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Eventual colorings of homeomorphisms
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Abstract. In this paper, we study some dynamical properties of fixed-
point free homeomorphisms of separable metric spaces. For each natural num-
ber p, we define eventual colorings within p of homeomorphisms which are
generalized notions of colorings of fixed-point free homeomorphisms, and we
investigate the eventual coloring number C(f, p) of a fixed-point free homeo-
morphism f : X → X with zero-dimensional set of periodic points. In par-
ticular, we show that if dim X < ∞, then there is a natural number p, which
depends on dim X, and X can be divided into two closed regions C1 and C2

such that for each point x ∈ X, the orbit {fk(x)}∞k=0 of x goes back and forth
between C1 − C2 and C2 − C1 within the time p.

1. Introduction.

In this paper, we assume that all spaces are nonempty separable metric spaces
and maps are continuous functions. Let N be the set of all natural numbers, i.e.,
N = {1, 2, 3, . . . }. For a (separable metric) space X, dim X denotes the topological
dimension of X. For each map f : X → X, let P (f) be the set of all periodic
points of f , i.e.,

P (f) = {x ∈ X| f j(x) = x for some j ∈ N}.

Let f : X → X be a fixed-point free closed map of a separable metric space
X, i.e., f(x) 6= x for each x ∈ X. In this paper, we assume that all maps are
closed maps, i.e., for any closed subset A of X, f(A) is closed in X. A subset C

of X is called a color (see [9]) of f if f(C) ∩ C = ∅. Note that f(C) ∩ C = ∅ if
and only if C ∩ f−1(C) = ∅. We say that a cover C of X is a coloring of f if each
element C of C is a color of f . The minimal cardinality C(f) of closed (or open)
colorings of f is called the coloring number of f . The coloring number C(f) has
been investigated by many mathematicians (see [1]–[5] and [7]–[9]).
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Theorem 1.1 (Lusternik and Schnirelman [7]). Let f : Sn → Sn be the
antipodal map of the n-dimensional sphere Sn. Then C(f) = n + 2.

Theorem 1.2 (Aarts, Fokkink and Vermeer [1]). Let f : X → X be a fixed-
point free involution of a (separable) metric space X with dimX = n < ∞. Then
C(f) ≤ n + 2.

Theorem 1.3 (Aarts, Fokkink and Vermeer [1]). Let f : X → X be a fixed-
point free homeomorphism of a (separable) metric space X with dimX = n < ∞.
Then C(f) ≤ n + 3.

Now, similarly we will consider more general notion of color as follows: Let
f : X → X be a fixed-point free map of a space X and p ∈ N. A subset C of X

is eventually colored within p of f if
⋂p

i=0 f−i(C) = ∅. Note that C is a color of f

if and only if C is eventually colored within 1. Then we have the following simple
proposition. For completeness, we give the proof.

Proposition 1.4. Let f : X → X be a fixed-point free map of a separable
metric space X and p ∈ N. Then the followings hold.

(1) A subset C of X is eventually colored within p of f if and only if each point
x ∈ C wanders off C within p, i.e., for each x ∈ C, f i(x) /∈ C with some
i ≤ p.

(2) If a subset C of X satisfies the condition
⋂p

i=0 f i(C) = ∅, then C is eventually
colored within p of f .

(3) If f is an injective map, then a subset C of X is eventually colored within p

of f if and only if C satisfies the condition
⋂p

i=0 f i(C) = ∅.

Proof. We prove (1). In fact, it is easily seen that
⋂p

i=0 f−i(C) 6= ∅ if and
only if there is an element x ∈ C such that f i(x) ∈ C for any 0 ≤ i ≤ p. We prove
(2). Suppose, on the contrary, that there is a point x ∈ C such that f i(x) ∈ C for
each 0 ≤ i ≤ p. Then fp(x) ∈ ⋂p

i=0 f i(C) = ∅. This is a contradiction. Finally we
prove (3). We suppose that f is injective. Let C be eventually colored within p of
f . Suppose, on the contrary, that

