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Abstract. In the homogeneous space Sol3, a translation surface is
parametrized by x(s, t) = α(s) ∗ β(t), where α and β are curves contained
in coordinate planes and ∗ denotes the group operation of Sol3. In this paper
we study translation surfaces in Sol3 whose mean curvature vanishes.

1. Introduction.

The space Sol3 is a simply connected homogeneous 3-dimensional manifold
whose isometry group has dimension 3 and it is one of the eight models of geometry
of Thurston [15]. The space Sol3 can be viewed as R3 with the metric

〈 , 〉 = e2zdx2 + e−2zdy2 + dz2,

where (x, y, z) are usual coordinates of R3. The space Sol3 endowed with the
group operation

(x, y, z) ∗ (x′, y′, z′) = (x + e−zx′, y + ezy′, z + z′),

is a unimodular, solvable but not nilpotent Lie group and the metric 〈 , 〉 is left-
invariant ([16]). This group belongs to a wider family of Lie groups, equipped with
a left invariant Riemannian metric, depending on three parameters (see e.g. [5]).
In [8], Kowalski explains the geometry of Sol3 where it is realized as the Lie group
E(1, 1) of rigid motions of Minkowski plane E2

1 = (R2, dxdy), endowed with the
metric 〈 , 〉 described above. The fact that the dimension of the isometries group
is low, makes the knowledge of the geometry of their submanifolds to be far from
being completely known. In this sense, the geodesics of space Sol3 are explicitly
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described (in terms of elliptic integrals) by Borghero and Caddeo ([1]). Further-
more, Takahashi proved in [13] that a simply connected Riemannian homogeneous
3-space can be isometrically immersed in the hyperbolic space H4 with type num-
ber 2, if and only if it is isometric to Sol3 and he called it B-manifold. In literature,
especially for Japanese geometers, Sol3 is known as Takahashi’s B-manifold.

In the last decade, there has been an intensive effort to develop the theory of
constant mean curvature (CMC) surfaces, including minimal surfaces, in Thurston
3-dimensional geometries. We refer the survey [4] or lecture notes [2] and refer-
ences therein. Probably, among the Thurston geometries, the Lie group Sol3 is the
most unusual space due to the non-existence of rotational symmetries. As a conse-
quence of this absence of symmetry, one of the difficulties in this space is the lack
of examples of CMC surfaces. Very recently the classical Alexandrov and Hopf
theorems have been extended in [3], [11], proving for each H ∈ R the existence
of a compact embedded surface of mean curvature H and being topologically a
sphere. About compact CMC surfaces with boundary, see [9].

In this work we study minimal surfaces in Sol3, that is, surfaces whose mean
curvature H of the surface vanishes. The family of minimal surfaces in Sol3 has
been sketchily studied in the literature ([7]) and only some examples are known:
the totally geodesic surfaces given by the planes ax + by + c = 0, which are
isometric to the hyperbolic plane, and the horizontal planes z = z0, which are
not totally geodesic and only for z0 = 0, the surface is isometric to the Euclidean
plane. In order to make richer this family, our interest is to find examples of
minimal surfaces with some added property. In [10] the authors have found all
surfaces with constant mean curvature that are invariant by uniparametric groups
of horizontal translations. In the particular case that H = 0, it is proved the next

Theorem 1.1. Consider the group of isometries G = {Ts; s ∈ R}, with
Ts(x, y, z) = (x+s, y, z). The only minimal surfaces invariant by G are the planes
y = y0, the planes z = z0 and the surfaces z(x, y) = log(y + λ) + µ, λ, µ ∈ R.

Following in this search of new examples, the motivation of the present comes
from the Euclidean ambient space. A surface M in Euclidean space is called a
translation surface if it is given by the graph z(x, y) = f(x) + g(y), where f and
g are smooth functions on some interval of the real line R. Scherk [12] proved in
1835 that, besides the planes, the only minimal translation surfaces are given by

z(x, y) =
1
a

log | cos (ax)| − 1
a

log | cos (ay)| = 1
a

log
∣∣∣∣
cos(ax)
cos(ay)

∣∣∣∣,

where a is a non-zero constant. Examples of translation minimal surfaces in the
Heisenberg space Nil3 can be found in [6]. In Sol3 the group operation allows us
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give the following

Definition 1.2. A translation surface M(α, β) in Sol3 is a surface
parametrized by x(s, t) = α(s) ∗ β(t), where α : I → Sol3, β : J → Sol3 are
curves in two coordinate planes of R3.

