
c©2013 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 65, No. 2 (2013) pp. 357–374
doi: 10.2969/jmsj/06520357

Thick subcategories over Gorenstein local rings

that are locally hypersurfaces on the punctured spectra

By Ryo Takahashi

(Received Mar. 19, 2011)
(Revised Aug. 10, 2011)

Abstract. Let R be a Gorenstein local ring which is locally a hypersur-
face on the punctured spectrum. In this paper, we classify thick subcategories
of the bounded derived category of finitely generated R-modules. Moreover,
using this classification, we also classify thick subcategories of finitely gen-
erated R-modules, and find out the relationships with thick subcategories of
Cohen-Macaulay R-modules.

1. Introduction.

A thick subcategory of a triangulated category is by definition a full trian-
gulated subcategory which is closed under direct summands. The classification
problem of thick subcategories of a given triangulated category has been stud-
ied in stable homotopy theory, ring theory, modular representation theory and
algebraic geometry. The first study was done by Devinatz, Hopkins and Smith
[12], [15], who classified thick subcategories of the category of compact objects in
the p-local stable homotopy category. Later on, Hopkins [14] and Neeman [20]
classified thick subcategories of the derived category of perfect complexes over a
commutative noetherian ring in terms of specialization-closed subsets of the prime
ideal spectrum of the ring. This Hopkins-Neeman theorem was generalized by
Thomason [24] to quasi-compact and quasi-separated schemes. Benson, Carlson
and Rickard [5] gave a classification theorem of thick subcategories of the stable
category of finitely generated representations of a finite p-group in terms of closed
homogeneous subvarieties of the maximal ideal spectrum of the group cohomology
ring. This was extended by Friedlander and Pevtsova [13] to finite group schemes.
Many other results on classifying thick subcategories and related results have been
obtained so far; see [1], [2], [3], [4], [6], [7], [8], [9], [10], [16], [17], [18], [19], [22].
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Let R be a Gorenstein local ring which is locally a hypersurface on the punc-
tured spectrum. Denote by mod(R) the category of finitely generated R-modules,
by Db(R) the bounded derived category of mod(R), by CM(R) the category of
(maximal) Cohen-Macaulay R-modules and by CM(R) the stable category of
CM(R). Recently, as a higher dimensional version of the work of Benson, Carlson
and Rickard, Takahashi [23] gave a classification theorem of thick subcategories of
CM(R). In this paper, we will classify thick subcategories of Db(R) by taking the
infinite projective dimension loci of those subcategories, which are specialization-
closed subsets of Spec(R) contained in the singular locus Sing(R). Moreover,
using this classification, we will also classify thick subcategories of mod(R), and
find out the relationships among thick subcategories of Db(R), mod(R), CM(R)
and CM(R). The main result of this paper will be stated and proved in Section 5.

Convention. Throughout the rest of this paper, let R be a commutative
Gorenstein local ring of Krull dimension dimR = d. Denote by m the maximal
ideal of R and by k the residue field of R.

2. The main result of [23].

In this section, we recall the main result of the paper [23], which will form
the basis of the main result of the present paper. We denote the category of
finitely generated R-modules by mod(R), the full subcategory of (maximal) Cohen-
Macaulay R-modules by CM(R) and its stable category by CM(R). We can regard
a full subcategory of CM(R) as a full subcategory of mod(R).

First of all, we state the definitions of thick subcategories.

Definition 2.1. (1) A subcategory X of a category C is called strict pro-
vided that X is closed under isomorphisms: if X is an object in X and Y is
an object isomorphic to X in C, then Y is also an object in X .

(2) A nonempty strict full subcategory X of a triangulated category T is called
thick provided that the following hold.
(a) X is closed under direct summands: if X is an object in X and Y is a

direct summand of X in T , then Y is also an object in X .
(b) X is closed under exact triangles: for an exact triangle L → M → N →

in T , if two of L,M,N are in X , then so is the third.
(3) A nonempty strict full subcategory X of mod(R) is called thick provided that

the following hold.
(a) X is closed under direct summands: if X is an object in X and Y is a

direct summand of X in mod(R), then Y is also an object in X .
(b) X is closed under short exact sequences: for an exact sequence 0 → L →

M → N → 0 of finitely generated R-modules, if two of L,M,N are in X ,
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then so is the third.
(4) A nonempty strict full subcategory X of CM(R) is called thick provided that

the following hold.
(a) X is closed under direct summands: if X is an object in X and Y is a

direct summand of X in CM(R), then Y is also an object in X .
(b) X is closed under short exact sequences: for an exact sequence 0 → L →

M → N → 0 of Cohen-Macaulay R-modules, if two of L,M,N are in X ,
then so is the third.