⋂p
i=0 f i(C) 6= ∅. Take a point y ∈ ⋂p

i=0 f i(C).
Choose a point x ∈ C such that fp(x) = y. Since f is injective, we see that
f i(x) ∈ C for each 0 ≤ i ≤ p. This is a contradiction. ¤

Remark. In general, the converse assertion of (2) in the proposition above
is not true. Let X = {a, b, c} be a set consisting three points and let f : X → X

be the map defined by f(a) = b, f(b) = c, f(c) = b. Then C = {a, b} is eventually
colored within 2 of f , but

⋂p
i=0 f i(C) 6= ∅ (p ∈ N).

We define the eventual coloring number C(f, p) as follows. A cover C of



Eventual colorings 377

X is called an eventual coloring within p if each element C of C is eventually
colored within p. The minimal cardinality C(f, p) of all closed (or open) eventual
colorings within p is called the eventual coloring number of f within p. Note that
C(f, 1) = C(f). If there is some p ∈ N with C(f, p) < ∞, we say that f is
eventually colored. Similarly, we can consider the index C+(f, p) defined by

min
{
|C|; C is a closed (open) cover of X

such that for each C ∈ C,
p⋂

i=0

f i(C) = ∅
}

.

By the definitions, we see that C(f, p) ≤ C+(f, p). In section 3, we show that
C(f, p) = C+(f, p) if X is compact.

In this paper, we need the following notions. A finite cover C of X is a
closed partition of X provided that each element C of C is closed, int(C) 6= ∅ and
C ∩ C ′ = bd(C) ∩ bd(C ′) for any C, C ′ ∈ C. Let B be a collection of subsets of
a space X with dimX = n < ∞. Then we say that B is in general position in X

provided that if S ⊂ B with |S| = m, then dim(
⋂{S| S ∈ S}) ≤ max{−1, n−m}.

By a swelling of a family {As}s∈S of subsets of a space X, we mean any family
{Bs}s∈S of subsets of X such that As ⊂ Bs (s ∈ S) and for every finite set of
indices s1, s2, . . . , sm ∈ S,

m⋂

i=1

Asi 6= ∅ if and only if
m⋂

i=1

Bsi 6= ∅.

Conversely, for any cover {Bs}s∈S of X, a cover {As}s∈S of X is a shrinking of
{Bs}s∈S if As ⊂ Bs (s ∈ S). The following facts are well-known;

(1) for any locally finite collection F of closed subsets of a space X, F has a
swelling consisting of open subsets of X (e.g., see [9, Proposition 3.2.1]) and

(2) for any open cover U of X, U has a closed shrinking cover of X (e.g., see [9,
Proposition A.7.1]).

Hence we see that if f : X → X is a closed map and a closed finite cover B of X

is an eventual coloring of f , then we can find an open swelling C of B which is an
eventual coloring of f .
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2. Eventual coloring numbers of fixed-point free homeomor-
phisms.

In this section, we will define an index ϕn(k). For each n = 0, 1, 2, . . . , and
each k = 0, 1, 2, . . . , n + 1, we define the index ϕn(k) as follows: Put ϕn(0) = 1.
For each k = 1, 2, . . . , n + 1, by induction on k we define the index ϕn(k) by

ϕn(k) = 2ϕn(k − 1) + [n/(n + 2− k)] · (ϕn(k − 1) + 1),

where [x] = max{m ∈ N∪{0}|m ≤ x} for x ∈ [0,∞). Note that ϕn(1) = 2 (n ≥ 0)
and ϕn(2) = 7 (n ≥ 1). Also, note that ϕ2(3) = 30, ϕn(3) = 22 (n ≥ 3),
ϕ3(4) = 113, ϕ4(4) = 90 and ϕ4(5) = 544.

In this paper, we need the following two lemmas whose proofs are some mod-
ifications of the proofs of Kulesza [6, Lemma 3.3 and Lemma 3.5].