We point out that the multiplication ∗ is not commutative and consequently, for
each choice of curves α and β we may construct two translation surfaces, namely
M(α, β) and M(β, α), which are different. The aim of this article is the study and
classification of minimal translation surfaces of Sol3.

2. Basics on the Lie group Sol3.

In the space Sol3, the dimension of its isometry group is 3 and the component
of the identity is generated by the following families of isometries:

(x, y, z) 7−→ (x + c, y, z),

(x, y, z) 7−→ (x, y + c, z), (1)

(x, y, z) 7−→ (e−cx, ecy, z + c),

where c ∈ R. The Killing vector fields associated to these isometries are, respec-
tively,

∂

∂x
,

∂

∂y
, −x

∂

∂x
+ y

∂

∂y
+

∂

∂z
.

A left-invariant orthonormal frame {E1, E2, E3} in Sol3 is given by

E1 = e−z ∂

∂x
, E2 = ez ∂

∂y
, E3 =

∂

∂z
.

The Levi Civita connection
∼
∇ of Sol3 with respect to this frame is

∼
∇E1E1 = −E3

∼
∇E1E2 = 0

∼
∇E1E3 = E1

∼
∇E2E1 = 0

∼
∇E2E2 = E3

∼
∇E2E3 = −E2

∼
∇E3E1 = 0

∼
∇E3E2 = 0

∼
∇E3E3 = 0.

See e.g. [8], [16]. Let M be an orientable surface and let x : M → Sol3 an
isometric immersion. Consider N the unit normal vector field of M . Denote by
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∇ the induced Levi Civita connection on M . For later use we write the Gauss
formula

∼
∇XY = ∇XY + σ(X, Y )N, σ(X, Y ) =

〈∼∇XY, N
〉

(2)

where X, Y are tangent vector fields on M and σ is the second fundamental form
of the immersion. For each p ∈ M , we consider the Weingarten map Ap : TpM →
TpM , where TpM is the tangent plane, defined by

Ap(v) = −
∼
∇X(N)

with X a tangent vector field of M that extends v at p. The mean curvature of the
immersion is defined as H(p) = (1/2)trace(Ap). We know that Ap is a self-adjoint
endomorphism with respect to the metric on M , that is, 〈Ap(u), v〉 = 〈u,Ap(v)〉,
u, v ∈ TpM . Moreover,

−〈∼∇XN, Y
〉

=
〈∼∇XY, N

〉
. (3)

At each tangent plane TpM we take a basis {e1, e2} and let write

Ap(e1) = −
∼
∇e1N = a11e1 + a12e2,

Ap(e2) = −
∼
∇e2N = a21e1 + a22e2.

We multiply in both identities by e1 and e2 and denote by {E, F,G} the coefficients
of the first fundamental form:

E = 〈e1, e1〉, F = 〈e1, e2〉, G = 〈e2, e2〉.

Using (3), we obtain

a11 =

∣∣∣∣∣
−〈∼∇e1N, e1

〉
F

−〈∼∇e1N, e2

〉
G

∣∣∣∣∣
EG− F 2

=

∣∣∣∣∣
〈
N,

∼
∇e1e1

〉
F〈

N,
∼
∇e1e2

〉
G

∣∣∣∣∣
EG− F 2

,

a22 =

∣∣∣∣∣
E −〈∼∇e2N, e1

〉

F −〈∼∇e2N, e2

〉
∣∣∣∣∣

EG− F 2
=

∣∣∣∣∣
E

〈
N,

∼
∇e2e1

〉

F
〈
N,

∼
∇e2e2

〉
∣∣∣∣∣

EG− F 2
.
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We conclude then

H =
1
2
(a11 + a22) =

1
2

G
〈
N,

∼
∇e1e1

〉− 2F
〈
N,

∼
∇e1e2

〉
+ E

〈
N,

∼
∇e2e2

〉

EG− F 2
.

