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Abstract. In this paper we study (strongly) locally o-minimal struc-
tures. We first give a characterization of the strong local o-minimality. We
also investigate locally o-minimal expansions of (R, +, <).

1. Introduction.

Toffalori and Vozoris [8] introduced the notion of local o-minimality and that
of strong local o-minimality, by weakening the definition of o-minimality. A typical
example of locally o-minimal structure is (R, +, <, sin), which is not o-minimal (see
[8, Theorem 2.7]). They systematically investigated the notions, and, among many
others, showed that any weakly o-minimal structure is locally o-minimal.

In this paper we first give a characterization of the strong local o-minimality.
This characterization shows that a strongly locally o-minimal structure really re-
sembles an o-minimal structure if it is viewed locally. In [4], [9], [7], several
generalizations of the cell decomposition theorem were studied in the weakly o-
minimal context. In this paper, using the characterization, we show that the local
version of cell decomposition holds for strongly locally o-minimal structures.

We then introduce the notion of simple products of two structures. This
notion is already implicit in [8], and in the present paper we give an explicit
definition. Using the method of taking simple products, a number of structures
are shown to be (strongly) locally o-minimal. For example, in Section 4, we show
that any structure of the form (R,+,<,P) with P C Z is locally o-minimal.
Conversely, we also show that any locally o-minimal structure expanding (R, +, <,
Z) can be written as a simple product of Z and an o-minimal structure.

We only assume the reader’s familiarity with a few basic model theoretic
notions. In Section 2, we recall some definitions and results on (local) o-minimality.
The notion of local structures is introduced here. For a structure M and its subset
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A, the local structure Ager is defined roughly as the set A with M-definable subsets.
Ager is an important tool in our characterization.

In Section 3, we give a characterization of strong local o-minimality, using
local structures (see Theorem 9). The local monotonicity theorem and the local
cell decomposition theorem (for strongly locally o-minimal structures) are easily
obtained from our characterization. In this section, we also introduce the notion
of uniform local o-minimality, and study the relation between this notion and
(strong) local o-minimality. Several examples will be given.

Section 4 is the section for simple products. Let M and N be two structures.
If the product M x N is simple in our sense then every definable subset of M x N
has the form A x B, where A C M is M-definable and B C N is N-definable.
Simple products play important roles in constructing locally o-minimal structures
(see Theorem 19). As an application, we can show the following;:

e Let R* be a nonstandard real closed field elementarily extending R. Then
(R*,+, <, P) is locally o-minimal, where P is a unary predicate whose in-
terpretation is R.

In Section 5, we concentrate on expansions of the additive structure (R, +, <). For
an expansion M of (R, +,-, <) we easily have that M is locally o-minimal if and
only if M is o-minimal. So the restriction to additive structures seems natural.
The main result (Theorem 25) of this section is the following;:

e Let M be a locally o-minimal expansion of (R,+,<,Z). Then M is ex-
pressed as a simple product of Z and I = [0,1)qef.

General references on o-minimal structures are [1], [2], [5], see also [6].

2. Preliminaries.

Our notations are standard. L denotes a language. M, N,... are used to
denote L-structures. The universe of M is also denoted by M. A,B,... are
used to denote subsets of some structures. We use z,y,... for variables. For-
mulas are denoted by ¢,1,.... We simply say that A is definable in M (or
M-definable) if it is definable in M using parameters from M. So, if A C M™
is definable, then there is an L-formula ¢(z1,...,2n,y1,...,Ym) and parameters
bi,...,bm € M such that A = @(x1,...,%n,b1,...,bn)" (the set of all tuples sat-
isfying @(z1,...,@n,b1,...,bm)). A family %, consisting of M-definable sets, will
be called uniformly definable if . has the form .# = {¢(z1,...,2n, b1, .., b)) :
bi,...,b;m € M}.

DEFINITION 1. Let M be an L-structure and A a subset of M.



Locally o-minimal structures 785

1. For n € w, Def"(A, M) is the set of all subsets of M™ of the form A™ N D,
where D is an M-definable subset of M™. Def(A, M) = J,,c, Def" (A, M).
2. We simply write Def(M) for Def(M, M) (i.e. the set of all M-definable sets).