Note that a thick subcategory in each sense contains the zero object. There
are a lot of examples of a thick subcategory in each sense. For instance, for a
fixed object X the full subcategories determined by vanishing of TorR

À0(X,−),
ExtÀ0

R (X,−) and ExtÀ0
R (−, X) are thick subcategories. In particular, the full

subcategory consisting of all objects that have finite projective dimension is thick.
More generally, the objects of complexity less than or equal to some fixed non-
negative integer form a thick subcategory. Hence the full subcategory of modules
having bounded Betti numbers and the full subcategory of modules with finite
complexity are thick.

Next, we state the definitions of nonfree loci and stable supports.

Definition 2.2. (1) For an object M of CM(R), we denote by N(M) the
nonfree locus of M , namely, the set of prime ideals p of R such that the Rp-
module Mp is nonfree.

(2) For a full subcategory Z of CM(R), we denote by N(Z) the nonfree locus of
Z, namely, the union of N(Z) where Z runs through all objects in Z.

(3) For a subset Φ of Spec(R), we denote by N−1(Φ) the full subcategory of CM(R)
consisting of all objects M of CM(R) such that N(M) is contained in Φ.

Definition 2.3. (1) For an object M of CM(R), we denote by S(M) the
stable support of M , namely, the set of prime ideals p of R such that Mp is
not isomorphic to 0 in CM(Rp).

(2) For a full subcategory W of CM(R), we denote by S(W) the stable support of
W, namely, the union of S(W ) where W runs through all objects in W.

(3) For a subset Φ of Spec(R), we denote by S−1(Φ) the full subcategory of CM(R)
consisting of all objects M of CM(R) such that S(M) is contained in Φ.

Note that N−1(Φ) and S−1(Φ) are strict subcategories of CM(R) and CM(R),
respectively.

Here we recall some definitions and introduce some notation. The ring R

is called an abstract hypersurface if the m-adic completion of R is isomorphic to
S/(f) for some complete regular local ring S and an element f ∈ S. The singular
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locus Sing(R) is defined as the set of prime ideals p of R such that the local ring
Rp is singular. A subset Φ of Spec(R) is called specialization-closed if every prime
ideal of R containing some prime ideal in Φ belongs to Φ. The punctured spectrum
of R is by definition the set Spec(R) \ {m}. For a nonnegative integer n, the n-th
syzygy ΩnM of a finitely generated R-module M is defined to be the image of the
n-th differential map in a minimal free resolution of M .

The following theorem is proved by Takahashi [23], which classifies thick
subcategories of CM(R) and of CM(R).

Theorem 2.4 ([23, Proposition 6.2 and Theorem 6.8]). Consider the fol-
lowing two cases.

(1) Let R be an abstract hypersurface. Set

A = {Specialization-closed subsets of Spec(R) contained in Sing(R)},
B = {Thick subcategories of CM(R)},
C = {Thick subcategories of CM(R) containing R}.

(2) Let R be singular, and locally an abstract hypersurface on the punctured spec-
trum. Set

A = {Nonempty specialization-closed subsets
of Spec(R) contained in Sing(R)},

B = {Thick subcategories of CM(R) containing Ωdk},
C = {Thick subcategories of CM(R) containing R and Ωdk}.

In each of the above two cases, one has the following commutative diagram of
bijections.

A

S−1

wwooooooooooooooooooooooooooooooooooooooooo

N−1

¥¥©©
©©

©©
©©

©©
©©

©©
©©

©©
©©

©

B

S

77ooooooooooooooooooooooooooooooooooooooooo can // C
can

oo

N

DD©©©©©©©©©©©©©©©©©©©©©

Here, can denotes a canonical map.
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The above diagram will be extended in Theorem 5.1 to a larger commutative
diagram of bijections.

3. Thick subcategories of Db(R).

In this section, we consider classifying thick subcategories of the bounded
derived category of finitely generated R-modules.

Let F : A → B be a functor of categories. For a strict full subcategory X of
B we denote by F−1X the full subcategory of A consisting of all objects A of A
such that FA belongs to X . Note that F−1X is a strict subcategory of A.