As we have already mentioned, in this work we are interested in minimal surfaces;
thus, in the above expression of H we can change N by other proportional vector
N . Then M is a minimal surface if and only if

G
〈
N,

∼
∇e1e1

〉− 2F
〈
N,

∼
∇e1e2

〉
+ E

〈
N,

∼
∇e2e2

〉
= 0. (4)

For each choice of a pair of curves α and β in coordinate planes, we obtain a kind
of translation surfaces. We distinguish the six types as follows:

M(α, β) and M(β, α), α ⊂ {z = 0}, β ⊂ {y = 0}, (type I and IV)

M(α, β) and M(β, α), α ⊂ {z = 0}, β ⊂ {x = 0}, (type II and V)

M(α, β) and M(β, α), α ⊂ {y = 0}, β ⊂ {x = 0}. (type III and VI)

The idea in this paper is to consider the minimal surface equation (4) for each of
the six types of surfaces emphasized above. Yet, we will discuss only the cases I, II
and III, the computations for the other three being analogue. In each one of these
cases, (4) is an ordinary differential equation of order two, which we have to solve.
In this paper, we are able to solve equation (4) when the first curve lies in the
coordinate plane z = 0 and we complete classifying the minimal translation sur-
faces of type I and II. With respect to the surfaces of the family of type III,
equation (4) adopts a very complicated expression and we only give examples of
minimal surfaces. The difficulty of this case reflects the absence of symmetries
of the space Sol3, in particular, the fact the three coordinate axes are not in-
terchangeable. The same problem appears when one studies invariant surfaces
in Sol3, considering only those surfaces invariant under the first two families of
isometries in (1), that is, translations in the x or y directions, but not by the third
family of isometries in (1): see for example [14] for the case of umbilical invariant
surfaces in Sol3 and [10] for invariant surfaces with constant mean curvature or
constant Gauss curvature.

2.1. Classification of minimal translation surfaces of type I.
Since our study is local, we can assume that each one of the curves generat-

ing the surface M(α, β) is the graph of a smooth function. Considering the two
curves α(s) = (s, f(s), 0) and β(t) = (t, 0, g(t)), the translation surface M(α, β)
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parametrizes as x(s, t) = α(s) ∗ β(t) = (s + t, f(s), g(t)). We have

e1 = xs = (1, f ′, 0) = egE1 + f ′e−gE2,

e2 = xt = (1, 0, g′) = egE1 + g′E3,

and an orthogonal vector at each point is

N = (f ′g′e−g)E1 − g′egE2 − f ′E3.

The coefficients of the first fundamental form are

E = e2g + f ′2e−2g, F = e2g, G = e2g + g′2.

On the other hand,

∼
∇e1e1 = f ′′e−gE2 +

(
f ′2e−2g − e2g

)
E3,

∼
∇e1e2 = g′egE1 − f ′g′e−gE2 − e2gE3,

∼
∇e2e2 = 2g′egE1 +

(
g′′ − e2g

)
E3,

and

〈
N,

∼
∇e1e1

〉
= −f ′′g′ − f ′3e−2g + f ′e2g,

〈
N,

∼
∇e1e2

〉
= 2f ′g′2 + f ′e2g,

〈
N,

∼
∇e2e2

〉
= 2f ′g′2 − f ′g′′ + f ′e2g.

According to (4), the surface is minimal if and only if

−f ′′g′3 − e2g
(
f ′′g′ + f ′g′2 + f ′g′′

)
+ e−2gf ′3(g′2 − g′′) = 0. (5)

We start to study Equation (5) in simple cases. If f is constant, f(s) = y0, then
M(α, β) is the plane y = y0. If g is constant, g(t) = z0, the surface is the plane
z = z0.

Remark 2.1. If we write the curves α and β as α(s) = (f(s), s, 0) and
β(t) = (g(t), 0, t), then the parametrization of M(α, β) is x(s, t) = (f(s)+g(t), s, t).
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The Equation (5) is now

f ′′g′3 − e2g
(− f ′′g′ + f ′2g′2 + f ′2g′′

)
+ e−2g(g′2 − g′′) = 0.

Then if f and g are constant, the surface is minimal. This means that the planes
x = x0, x0 ∈ R, are minimal translation surfaces of type I.

From now on, we assume in (5) that f ′g′ 6= 0. We divide (5) by f ′3g′3:

− f ′′

f ′3
− e2g

(
f ′′

f ′3
1

g′2
+

1
f ′2

1
g′

+
g′′

g′3
1

f ′2

)
+ e−2g g′2 − g′′

g′3
= 0. (6)

In (6), the first and third summands are sum of a function on s and other depending
on t, respectively. Then, we differentiate with respect to s and t, and we get

∂2

∂s∂t

[
e2g

(
f ′′

f ′3
1

g′2
+

1
f ′2

1
g′

+
g′′

g′3
1

f ′2

)]
= 0.