DEFINITION 2. Let A C M. We prepare an n-ary predicate symbol Px for
each X € Def"(A, M), and let L be the language {Px : X € Def(A, M)}. The
local structure Ager of A is the following L 4-structure:

e The universe of Ager is A;
e The interpretation of Px in Aqer is X, for all X € Def(A, M).

REMARK 3. In general, Def(Ager) and Def(A, M) are not equal. However,
if A is a definable subset of M, then we have Def(Aget) = Def(A, M).

From now on, we assume that M has the form (M, <,...) and that < is
a dense linear ordering, unless otherwise stated. An open interval of M is a set
of the form (a,b), where a € M U {—oc0} and b € M U {oo}. Recall that M is
said to be o-minimal if every definable subset of M is a finite union of points and
open intervals in M. The notion of local o-minimality and that of strongly local
o-minimality were defined in [8]. The ordered pair of a and b is usually denoted
by (a,b), avoiding confusion of pairs and intervals.

DEFINITION 4. 1. M is called locally o-minimal if for any definable set A C
M and a € M there is an open interval I 3 a such that I N A is a finite union
of intervals and points.

2. M is strongly locally o-minimal, if for any a € M there is an open interval I 3 a
such that whenever A is a definable subset of M then I N A is a finite union of
intervals and points.

3. M is uniformly locally o-minimal if for any ¢(x,y1,...,yn) € L and a € M
there is an open interval I > a such that I N o(z,by,...,b,)M is a finite union
of intervals and points for any by,...,b, € M.

The following facts are proved in [8, Corollaries 2.5 and 3.9].

Fact 5. 1. Local o-minimality is preserved under elementary equivalence.
2. Strong local o-minimality is not preserved under elementary equivalence.

Several examples are given below.

EXAMPLE 6. Let L = {<} U{P; : i € w}, where P; is an unary predicate.
Let M = (Q, <M, PM PM,...) be the structure defined by PM = {a € M :a <
27%y/2}. Then M is uniformly locally o-minimal, but it is not strongly locally
o-minimal.
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If we assume the saturation, we can show the following:

PROPOSITION 7.  Let M be a uniformly locally o-minimal structure. Suppose
that M is w-saturated. Then M is strongly locally o-minimal.

PrRoOOF. Let a € M. Choose an L-formula ¢(z,y) arbitrarily. By the uni-
formity of M, there is an open interval I 3 a and numbers n, € w (b € M) such
that I N ¢(z,b)™ is a union of n, many intervals and points. We may assume
that each m; is chosen minimum. By the saturation of M, n,’s are uniformly
bounded, say by n, € w. (Otherwise, by saturation, there would be b € M such
that I N o(z,b)™ cannot be expressed as a finite union of intervals and points.)
Let 6, (u,v) be the formula saying that for any z the set of « € (u,v) with ¢(z, 2)
is a union of n, many intervals and points. Then the following set

FNu,v) ={u<a<viU{l,(u,v):p €L}

is finitely satisfiable in M. So, by saturation, there are ¢,d € M realizing the set
I'. The open interval I = (c,d) witnesses the strong local o-minimality. O

EXAMPLE 8. We show that there is an w-saturated locally o-minimal struc-
ture that is not uniformly locally o-minimal. For each non-negative ¢ € Q, we
prepare a binary predicate Py(z,y). L = {<, Py},eq+ is our language. We define

an L-structure M = (Q, <M, PqM)q€Q+ by the following:

e <M s the standard ordering on Q;
e Pya,b) &= a++v2-¢<b(in R).

T = Thy(M) admits elimination of quantifiers. For showing this, let M* be an
w-saturated model of T. For r € Rt U {oo}, let I';(x,y) be the following set of
quantifier-free formulas.

{z <yl U{P(z,y): g€ QT,V2¢ <7} U{-Py(x,y) :q € Q",r <V2q}.