We begin with two general results on thick subcategories of triangulated cat-
egories.

Lemma 3.1. Let T be a triangulated category and U a thick subcategory of
T . Let F : T → T /U be the localization functor. Then there is a one-to-one
correspondence

{
Thick subcategories
of T containing U

} f−→
←−

g

{
Thick subcategories

of T /U
}

where f is given by X 7→ X/U and g by Y 7→ F−1Y.

Proof. Let X be a thick subcategory of T containing U , and let Y be a
thick subcategory of T /U . Let us show the lemma step by step.

(1) We can regard U as a thick subcategory of the triangulated category X ,
and hence we can define the quotient category X/U . Let G : X → X/U be the
localization functor. The inclusion functor α : X → T is uniquely extended to a
triangle functor β : X/U → T /U such that Fα = βG; see [21, Theorem 2.1.8].
We can show that β is fully faithful, and hence X/U can be viewed as a full
subcategory of T /U .

Let M be an object of X/U and let φ : M → N be an isomorphism in T /U .
Then M is an object of X and N is an object of T . We describe the isomorphism
φ as

(M s← L
h→ N) = (Fh) · (Fs)−1.

The morphism Fh = (L 1← L
h→ N) = φ ·(Fs) is an isomorphism. Taking an exact

triangle L
h→ N → A → in T , we observe that A belongs to U by the thickness

of U ; see [21, Proposition 2.1.35]. There is an exact triangle L
s→ M → B → in

T with B ∈ U , which implies that L belongs to X . Hence N also belongs to X .
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Thus N is an object in X/U , and it follows that X/U is a strict subcategory of
T /U . Also, we can prove that X/U is closed under direct summands and exact
triangles. Consequently, X/U is a thick subcategory of T /U .

(2) By [21, Remark 2.1.10], the subcategory U coincides with the kernel of
F , namely, the full subcategory of T consisting of all objects T of T such that
FT is isomorphic to 0 in T /U . Since Y contains 0 and is strict, F−1Y contains
U . It is clear that F−1Y is closed under direct summands. Using the fact that F

is a triangle functor, we observe that F−1Y is closed under exact triangles. Thus,
F−1Y is a thick subcategory of T containing U .

(3) It is easy to check that gf(X ) = F−1(X/U) = X and fg(Y) =
(F−1Y)/U = Y hold. ¤

Let F : A → B be a functor of categories. For a full subcategory X of A we
denote by FX the full subcategory of B consisting of all objects B of B such that
B ∼= FX for some X ∈ X . Note that FX is a strict subcategory of B.

The proof of the following lemma is standard, and we omit it.

Lemma 3.2. Let F : T → T ′ be a triangle equivalence of triangulated cat-
egories. Let G : T ′ → T be a quasi-inverse of F . Then there is a one-to-one
correspondence

{
Thick subcategories

of T
} f−→
←−

g

{
Thick subcategories

of T ′
}

where f is given by X 7→ FX and g by Y 7→ GY.

We denote by Db(R) the bounded derived category of mod(R), and by perf(R)
the full subcategory of Db(R) consisting of all perfect complexes, namely, bounded
complexes of finitely generated projective (equivalently, free) R-modules.

Remark 3.3. It is well known that perf(R) is the smallest thick subcategory
of Db(R) containing R.

Definition 3.4. By virtue of [11, Theorem 4.4.1], the assignment M 7→ M

makes a triangle equivalence

CM(R)
∼=−→ Db(R)/ perf(R). (3.4.1)

We recall the construction of a quasi-inverse QR of this functor which is stated in
[11, (4.5)]. Let X be an object of Db(R)/ perf(R). Then X is a bounded complex
of finitely generated R-modules. Take a free resolution
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F =
(
· · · fi+1−→ Fi

fi−→ Fi−1
fi−1−→ · · ·

)

of X. Fix an integer n ≥ supX + dim R, where sup X = sup{i ∈ Z | Hi(X) 6= 0}.
Let N be the image of fn. The R-module N is Cohen-Macaulay, whence there is
an exact sequence

· · · gi+1−→ Gi
gi−→ Gi−1

gi−1−→ · · ·

of finitely generated free R-modules with Gi = Fi for i ≥ n, gi = fi for i ≥ n + 1
and the image of gn being N . Then QR(X) is defined to be the image of g0.