This means

(
f ′′

f ′3

)′( 1
g′
− g′′

g′3

)
− 2

f ′′

f ′3
−

(
f ′′

f ′3

)((
g′′

g′3

)′
+

g′′

g′2

)
= 0. (7)

(1) Assume f ′′ = 0. Then f(s) = as + b, with a, b ∈ R. Equation (5) implies

e2g
(
g′′ + g′2

)
= a2e−2g

(− g′′ + g′2
)
.

We do the change g(t) = h(t) + m, with e4m = a2 and next, ζ(t) = 2h(t).
Then we obtain 2ζ ′′(eζ + e−ζ) = −ζ ′2(eζ − e−ζ), or

2ζ ′′ cosh(ζ) = −ζ ′2 sinh(ζ).

A first integration implies

ζ ′2 =
c2

cosh(ζ)
, c > 0.

A second integration yields
∫ t √

cosh ζ(τ)ζ ′(τ)dτ = ct + c1, where c1 ∈ R

and can be taken 0. Consider I(t) =
∫ t√cosh τdτ , which is a strictly

increasing function. Hence, the equation I(ζ(t)) = ct has a unique solution
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ζ(t) = I−1(ct).
(2) Assume g′′ − g′2 = 0. Since g is not constant, the function g is

g(t) = − log |t + λ|+ µ, λ, µ ∈ R. Then (5) implies

(1 + e2µ)f ′′(t + λ)− 2e2µf ′ = 0.

This is a polynomial on t. Then f ′ = f ′′ = 0: contradiction.
(3) Consider f ′′(g′′ − g′2) 6= 0. From (7), we conclude that there exists a ∈ R

such that

(
f ′′/f ′3

)′
f ′′/f ′3

= a =

(
g′′/g′3

)′ + g′′/g′2 + 2
1/g′ − g′′/g′3

. (8)

(a) Assume a = 0. Then f ′′ = bf ′3 for some constant b 6= 0. Then
1/f ′2 = −2bs + c, c ∈ R. On the other hand, the second equation in
(8) writes as

(
g′′

g′3
− 1

g′

)′
+ 2 = 0. (9)

Then

g′′

g′3
− 1

g′
= −2t + p, p ∈ R.

With this information about f and g, Equation (6) writes as

−b

(
1 +

e2g

g′2

)
+ (2bs− c)e2g

(
g′′

g′3
+

1
g′

)
− e−2g

(
g′′

g′3
− 1

g′

)
= 0. (10)

Since this expression is a polynomial equation on s, and because b 6= 0,
the leading coefficient corresponding to s implies

g′′

g′3
+

1
g′

= 0.

In combination with (9), we have 1/g′ = t − p/2 and hence
g(t) = log(t− p/2) + q, q ∈ R. Now the independent coefficient in (10) is

−b
(
1 + e2q(t− p/2)4

)
+

2e−2q

t− p/2
= 0.
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After some manipulations, we have a polynomial equation on t whose
leading coefficient is be2q. As it must vanish, we arrive to a contradiction.

(b) Assume a 6= 0. From the first equation in (8), we obtain a first integral:
there exists b 6= 0 such that

f ′′

f ′3
= beas. (11)

Then we have that for some c ∈ R,

−1
2f ′2

=
b

a
eas + c. (12)

Plugging (11) and (12) in (6), we have for any s

− beas

[
1 + e2g

(
1

g′2
− 2

a

(
1
g′

+
g′′

g′3

))]

+ 2ce2g

(
1
g′

+
g′′

g′3

)
+ e−2g

(
1
g′
− g′′

g′3

)
= 0.

This is a polynomial on eas and thus the two coefficients must vanish. It
follows that g satisfies the next two differential equations:

1 + e2g

(
1

g′2
− 2

a

(
1
g′

+
g′′

g′3

))
= 0, (13)

2ce2g

(
1
g′

+
g′′

g′3

)
+ e−2g

(
1
g′
− g′′

g′3

)
= 0. (14)

If c = 0, then g′′−g′2 = 0, which is impossible. Therefore, we assume that
c 6= 0. We study the function g. From (8), we have a linear differential
equation for ϕ = 1/g′ − g′′/g′3, namely,

ϕ′ + aϕ− 2 = 0.