Intuitively speaking, I',.(z,y) asserts that the distance of two points < y is 7.
Let A={a1 < - <ap}and B={b <--- < b,} be two finite subsets of M*.
We will write A ~ B if we have

M* ': F,.(ai,aj) — M~ ': FT»(bi,bj),
for all4,j <nandr € RTU{oo}. Let ¢ € M* be any element. We want to find an

element d € M* with Ac ~ Bd. To simplify our argument, we treat the case when
¢ is bigger than A. Choose r1,...,r, such that T';,(a;,¢) holds (i = 1,...,n). Let
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us consider the following set A(z):

Since M* is w-saturated, we can find d € M* such that T, (b,,d). Then this d
automatically satisfies A(x). Now we have Ac ~ Bd. The above argument shows
that T admits elimination of quantifiers. From the elimination of quantifiers, we
see that M is locally o-minimal.

Now we show that M is not uniformly locally o-minimal. Let (b, ¢) be a small
interval containing a. Notice that the following sentence is a member of 7"

Vava' (z < 2’ — Jy(Pi(z,y) A ~Py(a',y)).

So we can choose ¢ € M* such that P;(b,q) A —Pi(c,q). Then the set X defined
by Pi(z,q) divides (b,c) into two convexes C; and Cy. Neither C; nor Cy are
intervals.

3. Strong local o-minimality.

The following theorem is easy but important.

THEOREM 9.  The following two conditions are equivalent:

1. M is strongly locally o-minimal.

2. For any finite subset {a1,...,an} of M, there are left-open and right-closed
intervals I; with a; € (I;)° such that, by putting I = U,<;<,, Li, laet is o-
minimal. (I° is the interior of I.) o

Proor. 1 — 2: Choose any ai,...,a, € M. Then, by the strong local o-
minimality, there are intervals I; = (b;, ¢;] with a; € (I;)° (i = 1,...,n) such that,
for any definable set X C M, X N I; is a finite union of points and open intervals
in M (i=1,...,n). We may assume that a; < --- < a, and I; < --- < [,.

Let I = JI; and choose any Y € Def!(Igef). Then Y is a definable subset of
MandY =Y NI =J,(YNI;). By the item 1, there are d;;,’s and e;;,’s such that

Y NI = (dir,ein) U- - U (dim,;, €im,) U {finite points}.
Hence Y is a finite union of convex sets. Using the fact that < is dense, we

may assume that dio,...,dim,;, €i1,...,€m; € I;. The point d;; need not be an
element in I;. However, even if d;; ¢ I;, in I, Y N I; can be written as
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YNNI =(—00,e1) U+ U (dim,, €im,) U {finite points} (if i = 1),

YNNI =(ci—1,€1) U+ U(dim;, €im,; ) U {finite points} (if 7 > 1).

So, in I4ef, Y is expressed as a finite union of intervals and points in I.

2 — 1: Assume 2. Let {a} be a singleton set in M. Choose an interval
I' = (b, ] witnessing the condition in 2. Notice that I = (b, ¢) also satisfies the
required condition in 2, i.e., Iger is o-minimal. Let X € Def!(M). Then we have
X NI € Defl(Ijet). By the o-minimality, we have

XNI=ILU---UI, U{finite points},

for some open intervals in the sense of I4er. Notice that each I; is an interval in
M. So X N1 is a finite union of intervals and points in M. Thus we are done. [J

The following definition is taken from [8].

DEFINITION 10. We say that a definable unary (possibly partial) function
f has local monotonicity if, for every point a € M, there exists some open interval
I containing a such that dom f N I can be broken up into a finite union of points
and open intervals, on each of which f is constant, strictly increasing, or strictly
decreasing. We say that M has local monotonicity if every definable unary function
f of M has local monotonicity.

In [8], it was shown that a strongly locally o-minimal structure satisfies local
monotonicity. In o-minimal case, we can add the local continuity in the mono-
tonicity theorem. As we will see later, this is not the case of local o-minimality.
However, by Theorem 9, we can prove the following:

PROPOSITION 11.  Let M be strongly locally o-minimal. Let D be a definable
set of M and f : D — M a definable function. Then, for any a € D, there are
open intervals I C M containing a and J C M containing f(a) such that, by
putting f* = fO (I x J), the domain of f* can be broken up into a finite union of
points and open intervals, on each of which f* is constant, strictly increasing and
continuous, or strictly decreasing and continuous.

