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Abstract. The goal of the article is to classify foliations of S3 by regular
canal surfaces, that is envelopes of one-parameter families of spheres which are
immersed surfaces. We will add some extra information when the leaves are
“surfaces of revolution” in a conformal sense.

1. Introduction.

It is well known that codimension-one totally geodesic foliations of closed
Riemannian manifolds of constant non-zero curvature do not exist. In fact, totally
geodesic foliations of compact negatively curved manifolds do not exist in any
codimension, see [Ze1], [Ze2].

Similarly, codimension-one totally umbilical foliations do not exist on Sn (by
purely topological reason) or on negatively curved closed Riemannian manifolds
[LW]. Since umbilicity is a conformal property of submanifolds, one should look
for a weaker conformal property for which enough foliations with all the leaves
possessing the property exist on (some) manifolds of non-zero constant sectional
curvature.

In [LW], we proved also that Dupin foliations do not exist on S3 or on compact
hyperbolic 3-manifolds. This shows that asking that the leaves are all pieces
of Dupin cyclides is still a very rigid condition. Since Dupin cyclides can be
characterized as surfaces with zero conformal principal curvatures (see [CSW] for
definitions), one should look further for weaker local conformal properties (compare
[CSW]).

Next, in [BW], it has been shown that the condition “all the scalar local con-
formal invariants are constant” is still too strong: foliations by surfaces with such
invariants do not exist on S3 or on closed hyperbolic 3-manifolds. Surprisingly,
all the surfaces with constant conformal principal curvatures must have one of
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these curvatures equal to zero and this means that such surfaces are canals, that
is envelopes of one-parameter families of spheres. Note also that canal surfaces
are important for computer aided geometric design (see [Kr], [PP], etc.)

All of that brings us to a question about existence and classification of folia-
tions of S3 and closed hyperbolic 3-manifolds by canal surfaces. Here, we give an
answer to this question in the case of S3: we show how to construct such foliations
on S3 and we classify all of them. They may look like standard Reeb foliations
with the torus leaf being a Dupin cyclide. The others are obtained from these by
replacing the toral leaf with a zone T 2 × I foliated by tori, cylinders and planes
(see Theorems 4.2.2, 4.2.1 and 4.2.3).

We consider also a condition imposed to the leaves which is slightly stronger
than to be just canal surfaces but still weaker than being Dupin: to be conformal
surfaces of revolution.

The foliations we consider are of class at least C 2, in particular their leaves
are of class at least C 2.

The authors thank Gil Solanes for pointing to us the fact that our curve in
Λ2, in a first version of Figure 13 was not possible.

2. Canal surfaces and “surfaces of revolution”.

2.1. The set of spheres in S3.
The Lorentz quadratic form L on R5 and the associated Lorentz bilinear

form L (·, ·), are defined by L (x0, . . . , x4) = x2
0 − (x2

1 + · · · + x2
4) and L (u, v) =

u0v0 − (u1v1 + · · ·+ u4v4).
The Euclidean space R5 equipped with this pseudo-inner product L is called

the Lorentz space and denoted by L5.
The isotropy cone L ight = {v ∈ R5 | L (v) = 0} of L is called the light

cone. Its non-zero vectors are also called light-like. The light cone divides the set
of vectors v ∈ L5, v /∈ {L = 0} in two classes:

A vector v in R5 is called space-like if L (v) < 0 and time-like if L (v) > 0.
A straight line is called space-like (or time-like) if it contains a space-like (or,

respectively, time-like) vector. A vector subspace is called space-like if all its non-
zero vectors are space-like; it is called time-like if it contain space-like and time-like
vectors. In particular an hyperplane P = (Rσ)⊥, σ ∈ Λ4 is always time-like.

