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Abstract. In this paper we study smooth complex projective polarized
varieties (X, H) of dimension n ≥ 2 which admit a covering family V of rational
curves of degree 3 with respect to H such that two general points of X may be
joined by a curve parametrized by V , and such that there is a covering family
of rational curves of H-degree one.

We prove that the Picard number of these manifolds is at most three, and
that, if equality holds, (X, H) has an adjunction theoretic scroll structure over
a smooth variety.

1. Introduction.

At the end of the last century, the concepts of uniruled and rationally con-
nected varieties were introduced as suitable higher dimensional analogues of ruled
and rational surfaces. Uniruled varieties are algebraic varieties that are covered by
rational curves, i.e., varieties that contain a rational curve through a general point.
Among uniruled varieties, those that contain a rational curve through two general
points are especially important. Varieties satisfying this property are called ratio-
nally connected and were introduced by Campana in [7] and by Kollár, Miyaoka
and Mori in [19].

A natural problem about rationally connected varieties is to characterize them
by means of bounding the degree of the rational curves connecting pairs of general
points; it is easy to see that projective spaces are the only projective manifolds
for which two general points can be connected by a rational curve of degree one
with respect to a fixed ample line bundle; Ionescu and Russo have recently studied
conic-connected manifolds embedded in projective space, i.e., projective manifolds
such that two general points may be joined by a rational curve of degree 2 with
respect to a fixed very ample line bundle. In [13] they proved that conic-connected
manifolds X ⊂ P N are Fano and have Picard number ρX less than or equal to
2 and classified the manifolds with Picard number two. A special case of conic-
connected manifolds was previously studied by Kachi and Sato in [14].
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In this paper we will consider rationally cubic connected manifolds (RCC-
manifolds, for short), i.e., smooth complex projective polarized varieties (X, H) of
dimension n ≥ 2 which are rationally connected by irreducible rational curves of
degree 3 with respect to a fixed ample line bundle H, or equivalently which admit
a dominating family V of rational curves of degree 3 with respect to H such that
two general points of X may be joined by a curve parametrized by V .

Unlike in the conic-connected case, there is no constant bounding the Picard
number of RCC-manifolds, as shown in Example 3.1; the same example shows
also that there are RCC-manifolds which are not Fano manifolds and which do
not carry a dominating family of lines (i.e., curves of degree one with respect to
H), this last property holding for all conic-connected manifolds of Picard number
greater than one.

These considerations lead us to divide our analysis of RCC-manifolds in two
parts: in the present paper we will deal with the ones which are covered by lines,
while the remaining ones, which present very different geometric features, are
treated in [21].

Rationally cubic connected manifolds covered by lines present more similar-
ities with conic-connected manifolds; the first one is the presence of a bound on
the Picard number, with a description of the border case.

Theorem 1.1. Let (X, H) be RCC with respect to a family V , and assume
that (X, H) is covered by lines. Then ρX ≤ 3, and if equality holds then there exist
three families of lines L 1,L 2,L 3 with [V ] = [L 1] + [L 2] + [L 3] ([ ] denotes
the numerical class), such that X is rc(L 1,L 2,L 3)-connected, i.e., two general
points of X can be connected by a connected chain of lines parametrized by the
families L j (see Subsection 2.2 for more details).

In the case of maximal Picard number we also prove a structure theorem,
which shows that RCC-manifolds covered by lines have always a special adjunction
theoretic scroll structure over a smooth variety:

Theorem 1.2. Let (X, H) be RCC with respect to a family V , assume that
(X, H) is covered by lines and that ρX = 3. Then there is a covering family
of lines whose numerical class spans an extremal ray of NE(X) such that the
associated extremal contraction ϕ : X → Y makes X into a special Bǎnicǎ scroll
(see Definition 2.13) over a smooth variety Y .

For conic-connected manifolds a stronger result holds, namely conic-connected
manifolds with maximal Picard number have a classical scroll structure; as Exam-
ple 3.3 shows, this is not true for RCC-manifolds, i.e., there are RCC-manifolds
with a scroll structure which has jumping fibers.
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As for the question if a RCC-manifold covered by lines is a Fano manifold,
we are not able to provide an answer. The big difference with the conic-connected
case, which makes the problem definitely harder, is that the structure of the cone
of curves of the manifold, which now lives in a three-dimensional vector space is
not known: a priori, many different shapes and an unknown number of extremal
rays are possible.

2. Background material.

2.1. Families of rational curves and of rational 1-cycles.
Definition 2.1. A family of rational curves V on X is an irreducible com-

ponent of the scheme Ratcurvesn(X) (see [18, Definition II.2.11]).
Given a rational curve we will call a family of deformations of that curve any

irreducible component of Ratcurvesn(X) containing a point parametrizing that
curve.

We define Locus(V ) to be the set of points of X through which there is
a curve among those parametrized by V ; we say that V is a covering family if
Locus(V ) = X and that V is a dominating family if Locus(V ) = X.

By abuse of notation, given a line bundle L ∈ Pic(X), we will denote by L ·V
the intersection number L ·C, with C any curve among those parametrized by V .

We will say that V is unsplit if it is proper; clearly, an unsplit dominating
family is covering.

We denote by Vx the subscheme of V parametrizing rational curves passing
through a point x and by Locus(Vx) the set of points of X through which there
is a curve among those parametrized by Vx. If, for a general point x ∈ Locus(V ),
Vx is proper, then we will say that the family is locally unsplit. Moreover, we say
that V is generically unsplit if, through a general x ∈ Locus(V ) and a general
y ∈ Locus(Vx) there is a finite number of curves parametrized by V .

Definition 2.2. Let U be an open dense subset of X and π : U → Z a
proper surjective morphism to a quasi-projective variety; we say that a family of
rational curves V is a horizontal dominating family with respect to π if Locus(V )
dominates Z and curves parametrized by V are not contracted by π. Notice that
V does not need to be a dominating family.

Definition 2.3. We define a Chow family of rational 1-cycles W to be an
irreducible component of Chow(X) parametrizing rational and connected 1-cycles.
We define Locus(W ) to be the set of points of X through which there is a cycle
among those parametrized by W ; notice that Locus(W ) is a closed subset of X

([18, II.2.3]). We say that W is a covering family if Locus(W ) = X.
If V is a family of rational curves, the closure of the image of V in Chow(X),
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denoted by V , is called the Chow family associated to V . If V is proper, i.e., if the
family is unsplit, then V is the normalization of the associated Chow family V .

Definition 2.4. Let V be a family of rational curves and let V be the
associated Chow family. We say that V (and also V ) is quasi-unsplit if every com-
ponent of any reducible cycle parametrized by V has numerical class proportional
to the numerical class of a curve parametrized by V .

Definition 2.5. Let V 1, . . . , V k be families of rational curves on X and
Y ⊂ X. We define Locus(V 1)Y to be the set of points x ∈ X such that there
exists a curve C among those parametrized by V 1 with C ∩Y 6= ∅ and x ∈ C. We
inductively define Locus(V 1, . . . , V k)Y := Locus(V k)Locus(V 1,...,V k−1)Y

.
Notice that, by this definition, we have Locus(V )x = Locus(Vx). Analogously

we define Locus(W 1, . . . ,W k)Y for Chow families W 1, . . . ,W k of rational 1-cycles.

Notation. If Γ is a 1-cycle, then we will denote by [Γ] its numerical equiv-
alence class in N1(X); if V is a family of rational curves, we will denote by [V ]
the numerical equivalence class of any curve among those parametrized by V . A
proper family will always be denoted by a calligraphic letter.

If Y ⊂ X, we will denote by N1(Y, X) ⊆ N1(X) the vector subspace generated
by numerical classes of curves of X contained in Y ; moreover, we will denote by
NE (Y, X) ⊆ NE(X) the subcone generated by numerical classes of curves of X

contained in Y . The notation 〈· · · 〉 will denote a linear subspace, while the notation
〈· · · 〉c will denote a subcone.