The following example shows that the replacement of f by f* in the above
proposition is necessary.

EXAMPLE 12. Let M be any o-minimal structure and let a € M. Let f :
{a} x M — M? be the function defined by (a,b) — (b,a). Then N = (M?, <jes, f)
is an M-definable structure (in eg-sense), where <., is the lexicographic ordering
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on M?2. So, N is strongly locally o-minimal. However, f is discontinuous at any
point.

As in the o-minimal setting, we can define cells and cell decompositions of
definable sets in the locally o-minimal setting, see [3]. We have the following
proposition by Theorem 9:

PROPOSITION 13.  Assume that M = (M,<,...) is a strongly locally o-
minimal structure. Let a € M™. Then, the following results hold.

1. Let X1,...,X,, be definable subsets of M™. Then there is an open box B 3 a
and a finite decomposition & of B into cells partitioning X1 N B, ..., X,, N B.

2. Let X C M™ be a definable set and f : X — M a definable function. Then
there is an open box B > (a, f(a)) such that for the restriction f* = f N B,
the domain of f* admits a finite decomposition &2 into cells so that for any
Y € 2, f*|Y is continuous.

3. Let X C M™*! be a definable set and b € M. Suppose that X, = {d € M :
(¢,dy € X} is finite for any ¢ € M™. Then, there is an open box B 3 a, an
open interval I 3 b and K € w such that | X.NI| < K for all c € B.

4. Simple products.

Let L1, Ly and L be languages. For simplicity, we assume that these languages
are relational. Under this assumption, a binary function will be treated as a ternary
relation. Let M; be an L;-structure (i = 1, 2).

DEFINITION 14. 1. Let A C M;™ and B C M>™. Then A * B is the subset
of N, N = M; x M>, defined by:

Ax B := {<<a17b1>,...,<an,bn>> e N™: <a1,...,an> 6A,<b1,...,bn> EB}

2. Let N be an L-structure whose universe is the product M; x M5. We say that
N is a simple product of My and M, if for any P(z1,...,z,) € L there are
Mi-definable sets Aq,..., Ay C M;™ and Ms-definable sets Bq,...,B; C My"
such that P is a boolean combination of the following sets

o A;x My" (i=1,...,k),
e Mi\"xB; (i=1,...,1).

Many important structures can be expressed using simple products.

ExampLE 15. 1. Let M; and M, be two ordered sets. The lexicographic
order <% on the product N = M; x My can be expressed as
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<N = [(<M)  Mp] U [((ZM) % Ma) 0 (M (<)),

So (N, <) is a simple product.

2. Let M7 and M5 be two groups. The product group of M; and M5 is a simple
product.

3. Let I = ([0,1),<,+) be the additive group of reals modulo 1. Let N = Z x I
be the simple product defined by:

N = (PrQU(P' +Q),

where P = {(m,n, k) € Z> : m+n =k}, P' = {{m,n, k) € Z3 : m+n+1=k},
Q = {{a,b,c) € [0,1)® :a,b < a+'b=c}and Q" = {{a,b,c) € [0,1)%: c =
a+'b < a,b}. Then N is isomorphic to R = (R,+,<) by the mapping
(n,a) —n+a.

REMARK 16. Let N be the simple product of M7 and Ms. Let A be a
definable subset of M;". Then the complement of A x Ms™ in N™ can be written
as (My™ ~ A) x My™. So, in the definition of simple products, we can replace
“boolean combination” by “positive boolean combination”.

LEMMA 17.  Suppose that N = My x My is a simple product. Let D be an N -
definable subset of N™. Then there are Mi-definable sets Aq,..., A C M1"™ and
Ms-definable sets By, ..., By C Ms™ such that D is a positivve boolean combination
of Aix Ma™ (i =1,...,k) and Mi" x* B; (i=1,...,k).

