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Abstract. We show that in Euclidean space and other regular metric
spaces, the notions of dimensions defined by Assouad and Aikawa coincide.
In addition, in more general metric spaces, we study the relationship between
these two dimensions and a related codimension and give an application of the
Aikawa (co)dimension for the Hardy inequalities.

1. Introduction.

In this note, we consider two notions of dimension which arise from quite
different settings but turn out to be intimately connected with each other. First,
we have the Assouad dimension, a purely metrical concept that was defined by
Patrice Assouad (see [3], [4]) while studying which metric spaces are bi-Lipschitz
embeddable in some Rn; a thorough discussion of this dimension can be found in
[12]. The second dimension under consideration was used by Hiroaki Aikawa [1]
(see also [2, Section 7]) in his results on the quasiadditivity properties of capacities.
This notion, for E ⊂ Rn, was defined in terms of the behavior of integrals of the
powers of the distance function dist(y, E). Subsequently, the same concept has
proven to be useful for instance in connection with the Hardy inequalities, cf. [10].
The exact definitions of the Assouad and the Aikawa dimension can be found in
Section 3.

It seems that the possibility of a connection between these two dimensions
has been overlooked in the past. We fix this gap by proving as our main result

Theorem 1.1. Let E ⊂ Rn. Then the Assouad dimension of E equals the
Aikawa dimension of E.

More generally, if X is a Q-regular metric space, then the above conclusion
holds for each E ⊂ X as well. This is an easy consequence of Theorems 4.1 and
4.2.
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344 J. Lehrbäck and H. Tuominen

If the space X is not Q-regular, the situation becomes more subtle: We pro-
pose an extension of the Aikawa dimension and a related codimension in this
setting and show the usefulness of these concepts with a result concerning the
Hardy inequalities. However, we also give an example which shows that this more
general concept no longer agrees with the Assouad dimension.

The paper is organized as follows. In Section 2, we briefly recall the notation
and terminology related to general metric spaces. Section 3 contains a discussion
on different notions of dimension. Our main results are stated and proved in
Section 4, which also contains an example of a set whose Aikawa dimension is
strictly larger than its Assouad dimension. In Section 5, we give an alternative
characterization for the Aikawa codimension, and finally, in Section 6, we study
the relationship between the Aikawa (co)dimension and the Hardy inequalities.

2. Metric spaces.

We assume that X = (X, d, µ) is a metric measure space equipped with a
metric d and a Borel regular outer measure µ such that 0 < µ(B) < ∞ for all balls
B = B(x, r) = {y ∈ X : d(y, x) < r}. For 0 < t < ∞, we write tB = B(x, tr).
When E ⊂ X, we let diam(E) denote the diameter of E, and for x ∈ X we
use d(x,E) to denote the distance from x to E. When δ > 0, we define the
δ-neighborhood of E (in X) as Eδ = {y ∈ X : d(y, E) < δ}.

We assume that the measure µ is doubling, which means that there is a con-
stant cD ≥ 1, called the doubling constant of µ, such that

µ(2B) ≤ cDµ(B)

for all balls B ⊂ X.
The doubling condition gives an upper bound for the dimension of X. By this

we mean that there is a constant C > 0 and an exponent s ≥ 0 such that

µ(B(y, r))
µ(B(x,R))

≥ C

(
r

R

)s

(1)

whenever 0 < r ≤ R < diam(X), x ∈ X, and y ∈ B(x,R). Inequality (1) holds
certainly with s = log2 cD (and C = C(cD) > 0), but it may hold for some
smaller exponents as well. With a slight abuse of the notation, the infimum of
the exponents for which (1) holds is also denoted by s and called the doubling
dimension of X.

The measure µ is Q-regular, for Q > 1, if there is a constant cQ ≥ 1 such that
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c−1
Q rQ ≤ µ(B(x, r)) ≤ cQrQ

for all x ∈ X and every 0 < r < diam(X). It is immediate that the doubling
dimension of a Q-regular space is Q.

In general, C and c will denote positive constants whose value is not neces-
sarily the same at each occurrence. By writing C = C(K, λ), we indicate that the
constant depends only on K and λ. If there exist constants c1, c2 > 0 such that
c1 F ≤ G ≤ c2F , we write F ≈ G and say that F and G are comparable.