Lemma 3.5. For X ∈ Db(R)/ perf(R) and p ∈ Spec(R), one has an iso-
morphism

(QR(X))p
∼= QRp(Xp)

in CM(Rp).

Proof. We use the notation of Definition 3.4. We have n ≥ supX +
dimR ≥ supXp + dim Rp. Since Fp is a free Rp-resolution of Xp and Np is a
Cohen-Macaulay Rp-module, the assertion follows from the construction of the
functor QR which we observed in Definition 3.4. ¤

Now we make the definitions of the infinite projective dimension loci of an
object and a full subcategory of Db(R).

Definition 3.6. (1) For an object C of Db(R), we denote by I(C) the set of
prime ideals p of R such that the Rp-complex Cp does not belong to perf(Rp),
namely, Cp has infinite projective dimension as an Rp-complex. We call this
the infinite projective dimension locus of C.

(2) For a full subcategory X of Db(R), we denote by I(X ) the union of I(X) where
X runs through all objects in X . We call this the infinite projective dimension
locus of X .

(3) For a subset Φ of Spec(R), we denote by I−1(Φ) the full subcategory of Db(R)
consisting of all objects C of Db(R) such that I(C) is contained in Φ.

Note that I−1(Φ) is a strict subcategory of Db(R).
We give some basic properties of infinite projective dimension loci in the next

two lemmas.

Lemma 3.7. Let X be a full subcategory of Db(R). Then I(X ) is a
specialization-closed subset of Spec(R) contained in Sing(R).



364 R. Takahashi

Proof. Let p be a prime ideal of R and M a finitely generated R-module.
If the Rp-module Mp has finite projective dimension, then so does the Rq-module
Mq for every prime ideal q contained in p. On the other hand, over a regular local
ring every bounded complex of finitely generated modules has finite projective
dimension. The assertion follows from these. ¤

Lemma 3.8. (1) For an object X of perf(R), one has I(X) = ∅.
(2) For an object X of Db(R), one has I(X) = I(ΣX), where Σ denotes the

suspension functor.
(3) For an exact triangle X → Y → Z → in Db(R), one has I(X) ⊆ I(Y )∪ I(Z).
(4) For objects X, Y ∈ Db(R), one has I(X ⊕ Y ) = I(X) ∪ I(Y ).

This lemma is shown straightforwardly.
The result below is a direct consequence of Lemma 3.8.

Lemma 3.9. Let Φ be a subset of Spec(R). Then I−1(Φ) is a thick subcate-
gory of Db(R) containing perf(R).

We state here three lemmas; the first and third ones will play an important
role in the proof of the main result of this section.

Lemma 3.10. Let X be a thick subcategory of Db(R) containing perf(R).
Then the equality I(X ) = S(QR(X/ perf(R))) holds.

Proof. Let p be a prime ideal of R. Then we have

p ∈ S(QR(X/ perf(R)))

⇐⇒ QRp(Xp) ∼= (QR(X))p 6∼= 0 in CM(Rp) for some X ∈ X
⇐⇒ Xp 6∼= 0 in Db(Rp)/ perf(Rp) for some X ∈ X
⇐⇒ Xp /∈ perf(Rp) for some X ∈ X
⇐⇒ p ∈ I(X ).

Here, Lemma 3.5 is applied in the second statement. Since the functor QRp is an
equivalence of additive categories, we obtain the second equivalence. The third
equivalence follows from the fact that perf(Rp) is the kernel of the localization
functor Db(Rp) → Db(Rp)/ perf(Rp); see [21, Remark 2.1.10]. ¤

For each M ∈ mod(R), we define the R-complex

∆M = (· · · → 0 → 0 → M → 0 → 0 → · · · )
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with M being in degree zero. It is well known and easily observed that the assign-
ment M 7→ ∆M makes a fully faithful functor mod(R) → Db(R).

Lemma 3.11. For every p ∈ Sing R, one has I(∆(R/p)) = V (p).

Proof. The set I(∆(R/p)) consists of the prime ideals q of R such that
the Rq-module Rq/pRq has infinite projective dimension. Hence I(∆(R/p)) is a
subset of V (p). Since Rp is singular, the residue field κ(p) = Rp/pRp has infinite
projective dimension as an Rp-module. This means that p belongs to I(∆(R/p)).
As I(∆(R/p)) is specialization-closed by Lemma 3.7, it contains V (p). Hence we
have I(∆(R/p)) = V (p). ¤

Lemma 3.12. Let Φ be a specialization-closed subset of Spec(R) contained
in Sing(R). Then the equality Φ = I(I−1(Φ)) holds.