Lemma 2.1 (cf. [6, Lemma 3.3]). Let C = {Ci| 1 ≤ i ≤ m} be an open cover
of a separable metric space X with dimX = n < ∞ and let B = {Bi| 1 ≤ i ≤ m}
be a closed shrinking of C. Suppose that O is an open set in X and Z is a zero-
dimensional subset of O. Then there is an open shrinking C′ = {C ′i| 1 ≤ i ≤ m}
of C such that for each i ≤ m,

(0) Bi ⊂ C ′i,
(1) C ′i = Ci if bd(Ci) ∩O = ∅,
(2) C ′i ∩ (X −O) = Ci ∩ (X −O),
(3) bd(C ′i) ∩ (X −O) ⊂ bd(Ci) ∩ (X −O),
(4) bd(C ′i) ∩ Z = ∅, and
(5) {bd(C ′) ∩O| C ′ ∈ C′} is in general position.

Proof. First, we will construct C ′1. Consider the subspace

Y1 = cl(C1) ∩ cl(O)− (bd(O) ∩ bd(C1))

of X. Put E1 = Y1 ∩ (bd(O) ∪ B1) and F1 = Y1 ∩ bd(C1). Then E1 and F1 are
disjoint closed subsets of Y1. Then we can take a closed separator (or partition)
S1 between E1 and F1 in Y1 such that dimS1 ≤ n − 1 and S1 ∩ Z = ∅ (e.g.,
see [9, Lemma 3.1.4]). Hence we have open subsets G1 and H1 of Y1 such that
Y1−S1 = G1 ∪H1, G1 ∩H1 = ∅ and G1 ⊃ E1,H1 ⊃ F1. Put C ′1 = (C1−O)∪G1.
Then C ′1 is an open set of X. By the construction, we see that C ′1 satisfies the
conditions (0)–(4).

We proceed by induction on i. Now we suppose that there are C ′j (j ≤ i− 1)
satisfying the conditions (0)–(4) and {bd(C ′j) ∩ O| 1 ≤ j ≤ i − 1} is in general
position. Consider the subspace Yi = cl(Ci ∩ cl(O)) − (bd(O) ∩ bd(Ci)) of X.
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Put Ei = Yi ∩ (bd(O) ∪ Bi) and Fi = Yi ∩ bd(Ci). Then Ei and Fi are disjoint
closed subsets of Yi. We can choose a zero-dimensional Fσ set Z ′ of O such that
if S ⊂ {O ∩ bd(Cj)| j ≤ i − 1} with |S| = m, then dim(

⋂{S| S ∈ S} − Z ′) ≤
max{−1, n − m − 1} (e.g., see [9, Lemma 3.11.16]). Then we can take a closed
separator Si between Ei and Fi in Yi such that dimSi ≤ n−1 and Si∩(Z∪Z ′) = ∅.
Then we have open subsets Gi and Hi of Yi such that Yi−Si = Gi∪Hi, Gi∩Hi = ∅
and Gi ⊃ Ei,Hi ⊃ Fi. Put C ′i = (Ci −O) ∪Gi. By the construction, we see that
C′ = {C ′i| 1 ≤ i ≤ m} satisfies the desired conditions. ¤

Lemma 2.2 (cf. [6, Lemma 3.5]). Suppose that f : X → X is a fixed-point
free homeomorphism of a separable metric space X such that dimX = n < ∞
and dimP (f) ≤ 0. Let C = {Ci| 1 ≤ i ≤ m} be an open cover of X and let
B = {Bi| 1 ≤ i ≤ m} be a closed shrinking of C. Then for any k ∈ N, there is an
open shrinking C′ = {C ′i| 1 ≤ i ≤ m} of C such that

(0) Bi ⊂ C ′i,
(1) {f j(bd(C ′))| C ′ ∈ C′,−k ≤ j ≤ k} is in general position,
(2) bd(C ′) ∩ P (f) = ∅ for each C ′ ∈ C′.