Definition 2.6. We say that k quasi-unsplit families V 1, . . . , V k are nu-
merically independent if in N1(X) we have dim〈[V 1], . . . , [V k]〉 = k.

For special families of rational curves we have useful dimensional estimates.
The basic one is the following:

Proposition 2.7 ([18, IV.2.6]). Let V be a family of rational curves on X

and x ∈ Locus(V ) a point such that every component of Vx is proper. Then

(a) dim Locus(V ) + dim Locus(Vx) ≥ dimX −KX · V − 1;
(b) every irreducible component of Locus(Vx) has dimension ≥ −KX · V − 1.

Remark 2.8. If V is a generically unsplit dominating family then, for a
general x ∈ X, the inequalities in Proposition 2.7 are equalities by [18, Proposition
II.3.10].

The following generalization of Proposition 2.7 will be often used:

Lemma 2.9 (cf. [1, Lemma 5.4]). Let Y ⊂ X be an irreducible closed subset
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and V 1, . . . , V k numerically independent unsplit families of rational curves such
that 〈[V 1], . . . , [V k]〉 ∩NE (Y, X) = 0. Then either Locus(V 1, . . . , V k)Y = ∅ or

dimLocus(V 1, . . . , V k)Y ≥ dimY +
∑

−KX · V i − k.

A key fact underlying our strategy to obtain bounds on the Picard number,
based on [18, Proposition II.4.19], is the following:

Lemma 2.10 ([1, Lemma 4.1]). Let Y ⊂ X be a closed subset and V a
Chow family of rational 1-cycles. Then every curve contained in Locus(V )Y is
numerically equivalent to a linear combination with rational coefficients of a curve
contained in Y and of irreducible components of cycles Γ parametrized by V such
that Γ ∩ Y 6= ∅.

The following Corollary encompasses the most frequent usages of Lemma 2.10
in the paper:

Corollary 2.11. Let V 1 be a locally unsplit family of rational curves, and
V 2, . . . , V k unsplit families of rational curves. Then, for a general x ∈ Locus(V 1),

(a) N1(Locus(V 1)x, X) = 〈[V 1]〉;
(b) Locus(V 1, . . . , V k)x = ∅ or N1(Locus(V 1, . . . , V k)x, X) ⊆ 〈[V 1], . . . , [V k]〉.

2.2. Contractions and fibrations.
Definition 2.12. Let X be a manifold such that KX is not nef.
Denote by NE(X) ⊂ N1(X) the closure of the cone of effective 1-cycles into

the R-vector space of 1-cycles modulo numerical equivalence, and by NE(X)KX<0

the set {z ∈ N1(X) : KX ·z < 0}. An extremal face is a face σ of NE(X), associated
to some nef line bundle L, contained in the negative part of the cone with respect
to KX , i.e., σ = NE(X) ∩ L⊥ ⊂ NE(X)KX<0; an extremal face of dimension one
is called an extremal ray.

To an extremal face σ is associated a morphism with connected fibers
ϕσ : X → Z onto a normal variety, morphism which contracts the curves whose
numerical class is in σ; ϕσ is called an extremal contraction or a Fano-Mori con-
traction, while a Cartier divisor H such that H = ϕ∗σA for an ample divisor A on
Z is called a supporting divisor of the map ϕσ (or of the face σ). We usually denote
with Exc(ϕσ) := {x ∈ X | dimϕ−1

σ (ϕσ(x)) > 0} the exceptional locus of ϕσ; if ϕσ

is of fiber type then clearly Exc(ϕσ) = X. An extremal contraction associated to
an extremal ray is called an elementary contraction.

Definition 2.13. An elementary fiber type extremal contraction ϕ : X → Z

onto a smooth variety Z is called a P -bundle or a classical scroll if there exists a
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vector bundle E of rank dimX − dimZ + 1 on Z such that X ' P (E ).
An elementary fiber type extremal contraction ϕ : X → Z is called an

adjunction scroll if there exists a ϕ-ample line bundle H ∈ Pic(X) such that
KX + (dimX − dimZ + 1)H is a supporting divisor of ϕ. A general fiber of such
a contraction is, by the adjunction formula and Kobayashi–Ochiai Theorem [17],
a projective space P dim X−dim Z .

Some special adjunction scroll contractions arise from projectivization of
Bǎnicǎ sheaves (cf. [3]); in particular, if ϕ : X → Z is an adjunction scroll such
that every fiber has dimension ≤ dimX − dimZ + 1, then Z is smooth and X is
the projectivization of a Bǎnicǎ sheaf on Z (cf. [3, Proposition 2.5]); we will call
such a contraction a special Bǎnicǎ scroll.

Proposition 2.7, in case V is the unsplit family of deformations of a rational
curve of minimal anticanonical degree contained in a fiber of an extremal contrac-
tion, gives the fiber locus inequality :

Proposition 2.14 ([12, Theorem 0.4], [23, Theorem 1.1]). Let ϕ be a
Fano-Mori contraction of X and let E = Exc(ϕ) be its exceptional locus; let S be
an irreducible component of a (non trivial) fiber of ϕ. Then

dimE + dimS ≥ dimX + l − 1,

where l = min{−KX ·C | C is a rational curve in S}. If ϕ is the contraction of a
ray R, then l(R) := l is called the length of the ray.

If X admits a fiber type extremal contraction, then it is uniruled; for the
converse, we have that a covering family of rational curves determines a rational
fibration, defined on an open set of X. We recall briefly this construction.

Definition 2.15. Let Y ⊂ X be a closed subset, and let V 1, . . . ,V k Chow
families of rational 1-cycles; define ChLocusm(V 1, . . . ,V k)Y to be the set of points
x ∈ X such that there exist cycles Γ1, . . . ,Γm with the following properties:

• Γi belongs to a family V j ;
• Γi ∩ Γi+1 6= ∅;
• Γ1 ∩ Y 6= ∅ and x ∈ Γm,

i.e., ChLocusm(V 1, . . . ,V k)Y , is the set of points that can be joined to Y by a
connected chain of at most m cycles belonging to the families V j .

Define a relation of rational connectedness with respect to V 1, . . . ,V k on X

in the following way: two points x and y of X are in rc(V 1, . . . ,V k)-relation
if there exists a chain of cycles in V 1, . . . ,V k which joins x and y, i.e., if y ∈
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ChLocusm(V 1, . . . ,V k)x for some m. In particular, X is rc(V 1, . . . ,V k)-connected
if for some m we have X = ChLocusm(V 1, . . . ,V k)x.

To the proper prerelation defined by V 1, . . . ,V k it is associated a fibration,
which we will call the rc(V 1, . . . ,V k)-fibration:

Theorem 2.16 ([18, IV.4.16], cf. [6]). Let X be a normal and proper vari-
ety and V 1, . . . ,V k Chow families of rational 1-cycles; then there exists an open
subvariety X0 ⊂ X and a proper morphism with connected fibers π : X0 → Z0

such that

• the rc(V 1, . . . ,V k)-relation restricts to an equivalence relation on X0;
• π−1(z) is a rc(V 1, . . . ,V k)-equivalence class for every z ∈ Z0;
• ∀ z ∈ Z0 and ∀x, y ∈ π−1(z), x ∈ ChLocusm(V 1, . . . ,V k)y with m ≤

2dim X−dim Z − 1.

If V is a covering Chow family of rational 1-cycles, associated to a quasi-
unsplit dominating family V , and π : X //___ Z is the rc(V )-fibration, then
by [5, Proposition 1, (ii)] its indeterminacy locus B is the union of all rc(V )-
equivalence classes of dimension greater than dimX − dimZ.