Proof. It is clear that Φ contains I(I−1(Φ)). Let p ∈ Φ. As Φ is con-
tained in Sing(R), Lemma 3.11 gives an equality I(∆(R/p)) = V (p). Since Φ is
specialization-closed, V (p) is contained in Φ. Hence ∆(R/p) is a subset of I−1(Φ),
and we obtain p ∈ V (p) = I(∆(R/p)) ⊆ I(I−1(Φ)). ¤

Now we state and prove the main result of this section.

Theorem 3.13. (1) Let R be an abstract hypersurface. Then one has the
following one-to-one correspondence:

{
Thick subcategories of Db(R)

containing R

} I−→
←−
I−1

{
Specialization-closed subsets

of Spec(R) contained in Sing(R)

}
.

(2) Let R be singular, and be locally an abstract hypersurface on the punctured
spectrum. Then one has the following one-to-one correspondence:

{
Thick subcategories of Db(R)

containing R and k

} I−→
←−
I−1

{
Nonempty specialization-closed subsets

of Spec(R) contained in Sing(R)

}
.

Proof. (1) We have the bijections

{Thick subcategories of Db(R) containing R}
e= {Thick subcategories of Db(R) containing perf(R)}
f→ {Thick subcategories of Db(R)/ perf(R)}
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g→ {Thick subcategories of CM(R)}
h→ {Specialization-closed subsets of Spec(R) contained in Sing(R)},

where f is given by X 7→ X/ perf(R), g by Y 7→ QR(Y) and h by Z 7→ S(Z). The
equality e follows from Remark 3.3. Lemma 3.1 implies that f is bijective, and so
is g by (3.4.1) and Lemma 3.2. The fact that h is bijective is shown by Theorem
2.4. The composition of all the above bijections sends each thick subcategory X
of Db(R) containing R to the specialization-closed subset S(QR(X/ perf(R))) of
Spec(R) contained in Sing(R), which coincides with I(X ) by Lemma 3.10. Thus
the assignment X 7→ I(X ) makes a bijection from the set of thick subcategories of
Db(R) containing R to the set of specialization-closed subsets of Spec(R) contained
in Sing(R). Lemmas 3.9 and 3.12 guarantee that the assignment Φ 7→ I−1(Φ)
makes the inverse map.

(2) This assertion is proved similarly to (1). Just note that a thick subcat-
egory of Db(R) containing R and k is nothing but a thick subcategory of Db(R)
containing perf(R) and Ωdk, and that QR(Ωdk) is isomorphic to Ωdk in CM(R).

¤

4. Thick subcategories of mod(R) and CM(R).

In this section, we consider classifying thick subcategories of mod(R) and
CM(R) by using the classification theorem of thick subcategories of Db(R) which
has been obtained in the previous section. We start by introducing the notion of
an infinite projective dimension locus for modules.

Definition 4.1. (1) For an object M of mod(R), we denote by J(M) the
set of prime ideals p of R such that the Rp-module Mp has infinite projective
dimension. We call this the infinite projective dimension locus of M .

(2) For a full subcategory Y of mod(R), we denote by J(Y) the union of J(Y )
where Y runs through all objects in Y. We call this the infinite projective
dimension locus of Y.

(3) For a subset Φ of Spec(R), we denote by J−1(Φ) the full subcategory of mod(R)
consisting of all objects M of mod(R) such that J(M) is contained in Φ.

Note that J−1(Φ) is a strict subcategory of mod(R).
For a full subcategory Y of mod(R), let ∆Y denote the full subcategory

of Db(R) consisting of all complexes ∆Y with Y ∈ Y. The infinite projective
dimension loci of finitely generated modules are closely related to the infinite
projective dimension loci of bounded complexes of finitely generated modules and
the nonfree loci of Cohen-Macaulay modules.



Thick subcategories over Gorenstein local rings 367

Lemma 4.2. (1) ( i ) For a finitely generated R-module M , one has J(M) =
I(∆M).

( ii ) For a Cohen-Macaulay R-module M , one has J(M) = N(M).
(2) ( i ) For a full subcategory Y of mod(R), one has J(Y) = I(∆Y).