Proof. The proof is a modification of the proof of [6, Lemma 3.5]. We
proceed by induction on k. First we will show that the case k = 0 is true. In fact,
if we put O = X and Z = P (f), we see that the case k = 0 follows from Lemma
2.1. Now we suppose that the result for the case k − 1 is true. We may assume
that there is an open shrinking D = {Di| 1 ≤ i ≤ m} of C such that

(0) Bi ⊂ Di,
(1) {f j(bd(D))| D ∈ D,−k + 1 ≤ j ≤ k − 1} is in general position,
(2) bd(D) ∩ P (f) = ∅ for each D ∈ D.

Put F =
⋃{bd(D)| D ∈ D}. Since F ∩ P (f) = ∅, we can choose a star finite

open cover O = {Oj | j ∈ N} of F such that Oj ∩ F 6= ∅ and fp(Oj) ∩ fq(Oj) = ∅
for each j ∈ N and for p 6= q, −2k ≤ p, q ≤ 2k. We will construct a sequence
{D(j)| j = 0, 1, 2, . . . } of open shrinkings of C = {Ci| 1 ≤ i ≤ m} such that
D(j + 1) is a shrinking of D(j) for each j satisfying the following conditions:

(a) D(j) = {D(j)i| 1 ≤ i ≤ m}.
(b) Bi ⊂ D(j)i.
(c) D(0) = D.
(d) D(j − 1)i ∩ (X − Oj) = D(j)i ∩ (X − Oj), bd(D(j − 1)i) ∩ (X − Oj) ⊃

bd(D(j)i)∩ (X−Oj), and if bd(D(j−1)i)∩Oj = ∅, then bd(D(j)i)∩Oj = ∅.
(e) Bj = {fp(bd(D))|D ∈ D(j),−k+1 ≤ p ≤ k−1}∪{f−k(bd(D))∩(

⋃j
p=1 Op)|D

∈ D(j)} ∪ {fk(bd(D)) ∩ (
⋃j

p=1 Op)| D ∈ D(j)} is in general position.
(f) bd(D) ∩ P (f) = ∅ for D ∈ D(j).
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Also, we proceed by induction on j. Suppose that we have D(j). We will
construct D(j + 1). For each p with −k ≤ p ≤ k, consider the collection Sp =
{B ∩ fp(Oj+1)| B ∈ Bj}. Then there is a zero-dimensional Fσ-set Zp of fp(Oj+1)
such that if S ⊂ Sp, |S| = m, then dim(

⋂S − Zp) ≤ max{−1, n − m − 1}. Let
Z = (

⋃k
p=−k f−p(Zp)) ∪ (P (f) ∩Oj+1). Note that Z is a zero-dimensional Fσ-set

of Oj+1. Now, we use the same arguments as in the proof of Lemma 2.1. First, we
construct D(j+1)1 and by induction on i, we can construct D(j+1)i (2 ≤ i ≤ m).
Consequently we obtain D(j + 1) = {D(j + 1)i| 1 ≤ i ≤ m}. By the constructions
and the similar arguments to the proof of [6, Lemma 3.5], we see that D(j + 1)
satisfies the conditions (a)–(f).

Now, we obtain the above {D(j)| j = 0, 1, 2, . . . } satisfying the conditions (a)–
(f). Then we put C ′i =

⋂∞
j=0 D(j)i for each i = 1, 2, . . . , m. Since O is star finite

and by the construction of {D(j)| j = 0, 1, 2, . . . }, we see that C′ = {C ′i| 1 ≤ i ≤ m}
is an open cover of X. Also we see that C′ satisfies the desired conditions. ¤

The following result is the main theorem of this paper.

Theorem 2.3 (cf. [1]). Let f : X → X be a fixed-point free homeomorphism
of a separable metric space X with dimX = n < ∞. If dimP (f) ≤ 0, then

C(f, ϕn(k)) ≤ n + 3− k

for each k = 0, 1, 2, . . . , n + 1.

Remark. If we do not assume dim P (f) ≤ 0, the above theorem is not true.
Let f : Sn → Sn be the antipodal map of the n-dimensional sphere Sn. Note that
P (f) = Sn and C(f, p) = C(f, 1) = n + 2 for any p ∈ N.