Combining Theorem 2.16 with Lemma 2.10, we get the following:

Proposition 2.17 (cf. [1, Corollary 4.4]). If X is rationally connected
with respect to some Chow families of rational 1-cycles V 1, . . . ,V k, then N1(X)
is generated by the classes of irreducible components of cycles parametrized by
V 1, . . . ,V k.

In particular, if V 1, . . . ,V k are quasi-unsplit families, then ρX ≤ k and equal-
ity holds if and only if V 1, . . . ,V k are numerically independent.

2.3. Extremality of families of rational curves.
The key observation for proving the extremality of the numerical class of a

family of curves is a variation of an argument of Mori, contained in [4, Proof of
Lemma 1.4.5]. We state it as follows:

Lemma 2.18. Let Z ⊂ X be a closed subset and let V be a quasi-unsplit
family of rational curves. Then, for every integer m, every curve contained in
ChLocusm(V )Z is numerically equivalent to a linear combination with rational
coefficients

λCZ + µCV ,

where CZ is a curve in Z, CV is a curve among those parametrized by V and
λ ≥ 0.
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We build on Lemma 2.18, to analyze particular situations which will appear
in the proof of Theorem 1.2.

Lemma 2.19. Let L 1,L 2 and L 3 be numerically independent unsplit fam-
ilies on X. Assume that for some point x ∈ X and some integers m1,m2 we have
X = ChLocusm1(L

1,L 2)ChLocusm2 (L3)x
. Then the numerical classes [L 1], [L 2]

lie in a (two-dimensional) extremal face of NE(X).

Proof. First of all notice that, by Proposition 2.17, we have that ρX = 3.
By repeated applications of Lemma 2.18, starting with Z := ChLocusm2(L3)x,
every curve in X is numerically equivalent to

∑3
1 aj [L j ], with a3 ≥ 0.

Let Π ⊂ N1(X) be the plane defined by [L 1] and [L 2] and let C1 and C2 be
two curves such that [C1] + [C2] ∈ Π; write [Ci] =

∑
ci
j [L

j ], with ci
3 ≥ 0.

Asking for [C1] + [C2] to be in Π amounts to impose c1
3 + c2

3 = 0, hence
c1
3 = c2

3 = 0 and both [C1] and [C2] belong to Π. ¤

Lemma 2.20. Let L 1,L 2 and L 3 be numerically independent unsplit fam-
ilies on X. Assume that for some point x ∈ X and some positive integer m we
have X = Locus(L 2,L 1)ChLocusm(L3)x

. Then [L 1] is extremal in NE(X).

Proof. By Lemma 2.19 the numerical classes of L 1 and L 2 lie in an
extremal face σ. Let C ⊂ X be a curve whose numerical class is contained in σ.

Since X = Locus(L 1)Z with Z = Locus(L 2)ChLocusm(L3)x
, by Lemma 2.18

there is an effective curve CZ ⊂ Locus(L 2)ChLocusm(L3)x
such that

C ≡ αCZ + βC1

with C1 parametrized by L 1 and α ≥ 0.
Since [C] ∈ σ, then also [CZ ] ∈ σ; on the other hand, by Lemma 2.18 applied

to Z we have that [CZ ] ∈ 〈[L 2], [L 3]〉, so [CZ ] = λ[L 2].
We have thus shown that every curve whose numerical class belongs to σ is

equivalent to α′[L 2] + β[L 1] with α′ ≥ 0. Let now B1 and B2 be two curves
such that [B1] + [B2] ∈ R+[L 1]; by the extremality of σ, both [B1] and [B2] are
contained in σ. Write [Bi] = α′i[L

2] + βi[L 1] with α′i ≥ 0. Then it is clear that
[B1] + [B2] ∈ R+[L 1] if and only if α′i = 0 for i = 1, 2. ¤

3. Examples.

Example 3.1 (RCC manifolds with large Picard number). Let P1, . . . , Pk

be general points of P n and let ϕ : X → P n be the blow-up of P n at P1, . . . , Pk,
with
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k ≤
(

n + 3
3

)
− (2n + 2).

Denote by Ei with i = 1, . . . , k the exceptional divisors. Let V be the family of
deformations of the strict transform of a general line in P n and define H to be

H := ϕ∗OP n(3)−
( k∑

i=1

Ei

)
.

By [9, Main theorem] the line bundle H is very ample, thus the pair (X, H) is
RCC with respect to V and ρX = k + 1.

Notice that, if k ≥ 2 and n > 2 then X is not a Fano manifold. In fact, if we
consider the strict transform ` of the line in P n passing through P1 and P2, then,
by the canonical bundle formula of the blow up, we have −KX · ` ≤ 0.

Example 3.2 (Products). Let Y be a conic-connected manifold with Picard
number two (see Example 3.4 below for the classification), and denote by OY (1)
the hyperplane line bundle of Y .

Trivial examples can be obtained by taking the product X := Y × P r, with
projections p1 and p2 and setting H to be p∗1OY (1)⊗ p∗2OP r (1).

Example 3.3 (Adjunction scrolls). Let Y be P r1×P r2×P r3 with ri ≥ 2, let
X be a general member of the linear system |O(1, 1, 1)| and let H be the restriction
to X of O(1, 1, 1). Then (X, H) is an RCC-manifold which has three extremal
contractions which are adjunction scrolls. If ri < rj +rk then the contraction onto
P rj ×P rk has a (rj + rk− ri−1)-dimensional family of jumping fibers, hence it is
not a classical scroll. Notice that the condition is always fulfilled by at least two
indexes, and, taking r1 = r2 = r3, it is fulfilled by all, hence in this case X has no
classical scroll contractions.

Example 3.4 (Projective bundles). Let Y be a conic-connected manifold
of Picard number two; by [13, Theorem 2.2] Y is one of the following:

(a) P a × P b ⊂ P ab+a+b Segre embedded.
(b) A hyperplane section of the Segre embedding P a × P b ⊂ P ab+a+b.
(c) Y ' PP a(E ) with E ' OP r (1)⊕n−a ⊕ OP a(2), a = 1, 2, . . . , n− 1, embedded

by |OP (E )(1)|.
All these manifolds have two extremal contractions onto projective spaces, one of
which is a classical scroll. Denote this contraction by ϕ1 and the other contraction
by ϕ2; denote by H1 and H2 respectively the line bundles ϕ∗1OP (1) and ϕ∗2OP (1),
where OP (1) is the hyperplane line bundle on the target projective space.
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For every integer r ≥ 1 consider the vector bundles Ei := (OY )⊕r ⊕Hi on Y

and their projectivizations Xi = P (Ei), with natural projections πi : Xi → Y .
Let ξi be the tautological line bundle of P (Ei), and set H := ξi+π∗i H1+π∗i H2;

H is the sum of three nef line bundles which do not all vanish on the same class
in NE(Xi) \ {0}, hence it is ample.

The restriction of Ei to smooth conics γ in Y is O⊕r
γ ⊕ Oγ(1); let V be

the family of sections over smooth conics in Y corresponding to the surjections
(Ei)|γ → Oγ(1).

We claim that (Xi,H) is RCC with respect to V ; first of all its clear that

ξi · V = π∗i H1 · V = π∗i H2 · V = 1,

hence H · V = 3. Let now x and x′ be general points in Xi; let y and y′ be
the images of these points in Y and let γ be a conic in Y passing through y and
y′. By the generality of x and x′ we can assume that γ is smooth. Let Γ be the
projectivization of the restriction of Ei to γ. The variety Γ is isomorphic to the
blow-up of P r in a linear subspace Λ of codimension two, and a general curve in
V contained in Γ is the strict transform of a line in P r not meeting Λ. By the
generality of x and x′ there is a line in P r not meeting Λ whose strict transform
contains x and x′.