The solution is

ϕ =
1
g′
− g′′

g′3
=

2
a

+ λe−at, λ ∈ R. (15)
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Combining (15) with (14), we have

2ce2g

(
2
g′
− 2

a
− λe−at

)
+ e−2g

(
2
a

+ λe−at

)
= 0.

We deduce

1
g′

=
1

4ac
e−at−4g

(− 1 + 2ce4g
)(

2eat + aλ
)
. (16)

Putting this value in (15) again, we have

aλ + 4c2e8g(t)
(
2eat + aλ

)− 4ce4g(t)
(
3eat + aλ)

)
= 0.

This implies

e4g(t) =
3eat + aλ±√9e2at + 4aλeat

2c(2eat + aλ)
.

From here, we have two values for g. Without loss of generality, we take
the sign plus in the above expression (the reasoning is analogous with the
choice minus). Combining with (16), we have:

24eat + 11aλ + 4
√

9e2at + 4aλeat + 3aλe−at
√

9e2at + 4aλeat = 0.

This identity can be viewed as a polynomial equation on eat:

108e3at + 62aλe2at − 14a2λ2eat − 9a3λ3 = 0.

As the leading coefficient must vanish, we get a contradiction.

As conclusion, we have

Theorem 2.2. The only minimal translation surfaces in Sol3 of type I are
the planes y = y0, the planes x = x0, the planes z = z0 and the surfaces whose
parametrization is x(s, t) = α(s) ∗ β(t) = (s + t, f(s), g(t)) where f(s) = as + b,
a, b ∈ R, a 6= 0 and

g(t) =
1
2

I−1(ct) + m, I(t) =
∫ t√

cosh τdτ, c > 0, e4m = a2.
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2.2. Classification of minimal translation surfaces of type II.
Consider α in the plane z = 0 and β in the plane x = 0. Again, assume

that both curves are graphs of functions and we take α(s) = (s, f(s), 0) and
β(t) = (0, t, g(t)). Consider the corresponding translation surface M(α, β), which
is parametrized by

x(s, t) = α(s) ∗ β(t) = (s, t + f(s), g(t)).

Similar computations as in the previous section give:

e1 = xs = (1, f ′, 0) = egE1 + e−gf ′E2,

e2 = xt = (0, 1, g′) = e−gE2 + g′E3.

The first fundamental form is

E = e2g + f ′2e−2g, F = f ′e−2g, G = e−2g + g′2.

Then N = (f ′g′e−g)E1−g′egE2 +E3 is an orthogonal vector to M . The covariant
derivatives are:

∼
∇e1e1 = f ′′e−gE2 +

(
f ′2e−2g − e2g

)
E3,

∼
∇e1e2 = g′egE1 − f ′g′e−gE2 + e−2gf ′E3,

∼
∇e2e2 = −2g′e−gE2 +

(
g′′ + e−2g

)
E3,

and their products by N are

〈
N,

∼
∇e1e1

〉
= −f ′′g′ + f ′2e−2g − e2g,

〈
N,

∼
∇e1e2

〉
= 2f ′g′2 + f ′e−2g,

〈
N,

∼
∇e2e2

〉
= 2g′2 + g′′ + e−2g.

Using (4), the surface is minimal if

−f ′′g′3 + e−2g
(
f ′2(g′′ − g′2)− f ′′g′

)
+ e2g

(
g′′ + g′2

)
= 0. (17)

Assume f ′ = 0, that is, f is a constant function. The above equation reduces to
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g′′ + g′2 = 0. If g′ = 0, then g(t) = z0 is constant and the surface M(α, β) is
the plane z = z0. The non-constant solutions are given by g(t) = log |t + λ| + µ,
λ, µ ∈ R.

Remark 2.3. As in the cases of translation surfaces of type I, we have that
the planes x = x0, with x0 ∈ R. For this, we write α(s) = (f(s), 0, s). Then the
computation of (4) gives

f ′′g′3 + e−2g
(
f ′(g′′ − g′2) + f ′′g′

)
+ f ′3e2g

(
g′′ + g′2

)
= 0.