Proof of Theorem 2.3. We proceed by induction on k. In the case k =
0, Theorem 2.3 follows from Theorem 1.3. Now we suppose that Theorem 2.3
holds for k − 1. We have an open cover C = {Ci| 1 ≤ i ≤ n + 3 − (k − 1)}
of X which is an eventual coloring within ϕn(k − 1). Take a closed shrinking
B = {Bi| 1 ≤ i ≤ n + 3 − (k − 1)} of C. By use of Lemma 2.2, we have an open
cover C′ = {C ′i| 1 ≤ i ≤ n + 3− (k − 1)} such that

(0) Bi ⊂ C ′i,
(1) {f j(bd(C ′))| C ′ ∈ C′, 0 ≤ j ≤ ϕn(k− 1) + [n/(n + 2− k)] · (ϕn(k− 1) + 1)} is

in general position,
(2) bd(C ′) ∩ P (f) = ∅ for each C ′ ∈ C′.

Put Ki = cl(C ′i) for 1 ≤ i ≤ n + 3 − (k − 1) and let K = {Ki| 1 ≤ i ≤
n + 3− (k − 1)}. Put
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L1 = K1, Li = cl(Ki − (K1 ∪K2 ∪ · · · ∪Ki−1)) (i ≥ 2).

Then the collection L = {Li| 1 ≤ i ≤ n + 3 − (k − 1)} is a closed partition of X

and L satisfies the condition; for 1 ≤ i1 < i2 < · · · < im ≤ n + 3− (k − 1),

bd(Li1) ∩ bd(Li2) ∩ · · ·bd(Lim) ⊂ bd(Ki1) ∩ bd(Ki2) ∩ · · · ∩ bd(Kim−1).

Put D = Ln+3−(k−1) ∈ L. Let x ∈ D. Since D is eventually colored within
ϕn(k − 1), we see that |Jx| ≥ [n/(n + 2− k)] + 1, where

Jx = {j| 0 ≤ j ≤ ϕn(k − 1) + [n/(n + 2− k)] · (ϕn(k − 1) + 1) and f j(x) /∈ D}.

For each j ∈ Jx, put

I(j) = {i ∈ {1, 2, . . . , n + 3− k}| f j(x) ∈ Li}.

Suppose, on the contrary, that |I(j)| = n + 3− k for all j ∈ Jx. Then

f j(x) ∈
n+3−k⋂

i=1

Li =
n+3−k⋂

i=1

bd(Li) ⊂
n+2−k⋂

i=1

bd(Ki) ⊂
n+2−k⋂

i=1

bd(C ′i).

Since {f j(bd(C ′))| C ′ ∈ C′, 0 ≤ j ≤ ϕn(k − 1) + [n/(n + 2− k)] · (ϕn(k − 1) + 1)}
is in general position, we see that ([n/(n + 2− k)] + 1)(n + 2− k) ≤ n. However,
we have the following inequality

([n/(n + 2− k)] + 1)(n + 2− k) ≥ n + 1.

This is a contradiction. Hence there is some j(x) ∈ Jx such that |I(j(x))| <

n+3−k. We choose Li(x) such that f j(x)(x) /∈ Li(x). Take an open neighborhood
U(x) of x in D such that f j(x)(cl(U(x)))∩ (D∪Li(x)) = ∅. Consider the collection
U = {U(x)|x ∈ D} and take a locally finite closed refinement W of U . For each
W ∈ W, we can choose U(x) such that W ⊂ U(x). Put j(W ) = i(x). For each
1 ≤ j ≤ n + 3− k, put Ej =

⋃{W ∈ W| j(W ) = j} and define Fj = Lj ∪Ej . We
will show that Fj is eventually colored within ϕn(k).