The points at infinity of the light cone in the upper half space {x0 > 0} form
a 3-dimensional sphere. Let it be denoted by S3

∞.
The quadric Λ4, usually called de Sitter space, is defined by the equation

L = −1. To each point σ ∈ Λ4 corresponds an oriented sphere Σ = (Rσ)⊥ ∩ S3
∞

(see Figure 1). The intersection of the half-space L (σ, ·) < 0 with S3
∞ is a 3-ball
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Figure 1. S3
∞ and the correspondence between points of Λ and spheres.

of boundary Σ, therefore it orients Σ.
Instead of finding the points of S3 “at infinity”, we can also consider the

section of the lightcone by the space-like affine hyperplane {x0 = 1}. The section
is a sphere of dimension 3 endowed with a metric of constant curvature 1 which has,
in the hyperplane {x0 = 1} the equation S3

1 = {(x1, . . . , x4) | x2
1+· · ·+x2

4−1 = 0}.
The affine hyperplane {x0 = 1} looks horizontal for our Euclidean eye. We can,
instead of {x0 = 1}, chose any affine hyperplane Hz tangent at a point z to the
upper sheet H4 of the hyperboloid H = {L = 1}. The intersection L ight ∩Hz

is a 3-sphere which also inherits from the Lorentz metric a metric of constant
curvature 1 (see [H-J], [LW], and Figure 2). Changing the point z ∈ H4 will
only change the metric induced from −L on the sphere S3. The correspondences
between the different spheres L ight∩Hz obtained using the rays of the lightcone
are conformal.

The correspondence between a point σ ∈ Λ4 and the sphere Σ = S3 ∩
(Spanσ)⊥ gives to σ the role of a linear equation of Σ. Therefore the points
of a plane Span(σ1, σ2), σ1 ∈ Λ4, σ2 ∈ Λ4 can be viewed as defining equa-
tions 〈λσ1 + µσ2, ·〉 = 0, linear combinations of the “equations” 〈σ1, ·〉 = 0 and
〈σ2, ·〉 = 0. It is enough to consider the “normalised” equations corresponding to
points of Span(σ1, σ2) ∩ Λ4. The corresponding spheres form a (linear) pencil.

If the plane Span(σ1, σ2) is space-like, then the spheres Σ1 and Σ2 associated
to σ1 and σ2 intersect along a circle Γ, and all the spheres of the pencil contain Γ.
Such a pencil is called pencil with base circle.

If the plane Span(σ1, σ2) is time-like, then the spheres Σ1 and Σ2 associated
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Figure 2. A tangent space to H4 cuts the light cone at a unit sphere.

to σ1 and σ2 are disjoint and all the spheres of the pencil are pairwise disjoint;
two degenerate spheres of the pencil are points which we call limit points. Such a
pencil is called pencil with limit points or Poncelet pencil here.

If the plane Span(σ1, σ2) contains only one light-ray, which means that it is
tangent to the light-cone along this light-ray, then the two spheres Σ1 and Σ2 are
tangent at the point m corresponding to the light-ray. All the spheres of the pencil
are then tangent at m. Such a pencil is called a pencil of tangent spheres.

Chapter one of the book [H-J] contains a “projective” presentation of the
different types of pencils of spheres.

Notice that the intersection γ ⊂ Λ4 of Λ4 with a space-like plane Span(σ1, σ2)
containing the origin, endowed with the metric induced from −L , is a circle of
radius one in the Euclidean plane Span(σ1, σ2). We have seen that the points of
this circle correspond to the spheres of a pencil with base circle. The arc-length of
a segment contained in γ is equal to the angle between the spheres corresponding
to the extremities of the arc.

It is convenient to have a formula giving the point σ ∈ Λ4 in terms of the
Riemannian geometry of the corresponding sphere Σ ⊂ S3 ⊂ L ight and a point
m on it. In order to recover the point σ ∈ Λ4 we need to know a point m ∈ Σ, the
unit vector

→
n tangent to S3 normal to Σ at m and the geodesic curvature of Σ,

that is the geodesic curvature kg of any geodesic circle on Σ.