3. Concepts of dimension.

3.1. Hausdorff and Minkowski.
We define λ-Hausdorff contents of a set E ⊂ X, for 0 < r ≤ ∞, λ > 0, as

Hλ
r (E) = inf

{ ∑

k

rλ
k : E ⊂

⋃

k

B(xk, rk), xk ∈ E, 0 < rk ≤ r

}
,

and the λ-Hausdorff measure of E is Hλ(E) = limr→0Hλ
r (E). The Hausdorff

dimension of E is then the number

dimH(E) = inf{λ > 0 : Hλ(E) = 0}.

When the balls covering the set E ⊂ X are required to be of equal radii, we obtain
λ-Minkowski contents of E:

Mλ
r (E) = inf

{
Nrλ : E ⊂

N⋃

k=1

B(xk, r), xi ∈ E

}
.

The lower and upper Minkowski dimension of E are then defined to be

dimM(E) = inf
{

λ > 0 : lim inf
r→0

Mλ
r (E) = 0

}

and

dimM(E) = inf
{

λ > 0 : lim sup
r→0

Mλ
r (E) = 0

}
,

respectively.
In general metric spaces it is often more convenient to use modified versions
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of Hλ
r and Mλ

r , namely the Hausdorff and Minkowski contents of codimension q.
The former is defined for a set E ⊂ X by

H̃q
r(E) = inf

{ ∑

k

µ(Bk) r−q
k : E ⊂

⋃

k

Bk, xk ∈ E, 0 < rk ≤ r

}
,

where we write Bk = B(xk, rk), and the latter by

M̃q
r(E) = inf

{
r−q

∑

k

µ(B(xk, r)) : E ⊂
⋃

k

B(xk, r), xk ∈ E

}
.

Then, naturally, the Hausdorff measure of codimension q is defined as

H̃q(E) = lim
r→0

H̃q
r(E).

Note that in a Q-regular space H̃q
r ≈ HQ−q

r and M̃q
r ≈MQ−q

r .
Finally, the Hausdorff and the (upper and lower) Minkowski codimensions are

defined respectively as

codimH(E) = sup{q > 0 : H̃q(E) = 0},

codimM(E) = sup
{

q > 0 : lim inf
r→0

M̃q
r(E) = 0

}
,

and

codimM(E) = sup
{

q > 0 : lim sup
r→0

M̃q
r(E) = 0

}
.

3.2. Assouad.
There are many known equivalent definitions for the Assouad dimension and

the same concept has appeared on many occasions under different names (in fact,
we add one more to this list in the present paper as far as Q-regular spaces are con-
cerned). See Luukkainen [12], especially his Remark 3.6, for a historical account
(and references) on alternative definitions and terminology. We use the following
definition essentially from Heinonen [6].

Definition 3.1. When E ⊂ X, we let Cov(E) denote the set of all β > 0
for which the following covering property holds: There exists cβ ≥ 1 such that,
for all 0 < ε < 1/2, each subset F ⊂ E can be covered by at most cβε−β balls of
radius r = ε diam(F ). The Assouad dimension of E ⊂ X is then defined to be
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dimAS(E) = inf{β ∈ Cov(E)}.

This is a purely ‘intrinsic’ and ‘metrical’ definition. It is worthwhile to mention
that, according to [12, Remark 3.6], the first appearance of a related concept was
in Bouligand [5] (from 1928), and there the definition was ‘external’ and using also
the measure near the set E — much in the spirit of the definition of the Aikawa
dimension below. In fact, in non-regular spaces the ‘Bouligand-type’ approach
leads to an alternative characterization of the Aikawa codimension; see Section 5.

Let us remark here that the Assouad dimension has recently attained con-
siderable interest in analysis on metric spaces, for instance in questions related to
quasisymmetric uniformization; see e.g. [6], [7], [13], and [15].

3.3. Aikawa.
In the paper [1], Aikawa introduced an ‘external’ notion of dimension given in

terms of integrals of the distance function. In a general metric space X = (X, µ, d)
of doubling dimension s we can state the definition as follows:

Definition 3.2. Let E ⊂ X and let G(E) be the set of those t > 0 for
which there exists a constant ct such that

∫

B(x,r)

d(y, E)t−s dµ ≤ ctr
t−sµ(B(x, r)) (2)

for every x ∈ E and all 0 < r < diam(E). Then the Aikawa dimension of E is
defined to be dimAI(E) = inf G(E).