( ii ) For a full subcategory Z of CM(R), one has J(Z) = N(Z).

Proof. (1) The first assertion is clear. Let M be a Cohen-Macaulay R-
module and p a prime ideal of R. Then Mp is a (maximal) Cohen-Macaulay
Rp-module, and it is seen from the Auslander-Buchsbaum formula that the Rp-
module Mp has infinite projective dimension if and only if it is nonfree. The second
assertion follows from this.

(2) This is shown by making use of (1). ¤

Next we define the restrictions of each subcategory of Db(R) to mod(R) and
CM(R).

Definition 4.3. (1) For a strict full subcategory X of Db(R), we denote by
restmod X the restriction of X to mod(R), i.e., the full subcategory of mod(R)
consisting of all finitely generated R-modules M such that ∆M belongs to X .

(2) For a strict full subcategory Y of mod(R), we denote by restCM Y the re-
striction of Y to CM(R), i.e., the full subcategory of CM(R) consisting of all
Cohen-Macaulay R-modules belonging to Y.

Note that restmod X and restCM Y are strict subcategories of mod(R) and
CM(R), respectively.

For a full subcategory Y of mod(R), we denote by ΩY the full subcategory
of mod(R) consisting of all modules ΩY with Y ∈ Y. The next two lemmas are
concerned with relationships among restrictions, infinite projective dimension loci
and nonfree loci.

Lemma 4.4. (1) If X is a thick subcategory of Db(R), then restmod X is a
thick subcategory of mod(R).

(2) For a subset Φ of Spec(R), one has J−1(Φ) = restmod I−1(Φ).
(3) For a full subcategory Y of mod(R), one has J(Y) = J(ΩY).

Proof. (1) The complex ∆0 is the zero object of Db(R). Hence ∆0 belongs
to X , which says that the zero module 0 belongs to restmod X . For M, N ∈
mod(R), we have ∆(M ⊕ N) = ∆M ⊕ ∆N . Each exact sequence 0 → L →
M → N → 0 in mod(R) induces an exact triangle ∆L → ∆M → ∆N → in
Db(R). These show that restmod X is closed under direct summands and short
exact sequences.

(2) This follows from Lemma 4.2(1).
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(3) Clear. ¤

Lemma 4.5. (1) If Y is a thick subcategory of mod(R), then restCM Y is a
thick subcategory of CM(R).

(2) For a subset Φ of Spec(R), one has N−1(Φ) = restCM J−1(Φ).
(3) For a full subcategory Y of mod(R), one has J(Y) = N(ΩdY).
(4) For a thick subcategory Y of mod(R) containing R, one has J(Y) =

N(restCM Y).

Proof. (1) This is straightforward.
(2) This follows from Lemma 4.2(1)(ii).
(3) Lemmas 4.4(3) and 4.2(2) imply this assertion.
(4) We have

N(restCM Y)
(a)
= J(restCM Y)

(b)

⊆ J(Y)
(c)
= N(ΩdY)

(d)

⊆ N(restCM Y).

Indeed, the equality (a) follows from Lemma 4.2(2). The inclusion (b) is evi-
dent. Assertion (3) implies the equality (c). Since Y is thick and contains R, the
subcategory ΩdY is contained in restCM Y. This shows the inclusion (d). ¤

Now we can obtain a classification result of thick subcategories of mod(R).

Theorem 4.6. (1) Let R be an abstract hypersurface. Then one has the
following one-to-one correspondence:

{
Thick subcategories of mod(R)

containing R

} J−→
←−
J−1

{
Specialization-closed subsets

of Spec(R) contained in Sing(R)

}
.

(2) Let R be singular, and be locally an abstract hypersurface on the punctured
spectrum. Then one has the following one-to-one correspondence:

{
Thick subcategories of mod(R)

containing R and k

} J−→
←−
J−1





Nonempty specialization-closed
subsets of Spec(R) contained

in Sing(R)





.

Proof. (1) Let Y be a thick subcategory of mod(R) containing R, and let
Φ be a specialization-closed subset of Spec(R) contained in Sing(R). Lemmas 3.7
and 4.2(2) say that J(Y) is a specialization-closed subset of Spec(R) contained
in Sing(R). It follows from (1), (2) in Lemma 4.4 and Lemma 3.9 that J−1(Φ)
is a thick subcategory of mod(R) containing R. We establish two claims, which
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complete the proof of the first assertion of the theorem.