Proposition 2.1.1. The point σ ∈ Λ4 corresponding to the sphere Σ ⊂
S3 ⊂ L ight is given by

σ = kgm +
→
n. (1)

Remark. A similar proposition can be stated for spheres in the Euclidean
space E3 seen as a section of the light cone by an affine hyperplane parallel to an
hyperplane tangent to the light cone.
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The proof of Proposition 2.1.1 can be found in [H-J] and [LO]. The idea
of the proof is shown on Figures 3 and 4: Let Hz be the affine hyperplane such
that S3 = L ight ∩ Hz, let P be the hyperplane such that Σ = S3 ∩ P . Let us
consider the hyperplanes tangent at a point m ∈ Σ to the lightcone. They are
the hyperplanes orthogonal to the rays Rm. As the subspace Span(Rm), m ∈ Σ,
is P , the space P⊥ is the intersection of the hyperplane (Rm)⊥, m ∈ Σ. The
intersection of an hyperplane (Rm)⊥ with Hz is the plane tangent at m to S3.
Therefore the line P⊥ intersects the affine hyperplane Hz at a point which is the
vertex of the cone tangent to S3 along Σ. The intersection of the line P⊥ with Λ4

is formed of two antipodal points σ ∈ Λ4 and −σ ∈ Λ4. The point σ corresponds
to the orientation of Σ given by the normal vector

→
n .

Figure 3. The plane P which contains the sphere Σ, the line P⊥ = Rσ)
and the vertex v of the cone tangent to the sphere Σ in R4.

Figure 4. The geodesic curvature kg, pictured within the affine hyperplane Hz.

Remark. We can in a similar way show that oriented circles of a sphere S2

nicely correspond to the points of the 3-dimensional quadric Λ3 ⊂ R4 defined by
the equation L (x) = −1, where L (x) = x2

0 − x2
1 − x2

2 − x2
3.

Lowering even more the dimension we see that oriented pairs of points (that is
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boundary of arcs) in a circle S1 nicely correspond to the points of the 2-dimensional
quadric Λ2 ⊂ R3 defined by the equation L (x) = −1, where L (x) = x2

0−x2
1−x2

2.

2.2. Canal surfaces.
A differentiable curve γ = γ(t) is called space-like if, at each point its tangent

vector
.
γ(t) is space-like, that is L (

.
γ) < 0. In this case the family of spheres Σt

associated to the points γ(t) defines an envelope which is a surface, a union of
circles called the characteristic circles of the surface. There is one characteristic
circle ΓCar on each sphere Σt of the family and it is the intersection of Σt and the
sphere

.
Σt = [Span(

.
γ(t))]⊥ ∩S3. From now on we will suppose that the space-like

curve γ is parametrized by arc-length, that is |L (
.
γ)| = 1.

The spheres envelopping a canal surface form a curve in Λ4 that we call the
curve corresponding to the surface. It is space-like, as the existence of an envelope
forces nearby spheres to intersect.

An extra condition is necessary to guarantee that the envelope is immersed.

The geodesic acceleration vector
→
kg =

..
γ (t)+γ(t) should be time-like. We call the

envelope of the spheres Σt corresponding to the points of such a curve γ a regular
canal surface.

Important canal surfaces are the Dupin cyclides (see [Dar] and [LW]). They
are envelopes of the spheres of a curve β ⊂ Λ4 which is the intersection of Λ4 with
an affine plane. In fact a Dupin cyclide is in two different ways the envelope of a
one-parameter family of spheres (see [LW] for a complete simultaneous description
of the canal surfaces and the corresponding curves in Λ4).

An embedded Dupin cyclide is the envelope of the spheres of a “large” circle,
that is intersection of Λ4 with a space-like affine plane H which is away from the
origin in a time-like direction. This occurs when H is of the form H = xH + h,
where h a space-like vectorial plane and xH is a time-like vector orthogonal to h.
The radius of the circle (Λ4 ∩ H) ⊂ H, for the Euclidean metric induced on H

from −L , is then larger than 1. The point xH is also the (only) critical point of
the function L restricted to H (L (xH) > 0).