Let y ∈ Fj(= Lj ∪ Ej). If y ∈ Ej , then we can choose W ∈ W and U(x) ∈ U
such that y ∈ W ⊂ U(x). Then j(x) ≤ ϕn(k− 1)+ [n/(n+2−k)] · (ϕn(k− 1)+1)
and f j(x)(y) /∈ (Lj ∪ D). If y ∈ Lj , we can choose p ≤ ϕn(k − 1) such that
y′ = fp(x) /∈ Lj . If y′ /∈ Ej , then fp(x) /∈ Fj . Finally, if y′ ∈ Ej , the previous
argument shows that there is q ≤ ϕn(k− 1)+ [n/(n+2− k)] · (ϕn(k− 1)+1) such
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that fq(y′) /∈ Fj . Hence fp+q(y) /∈ Fj and p + q ≤ ϕn(k). Then the closed cover
F = {Fj | 1 ≤ j ≤ n + 3 − k} of X is an eventual coloring within ϕn(k). This
implies that C(f, ϕn(k)) ≤ n + 3− k. This completes the proof. ¤

Corollary 2.4. Let f : X → X be a fixed-point free homeomorphism of a
separable metric space X with dimX = n < ∞. If dimP (f) ≤ 0, then C(f, 2) ≤
n + 2 (n ≥ 0) and C(f, 7) ≤ n + 1 (n ≥ 1).

Now we have the following general problem for eventual coloring numbers.

Problem 2.5. For each n ≥ 0 and each 1 ≤ k ≤ n + 1, determine the
minimal number mn(k) of natural numbers p satisfying the condition; if f : X → X

is any fixed-point free homeomorphism of a separable metric space X such that
dimX = n and dimP (f) ≤ 0, then C(f, p) ≤ n + 3− k.

Next, we will consider another index τn(k) defined by τn(k) = k(2n + 1) + 1
for each n = 0, 1, 2, . . . , and each k = 0, 1, 2, . . . , n + 1.

Theorem 2.6. Let f : X → X be a fixed-point free homeomorphism of a
separable metric space X with dimX = n < ∞. If dimP (f) ≤ 0, then

C(f, τn(k)) ≤ n + 3− k

for each k = 0, 1, 2, . . . , n + 1.

Proof. The proof is similar to the proof of Theorem 2.3. We proceed by
induction on k. In the case k = 0, Theorem 2.6 follows from Theorem 1.3. Now we
suppose that k ≥ 1 and there is an open cover C = {Ci| 1 ≤ i ≤ n+3−(k−1)} of X

such that cl(C1), cl(C2) are eventually colored within τn(k−1) = (k−1)(2n+1)+1
and cl(Ci) (3 ≤ i ≤ n + 3 − (k − 1)) are colored (=eventually colored within 1).
By use of Lemma 2.2, we may assume that

{f j(bd(C))| C ∈ C, 0 ≤ j ≤ 2n + 1}

is in general position. In particular, {f j(bd(C1))| 0 ≤ j ≤ 2n + 1} is in general
position.

Put Ki = cl(Ci) for 1 ≤ i ≤ n + 3 − (k − 1) and let K = {Ki| 1 ≤ i ≤
n + 3− (k − 1)}. Put

L1 = K1, Li = cl(Ki − (K1 ∪K2 ∪ · · · ∪Ki−1)) (i ≥ 2).

Then the collection L = {Li| 1 ≤ i ≤ n + 3 − (k − 1)} is a closed partition of X.
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Note that L1 ∩ L2 ⊂ bd(C1). Let x ∈ L3. Since L3 is colored, |J3(x)| ≥ n + 1,
where J3(x) = {j| 0 ≤ j ≤ 2n + 1 and f j(x) /∈ L3}. By the similar argument
to the proof of Theorem 2.3, we see that there is some j(x) ∈ J3(x) such that
f j(x)(x) /∈ L1 or f j(x)(x) /∈ L2. Also, by the similar argument to the proof of
Theorem 2.3, we have a closed cover

F = {Fi| 1 ≤ i ≤ n + 3− k}

of X such that F1, F2 are eventually colored within τn(k) = k(2n + 1) + 1 and Fi

(3 ≤ i ≤ n + 3− k) are colored. ¤

We have the following result which is the case C(f, p) = 2.