PrROOF. For simplicity, we assume D is (-definable. Choose an L-formula
p(z1,...,z,) defining D. If ¢ is an atomic formula, the lemma follows from the
definition of simple products. Our proof proceeds by induction on the complexity
of ¢. The case when ¢ has the form 1) A x or ¥ V x is clear. If ¢ has the form =),
then we can apply Remark 16. So we assume that ¢ has the form Jyi. Further,
for simplicity of the notation, we assume ¥ = ¥(z,y), where x and y are single
variables. By the induction hypothesis, ¥ has the form

U (Ai * M22) N (M12 * Bi)7
1<i<k

where all A; € M;? and all B; C M>? are definable sets. Then gpN is the following
set.

U U {{a1,b1) : ({a1,b1), (a, b)) € (A; * Mo?) N (M2 * B;)}.

(a,by €My x My 1<i<k
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This set is equal to

U U {<a1,b1> : <a1,a> S AZ', <b1,b> S Bl}

1<i<k (a,b)€ My x M>

Finally, notice that the set U, yyenrr, xar, 1(a1,01) : (a1,a) € A, (b1,b) € Bi} is
equal to {{a1,b1) : a1 € proj(A;),by € proj(B;)}, where proj is the projection
map to the first coordinate. Since proj(A;) and proj(B;) are definable sets, the
induction step is complete. 1

LEMMA 18. Let N be a simple product of My and Ms. For every a € M
and every definable set D C N, the section D, = {b € Ms : {a,b) € D} is definable
mn MQ.

PrROOF. We can find definable sets A; C My and B; C M, such that D =
U1§igk(Ai * My™) N (M™% B;). Then D, can be written as

D, = U{Bl a e Az}

So D, is a definable subset of M>. O

THEOREM 19. Fori = 1,2, let M; = (M;,<Mi,...) be an expansion of a
linear order. Let N = (N,<™,...) be a simple product of My and My, where <V
is given by the lexicographic ordering.

1. Suppose that Mo is a (strongly) locally o-minimal structure without endpoints.
Then N is (strongly) locally o-minimal.

2. Suppose that Ms is an o-minimal structure possibly with endpoints. Suppose
also that My s a discrete order. Then N is strongly locally o-minimal.

PrROOF. We prove 2, since 1 can be proven similarly. We assume that M;
has the form (—oo,m], where m is the maximum element. Let (a,b) € N be any
point. First assume that b € M> is not an endpoint. Let I be an open Ms-interval
with T 2 b. Then I' = {a} x I is an N-interval containing (a,b). Let D C N be
any definable set. Then DNI' = {a} x (D, NI). By Lemma 18, D, is a definable
subset of My. So D, N1 is a finite union of intervals and points. Hence DN I’ is a
finite union of intervals and points in the sense of N. This shows the o-minimality
of I}.¢, and hence we have the strong local o-minimality of N.

Then we treat the case that b is the maximum element m. Choose any ¢ €
My ~ {b} and let I = ({a} x (¢,b]) U {a + 1} x (—o0,¢)), where a + 1 is the
successor of a in the discrete structure M;. (If a + 1 does not exist, we can put
I ={a} x (¢,b].) As in the previous case, Iqef is o-minimal, hence N is strongly
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locally o-minimal. O

ExAMPLE 20. Let A C Z and P a new unary predicate symbol. Then the
structure (R, +, <, P®) with PR = A is locally o-minimal.

Proor. Let I = ([0,1),+,<) be the additive group of reals modulo 1. Let
P, be a unary predicate symbol and PyZ = A. There is a simple product N = Z x T
such that N = (R, +, <). We give a P-structure on N by

PN = PyZ «{0}.

Then (N, PY) is a simple product, hence it is locally o-minimal by Theorem 19.
It is easy to see that (N, PV) = (R, +, <, A). O

EXAMPLE 21. Let (R*,+,-,<,Z"*) be a saturated elementary extension of
(R,+,-,<,Z). Let P be a new unary predicate symbol such that PE" = Q. Then
(R*, +, <, PR*) is locally o-minimal. To see this, using the saturation, choose a
positive infinitesimal h € R* such that hZ* = {hn : n € Z*} D Q. Then, for
a similar reason as in the previous example, (R*,+, <, Q) is given by a simple
product of Z* and [0, h)*.

