.p) = C*(f.p) = C(f.p).

PrOOF. Since fis a homeomorphism, we see that C(f, p)=CT (f, p). Also,
note that C*(f,p) > C(f,p). First, we suppose that the map f : X — X is
surjective. We show that C*(f,p) < C(f,p) < C(f,p). We will prove C(f,p) <
C(f,p). Let C be an eventual (closed) coloring within p of f. Since py - fv: 7 po,
we see that py ' (C) is a closed cover of (X, f) and

p

N () = 5 ( N fi(0)> 0
1=0

=0

for each C € C. This implies that C’(f,p) < C(f,p). We prove that CT(f,p) <
C(f,p) = C*T(f,p). Let C be an eventual (closed) coloring within p of f. Let
C € C. Then we see that (}_, f*(C') = 0. Take an open neighborhood U(C') of
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C in (X, f) such that ﬂfzofi(U(C)) = (. Note that for any ¢ > 0, there is a
sufficiently large j € N such that p; is an e-map, i.e., diam p}l(x) <eforzxe X.
Hence we see that there is j € N such that pj_l(fi(pj (C))) c fi(U(C)). Hence

o f{(p;j(C)) = 0. Since p; : (X, f) — X is surjective, the family p;(C) is a
closed cover of X. This implies that CT(f,p) < C(f,p) and hence C(f,p) =
Ct(f,p) = C(]ﬂ”v7 p). Next, we consider the general case in which f is any map.
Put

K= [ (X)|jeN}.

Consider the map g = f|K : K — K. Note that g is surjective. We prove that
C*(g,p) > C*(f,p). Consider any closed cover C of K such that for each C € C,

P o J1(C) = 0. Take an open swelling C’ of C in X. We may assume that for
each C' € C', (_, f{(C") = 0. Note that K is an attractor of f, i.e., there is
¢ € N such that f9(X) c U =JC'. Then f~9(C’) is an open cover of X and for
each C' € (',

P P p
Nrueye N rosien = re) =

i=0 i=0 j
This implies that C* (g, p) > C*(f, p). Note that (X, f) = (K, g) and f = §. Since
g is surjective, by the above arguments we see that C'(g,p) = C*(g,p) = C’(]T7 D).
Note that C(g,p) < C(f,p) < C*(f,p) < C*(g,p). Hence C(g,p) = C(f.p) =
C*(f.p) = C*(g,p). Consequently, C(f,p) = C*(f,p) = C(f,p). O

COROLLARY 3.2 (cf. [1, Theorem 6]). Let f: X — X be a fized-point free
map of a compact metric space X with dim X = n < oco. If dim P(f) < 0, then
there is p € N with p < min{e, (k), 7,(k)} such that

foreach k=0,1,2,... ., n+ 1.

PrROOF. Let 0 <k <n+1. Since dim P(f) <0, we see that dim P(f) <0.
Note that fis a fixed-point free homeomorphism and dim(X, f) < n. By Theorems
2.3 and 2.6, C(f,p) < n+ 3 — k some p < min{,(k), 7,(k)}. By Theorem 3.1,
we see that

C(f.p)=C(f,p) <n+3—k. 0
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EXAMPLE. There are a (zero-dimensional) separable metric space X and a
fixed-point free map f: X — X such that dim P(f) <0 and

(1) f is closed,
(2) f is finite-to-one, and
(3) f cannot be eventually colored within any p € N.

In fact, let f: X — X be the map as in [9, Theorem 3.12.7]. Then we see that
P(f) = 0 and f cannot be colored and satisfies the conditions (1), (2) (see [9,
Theorem 3.12.7]). Let U be any finite open cover of X. Then there exist some
U € U and a point z € U such that fP(x) € U for any p € N (see [9, Corollary
3.12.6] and the proof of [9, Theorem 3.12.7]). This implies that ¢/ is not an eventual
coloring within any p € N.

REMARK. In the statement of Theorem 1.3, “a separable metric space X”
can be replaced with “a paracompact space X” (see [M. A. van Hartskamp and
J. Vermeer, On colorings of maps, Topology and its Applications 73 (1996), 181—
190]). Hence Theorem 2.3 is also true for the case that X is a paracompact space.
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