Affine planes of the form H = xH + h, where h a space-like vectorial plane
and xH is a space-like vector orthogonal to h of norm less than 1 intersect Λ4

in circles of radius less than 1. The corresponding Dupin cyclide has then two
singular points; an example is the surface of revolution obtained rotating a sphere
around an axis which intersects it.

The limit case, an affine plane H = xH + h, where h a space-like vectorial
plane and xH is a light-like vector orthogonal to h, cuts Λ4 in a circle of radius
2π. The corresponding spheres are tangent to a line at the point corresponding to
the lightray generated by xH .

Let us prove a geometric property of canal surfaces which is in some sense
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Figure 5. The Dupin necklace D and the canal surface
M crossing it along a characteristic circle ΓCar.

the existence of an osculating Dupin cyclide to the canal along any characteristic
circle. Figure 5 shows how the canal surface M may cross its Dupin necklace along
a characteristic circle ΓCar.

Theorem 2.2.1. Let M be a canal surface. We denote by k1 the principal
curvature of the surface which coincides with the principal curvature of the spheres
of the family (the lines of principal curvature for k1 are the characteristic circles of
the envelope). The osculating spheres Σ2(ϕ) for the principal curvature k2 along a
characteristic circle ΓCar (parametrized by ϕ) of a canal surface have an envelope
which is a Dupin cyclide D ; in other terms the points σ2(ϕ) ∈ Λ4 corresponding
to the spheres Σ2(ϕ) form a circle δ.

Definition 2.2.2. We call Dupin necklace, and denote by D , the Dupin
cyclide formed by the osculating spheres Σ2(ϕ) for the principal curvature k2

along a characteristic circle ΓCar. We denote by δ the corresponding curve in Λ4,
and call it also Dupin necklace when there is no risk of confusion.

Proof. Here, writing formula (1), we get σ2(ϕ) = k2m(ϕ) + N(m(ϕ)).
Differentiating with respect to ϕ we get, σ′2 = k′2m + k2m

′ − k1m
′, so, using the

fact that k′1 = 0, σ′2 = (k2 − k1)′m + (k2 − k1)m′ = [(k2 − k1)m]′. Therefore

σ2(ϕ) = (k2 − k1)m(ϕ) + σ2,0. (2)

Recall that the intersection Tσ2,0 ∩ Λ4 is a shifted light cone (of dimension 3)
with vertex at σ2,0. As the spheres we consider are tangent to the sphere Σ2,0,
corresponding to the point σ2,0 ∈ Λ4, along the characteristic circle, these spheres
belong to a subcone L C of dimension 2; one can see that from Equation (2) as
the points m(ϕ) belong to the characteristic circle.

On the other hand, the following circle of the cone L C is a candidate to be
the set of osculating circles along the characteristic circle ΓCar: the circle β∗(t)
“conjugate” to the osculating circle β(t) to the curve γ ⊂ Λ4 at the point σ(t),
that is the intersection Λ4 ∩ Tσ1Λ

4 ∩ Tσ2Λ
4 ∩ Tσ3Λ

4 (the affine plane (Tσ1Λ
4 ∩
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Tσ2Λ
4 ∩ Tσ3Λ