EXAMPLE 22. Let R* be a nonstandard real closed field extending R. Then
(R*,+, <, PE") is locally o-minimal, where PR" = R. This is a corollary of the
following more general statement:

Let (G,0,+,—, <) be a divisible ordered abelian group and Gy C G a sub-
group. Suppose there is an h € G such that nh < |a| for alln € N and a € Go\{0}.
Then (G, 0, <, +, —, P%) is locally o-minimal, where P% = G.

Proor. First notice that every ordered divisible abelian group with the
language L = {0,+, —, <} has quantifier elimination. Let H = {a € G : In €
N,|a| < nh}. Then H is also a divisible ordered abelian group. So H is an
o-minimal structure with the language L. Let G’ D Gg be a maximal divisible
subgroup of G such that G’ N H = {0}. Then G splits as the direct sum of G’ and
H. Tt is easy to check that (G,0,+, —, <,Go) is given by a simple product of G’
and H. O

5. Locally o-minimal structures on R.

As is shown in the last section, the structure (R, +, <, Z) is locally o-minimal.
On the other hand, for an expansion M of (R, +, -, <), M islocally o-minimal if and
only if it is o-minimal. So, in the study of local o-minimality, it may be important
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to consider structures without multiplication. In this section we show that any
locally o-minimal expansion R of (R, 4+, <, Z) is given by a simple product of Z
and I =1[0,1).

We start with some basic remarks on local o-minimality.

REMARK 23. 1. For any a € R, the structure M = (R, +, <,aZ) is locally
o-minimal. If ¢ € R is an irrational number, then the structure N = (R, +,
<,Z,aZ) is not locally o-minimal, since 0 is a limit of the set {m +z : m €
Z,xcaZ}.

2. Let M be locally o-minimal. Let K C M be a (nonempty) compact definable
subset of M. Then Kge is an o-minimal structure. (K is possibly not dense,
but it is a finite union of dense subsets.)

PrROOF. Let A be a definable subset of Kq.f. First notice that A is definable
in M also. We show that A is a finite union of intervals (in the sense of Kger)
and points. Let a € Kgof. By the local o-minimality, we can choose an open
interval I C M with a € I such that K NI has one of the following form:

(a) (b,c), (b, [b,c),

(b) {a},

where b < ¢ and b < a < ¢. But, by the closedness of K, the endpoints b
and ¢ must belong to K. So K NI is an interval (or a point) in Kger. Since
other cases can be treated similarly, we assume K NI = [b,c¢] and b < a < c.
Now we consider the set K NI N A. By the local o-minimality of M, there are
b1, c1 € M such that KN (by,c¢1)NA is a finite union of intervals and points. We
may assume that b < by < a < ¢1 < ¢. So, by letting I, = (b1,¢1), KNI, NA
is a finite union of intervals in K and points in K. Since |, la is an open
covering of K, by compactness of K, there is a finite set ' C K such that
Userpla D K. Then KNA = J,cp(KNI,NA)Iis a finite union of intervals
and points in the sense of Kyef. O

LEMMA 24. Let M be a locally o-minimal expansion of (R,+,<) and let
I =10,1). Suppose that a family 2 C Def™(I, M) is at most countable. If X" is
uniformly M -definable, then it is finite.

PrOOF. We use the fact that any compact subset of M is o-minimal (see
Remark 23). So we know that Ijer is an o-minimal structure.

We proceed by induction on n. First let n = 1 and let 2" be uniformly
definable. By the o-minimality of I4ef, for each X € 27, 6(X) = cl(X) — X°
is finite. So A = (Jyc4 6(X) is at most countable. Moreover, by the uniform
M-definability, A~ {1} is an Iqe¢-definable set. Again, by the o-minimality of Ijef,
A must be finite. From this, we see that 2 is a finite set.
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Now we consider the case when 2~ C M"™*! is a uniformly definable countable
family. For X € 2" and a € I", let X, be the section {b € I : (a,b) € X} and
let §(X,) = cl(Xq) — (Xa)°. Asin the case n = 1, the set Ay = (Jycy 0(Xa) is
a finite set. So {A, : a € I"} is a uniformly I4ce-definable family of finite sets in
I. By the uniform finiteness (o-minimality of Ijef), there is a number k such that,
for any a € I, |A,| < k.