It is straightforward to check that all the manifolds constructed in this way
are Fano manifolds with three elementary contractions; notice that, depending on
the choice of Y and Hi, the other contractions of Xi can be of different kind,
namely:

Y Hi Contractions
P r × P s 1–2 Fiber type - Divisorial

Hyperplane section of P r × P s 1–2 Fiber type - Divisorial
Blow-up of P n along a linear subspace 1 Fiber type - Small
Blow-up of P n along a linear subspace 2 Divisorial - Divisorial

Example 3.5 (More projective bundles). In Example 3.4 we considered
bundles on all possible conic-connected manifolds with Picard number two. Other
examples can be constructed taking as base the product of two projective spaces;
this is possible because, in this case, through a pair of general points there is not
just one conic, but a one-parameter family of conics.

Let Y be P a × P b and let H1 and H2 be as in Example 3.4. For every
integer r ≥ 1 consider the vector bundles Eij := (OY )⊕r⊕Hi⊕Hj on Y and their
projectivizations Xij = P (Eij), with natural projection πij : Xij → Y .
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Let ξij be the tautological line bundle of P (Eij), and set H := ξij + π∗ijH1 +
π∗ijH2; H is the sum of three nef line bundles which do not all vanish on the same
class in NE(Xij) \ {0}, hence it is ample.

The restriction of Eij to smooth conics γ in Y is O⊕r
γ ⊕ Oγ(1)⊕2; let V be

the family of sections over smooth conics γ in Y corresponding to the surjections
(Eij)|γ → Oγ(1). We will show that (Xij ,H) is RCC with respect to V ; first of all
it is clear that H · V = 3, since

ξij · V = π∗ijH1 · V = π∗ijH2 · V = 1.

Let now x and x′ be general points in Xij : we claim that there is at most a finite
number of curves in V passing through x and x′. If this were not the case, through
x and x′ there would be a reducible cycle Γ parametrized by V .

Since there is only one dominating family of lines – the lines in the fibers of
πi – and x and x′ are general, the cycle Γ consists of a line in a fiber of πi and a
curve γ′ such that H · γ′ = 2. By the generality of x and x′ we have that there is
no line in Y passing through y and y′, hence π∗ijH1 ·γ′ and π∗ijH2 ·γ′ are positive.
Therefore ξij ·γ′ = 0 and γ′ is a section over a conic γ corresponding to a surjection
(Eij)|γ → Oγ , but, through a general point of Xij there is no such a curve, and
the claim is proved.

For a general conic γ passing through y = πij(x) and y′ = πij(x′) we can
compute the dimension of the space of curves parametrized by V contained in
π−1

ij (γ) ' PP 1(O⊕r
P 1 ⊕ OP 1(1)⊕2) := P . By [18, Theorem 1.2], this dimension is

−KP · V + dimP − 3 = (r + 2) + (r + 2) − 3 = 2r + 1 (the minus three appears
since we are working with Ratcurvesn(X)). Since there is a one parameter family
of conics γ passing through y and y′, the dimension of the space of curves T ⊂ V

parametrizing curves meeting Fy := π−1
ij (y) and Fy′ := π−1

ij (y′) is 2r + 2.
Since Fy and F ′y have both dimension r + 1 and we have proved above that

through two general points there is at most a finite number of curves parametrized
by T , we can conclude that through two general points in Fy and F ′y there is a
curve parametrized by V .

It is straightforward to check that all the manifolds constructed in this way
are Fano manifolds with three elementary contractions; notice that, depending on
the choice of Hi and Hj , the other contractions of Xij can be of different kind,
namely:

Hi Hj Contractions
1 1 Fiber type - Small
1 2 Divisorial - Divisorial
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4. Preliminaries.

Let (X, H) be a RCC manifold with respect to a family V . Notice that we are
asking that a general cubic through two general points is irreducible. Examples in
which (X, H) is connected by reducible cycles of degree three can be constructed
by taking any projective bundle over the projective space which has a section.

Our assumptions on V can be rephrased by saying that for a general point
x ∈ X the subset Locus(V )x is dense in X; by [10, Proposition 4.9] a general
curve f : P 1 → X parametrized by V is a 1-free curve, i.e.

f∗TX ' OP 1(a1)⊕ · · · ⊕ OP 1(an)

with a1 ≥ a2 ≥ · · · ≥ an and a1 ≥ 2, an ≥ 1. This implies that

−KX · V = −KX · f∗P 1 =
n∑
1

ai ≥ n + 1. (1)

Since the locus of the corresponding family of rational 1-cycles V is closed and
Locus(V )x ⊂ Locus(V )x, we have that Locus(V )x = X for a general x ∈ X. By
Lemma 2.10 it follows that N1(X) is generated by the numerical classes of irre-
ducible components of cycles parametrized by V passing through x. In particular
the Picard number of X is one if and only if, for some x ∈ X, the subfamily Vx is
quasi-unsplit. More precisely we have the following:

Proposition 4.1. Let (X, H) be RCC with respect to a family V ; then

1. There exists x ∈ X such that Vx is proper if and only if (X, H) ' (P n,OP (3));
2. There exists x ∈ X such that Vx is quasi-unsplit but not proper if and only if X

is a Fano manifold of Picard number one and index n + 1 > r(X) ≥ (n + 1)/3
with fundamental divisor H.

Proof. In the first case X is the projective space and V is the family of
lines by, [8, Main Theorem] or [16, Proof of Theorem 1.1]. In the second case the
Picard number of X is one by Lemma 2.10, hence −KX ≥ ((n+1)/3)H by taking
intersection numbers with V . The existence of a reducible cycle in V provides a
curve with intersection number one with H. ¤

5. RCC-manifolds with plenty of reducible cubics.

The results in the previous section show that, if the Picard number of X is
greater than one, through a general point there is at least one reducible cycle in V
whose components are not all numerically proportional to V . Since H · V = 3, a
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cycle in V can split into two or three irreducible rational components. From now
on we will call a component of H-degree one a line and a component of H-degree
two a conic.

Families of lines are easier to handle, since they cannot degenerate further,
i.e., they are unsplit families; for this reason the first possibility that we consider
is the following: through a general point of X there is a reducible cycle consisting
of three lines.

Definition 5.1. We will say that a manifold (X, H) which is RCC with
respect to V is covered by V -triplets of lines if through a general point of X there
is a connected rational 1-cycle `1 + `2 + `3 such that [`1] + [`2] + [`3] = [V ].

5.1. RCC-manifolds covered by triplets of lines.
We start by considering the following more general situation:

Definition 5.2. We will say that a manifold (X, H) which is RCC with
respect to V is connected by V -triplets of lines if there exist three families of lines
L 1,L 2,L 3 with [V ] = [L 1] + [L 2] + [L 3] such that X is rc(L 1,L 2,L 3)-
connected.

Proposition 5.3. If (X, H) is connected by V -triplets of lines then ρX ≤ 3.
If equality holds then, up to reordering, L 1 is a covering family, L 2 is hor-

izontal and dominating with respect to the rc(L 1)-fibration and L 3 is horizontal
and dominating with respect to the rc(L 1,L 2)-fibration.

Proof. The first assertion follows from Proposition 2.17.
Assume now that ρX = 3; since X is rc(L 1,L 2,L 3)-connected at least one

of the families, say L 1, is covering.
Let π1 : X //___ Z1 be the rc(L 1)-fibration; since ρX = 3, by Proposition

2.17, we have dim Z1 > 0. Two general fibers of π1 are connected by chains of
curves in L 2 and L 3, so one of the families, say L 2, is horizontal and dominating
with respect to π1. Let π2 : X //___ Z2 be the rc(L 1,L 2)-fibration; since ρX =
3, by Proposition 2.17, we have dimZ2 > 0. Two general fibers of π2 are connected
by chains of curves parametrized by L 3, so L 3 is horizontal and dominating with
respect to π2. ¤

We will now explore the relation between the property of being covered by
V -triplets of lines and the property of being connected by V -triplets of lines:

Proposition 5.4. Assume that (X, H) is RCC-connected by a family V . If
(X, H) is covered by V -triplets of lines then (X, H) is connected by V -triplets of
lines. The converse holds if ρX = 3.
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Proof. Consider the set of triplets of families of lines whose numerical
classes add up to [V ]: S = {(L 1

i ,L 2
i ,L 3

i ) | [L 1
i ] + [L 2

i ] + [L 3
i ] = [V ]}i=1,...,k.