If f is constant, then satisfies the above equation, that is, the surface M(α, β) is
x(s, t) = (x0, t + s, g(t)), that is, the plane x = x0 is a minimal translation surface
of type II.

We now suppose in (17) that f ′g′ 6= 0. We divide (17) by g′3, and we obtain

−f ′′ + e−2g

(
f ′2

(
g′′

g′3
− 1

g′

)
− f ′′

1
g′2

)
+ e2g

(
g′′

g′3
+

1
g′

)
= 0. (18)

As the first and last summands in the above expression are functions depending
only on s and t, respectively, we differentiate with respect to s and t, and we have:

∂2

∂s∂t

[
e−2g

(
f ′′

g′2
+

f ′2

g′
− f ′2

g′′

g′3

)]
= 0.

Then

f ′f ′′
(

g′′

g′3

)′
− f ′f ′′

g′′

g′2
+ f ′′′

g′′

g′3
+ 2f ′f ′′ +

f ′′′

g′
= 0,

or

f ′f ′′
((

g′′

g′3

)′
− g′′

g′2
+ 2

)
+ f ′′′

(
g′′

g′3
+

1
g′

)
= 0. (19)

(1) Assume f ′′ = 0. Then f(s) = as + b, a, b ∈ R. From (17), we have

a2e−2g
(
g′′ − g′2

)
+ e2g

(
g′′ + g′2

)
= 0.

The change of variables ζ(t) = 2(g(t)−m), e4m = a2 gives
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ζ ′2 =
c

cosh(ζ)
, c > 0

and this situation is analogous than the previous section.
(2) Assume g′′ + g′2 = 0. Because g is not constant, then g′(t) = log(t + λ) + µ,

λ, µ ∈ R. Then Equation (17) implies

(1 + e2µ)f ′′(t + λ) + 2f ′ = 0.

Thus f ′′ = f ′ = 0 and f is constant: contradiction.
(3) Assume f ′′(g′′ + g′2) 6= 0. From (19), there exists a constant a ∈ R such that

− f ′′′

f ′f ′′
= a =

(
g′′/g′3

)′ − g′′/g′2 + 2
g′′/g′3 + 1/g′

. (20)

(a) Case a = 0. Then f ′(s) = bs + c, with b, c ∈ R, b 6= 0. Equation (17)
leads to

−bg′3 + e−2g
(
(bs + c)2(g′′ − g′2)− bg′

)
+ e2g

(
g′′ + g′2

)
= 0. (21)

This polynomial equation on s implies that the leading coefficient must
vanish. Thus g′′ − g′2 = 0 and so, one gets g(t) = − log |pt + q|, where
p, q ∈ R, p 6= 0. The independent coefficient in (21) should be zero too,
and hence

b
p3

(pt + q)3
+ bp(pt + q) +

2p2

(pt + q)4
= 0,

or

2p2 + bp3(pt + q) + bp(pt + q)5 = 0.

This implies bp = 0: contradiction.
(b) Case a 6= 0. The first equation in (20) gives f ′′′/f ′′ = −af ′, a ∈ R, and

so, f ′′ = be−af with b 6= 0. Multiplying by f ′, we have f ′f ′′ = bf ′e−af

and hence

f ′2 =
−2b

a
e−af + c, c ∈ R.

We put the value of f and their derivatives in (19), and we obtain
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−be−af

[
1+e−2g 1

g′2
+

2
a

(
g′′

g′3
− 1

g′

)]
+2ce−2g

(
g′′

g′3
− 1

g′

)
+e2g

(
g′′

g′3
+

1
g′

)
= 0.

As f, b 6= 0, we conclude

1 + e−2g 1
g′2

+
2
a

(
g′′

g′3
− 1

g′

)
= 0, (22)

2ce−2g

(
g′′

g′3
− 1

g′

)
+ e2g

(
g′′

g′3
+

1
g′

)
= 0. (23)

For g, we have from (20) that if we put ϕ = g′′/g′3 + 1/g′, we have a
differential equation ϕ′ − aϕ + 2 = 0. We solve and we obtain

g′′

g′3
+

1
g′

=
2
a

+ λeat, λ ∈ R. (24)

By combining (23) and (24), we have

2ce−2g

(−2
g′

+
2
a

+ λeat

)
+ e2g

(
2
a

+ λeat

)
= 0.