Claim 1. The equality Φ = J(J−1(Φ)) holds.

Proof of Claim. It is obvious that Φ contains J(J−1(Φ)). If p is a prime
ideal in Φ, then Lemmas 3.11 and 4.2(1) yield J(R/p) = I(∆(R/p)) = V (p) ⊆ Φ.
Hence R/p belongs to J−1(Φ), and p is in J(J−1(Φ)). ¤

Claim 2. The equality Y = J−1(J(Y)) holds.

Proof of Claim. Evidently, Y is contained in J−1(J(Y)). Let M be an R-
module in J−1(J(Y)). Then J(ΩdM) = J(M) by Lemma 4.4(3), which is contained
in J(Y). Hence ΩdM belongs to restCM J−1(J(Y)). We have

restCM J−1(J(Y)) = N−1(J(Y)) = N−1(N(restCM Y))

by (2) and (4) in Lemma 4.5. Since restCM Y is a thick subcategory of CM(R)
containing R by Lemma 4.5(1), Theorem 2.4(1) implies that N−1(N(restCM Y))
coincides with restCM Y. Therefore ΩdM belongs to Y. Since Y is a thick subcat-
egory of mod(R) containing R, we easily see that M belongs to Y. ¤

(2) Let Y be a thick subcategory of mod(R) containing R and k, and let Φ be
a nonempty specialization-closed subset of Spec(R) contained in Sing(R). As R

is singular, we have J(k) = {m}. Hence J(Y) is a nonempty specialization-closed
subset of Spec(R) contained in Sing(R) by Lemmas 3.7 and 4.2(2). Since Φ is
nonempty and specialization-closed, it contains the maximal ideal m, and hence k

belongs to J−1(Φ). Hence J−1(Φ) is a thick subcategory of mod(R) containing R

and k by (1), (2) in Lemma 4.4 and Lemma 3.9.
(The proof of) Claim 1 gives the equality Φ = J(J−1(Φ)). The equality

Y = J−1(J(Y)) is obtained from the proof of Claim 2 where Theorem 2.4(1) is
replaced with Theorem 2.4(2). (Note that restCM Y contains Ωdk since so does
Y.) ¤

We recall here the definitions of the thick closures of subcategories.

Definition 4.7. (1) For a full subcategory X of Db(R), we denote by
thickDb X the thick closure of X in Db(R), that is, the smallest thick sub-
category of Db(R) containing X .

(2) For a full subcategory Y of mod(R), we simply write thickDb Y = thickDb ∆Y.
(3) For a full subcategory Y of mod(R), we denote by thickmod Y the thick closure

of Y in mod(R), that is, the smallest thick subcategory of mod(R) containing
Y.
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Thick closures do not enlarge infinite projective dimension loci.

Lemma 4.8. (1) Let X be a full subcategory of Db(R). Then I(X ) =
I(thickDb X ).

(2) Let Y be a full subcategory of mod(R). Then J(Y) = J(thickmod Y).

Proof. (1) It is trivial that I(X ) is contained in I(thickDb X ). Lemma 3.9
implies that I−1(I(X )) is thick. Since it contains X , it also contains thickDb X .
Therefore I(X ) contains I(thickDb X ).

(2) This is similarly shown to the first assertion. Use (1),(2) in Lemma 4.4
and Lemma 3.9. ¤

Restrictions and thick closures make a bijection between thick subcategories
of Db(R) and mod(R).

Theorem 4.9. (1) Let R be an abstract hypersurface. Then one has the
following one-to-one correspondence:

{
Thick subcategories of Db(R)

containing R

} restmod−−−−−→
←−−−−−
thickDb

{
Thick subcategories of mod(R)

containing R

}
.

(2) Let R be singular, and be locally an abstract hypersurface on the punctured
spectrum. Then one has the following one-to-one correspondence:

{
Thick subcategories of Db(R)

containing R and k

} restmod−−−−−→
←−−−−−
thickDb

{
Thick subcategories of mod(R)

containing R and k

}
.