For every i = 1, . . . , k denote by Bi the set of points which are contained in
a connected chain `1 ∪ `2 ∪ `3, with `j parametrized by L j

i and `j ∩ `j+1 6= ∅ for
j = 1, 2. The set Bi can be written as the union of three closed subsets:

1. B1
i := Locus(L 2

i ,L 1
i )Locus(L 3

i ),
2. B2

i := e2(p−1
2 (p2(e−1

2 (Locus(L 1
i ))) ∩ p2(e−1

2 (Locus(L 3
i ))))),

3. B3
i := Locus(L 2

i ,L 3
i )Locus(L 1

i ).

where e2 and p2 are the (proper) morphisms defined on the universal family over
L 2

i appearing in the fundamental diagram

U 2
i

e2 //

p2

²²

X

L 2
i

Notice that the (closed) set Bj
i is exactly the set of points on curves parametrized

by L j
i belonging to the chains.
If X is covered by V -triplets of lines, then X is contained in the union of the

Bj
i ; since the Bj

i are a finite number and each of them is closed there is a pair of
indexes (i0, j0) such that X is contained in B0 := Bj0

i0
. By construction the set Bj

i

is contained in Locus(L j
i ), therefore the family L j0

i0
is covering.

To simplify notation we denote from now on by L 1,L 2 and L 3 the families
corresponding to the index i0. We also assume that j0 = 1 – we don’t lose in
generality, even if the sets Bj

i have not the same definition for different j’s.
Let us consider the rationally connected fibration π1 : X //___ Z1 with

respect to the family L 1. If dimZ1 = 0 then X is rc(L 1)-connected, so also
rc(L 1,L 2,L 3)-connected, otherwise we claim that either L 2 or L 3 is horizontal
and dominating with respect to π1.

To prove the claim recall that X is covered by connected cycles `1 + `2 + `3,
and observe that these cycles are not contracted by π1, otherwise also curves
parametrized by V would be contracted, and Z1 should be a point. Therefore
a general fiber of π1 meets a cycle `2 + `3 and does not contain it, so the claim
follows.

Assume that L 2 is horizontal and dominating with respect to π1 and consider
the rc(L 1,L 2)-fibration π2 : X //___ Z2. If dimZ2 = 0 then X is rc(L 1,L 2)-
connected, so also rc(L 1,L 2,L 3)-connected, otherwise we can prove, arguing as
above, that L 3 is horizontal and dominating with respect to π2.
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We can thus consider the rc(L 1,L 2,L 3)-fibration π3 : X //___ Z3; this
fibration contracts the cycles `1 + `2 + `3, hence contracts curves parametrized by
[V ]: it follows that dimZ3 = 0, i.e., X is rc(L 1,L 2,L 3)-connected.

Now we suppose that ρX = 3 and that (X, H) is connected by V -triplets of
lines, i.e., that there exist three families of lines L 1,L 2,L 3 with [V ] = [L 1] +
[L 2] + [L 3] such that X is rc(L 1,L 2,L 3)-connected; we want to prove that
(X, H) is covered by V -triplets of lines.

Notice that the assumption on the Picard number implies that the families
L 1,L 2,L 3 are numerically independent. If all the families are covering, the
statement is clear, so we can assume that L 3 is not. Let π2 : X //___ Z2 be the
rc(L 1,L 2)-fibration; since X is rc(L 1,L 2,L 3)-connected then L 3 is horizontal
and dominating with respect to π2. By Proposition 2.7 and Lemma 2.9 a general
fiber F of π2 has dimension

dimF ≥ −KX ·L 1 + dimLocus(L 2)x − 1,

for x general in Locus(L 2). It follows that, for y general in Locus(L 3) that

dimLocus(L 3)y +dim Locus(L 2)x ≤ n+KX ·L 1 +1 ≤ −KX · (L 2 +L 3); (2)

on the other hand, by Proposition 2.7 we have

dimLocus(L 3)y + dimLocus(L 2)x ≥ −KX · (L 2 + L 3)− 2. (3)

Therefore, recalling that L 3 is not covering we have that either dim Locus(L 3)y =
−KX ·L 3 + 1 or −KX ·L 3. In the former case Locus(L 3)y dominates Z, hence
Locus(L 3,L 1,L 2)y is not empty and, by Lemma 2.9, its dimension is n.

Otherwise dim Locus(L 3)x = −KX ·L 3 and, by Proposition 2.7, Locus(L 3)
is a divisor D3; since L 3 is horizontal with respect to π2, then D3 is not trivial
on the fibers of π2.

By formulas (2) and (3) and Proposition 2.7 Locus(L 2) is either X or a
divisor D2 (and in this case clearly D2 · L 1 > 0). In both cases through every
point of X there is a connected cycle consisting of a line in L 1 and a line in L 2.
The divisor D3 is positive on this cycle hence we get the required V -triplet of lines.

¤

5.2. RCC-manifolds connected by reducible cubics.
The next situation we are going to consider is again related to the presence

of many reducible cycles, i.e., we will consider RCC-manifolds of Picard number
greater than one, such that through two general points there is a reducible cycle
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parametrized by the closure of the connecting family. It turns out that the only
such manifolds which are not covered by V -triplets of lines are products of two
projective spaces polarized by O(1, 2).

Proposition 5.5. Assume that (X, H) is RCC with respect to a family
V and that, given two general points x, x′ ∈ X, there exists a reducible cycle
parametrized by V passing through x and x′. Assume moreover that ρX > 1 and
that X is not connected by V -triplets of lines. Then (X, H) ' (P t×P n−t,O(1, 2)).

Proof. By assumption there is no reducible cycle parametrized by V con-
sisting of three lines passing through two general points, hence through two general
points there exists a reducible cycle ` + γ parametrized by V consisting of a line
and a conic.

Consider the pairs {(L j , Cj)}j=1...,k, where L j is a family of lines and Cj is
a family of conics and [L j ] + [Cj ] = [V ]; let C j be the Chow family associated to
Cj , with universal family UC j .

Define, as in [18, IV.4], Chain1(L j) = UL j ×L j UL j , with projections pL
j

and uL
j onto X and Chain1(C j) = UC j ×C j UC j , with projections pC

j and uC
j

onto X. Let Y 1
j and Y 2

j be defined by the fiber squares:

Y 1
j

//

²²

Chain1(L j)

pL
j

²²
Chain1(C j)

uC
j

// X

Y 2
j

//

²²

Chain1(C j)

pC
j

²²
Chain1(L j)

uL
j

// X

Our assumptions can be restated by saying that the natural morphism

ev:
k⋃

j=1

(
Y 1

j ∪ Y 2
j

) −→ X ×X

is dominant. Since for every j the image of Yj = Y 1
j ∪ Y 2

j in X × X is closed,
there exists an index ̄ such that ev|Y̄ : Y̄ → X ×X is surjective. From now on
we consider all objects corresponding to this index ̄ and we omit it.

Denote by ev1 and ev2 the restrictions of ev to Y 1 and Y 2. The morphism
ev1 is the composition of the natural isomorphism Y 1 → Y 2 with ev2 and the
involution exchanging the factors of X×X, hence both ev1 and ev2 are surjective.