We use above the convention that if the set E ⊂ X has positive measure, then
dimAI(E) = s, and thus for each E ⊂ X we have 0 ≤ dimAI(E) ≤ s.

It is clear that the above definition agrees with the definition from [1], [2]
in Rn and also in Q-regular spaces. In particular, the requirement r < diam(E)
is unnecessary in regular spaces. However, if the space X is not regular, then,
in accordance with Section 3.1, it is more convenient to rewrite (2) without an
explicit use of the doubling dimension s; this leads to the related codimension:

Definition 3.3. The Aikawa codimension of E ⊂ X is codimAI(E) =
supF (E), where F (E) is the set of those q ≥ 0 for which there exists a constant
cq such that

∫

B(x,r)

d(y, E)−q dµ ≤ cqr
−qµ(B(x, r))

for every x ∈ E and all 0 < r < diam(E).
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If the space X has doubling dimension s, then codimAI(E) = s−dimAI(E) for
every E ⊂ X. To prove this we only need to observe that always codimAI(E) ≤ s:

Lemma 3.4. Let s be the doubling dimension of X and let E ⊂ X. Then

0 ≤ codimAI(E) ≤ s.

Proof. Let q > s and c > 0. As q > s, we may actually assume that
estimate (1) holds for s. It suffices to show that there are x ∈ E and 0 < R <

diam(E) such that

µ(B(x,R)) <
1
c
Rq

∫

B(x,R)

d(y, E)−q dµ. (3)

Let x ∈ E and 0 < r < R < diam(E). Using (1), we have that

µ(B(x,R)) ≤ 1
C

(
R

r

)s

µ(B(x, r)) ≤ 1
C

(
R

r

)s

rq

∫

B(x,r)

d(y, E)−q dµ

≤ 1
C

(
r

R

)q−s

Rq

∫

B(x,R)

d(y, E)−q dµ.

Since q − s > 0, the claim follows by choosing r to be small enough. ¤

3.4. Basic relations.
It is well-known that for each E ⊂ X we have

dimH(E) ≤ dimAS(E) ≤ s; (4)

the second inequality follows with a simple calculation using estimate (1) and a
basic covering theorem. Moreover, if E ⊂ X is bounded, then

dimH(E) ≤ dimM(E) ≤ dimM(E) ≤ dimAS(E); (5)

see for instance [12, Theorem A.5].
All of the inequalities in (5) can be strict. For example, if

E = {(j−1, 0, . . . , 0) : j ∈ N} ∪ {0} ⊂ Rn,

then dimH(E) = 0, dimM(E) = 1/2, and dimAS(E) = 1. However, for many
sufficiently regular sets all of the dimensions considered above agree. In particular,
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if X is Q-regular and if a bounded subset E ⊂ X is (Ahlfors) λ-regular, i.e.,
Hλ(E ∩ B(x, r)) ≈ rλ whenever x ∈ E and 0 < r < diam(E), then it is not hard
to show that dimH(E) = dimAS(E) = λ (= dimAI(E)); (cf. e.g. [10, Lemma 2.1]).

For the codimensions we have the following order relations (compare to (4)
and (5)):

Lemma 3.5. Let E ⊂ X. Then

codimH(E) ≥ codimAI(E).

Moreover, if E ⊂ X is bounded, then

codimH(E) ≥ codimM(E) ≥ codimM(E) ≥ codimAI(E). (6)

Proof. The first two inequalities in (6) are almost immediate from the
definitions. The last one is closely related to [9, Lemma 2.6], and it follows from
the fact that if q < codimAI(E), 0 < r < diam(E), and x0 ∈ E is a fixed point,
then

M̃q
r(E) ≤ C

∫

B(x0,2 diam(E))

d(y, E)−q dµ(y) < ∞

(compare this to the calculation in (7) below).
The first claim of the Lemma, for an unbounded E, follows from (6) by di-

viding E into bounded subsets. ¤

Remark 3.6. The proof of Lemma 3.5 reveals one essential difference be-
tween the Minkowski and the Aikawa (co)dimensions: The Minkowski dimension
of E ⊂ X is related to the finiteness of the integrals

∫
Eδ

d(y, E)−q dµ, whereas
when estimating the Aikawa dimension we require locally uniform estimates for
all the integrals

∫
B(x,r)

d(y, E)−q dµ, where x ∈ E and 0 < r < diam(E).