We enumerate A, U {0,1} as {do(a),di(a),...,dg+1(a)} in increasing order.
For F,G C {0,...,k+ 1}, let J, r.¢ be the union of all singletons {d;(a)} (i € F)
and open intervals (d;(a),d;+1(a)) (i € G). Then, for any X € 2" and a € I", we
can find F, G with X, = J, r¢. Using this fact, we define definable sets

YX,F7G = {a el": Xo = a,F,G}a

and we put ¥ = {Yx rc}x rq. There are only finitely many (F,G)’s. So the
family % (consisting of subsets of I"™) is a uniformly M-definable family. From
this, using the induction hypothesis, we know that % is a finite family. Now notice
that if Yx r¢ = Yx/ p,¢ for all F, G, then X = X’. So we know that 2" is a finite
family. O

THEOREM 25. Let M be a locally o-minimal expansion of (R,+,<,Z).
Then M is expressed as a simple product of Z and I =[0,1)qef-

PrOOF. Let L be the language of M. Let P be an n-ary predicate symbol
in L. For each n = (n(1),...,n(n)) € Z™, we define

D, = {(dl,...,dn> eI : (n(1)+dy,...,n(n)+d,) EPM}.

Then, using the predicate for Z, we can show that 2" = {D,}, is a uniformly
M-definable family. Since 2 is at most countable, it must be finite, by Lemma 24.
So we can enumerate 2" as Xo,...,X;. Fori =0,...,k,let A; ={ne Z": D, =
X;}. Now we regard Z as a {A; : i < k}-structure. We give a simple structure on
N=2Zx1Ihy

PN = Agx XgU-- U Ay * Xg.
Now it is sufficient to show the following.

CLAaM A.  The natural mapping (m,a) — m + a gives an isomorphism of
N and M.

Suppose that ((my,a1), ..., {(mu,ay,)) is a member of PY. Then, by the defi-
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nition of PV, there is i < k such that
({my,a1), ..., (Mp,an)) € A; x X;.

So we have (1) (mq,...,my) € A; and (2) (a1,...,a,) € X;. From (1) and
the definition of A;, we have D, .y = X;. From this and (2), we have
(a1,...,an) € Dim,,. .m,)- Hence (a1 + my,...,a, + my) € PM. The other
direction can be shown similarly. O

Theorem 25 shows that, if the given locally o-minimal expansion of (R, <, +)
has Z as a definable set, then it can be expressed as a simple product. The
next proposition shows that there is a locally o-minimal expansion M having
the properties (1) M has an infinite discrete definable set and (2) M cannot be
expressed as a simple product of the form Z x I (see Remark 27 below).

PROPOSITION 26. Let E = {e” : n € w}, where e is the base of the natural
logarithm. Then the structure (R, 4+, <, E) is locally o-minimal.

PrOOF. Let (R* +,<, E*) be a proper elementary extension of (R, +, <,
E) with infinitesimals. Let p be the monad of 0, i.e. u = {a € R* : |a| < r
(Vr € R)}. Let D* C R* be the smallest divisible group containing E*.

Cramm A.  D*nu={0}.

Assume otherwise. We consider R and R* as Q-modules. Then there is an
infinitesimal e € R* \ {0} and finitely many rationals ¢; € Q and E*-elements
ay < -+ < ay such that e = qrag + -+ gnan. By (R, +,<,F) < (R*, 4+, <, E*),
for any positive r € R, there are E-elements a; < --- < a, such that 0 #
lgra1 + - - - + gnan| < r. We show that this is impossible. For fixed s1,...,s, € Q,
let As, 5, = {|s1e™ + -+ spe™| :my < -+ < m, € w}. Then, by induction
on n, we can show that for any si,...,s, € Q and positive r € R, there are only
finitely many elements a € Ay, 5, with a < r. (End of Proof of Claim A)

Using Claim A, choose a maximal divisible group X C R* extending D* such
that X N p = {0}. Then we have R* = X @ p, and X is a representative set of
R*/u. X has a natural induced order. On M = X x p, we can define naturally
+M and <M so that M becomes a simple product. We also define EM by

(a,b) € EM <= a€ E* and b= 0.