For (x, x′) to be in the image of ev1 (respectively ev2) means that there is a
cycle ` + γ with ` and γ parametrized by L and C such that x ∈ ` and x′ ∈ γ
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(respectively x ∈ γ and x′ ∈ `). So, by the surjectivity of ev1 and ev2, for every
x ∈ X

X = Locus(L ,C )x = Locus(C ,L )x.

It follows that both L and C are covering families.
For a general x ∈ X we have that Cy is proper for any point y ∈ Locus(Lx);

in fact, if this were not the case, then through x there would be a reducible cycle
with numerical class [V ], consisting of three lines, contradicting our assumptions.

It follows, applying Lemma 2.10 with Y = Locus(L )x and V = C , that
every curve in X is numerically equivalent to a linear combination of [L ] and
[C]; in particular we have that [L ] and [C] are not proportional, since we are
assuming ρX > 1. Applying twice Lemma 2.18 we get that NE(X) = 〈[L ], [C]〉c;
in particular C is a quasi-unsplit family.

Let ϕL : X → Z be the contraction of the ray R+[L ]; since for a general x

we have X = Locus(C, L )x it follows that Locus(C)x dominates Z; in the same
way, denoting by ϕC : X → W the contraction of the ray R+[C ] we deduce that
Locus(L )x dominates W . Fibers of two different extremal contractions can meet
only in points, therefore dimZ + dimW ≥ n, hence

dimLocus(L )x + dimLocus(C )x ≥ n;

Equality holds, since dim(Locus(L )x ∩ Locus(C )x) = 0, so, by Remark 2.8

−KX · (L + C) = dim Locus(L )x + dimLocus(C )x + 2 = n + 2;

it follows that both the extremal contractions of X are equidimensional.
Since H ·L = 1 we can apply [11, Lemma 2.12] to get that ϕL gives to X

a structure of P -bundle over Z and Z is smooth: more precisely X = PZ(E :=
ϕL ∗H).

A general fiber F of the contraction ϕC is Locus(C)x for some x ∈ F ; we
can apply [15, Theorem 3.6] to get that F is a projective space; therefore by
[20, Theorem 4.1] also Z is a projective space. Let l be any line in Z; consider
Xl := ϕ−1

L (l) = Pl(E|l); the image of Xl via ϕC has dimension smaller than Xl;
the only vector bundle on P 1 such that its projectivization has a map (different
by the projection onto P 1) to a smaller dimensional variety, is the trivial one (and
its twists). Therefore E is uniform of splitting type (a, a, . . . a), hence E splits by
[2, Proposition 1.2].

It follows that X is a product of projective spaces, that C is the family of
lines in one of the factors and that H = O(1, 2). ¤
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Corollary 5.6. Let (X, H) be RCC with respect to a family V and assume
that ρX > 1. If V is not generically unsplit then either X is connected by V -triplets
of lines or (X, H) ' (P t × P n−t,O(1, 2)).

Proof. The assertion follows from Mori Bend and Break Lemma; in fact,
if V is not generically unsplit then through two general points x, x′ ∈ X there is a
reducible cycle in V . ¤

6. RCC manifolds covered by lines: Picard number.

In this section we are going to prove Theorem 1.1:

Theorem. Let (X, H) be RCC with respect to a family V , and assume
that (X, H) is covered by lines. Then ρX ≤ 3, and if equality holds then there
exist three families of rational curves of H-degree one, L 1,L 2,L 3 with [V ] =
[L 1] + [L 2] + [L 3], such that X is rc(L 1,L 2,L 3)-connected.

In view of Proposition 5.3 and Corollary 5.6 we can confine to the following
situation:

6.1. (X, H) is a RCC-manifold with respect to a generically unsplit family
V , covered by lines and not connected by V -triplets of lines.

We will show that in this setting we have ρX ≤ 2, so we assume, by contra-
diction, that ρX ≥ 3.

Since V is generically unsplit, by [18, Corollary IV.2.9], we have that

−KX · V = n + 1. (4)

Consider the set B′ = {(L i, Ci)} of pairs of families (L i, Ci) – where L i is a
family of lines and Ci is a family of conics and [L j ] + [Cj ] = [V ] – such that
through a general point x ∈ X there is a reducible cycle ` + γ, with ` and γ

parametrized respectively by L i and Ci and such that [L i] is independent from
[V ].

Since through every point of x there is a reducible cycle as above – otherwise,
by Proposition 4.1, we will have ρX = 1 – and the families of lines and conics on
X are a finite number, B′ is not empty.

Let B = {(L i, Ci)}k
i=1 be a maximal set of pairs in B′ such that [V ],

[L 1], . . . , [L k] are numerically independent; if one of the family of lines in the
pairs belonging to B′ is covering, we choose it to be L 1. Denote by Πi the two-
dimensional vector subspace of N1(X) spanned by [V ] and [L i]. By Lemma 2.10
we have
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N1(X) =
〈
[V ], [L 1], [C1], . . . , [L k], [Ck]

〉
=

〈
[V ], [L 1], [L 2], . . . , [L k]

〉
,

hence the Picard number of X is k + 1.

Claim 6.2. Let (L , C) be a pair in B. If C is a dominating family then it
is locally unsplit.

Proof. Assume by contradiction that C is not locally unsplit. Arguing as
in Proposition 5.4 we can show that there are two families of lines L ′ and L ′′

such that [L ′] + [L ′′] = [C], L ′ is covering and L ′′ is horizontal and dominating
with respect to the rc(L ′)-fibration.

Since through a general point there is a reducible cycle γ + `, with γ and `

parametrized by C and L , respectively, then either curves of L are contracted by
the rc(L ′,L ′′)-fibration or L is horizontal and dominating with respect to this
fibration.

In both cases the rc(L ′,L ′′,L )-fibration contracts both curves parametrized
by C and curves parametrized by L , hence also curves parametrized by V are
contracted and X is connected by V -triplets of lines, a contradiction. ¤

Case 1: L 1 is not a covering family.

Denote by L the covering family of lines.
Since no family of lines in B is covering, then the families of conics are

dominating. Moreover they are locally unsplit, in view of Claim 6.2. Therefore
dimLocus(Ci)x ∩ Locus(Cj)x = 0 for every i 6= j; it follows that

−KX · (Ci + Cj) ≤ dimLocus(Ci)x + Locus(Cj)x + 2 ≤ n + 2, (5)

so, recalling that −KX · (Ci + L i) = −KX · V = n + 1 we also have

−KX · (L i + L j) ≥ n. (6)

For every i = 1, . . . , k denote by Ei the set Locus(Ci,L i)x; by Lemma 2.9
it has dimension dimEi ≥ n − 1; since Ei ⊂ Locus(L i), the inclusion is an
equality and Ei is an irreducible divisor. Moreover, by Corollary 2.11 we have
N1(Ei, X) = 〈[Ci], [L i]〉.

We can assume that L is not numerically proportional to V , otherwise the
rc(L )-fibration would take X to a point, and ρX = 1 by Proposition 2.17.

This implies that there is at least a divisor, say E1, which is not trivial (hence
positive) on L ; therefore the family L 1 is horizontal and dominating with respect
to the rc(L )-fibration. We can assume that [L ] 6∈ Π1, otherwise the rc(L ,L 1)-
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fibration π : X //___ Z would go to a point and ρX = 2.
Let F be a fiber of π and x ∈ F ∩ Locus(L 1); then, by Proposition 2.7,

dimF ≥ Locus(L 1,L )x ≥ dimLocus(L 1)x + 1 ≥ −KX ·L 1 + 1,

hence, recalling that −KX · (L 1 + C1) = n + 1,

dimZ ≤ n + KX ·L 1 − 1 = (n− 1)− (n + 1)−KX · C1 = −KX · C1 − 2.