4. Main results.

Let us now turn to our main results. We begin by proving that in a metric
space X with a doubling measure, the Aikawa dimension of a subset E ⊂ X is
at least the Assouad dimension of E, and then show that if the measure µ is
Q-regular, then also the converse is true and hence the Aikawa dimension and
the Assouad dimension coincide in X. In particular, this last claim is true in
Euclidean spaces equipped with the corresponding Lebesgue measures. Without
the Q-regularity, the Aikawa dimension can be strictly larger as our Example 4.3
shows.
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Theorem 4.1. Let (X, d, µ) be a doubling metric measure space. Suppose
E ⊂ X. Then dimAS(E) ≤ dimAI(E).

Proof. If dimAI(E) = s, then the claim follows from (4). Now, let

dimAI(E) < t < t′ < s < s′

be such that t− s = t′− s′. Let F ⊂ E be a non-empty subset with diam(F ) = d,
take any w ∈ F , and let 0 < ε < 1/2. By the 5r-covering theorem, there is a
covering {5Bi} of F , where Bi = B(wi, εd), wi ∈ F , such that the balls Bi are
pairwise disjoint. Then

⋃
i Bi ⊂ Fεd.

Using the definition of the Aikawa dimension, and the fact that d(y, E) ≤ εd

for each y ∈ Fεd (recall that here Fεd is the εd-neighborhood of F ), we obtain

∑

i

µ(Bi) ≤ µ(Fεd) ≤ (εd)s−t

∫

Fεd

d(y, E)t−s dµ

≤ (εd)s′−t′
∫

B(w,2d)

d(y, E)t−s dµ

≤ (εd)s′−t′ct(2d)t−sµ(B(w, 2d))

≤ c εs′−t′µ(B(w, 2d)). (7)

Since Bi ⊂ B(w, 2d) for each i, the lower density property (1) for s′ > s implies

∑

i

µ(Bi) ≥ cNεs′µ(B(w, 2d)),

where N is the number of balls Bi. Combining this with estimate (7) we obtain
N ≤ cε−t′ , and thus dimAS(E) ≤ t′. As this holds for all dimAI(E) < t′ < s, we
conclude that dimAS(E) ≤ dimAI(E). ¤

Theorem 4.2. Let (X, d, µ) be a Q-regular metric measure space. Suppose
E ⊂ X. Then dimAI(E) ≤ dimAS(E).

Proof. Let E ⊂ X, let t > dimAS(E), and let β = (t + dimAS(E))/2 ∈
Cov(E) (see Definition 3.1). Let B = B(w, r), where w ∈ E and 0 < r < diam(E).

For each j ∈ {0, 1, . . . }, let

Ej = {x ∈ 2B : d(x,E) < 2−jr}
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and Aj = Ej \Ej+1. As β ∈ Cov(E), the set E∩2B can be covered by Nj = C2jβ

balls of radius 2r2−j , and thus each Ej can be covered by Nj balls of radius 4r2−j .
If Bj

i are such balls, then, by the Q-regularity,

µ(Ej) ≤
∑

i

µ(Bj
i ) ≤ NjcQ(4r2−j)Q ≤ C(2−j)Q−βµ(B). (8)

Using (8) and the fact that if x ∈ Aj then d(x,E) is comparable to 2−jr, we obtain

∫

B

d(x,E)t−Q dµ ≤
∞∑

j=0

∫

Aj

d(x,E)t−Q dµ ≤ C
∞∑

j=0

µ(Ej)(2−jr)t−Q

≤ Crt−Qµ(B)
∞∑

j=0

(2−j)t−β ≤ Crt−Qµ(B),

and thus dimAI(E) ≤ t. Since this holds for all t > dimAS(E), we conclude that
dimAI(E) ≤ dimAS(E). ¤

Let us now show that the conclusion of the previous theorem need not hold
if the space is not Q-regular:

Example 4.3. Let X = R2 with the Euclidean distance and the measure

dµ = (1 + |x2|α)dL2, −1 < α < 0,

and let E = R = {x ∈ R2 : x2 = 0} (we write x = (x1, x2) for the points and L2

for the Lebesgue measure in R2). It is clear that dimAS(E) = 1.
For a cube Q = (−r, r)× (−r, r), r > 0, we have that

µ(Q) =
∫

Q

(1 + |x2|α)dx = L2(Q) +
4

α + 1
r2+α,

which is comparable with r2 + r2+α. The same measure estimate holds for any
cube Q = (x− r, x + r)× (−r, r) whose center is in E and for any ball with center
in E and radius r, and thus in fact for all balls B ⊂ R2. It follows from this
that the measure µ is doubling with doubling dimension s = 2. However, µ is not
q-regular for any q > 1.

To calculate the Aikawa dimension of E, we have to check for which exponents
t > 0 inequality (2) holds. It is enough to consider cubes Q = (−r, r) × (−r, r),
r > 0. Since d(x,E) = |x2| for each x ∈ Q, we have that
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∫

Q

d(x,E)t−2 dµ =
∫

Q

1 + |x2|α
d(x,E)2−t

dx =
∫

Q

|x2|t−2 dx +
∫

Q

|x2|t−2+α dx.

Thus, if 0 < t ≤ 1− α, then
∫

Q
d(x,E)t−2 dµ = ∞, and if t > 1− α, then

∫

Q

d(x,E)t−2 dµ =
4

t− 1
rt +

4
t− 1 + α

rt+α.

This, together with the above estimate µ(Q) ≈ r2 + r2+α, shows that

∫

Q

d(x,E)t−2 dµ ≤ C(t)rt−2µ(Q)

for t > 1 − α. We conclude that dimAI(E) = 1 − α, which is strictly larger than
1 = dimAS(E) for any −1 < α < 0.

5. Bouligand-type characterization.

It is possible to give an equivalent definition for the Aikawa codimension of
E ⊂ X by looking only the measures of the neighborhoods of E, as follows; for the
Assouad dimension in Rn a similar characterization is discussed in [12, Theorem
A.12].

Theorem 5.1. Let E ⊂ X and let F̃ (E) be the set of those α > 0 for which
there exists a constant cα such that

µ
(
EtR ∩B(x,R)

) ≤ cαtαµ(B(x,R))

for every x ∈ E, 0 < R < diam(E), and 0 < t < 1. Then codimAI(E) =
sup F̃ (E).

Proof. Let us first show that codimAI(E) ≥ sup F̃ (E). Let q < sup F̃ (E),
take α = (q + sup F̃ (E))/2, and fix B = B(w, R), where w ∈ E and 0 < R <

diam(E). Let, as in the proof of Theorem 4.2,

Ej = {x ∈ B : d(x,E) < 2−jR}

and Aj = Ej \ Ej+1 for j ∈ {0, 1, . . .}. As α ∈ F̃ (E), we have

µ(Ej) ≤ cα(2−j)αµ(B),



Dimensions of Assouad and Aikawa 353

and thus

∫

B

d(x,E)−q dµ ≤
∞∑

j=0

∫

Aj

d(x,E)−q dµ ≤ C
∞∑

j=0

µ(Ej)(2−jR)−q

≤ CR−qµ(B)
∞∑

j=0

(2−j)α−q ≤ CR−qµ(B).

Hence q ≤ codimAI(E), and we conclude that sup F̃ (E) ≤ codimAI(E).
To prove the converse inequality, let α < codimAI(E). Then, for each x ∈ E,

0 < R < diam(E), and 0 < t < 1, we have

µ
(
EtR ∩B(x,R)

) ≤ (tR)α

∫

B(x,R)

d(y, E)−α dµ ≤ cαtαRαR−αµ(B(x,R)).

Thus α ∈ F̃ (E), and the claim follows. ¤

6. Hardy inequalities.

In this section, we assume that X = (X, d, µ) is a doubling metric measure
space which supports a p-Poincaré inequality. We refer to [6] for the basic infor-
mation on such spaces.

When Ω ⊂ X is a domain, we write Ωc = X \ Ω and dΩ(x) = dist(x,Ωc) for
x ∈ Ω. The pointwise Lipschitz constant of a function u : Ω → R at x ∈ Ω is

Lip(u;x) = lim sup
y→x

|u(x)− u(y)|
d(x, y)

.