Then

1
g′

=
(2c + e4g)(2 + aλeat)

4ac
. (25)

We put this value of g′ into (24) and we obtain

aλeat+8g + 4c2(2 + aλeat) + 4c(3 + aλeat)e4g = 0.

Hence

g(t) =
1
4

log
(

2ce−at

aλ

(− (3 + aλeat)±
√

9 + 4aλeat
))

.

Now we calculate 1/g′ and we compare with (25), obtaining

4
(
6 +

√
9 + 4aλeat

)
+ aλeat

(
11 + 3

√
9 + 4aλeat

)
= 0.

This expression can be written as
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36a3λ3e3at + 56a2λ2e2at − 248aλeat − 432 = 0,

which is a contradiction.

Theorem 2.4. The only minimal translation surfaces in Sol3 of type II are
the planes x = x0, the planes z = z0 and the surfaces whose parametrization is
x(s, t) = (s, t + f(s), g(t)) with

(1) f(s) = a and g(t) = log |t + λ|+ µ, where a, λ, µ ∈ R.
(2) f(s) = as + b, a 6= 0 and g(t) = (1/2)I−1(ct) + m, with

I(t) =
∫ t√

cosh τ dτ, c > 0, e4m = a2.

2.3. Examples of minimal translation surfaces of type III.
For translation surfaces of type III, we assume that the generating curves are

graphs of smooth functions and that α(s) = (s, 0, f(s)) and β(t) = (0, t, g(t)). The
translation surface M(α, β) is given by

x(s, t) =
(
s, tef (s), f(s) + g(t)

)
.

We compute the mean curvature of the surface. The first derivatives are

e1 = xs =
(
1, tf ′ef , f ′

)
= ef+gE1 + tf ′e−gE2 + f ′E3,

e2 = xt =
(
0, ef , g′

)
= e−gE2 + g′E3.

The coefficients of the first fundamental form are:

E = e2(f+g) + t2f ′2e−2g + f ′2, F = tf ′e−2g + f ′g′, G = e−2g + g′2.

A normal vector N is

N = f ′(1− tg′)e−(f+g)E1 + g′egE2 − E3.

The covariant derivatives are

∼
∇e1e1 =

(
2f ′ef+g

)
E1 + t

(
f ′′ − f ′2

)
e−gE2 +

(
f ′′ − e2(f+g) + t2f ′2e−2g

)
E3,

∼
∇e1e2 = g′ef+gE1 − tf ′g′e−gE2 + tf ′e−2gE3,
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∼
∇e2e2 = −2g′e−gE2 +

(
g′′ + e−2g

)
E3.

Multiplying by N , we get

〈
N,

∼
∇e1e1

〉
= 2f ′2 − 3tf ′2g′ + tf ′′g′ − f ′′ + e2(f+g) − t2f ′2e−2g,

〈
N,

∼
∇e1e2

〉
= f ′g′ − 2tf ′g′2 − tf ′e−2g,

〈
N,

∼
∇e2e2

〉
= −2g′2 − g′′ − e−2g.

Then (4) writes as

− e2(f+g)
(
g′′ + g′2

)
+ e−2g

(
t2f ′2g′2 + f ′2 − t2f ′2g′′ − 3tf ′2g′ + tf ′′g′ − f ′′

)

− 2f ′2g′2 + tf ′2g′3 + tf ′′g′3 − f ′′g′2 − f ′2g′′ = 0. (26)

In this section, we give examples of minimal translation surfaces of type III by
distinguishing some special cases:

(1) Assume f is constant. Then (26) implies g′′ + g′2 = 0. If g is constant,
the surface is a horizontal plane z = z0; the non-constant solution is g(t) =
log |t + λ|+ µ with λ, µ ∈ R. Moreover M(α, β) is an invariant surface.

(2) If g is a constant function, then (26) leads to e−2g(f ′2 − f ′′) = 0 and so, f

is constant and the surface is a horizontal plane z = z0; the non-constant
solution is f(s) = − log |s + λ|+ µ, λ, µ ∈ R.

(3) Assume tg′ − 1 = 0, then g(t) = log |t| + µ, µ ∈ R. In such case, Equation
(26) is satisfied for any function f .

(4) Assume f ′′ = 0, that is, f(s) = bs + c for some constants b 6= 0, c ∈ R.
Equation (26) writes as

−e2(f+g)
(
g′2 +g′′

)
+b2

(−2g′2 +tg′3−g′′
)
+b2e−2g

(
1−3tg′+t2g′2−t2g′′

)
= 0.