4) is independent of the choice of three different points σ1, σ2, σ3 on
the osculating circle β(t) to γ at σ(t)). The circle β∗(t) is the limit as h → 0 of the
circles (in Λ) formed by the spheres simultaneously tangent to three spheres Σ(t),
Σ(t + h) and Σ(t + 2h) corresponding to three points σ(t), σ(t + h) and σ(t + 2h)
of the curve γ ⊂ Λ4. On the same light-ray as the points corresponding to the
two osculating spheres at a point m(t) ∈ ΓCar (one is σ(t)) there is a point of the
circle β∗(t): the point σ̃(t) corresponding to an osculating sphere to the Dupin
cyclide defined by β(t) and β∗(t). We need to prove it cannot have a contact of
centre or saddle type at m(t) with the canal. The sphere Σ̃(t) can also be seen as
a limit of spheres Σ̃(t, h) tangent at m(t) to Σ(t) and tangent to another nearby
sphere Σ(t + h). By definition, such a sphere does not intersect the interior of a
ball of boundary Σ(t + h). The transverse distance of the sphere Σ̃(t) and the
sphere Σ̃(t, h) is of the order of h3 at the point of contact of Σ̃(t, h) and Σ(t + h).
This contradicts the fact that along a line of principal curvature which is not a
characteristic circle the transverse distance between the canal and a generic sphere
tangent at m(t) to the canal is of the order of h2. This proves that the spheres
corresponding to points of β∗(t) are osculating spheres to the canal tangent to the
characteristic circle ΓCar. ¤

Before constructing canal surfaces which are topologically planes, we will need
to understand Dupin cyclides corresponding to small circles in Λ4. An example is
the cyclide obtained rotating a sphere of R3 around an axis close to a diameter; if
the axis were the diameter, the envelope would degenerate into the sphere itself,
and the circle in Λ4 into the corresponding point.

Proposition 2.2.3 (Small circles). Let β ⊂ Λ4 be the intersection Λ4 ∩H

where H is an affine space-like plane of the form xH + h, where h a space-like
vector plane and xH is a space-like vector orthogonal to h which satisfies −1 <

L (xH) < 0. Then

- 1. The radius of the circle β is smaller than 1,
- 2. The envelope of the spheres corresponding to points of β is also the envelope

corresponding to another curve β∗ ⊂ Λ4, β∗ = Λ4 ∩ H∗, where H∗ is an
affine space of mixed type, orthogonal to Span(O, H), and intersecting the

line generated by
→

OxH at a point xH∗ , also critical for the Lorentz norm of
y, y ∈ H∗, satisfying L (xH , xH∗) = −1.

- 3. Moreover, when L (xH) and L (xH∗), tend both to −1, the curve β = Λ4 ∩H

is a circle of radius going to zero, and the curve β∗ = Λ4 ∩H∗ is a hyperbola
the geodesic curvature of which also goes to infinity.

Proof. The proof of the first two points is given in [LW, Section 5.2].
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As the Lorentz norm L (xH) is close to −1 and greater than −1, the inter-
section Λ4 ∩ H is contained in Λ4 ∩ Span(O, H), a 2-sphere of radius 1 centred
at the origin. The intersection of this sphere with H is a small circle of radius
r =

√
1 + L (xH). Its geodesic curvature, in the sphere or in Λ4, is therefore large

(see Figure 6).
The situation of the hyperbola Λ4 ∩H∗ is symmetric. The hyperbola is very

close to its asymptotes and for our Euclidean eye has a sharp turn. Its curvature in
the Lorentz plane H∗, and also its geodesic curvature in Λ4, are therefore constant
and large (see Figure 6). ¤

Figure 6. Small circle and acute hyperbola.

2.3. Umbilics and spherical caps.
In order to obtain the planar leaves of a foliation of S3 we need to understand

how to “close” a canal cylinder. There are two ways, and we will use both of them:

1) add a spherical cap tangent to the cylindrical part,
2) shrink the characteristic circles ending with an umbilic.

The price to pay will be to accept a singular point at the extremity of the
curve γ ⊂ Λ4, in the sense that the geodesic curvature of γ goes to infinity when
approaching the extremity.

We consider now a parametrization by t ∈]t1, T ] of an arc of γ of extremity
at the end point of γ; as we want to include the extremity γ(T ), we have to give
up parametrizations by arc-length, as we will prove that the geodesic curvature on
an arc [γ(t), γ(T )[ is unbounded. The characteristic circle ΓCar(t) on the sphere
Σt corresponding to the point γ(t) ∈ γ is ΓCar(t) = Σt ∩ [Span(

.
γ(t))]⊥.