We say that a domain Ω ⊂ X admits a p-Hardy inequality if there exists a constant
C > 0 such that

∫

Ω

|u(x)|p
dΩ(x)p

dµ(x) ≤ C

∫

Ω

Lip(u;x)p dµ(x) (9)

whenever u is a Lipschitz function with a compact support in Ω. See [8] and [9]
for more details on Hardy inequalities in metric spaces.

The connection between Hardy inequalities and the Aikawa dimension was
recently studied in [10] (see also [9]), but a similar concept of dimension appeared
in this context already in the unpublished works of Wannebo in the 80’s, see [14,
pp. 13–14]. In the metric setting we have the following dichotomy concerning the
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dimension of the complement of a domain admitting a p-Hardy inequality:

Theorem 6.1. Let 1 < p < ∞ and assume that a domain Ω ⊂ X admits a
p-Hardy inequality. Then there exists an ε > 0, depending only on the given data,
such that either (i) codimH(Ωc) ≤ p− ε or (ii) codimAI(Ωc) ≥ p + ε.

In fact, such a dichotomy also holds locally, in the following sense.

Theorem 6.2. Let 1 < p < ∞ and assume that a domain Ω ⊂ X admits a
p-Hardy inequality. Then there exists an ε > 0, depending only on the given data,
such that for each ball B0 ⊂ X either

codimH(2B0 ∩ Ωc) ≤ p− ε

or

codimAI(B0 ∩ Ωc) ≥ p + ε.

For Q-regular spaces, Theorems 6.1 and 6.2 were essentially proven in [9],
although with a slightly weaker formulation involving Hausdorff and Minkowski
dimensions; see also [10] for alternative proofs of Theorems 6.1 and 6.2 (in Rn).
Let us recall here the main points of the proof, including the minor modifications
needed in the case of a non-regular space X.

Proof of Theorem 6.2. We proceed just as in [9, Corollary 2.7]: First,
there exists an ε0 > 0 such that Ω admits q-Hardy inequalities for all p−ε0 < q ≤ p

with a uniform constant ([9, Theorem 2.2]). Let 0 < ε < ε0/2 to be fixed later,
and take an arbitrary ball B0 = B(x0, r0). If codimH(2B0 ∩ Ωc) ≤ p − ε, we are
done. Thus we may assume

codimH(2B0 ∩ Ωc) > p− ε, (10)

whence it follows that a (p − ε)-Hardy inequality actually holds for all Lipschitz
functions with a compact support in Ω∪ 2B0; here one can use either (i) a capac-
itary argument, since from (10) it follows that the set Ω ∪ 2B0 is of variational
(p − ε)-capacity zero (see e.g. [11, Proposition 4.1]), or (ii) direct approximation
as in [10]. Furthermore, there exists δ > 0 (independent of the particular ε) such
that

∫

B(x,r)

d(y, Ωc)−p+ε−δ dµ ≤ Cr−p+ε−δµ(B(x, r)) (11)
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whenever x ∈ Ωc ∩ B0 and 0 < r < r0 (this is [9, Lemma 2.4]; for an alternative
approach see [10, Lemma 5.2]). If we now choose ε = min{ε0/2, δ/2}, it follows
from (11) that codimAI(B0 ∩ Ωc) ≥ p + ε.

Notice that in the above reasoning we actually need q-Poincaré inequalities for
some q < p, but by the self-improvement property of Poincaré inequalities these
are available. ¤

The proof of the global dichotomy of Theorem 6.1 follows along the same
lines.

Remark 6.3. Similar results hold for the so-called weighted Hardy inequal-
ities, where (e.g.) a weight of the type dΩ(x)β , β ∈ R, is included in the both
integrals of the inequality (9); see [10] for a treatment of the Euclidean case.

Remark 6.4. In Euclidean spaces the condition codimAI(Ωc) > p (i.e.
dimAI(Ωc) < n− p) is also sufficient for Ω to admit a p-Hardy inequality; see the
discussion after Corollary 2.7 in [9], but note that there the Minkowski dimension
should actually be replaced by the Aikawa (or equivalently the Assouad) dimen-
sion. It is in our plans to pursue analogous results in the metric space setting.
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