In particular, −e2(f+g)(g′′ + g′2) is a function depending only on t. Because
b 6= 0, then g′′ + g′2 = 0, and so, g(t) = log |t + λ|+ µ, λ, µ ∈ R. With these
expressions for f and g in (26) we obtain λb2e−2µ((1+e2µ)t+λ(e2µ−1)) = 0.
This is a polynomial on t, hence λ = 0. Then tg′ − 1 = 0, and this case is
contained in the previous one.

(5) Assume g′′ + g′2 = 0. Because g is not constant, then g(t) = log |t + λ| + µ,
with λ, µ ∈ R. Now (26) writes as
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λ
((

λ(−1 + e2µ) + (1 + e2µ)t
)
f ′2 + (1 + e2µ)(t + λ)f ′′

)
= 0.

If λ = 0, then tg′ − 1 = 0 and this case has been studied. If λ 6= 0, we have a
polynomial on t obtaining a couple of differential equations, namely,

(− 1 + e2µ
)
f ′2 +

(
1 + e2µ

)
f ′′ = 0, and f ′′ + f ′2 = 0.

Hence f ′2 = 0 and f is a constant function. This case is contained in the first
one studied in this section.

Before to state the next result, we point out that if one considers the curve α given
by α(s) = (f(s), 0, s), then the surface parametrizes as x(s, t) = (f(s), tes, s+g(t)).
The minimality condition is now

− e2(s+g)f ′3
(
g′′ + g′2

)
+ e−2g

(
f ′

(
t2g′2 − 1 + t2g′′ − 3tg′

)− f ′′
(
tg′ − 1

))

+ f ′
(− 3tg′3 − g′′

)
+ f ′′g′2

(
1− tg′

)
= 0.

For this equation, the function f(s) = x0 is a solution for any g. This means that
the surface is the vertical plane x = x0.

Proposition 2.5. Examples of minimal translation surfaces in Sol3 of type
III are the planes z = z0, the planes x = x0 and the surfaces whose parametrization
is x(s, t) = (s, tef , f(s) + g(t)) with

1. f(s) = a, and g(t) = log |t + λ|+ µ, a, λ, µ ∈ R.
2. f(s) = − log |s + λ|+ µ, g(t) = a, a, λ, µ ∈ R.
3. g(t) = log |t|+ µ and f is any arbitrary function.

In the general case of (26), that is, if f ′′g′(tg′ − 1)(g′′ + g′2) 6= 0, we divide the
expression (26) by f ′2e−2g(tg′ − 1), and we write

− e2f

f ′2
e4g g′′ + g′2

tg′ − 1
+

[
t2g′2 + 1− t2g′′ − 3tg′ + e2g

(− 2g′2 + tg′3 − g′′
)

tg′ − 1

]

+
f ′′

f ′2
(
1 + e2gg′2

)
= 0. (27)

We differentiate with respect to s, and taking into account that the expression in
the brackets is a function on t, we obtain



1002 R. López and M. I. Munteanu

∂

∂s

[
− e2f

f ′2
e4g g′′ + g′2

tg′ − 1
+

f ′′

f ′2
(
1 + e2gg′2

)]
= 0.

This means

−
(

e2f

f ′2

)′(
e4g g′′ + g′2

tg′ − 1

)
+

(
f ′′

f ′2

)′(
1 + e2gg′2

)
= 0. (28)

Since f ′′/f ′2 cannot be a constant, we deduce from (28) that there exists a ∈ R

such that

(
e2f/f ′2

)′
(
f ′′/f ′2

)′ = a =
1 + e2gg′2

e4g((g′′ + g′2)/(tg′ − 1))
. (29)

If a = 0, then 1 + e2gg′2 = 0, which is not possible. Thus, a 6= 0. From (29), we
have

e2f

f ′2
= a

f ′′

f ′2
+ b

e2gg′2 = ae4g g′′ + g′2

tg′ − 1
− 1

with b ∈ R an integration constant. Finally, using both equations, (27) can be
written as

(b− a)g′2e6g +
(
a + b− 2atg′ + g′2

)
e4g +

(
1 + t2g′2

)
e2g + t2 = 0. (30)

At this point we notice that the other minimal translation surfaces of type III
should satisfy the previous equation.
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