Corollary 2.7. Let f : X → X be a fixed-point free homeomorphism of a
separable metric space X with dimX = n < ∞. If dimP (f) ≤ 0, then there is
some p ∈ N with p ≤ min{ϕn(n + 1), τn(n + 1)} such that

C(f, p) = 2.

In other words, X can be divided into two closed subsets C1, C2 (i.e., X = C1∪C2)
and there is some p ∈ N such that if x ∈ Ci (i ∈ {1, 2}), there is a strictly
increasing sequence {nx(k)}∞k=1 of natural numbers such that 1 ≤ nx(1) ≤ p,
nx(k + 1)− nx(k) ≤ p and if j ∈ {1, 2} with j 6= i, then

fnx(k)(x) ∈ Cj − Ci (k : odd), fnx(k)(x) ∈ Ci − Cj (k : even).

By the above corollary, we see that mn(k) ≤ min{ϕn(k), τn(k)}. We see that
ϕ0(1) = 2, ϕ1(2) = 7, ϕ2(3) = 30, ϕ3(4) = 113 and ϕ4(5) = 544, Also, τ0(1) = 2,
τ1(2) = 7, τ2(3) = 16, τ3(4) = 29 and τ4(5) = 46. Hence we have the partial
answer to the above problem.

Corollary 2.8. Suppose that f : X → X is a fixed-point free homeomor-
phism of a separable metric space X and dimP (f) ≤ 0.

(1) If dimX = 0, then C(f, 2) = 2.
(2) If dimX = 1, then C(f, 7) = 2.
(3) If dimX = 2, then C(f, 16) = 2.
(4) If dimX = 3, then C(f, 29) = 2.
(5) If dimX = 4, then C(f, 46) = 2.

In other words, m0(1) = 2, m1(2) ≤ 7, m2(3) ≤ 16, m3(4) ≤ 29 and m4(5) ≤ 46.
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3. Eventual coloring numbers of fixed-point free maps of compact
metric spaces.

In this section, we consider eventual coloring numbers of fixed-point free maps
of compact metric spaces. Let X be a compact metric space and let f : X → X

be a map. Consider the inverse limit (X, f) of f , i.e.

(X, f) =
{
(xi)∞i=0| xi ∈ X, f(xi) = xi−1 for i ∈ N} ⊂ X∞ =

∞∏

j=0

Xj .

Then we have the shift homeomorphism f̃ : (X, f) → (X, f) of f and the natural
projection pj : (X, f) → Xj = X (j ≥ 0) defined by

f̃((xi)∞i=0) = (f(xi))∞i=0, pj((xi)∞i=0) = xj .

Note that pj · f̃ = f · pj . We see that if f : X → X is a fixed-point free map
of a compact metric space X, then f̃ : (X, f) → (X, f) is a fixed-point free
homeomorphism. By a modification of the proof of [1, Theorem 6], we have the
following theorem which is a more precise result than [1, Theorem 6].

Theorem 3.1. Let f : X → X be a fixed-point free map of a compact metric
space X and let f̃ : (X, f) → (X, f) be the shift homeomorphism of f . Then for
p ∈ N,

C(f, p) = C+(f, p) = C(f̃ , p).

Proof. Since f̃ is a homeomorphism, we see that C(f̃ , p) = C+(f̃ , p). Also,
note that C+(f, p) ≥ C(f, p). First, we suppose that the map f : X → X is
surjective. We show that C+(f, p) ≤ C(f̃ , p) ≤ C(f, p). We will prove C(f̃ , p) ≤
C(f, p). Let C be an eventual (closed) coloring within p of f . Since p0 · f̃ = f · p0,
we see that p−1

0 (C) is a closed cover of (X, f) and

p⋂

i=0

f̃−i(p−1
0 (C)) = p−1

0

( p⋂

i=0

f−i(C)
)

= ∅

for each C ∈ C. This implies that C(f̃ , p) ≤ C(f, p). We prove that C+(f, p) ≤
C(f̃ , p) = C+(f̃ , p). Let C be an eventual (closed) coloring within p of f̃ . Let
C ∈ C. Then we see that