Proof. (1) We observe from Theorems 3.13(1) and 4.6(1) that the assign-
ment X 7→ J−1(I(X )) makes a bijection from the set of thick subcategories of
Db(R) containing R to the set of thick subcategories of mod(R) containing R

whose inverse map is given by Y 7→ I−1(J(Y)). We have

J−1(I(X )) = restmod I−1(I(X )) = restmod X

by Lemma 4.4(2) and Theorem 3.13(1). Also, we have

I−1(J(Y)) = I−1(I(∆Y)) = I−1(I(thickDb ∆Y)) = thickDb ∆Y = thickDb Y

by Lemmas 4.2(2), 4.8(1) and Theorem 3.13(1).
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(2) In the proof of the first assertion, use Theorems 3.13(2) and 4.6(2) instead
of Theorems 3.13(1) and 4.6(1). ¤

We obtain an analogous result to Theorem 4.9.

Theorem 4.10. (1) Let R be an abstract hypersurface. Then one has the
following one-to-one correspondence:

{
Thick subcategories of mod(R)

containing R

} restCM−−−−→
←−−−−−
thickmod

{
Thick subcategories of CM(R)

containing R

}
.

(2) Let R be singular, and be locally an abstract hypersurface on the punctured
spectrum. Then one has the following one-to-one correspondence:

{
Thick subcategories of mod(R)

containing R and k

} restCM−−−−→
←−−−−−
thickmod

{
Thick subcategories of CM(R)

containing R and Ωdk

}
.

Proof. (1) It is seen from Theorems 4.6(1) and 2.4(1) that we have a
bijection Y 7→ N−1(J(Y)) from the set of thick subcategories of mod(R) containing
R to the set of thick subcategories of CM(R) containing R whose inverse map is
given by Z 7→ J−1(N(Z)). The equalities

N−1(J(Y)) = restCM J−1(J(Y)) = restCM Y

hold by Lemma 4.5(2) and Theorem 4.6(1), and the equalities

J−1(N(Z)) = J−1(J(Z)) = J−1(J(thickmod Z)) = thickmod Z

hold by Lemmas 4.2(2), 4.8(2) and Theorem 4.6(1).
(2) In the proof of the first assertion, use Theorems 4.6(2) and 2.4(2) instead

of Theorems 4.6(1) and 2.4(1). ¤

5. The main theorem.

Combining the theorems that have been obtained in Sections 2–4 yields the
following theorem, which is the main result of this paper. We notice that the
diagram in the following theorem includes the diagram in Theorem 2.4.

Theorem 5.1. Consider the following two cases.



372 R. Takahashi

(1) Let R be an abstract hypersurface local ring. Set

A = {Specialization-closed subsets of Spec(R) contained in Sing(R)},
B = {Thick subcategories of CM(R)},
C = {Thick subcategories of CM(R) containing R},
D = {Thick subcategories of mod(R) containing R},
E = {Thick subcategories of Db(R) containing R}.

(2) Let R be a d-dimensional Gorenstein singular local ring with residue field k

which is locally an abstract hypersurface on the punctured spectrum. Set

A = {Nonempty specialization-closed subsets
of Spec(R) contained in Sing(R)},

B = {Thick subcategories of CM(R) containing Ωdk},
C = {Thick subcategories of CM(R) containing R and Ωdk},
D = {Thick subcategories of mod(R) containing R and k},
E = {Thick subcategories of Db(R) containing R and k}.

In each of the above two cases, one has the following commutative diagram of
bijections.

A

S−1

~~||
||

||
||

||
||

||
||

||
||

||
||

|

N−1

ªªµµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µ

J−1

¸,̧
,,

,,
,,

,,
,,

,,
,,

,,
,,

I−1

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B

B

S

>>||||||||||||||||||||||||| can // C
can

oo

N

IIµµµµµµµµµµµµµµµµµµµ thickmod // D

J

UU,,,,,,,,,,,,,,,,,,,

restCM

oo
thickDb // E
restmod

oo

I

aaBBBBBBBBBBBBBBBBBBBBBBBBBB

Proof. Combining Theorems 2.4, 3.13, 4.6, 4.9 and 4.10, we obtain all the
bijections and the commutativity of the left triangle. The commutativity of the
right and middle triangles follows from Lemmas 4.4(2) and 4.5(2), respectively. ¤

Remark 5.2. Recently, Iyengar [17] announced that thick subcategories of
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the bounded derived category of finitely generated modules over a ring locally
complete intersection which is essentially of finite type over a field are classified in
terms of certain subsets of the prime ideal spectrum of the Hochschild cohomology
ring. It would be interesting to compare the results and approaches with ours.
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