On the other hand, since [L ] 6∈ Π1 curves of C1 are not contracted by π

and, by Claim 6.2 C1 is locally unsplit, we have, by Proposition 2.7, dimZ ≥
dimLocus(C1)x ≥ −KX · C1 − 1, a contradiction.

Case 2: L 1 is a covering family.

We will denote from now on the pair (L 1, C1) by (L , C). If C is quasi-
unsplit, then the rc(L ,C )-fibration (which contracts the curves parametrized by
V ) goes to a point and ρX ≤ 2 by Proposition 2.17.

Therefore we can assume, from now on, that C is not quasi-unsplit. Let x ∈ X

be general; then Cy is proper for any point y ∈ Locus(Lx); in fact, if this were not
the case, then through x there would be a reducible cycle with numerical class [V ],
consisting of three lines, and, this, in view of Proposition 5.4, would contradict
our assumptions.

By Lemma 2.10 N1(Locus(L ,C )x, X) = 〈[L ], [C]〉 and, by Lemma 2.9,
dimLocus(L ,C )x ≥ n − 1; if the inequality is strict, then we get the contra-
diction ρX = 2 by Lemma 2.10. (Notice that this is always the case if n = 2, so
from now on we can assume n ≥ 3).

If equality holds, then an irreducible component of Locus(L ,C )x is a divisor,
that we will call Dx. If the intersection number Dx · L , which is nonnegative
since L is a covering family, is positive, we have X = Locus(L )Dx

and again the
contradiction ρX = 2 by Lemma 2.10.

If else Dx · L = 0, then every curve of L which meets Dx is contained in
it; in particular this implies that x ∈ Dx; this has two important consequences:
the first one is that Dx · V > 0; in fact being general, x can be joined to another
general point x′ 6∈ Dx by a curve parametrized by V . The second one is that, since
x ∈ Dx ⊂ Locus(C) and x is general, then C is a dominating family, and so it is
locally unsplit by Claim 6.2.

Let (L , C) ∈ B be a pair different from (L , C). If L is not covering then C

is dominating (and locally unsplit, by Claim 6.2).
Then, since x is general, Dx meets a general curve of C; since [C] 6∈ N1(Dx, X)

we have Dx · C > 0 and hence, by the same reason, dim Locus(Cx) = 1, forcing
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−KX · C = 2.
Recalling that −KX · (L +C) = −KX ·V = n+1, we have −KX ·L = n−1,

hence, by Proposition 2.7 and Lemma 2.9 we have dimLocus(L ,L )x = n, and
ρX = 2 by Corollary 2.11, a contradiction.

If also L is covering we can repeat all the above arguments for the pair
(L , C). For a general x we thus have two divisors Dx and Dx, which clearly have
non empty intersection. In particular Dx meets both Locus(L )x and Locus(C)x.
Since Dx cannot contain curves proportional either to [L ] or to [C] we have
dimLocus(L )x = dim Locus(C)x = 1, hence

n + 1 = −KX · (L + C) ≤ dimLocus(L )x + 1 + dim Locus(C)x + 1 = 4.

So we are left with the case n = 3. Let `′∪`′′ be a reducible cycle parametrized
by C , such that [`′] and [`′′] are not contained in the two dimensional vector
subspace 〈[L ], [C]〉. If such a cycle does not exist, then ρX = 2 by Proposition
2.17 since the rc(L ,C )-fibration goes to a point.

The divisor KX + H is trivial on C, hence, up to exchange the cycles, we
have −KX · `′ ≥ 1, therefore, denoting by L ′ a family of deformations of `′, by
Proposition 2.7, we have dimLocus(L ′) ≥ 2. In particular L ′ is horizontal and
dominating with respect to the rc(L )-fibration.

The rc(L ,L ′)-fibration π′ has fibers of dimension two, since every fiber con-
tains Locus(L ′,L )x for some x ∈ Locus(L ′) and if π′ goes to a point, then
ρX = 2.

It follows that, denoting by L ′′ a family of deformations of `′′, L ′′ is hor-
izontal and dominating with respect to π′, and X is rc(L ,L ′,L ′′) connected,
against the assumptions. ¤

7. RCC manifold covered by lines: scroll structure.

In this section we are going to prove Theorem 1.2:

Theorem. Let (X, H) be RCC with respect to a family V , assume that
(X, H) is covered by lines and that ρX = 3. Then there is a covering family
of lines whose numerical class spans an extremal ray of NE(X); the associated
extremal contraction ϕ : X → Y makes X into a special Bǎnicǎ scroll over a
smooth Y .

Proof. By Theorem 1.1 and Proposition 5.3 we know that there exist three
families of lines L 1,L 2,L 3 such that [L 1] + [L 2] + [L 3] = [V ]. Moreover
L 1 is covering, L 2 is horizontal and dominating with respect to the rc(L 1)-
fibration π1 : X //___ Z1, and L 3 is horizontal and dominating with respect to
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the rc(L 1,L 2)-fibration π2 : X //___ Z2.
We will first show that among the families L i which are covering there is (at

least) one whose numerical class generates an extremal ray of NE(X). To this end,
we divide the proof into cases, according to the number of families among the L i

which are covering; notice that, as shown by the examples in Section 3, all cases
do really occur.

Case 1: The families L i, i = 1, . . . , 3, are all covering.

Assume that [L 3] does not span an extremal ray; then, by [5, Proposition 1,
(ii)] there is a rc(L 3)-equivalence class of dimension greater than the general one,
hence an irreducible component G of this class of dimension dimG ≥ −KX ·L 3.

Consider Locus(L 1,L 2)G; by Lemma 2.9 its dimension is at least n − 1;
if this dimension is n then [L 1], [L 2] lie in a two-dimensional extremal face of
NE(X) by Lemma 2.19.

We can draw the same conclusion if an irreducible component of
Locus(L 1,L 2)G is a divisor D. In fact, if D is positive either on L 1 or on
L 2 we have X = ChLocusm1(L

1,L 2)G and we apply again Lemma 2.19. If else
D ·L 1 = D ·L 2 = 0, recalling that the numerical class in X of every curve in D

can be written as
∑

ai[L i] with a3 ≥ 0 by Lemma 2.18, we get that D|D is nef,
hence D is nef and is a supporting divisor of a face which contains [L 1] and [L 2].

We can repeat the same argument starting from another family, say L 2;
therefore we prove that, if neither [L 3] nor [L 2] span an extremal ray, then [L 1]
belongs to two different extremal faces of NE(X), hence to an extremal ray.

Case 2: Two families among the L i, i = 1, . . . , 3, are covering.

If the second covering family is L 3, then it is horizontal and dominating
with respect to π1; moreover, since X is rc(L 1,L 2,L 3)-connected, L 2 will be
horizontal and dominating with respect to the rc(L 1,L 3)-fibration, so, without
loss of generality we can assume that L 2 is covering and L 3 is not.

Assume that codim Locus(L 3) ≥ 2; by Proposition 2.7 we have, for any
x ∈ Locus(L 3), that dimLocus(L 3)x ≥ −KX ·L 3 + 1. By Lemma 2.9 for such
an x we have X = Locus(L 3,L 2,L 1)x, hence [L 1] is extremal by Lemma 2.20.

Assume now that for a general x ∈ Locus(L 3) we have dimLocus(L 3)x =
−KX ·L 3; by Proposition 2.7 Locus(L 3) is a divisor, that we denote by D3; since
L 3 is horizontal and dominating with respect to π2, then, for some i = 1, 2 we
have D3 ·L i > 0.