⋂p
i=0 f̃ i(C) = ∅. Take an open neighborhood U(C) of
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C in (X, f) such that
⋂p

i=0 f̃ i(U(C)) = ∅. Note that for any ε > 0, there is a
sufficiently large j ∈ N such that pj is an ε-map, i.e., diam p−1

j (x) < ε for x ∈ X.
Hence we see that there is j ∈ N such that p−1

j (f i(pj(C))) ⊂ f̃ i(U(C)). Hence⋂p
i=0 f i(pj(C)) = ∅. Since pj : (X, f) → X is surjective, the family pj(C) is a

closed cover of X. This implies that C+(f, p) ≤ C(f̃ , p) and hence C(f, p) =
C+(f, p) = C(f̃ , p). Next, we consider the general case in which f is any map.
Put

K =
⋂
{f j(X)| j ∈ N}.

Consider the map g = f |K : K → K. Note that g is surjective. We prove that
C+(g, p) ≥ C+(f, p). Consider any closed cover C of K such that for each C ∈ C,⋂p

i=0 f i(C) = ∅. Take an open swelling C′ of C in X. We may assume that for
each C ′ ∈ C′, ⋂p

i=0 f i(C ′) = ∅. Note that K is an attractor of f , i.e., there is
q ∈ N such that fq(X) ⊂ U =

⋃ C′. Then f−q(C′) is an open cover of X and for
each C ′ ∈ C′,

p⋂

i=0

f i(f−q(C ′)) ⊂
p⋂

i=0

f−q(f i(C ′)) = f−q

( p⋂

i=0

f i(C ′)
)

= ∅.

This implies that C+(g, p) ≥ C+(f, p). Note that (X, f) = (K, g) and f̃ = g̃. Since
g is surjective, by the above arguments we see that C(g, p) = C+(g, p) = C(f̃ , p).
Note that C(g, p) ≤ C(f, p) ≤ C+(f, p) ≤ C+(g, p). Hence C(g, p) = C(f, p) =
C+(f, p) = C+(g, p). Consequently, C(f, p) = C+(f, p) = C(f̃ , p). ¤

Corollary 3.2 (cf. [1, Theorem 6]). Let f : X → X be a fixed-point free
map of a compact metric space X with dimX = n < ∞. If dimP (f) ≤ 0, then
there is p ∈ N with p ≤ min{ϕn(k), τn(k)} such that

C(f, p) ≤ n + 3− k

for each k = 0, 1, 2, . . . , n + 1.

Proof. Let 0 ≤ k ≤ n + 1. Since dimP (f) ≤ 0, we see that dim P (f̃) ≤ 0.
Note that f̃ is a fixed-point free homeomorphism and dim(X, f) ≤ n. By Theorems
2.3 and 2.6, C(f̃ , p) ≤ n + 3 − k some p ≤ min{ϕn(k), τn(k)}. By Theorem 3.1,
we see that

C(f, p) = C(f̃ , p) ≤ n + 3− k. ¤
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Example. There are a (zero-dimensional) separable metric space X and a
fixed-point free map f : X → X such that dimP (f) ≤ 0 and

(1) f is closed,
(2) f is finite-to-one, and
(3) f cannot be eventually colored within any p ∈ N.

In fact, let f : X → X be the map as in [9, Theorem 3.12.7]. Then we see that
P (f) = ∅ and f cannot be colored and satisfies the conditions (1), (2) (see [9,
Theorem 3.12.7]). Let U be any finite open cover of X. Then there exist some
U ∈ U and a point x ∈ U such that fp(x) ∈ U for any p ∈ N (see [9, Corollary
3.12.6] and the proof of [9, Theorem 3.12.7]). This implies that U is not an eventual
coloring within any p ∈ N.

Remark. In the statement of Theorem 1.3, “a separable metric space X”
can be replaced with “a paracompact space X” (see [M. A. van Hartskamp and
J. Vermeer, On colorings of maps, Topology and its Applications 73 (1996), 181–
190]). Hence Theorem 2.3 is also true for the case that X is a paracompact space.
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