Then the expanded structure M = (M, +M <M EM) is still simple. So M is a
locally o-minimal structure, by Theorem 19.
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CLAaM B. Let o : R* — M be the natural mapping defined by o — (a,b),
where a € X and b € p are (unique) elements with « = a +b. Then o is an
isomorphism.

We only need to check o(E*) = EM. Let a € E*. Then a € X and o(a) =
(a,0). So o(a) belongs to EM. The other inclusion follows similarly. (End of
Proof of Claim B)

By Claim B, we see that (R*, +, <, E*) is locally o-minimal. Since the local
o-minimality is preserved under elementary equivalence (see Fact 5), we have the
local o-minimality of (R, +, <, E). O

REMARK 27. 1. The structure (R, +, <, F) cannot be expressed as a simple
product of the form Z x I. For otherwise, both ' and Z are definable in the
structure Z x I. Then (E+ Z)N1I is a countable (infinite) definable set having
an accumulation point. But this contradicts the local o-minimality of Z x I.

2. Let us say that £ C R is a good set if for all n € w and for all ¢1,...,q, €
Q ~ {0}, the set {|qra1 + -+ - + gnan| : a; € E} has a positive infimum. Then,
for any good FE, we can prove the local o-minimality of (R, +, <, E), exactly by
the same argument as above. Moreover, if Py, Py, ... are relations on F, then
the structure (R, +, <, E, Py, Py, ...) is also locally o-minimal.

References
[1] L. van den Dries, Tame Topology and o-minimal Structures, London Math. Soc. Lecture
Note Ser., 248, Cambridge University Press, 1998.
[2] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke

Math. J., 84 (1996), 497-540.

[3] J.F.Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures, II, Trans.
Amer. Math. Soc., 295 (1986), 593-605.

[4] D. Macpherson, D. Marker and C. Steinhorn, Weakly o-minimal structures and real closed
fields, Trans. Amer. Math. Soc., 352 (2000), 5435-5483.

[5] A. Marcja and C. Toffalori, A Guide to Classical and Modern Model Theory, Trends in
Logic — Studia Logica Library, 19, Kluwer Academic Publishers, Dordrecht, 2003.

[6] M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Progr. Math., 150,
Birkhauser, 1997.

[7] H. Tanaka and T. Kawakami, C" strong cell decompositions in non-valuational weakly
o-minimal real closed fields, Far East J. Math. Sci. (FJMS), 25 (2007), 417—-431.

[8] C. Toffalori and K. Vozoris, Notes on local o-minimality, MLQ Math. Log. Q., 55 (2009),
617-632.

[9] R. Wencel, Weakly o-minimal non-valuational structures, Ann. Pure Appl. Logic, 154
(2008), 139-162.


http://dx.doi.org/10.1215/S0012-7094-96-08416-1
http://dx.doi.org/10.1215/S0012-7094-96-08416-1
http://dx.doi.org/10.1090/S0002-9947-1986-0833698-1
http://dx.doi.org/10.1090/S0002-9947-1986-0833698-1
http://dx.doi.org/10.1090/S0002-9947-00-02633-7
http://dx.doi.org/10.1002/malq.200810016
http://dx.doi.org/10.1002/malq.200810016
http://dx.doi.org/10.1016/j.apal.2008.01.009
http://dx.doi.org/10.1016/j.apal.2008.01.009

Locally o-minimal structures 797

Tomohiro KAWAKAMI Kota TAKEUCHI
Department of Mathematics Institute of Mathematics
Faculty of Education University of Tsukuba
Wakayama University Ibaraki 305-8571
Sakaedani Wakayama 640-8510 Japan

Japan

Hiroshi TANAKA Akito TsuBo1

Anan National College of Technology Institute of Mathematics
265 Aoki Minobayashi University of Tsukuba
Anan, Tokushima 774-0017 Ibaraki 305-8571

Japan Japan