Consider Locus(L 2,L 1)Locus(L 3)x
; if it is X, then [L 1] is extremal by

Lemma 2.20. If else Locus(L 2,L 1)Locus(L 3)x
has dimension n − 1, we take

D to be an irreducible component. If D is positive on L 1 or L 2 then X =
ChLocusm1(L

1,L 2)Locus(L 3)x
and [L 1] and [L 2] are in an extremal face by
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Lemma 2.19.
So assume that D ·L 1 = D ·L 2 = 0; as in Case 1 we can prove that D is

nef.
Since D is trivial on L 1 and L 2 then [L 1] and [L 2] are contained in an

extremal face σ.
If neither [L 1] nor [L 2] are extremal, then, being −KX positive on L 1 and

L 2, there is a Mori extremal ray R in σ. Without loss of generality we can
assume that [L 1] is in the interior of the cone spanned by [L 2] and R. Let B be
the indeterminacy locus of π1, let DZ be a very ample divisor on π1(X \ B) and
let D̂1 := (π1)−1DZ . The divisor D̂1 is trivial on L 1 and positive on L 2, since
this family is covering, hence D̂1 is negative on R, so the exceptional locus of R

is contained in the indeterminacy locus of π1 and so has codimension at least two
in X.

Let F be a fiber of the contraction associated to R; by Proposition 2.14 F

has dimension dimF ≥ 2. Then dimLocus(L 1,L 2)F ≥ −KX · (L 1 + L 2) by
Lemma 2.9.

Since D3 ·L i > 0 for some i the intersection Locus(L 3)x ∩Locus(L 1,L 2)F

is not empty for some x, therefore

dimLocus(L 3)x ∩ Locus(L 1,L 2)F ≥ −KX · (L 1 + L 2 + L 3)− n ≥ 1,

a contradiction, since the numerical class of every curve in Locus(L 1,L 2)F be-
longs to σ and [L 3] does not.

Case 3: Only L 1 is covering.

Let F be a general fiber of π2; it contains Locus(L 2,L 1)x for some x, hence,
by Proposition 2.7 and Lemma 2.9, it has dimension

dimF ≥ −KX · (L1 + L2)− 1.

It follows that

dimZ2 = dim X − dimF ≤ −KX ·L 3

Since Locus(L 3)x has dimension dimLocus(L 3)x ≥ −KX · L 3 by Proposition
2.7, it dominates the target; moreover π2 does not contract curves in Locus(L 3)x,
so dim Locus(L 3)x = −KX ·L 3 = dim Z2; by the first equality and Proposition
2.7 we get that dimLocus(L 3) = n − 1, while from the second we infer that, for
some m, X = ChLocusm(L 1,L 2)Locus(L 3)x

and we apply Lemma 2.19 to get
that [L 1] and [L 2] are contained in an extremal face σ.
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Let D3 be an irreducible component of Locus(L 3). If D3 ·L 1 > 0 then we
can exchange the role of L 2 and L 3 and obtain that [L 1] and [L 3] belong to a
face σ′. Therefore, belonging to two different extremal faces, [L 1] belongs to an
extremal ray.

If else D3 ·L 1 = 0 then D3 ·L 2 > 0, since L 3 is horizontal and dominating
with respect to π2. Therefore, if [L 1] were not extremal in σ, then there would be a
curve C, with [C] ∈ σ such that D3 ·C < 0. Counting dimensions we get that D3 is
an irreducible component of Locus(L 2,L 1,L 3)x = Locus(L 1,L 3)Locus(L 2)x

for
a suitable x, hence every curve in D3 is numerically equivalent to αC1 +βC2 +γC3

with β ≥ 0. In particular every curve in D3 whose class is in σ is numerically
equivalent to αL 1 + βL 2 with β ≥ 0, so D3 is nef on σ, a contradiction.

We have thus shown the first part of the statement; we can assume that the
covering family which spans an extremal ray R of NE(X) is L 1. We will now
show that there is an extremal contraction of X which is a special Bǎnicǎ scroll.

Let ϕ : X → Y be the contraction associated to R. If the general fiber of ϕ

has dimension −KX ·L 1− 1 and any fiber has dimension ≤ −KX ·L 1, then ϕ is
a special Bǎnicǎ scroll by [3, Proposition 2.5].

We will prove that, if this is not the case, then there is another contraction
of X which is a projective bundle.

Assume first ϕ has a fiber F of dimension ≥ −KX ·L 1 + 1.
On an open subset ϕ coincides with the rc(L 1)-fibration π1; since Locus(L 2)

is closed and L 2 is horizontal and dominating with respect to π1, we deduce
that Locus(L 2) meets every fiber of ϕ. Let F ′ be an irreducible component of
Locus(L 2)F ; then, applying Lemma 2.9, we get dimF ′ ≥ −KX · (L 1 + L 2).

Claim 7.1. There exist x ∈ X and a component F ′ of Locus(L 2)F such
that Locus(L 3)x ∩ F ′ 6= ∅.

This is clear if L 1,L 2 and L 3 are all covering families. If both L 1 and L 2

are covering, but L 3 is not, we showed at the beginning of Case 2 that either for
some x we have X = Locus(L 3,L 2,L 1)x – and the claim follows – or Locus(L 3)
is a divisor. The latter happens (cf. Case 3) also if L 1 is the only covering family.

So assume that Locus(L 3) is a divisor; since L 3 is horizontal and dominating
with respect to the rc(L 1,L 2)-fibration π2, there exists an irreducible component
D3 of Locus(L 3) which has positive intersection number with at least one among
the families L 1 and L 2, hence D3 ∩ F ′ 6= ∅ and the claim follows.

Pick x such that Locus(L 3)x meets F ′; for such a point we have

dimLocus(L 3)x + dimF ′ ≤ n,

from which we get that dim Locus(L 3)x = −KX ·L 3 − 1, and L 3 is covering by
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Proposition 2.7.
Being L 3 covering, we can swap the roles of L 2 and L 3 and, by the same

argument, we get that also L 2 is covering.
It follows that both Locus(L 2,L 3)F and Locus(L 3,L 2)F are nonempty,

hence, by Lemma 2.9, we have X = Locus(L 2,L 3)F = Locus(L 3,L 2)F ; by
Lemma 2.20 both [L 2] and [L 3] span an extremal ray.

Let ψ : X → Y ′ be the contraction of R+[L 2]; we have

dimY ′ ≤ n + KX ·L 2 + 1 ≤ −KX · (L 1 + L 3);

on the other hand, since no curve in Locus(L 3)F is contracted by ψ we have

dimY ′ ≥ dimLocus(L 3)F ≥ dimF −KX ·L 3 − 1 ≥ −KX · (L 1 + L 3).

It follows that all inequalities are equalities; in particular a general fiber of ψ

has dimension −KX · L 2 − 1 and Locus(L 3)F meets every fiber, hence ψ is
equidimensional. Recalling that H ·L 2 = 1 we get that ψ is a projective bundle
on a smooth variety by [11, Lemma 2.12].

Assume now that every fiber of ϕ has dimension −KX ·L 1. If L 2 is not a
covering family then fibers of π2 have dimension ≥ −KX · (L 1 + L 2), therefore
L 3 is covering. Therefore at least one among L 2 and L 3 is a covering family:
say it is L 2. (Notice that the same argument will work if the covering family is
L 3 even if the situation is not symmetric in L 2 and L 3).

Assume that [L 2] does not span an extremal ray; then, by [5, Proposition 1,
(ii)] there is a rc(L 2)-equivalence class of dimension greater than the general one,
hence an irreducible component G of this class of dimension dimG ≥ −KX ·L 2.

Let G̃ = ϕ−1(ϕ(G)); it has dimension dim G̃ ≥ −KX ·(L 1 +L 2). For some x

we have Locus(L 3)x∩G̃ 6= ∅, hence dim Locus(L 3)x ≤ n−dim G̃ ≤ −KX ·L 3−1,
hence L 3 is a covering family.

By Lemma 2.9 we have X = Locus(L 3) eG, hence G̃ meets all the rc(L 3)-
classes, which are thus equidimensional, and L 3 is extremal. As above we can
show that the associated contraction is a projective bundle over a smooth base. ¤
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