Let us first suppose that, at the endpoint γ(T ), the curve γ ⊂ Λ4 has a
space-like tangent direction. The point γ(T ) of γ corresponds to a sphere Σ(T ).
It provides the spherical cap contained in Σ(T ) of boundary the characteristic
circle [Span(σ(T ),

.
σ(T ))]⊥ ∩S3. Let us suppose that the envelope completed with

the spherical cap is a C 2 surface. As the principal curvatures are continuous
functions on the envelope, the curvature of the two osculating spheres at points of
a characteristic circle both have the same limit k = k1(T ), the mean curvature of
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the sphere ΣT corresponding to the endpoint γ(T ). Therefore, the Dupin necklaces
δt associated to the characteristic circles ΓCar(t), t → T have to be smaller and
smaller. This is only possible if the geodesic curvature of the curve γ goes to
infinity when t goes to T .

Reciprocally, a curve γ : [−∞, T ] → Λ4 such that
.
γ is space-like,

→
kg is time-

like and satisfying limt→T |L (kg)| = +∞ corresponds to an envelope such that
the points of the last characteristic circle ΓCar(T ) are umbilics, as the condition
L (kg) > 0, |L (kg)| → ∞ implies that the corresponding Dupin necklaces have to
shrink to a point.

To ensure that the foliation of the surface by characteristic circles is transver-
sally C 1, and that the leaves of the other foliation by lines of principal curvature
are C 1 up to the last characteristic circle [Span(σ(T ),

.
σ(T ))]⊥∩S3 we also demand

that the plane Span(
.
σ(t),

..
σ (t)) has a limit. This guarantees that the family of

circles Σ(T ) ∩
.
Σ(t) is tangent to a pencil of circles (in the set Λ3 of circles of the

sphere Σ(T )).
The second possibility demands that the tangent vector at the endpoint of

γ is light-like. In fact, as, in this case, the radii of the characteristic circle tend
to zero, the spheres

.
Σ(t), which are orthogonal to the spheres Σ(t), therefore

almost orthogonal to the limit sphere Σ(T ), need to have radii going to zero, and
moreover need to shrink to a point m0. This point m0 has to be an umbilic as
all the lines of principal curvature orthogonal to the characteristic circles converge
to m0. For our Euclidean eye the tangent vector

.
γ(t) needs to lean over the line

Span(m0) when t goes to T . The Dupin necklaces δt again have radii going to
zero. Therefore, as in the previous case, the geodesic curvature of γ has to go
to infinity when t goes to T . Again, in order to ensure that the foliation of the
surface by characteristic circles is transversally C 1, and that the leaves of the other
foliation by lines of principal curvature are C 1 up to the umbilic, we also demand
that the plane Span(

.
σ(t),

..
σ (t)) has a limit. This guarantees that the family of

circles Σ(T ) ∩
.
Σ(t) has, when renormalised by the composition of a stereographic

projection of pole at the umbilic and suitable homotheties, a limit which is a pencil
of concentric circles.

2.4. Canal leaves.
When a canal surface is the leaf of a foliation of S3 it has to be regular. The

corresponding curve γ can be

1) a segment
2) a line
3) a half-line
4) a closed curve
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In the first case the leaf is a sphere; that is impossible if it is a leaf of a foliation
of S3. In the second case the leaf is a cylinder, and in the fourth a torus (A leaf of
a foliation of S3 cannot be a Klein bottle, as a Klein bottle cannot be embedded
in S3). In the third case it is a plane. In the first and third case we should demand
that the tangent direction at an extremity of the curve is light-like; then the point
of the envelope corresponding to the extremity is an umbilical point of the leaf.

As we supposed that the foliation is of class C 2, the principal directions
of the leaves vary continuously in the complement of umbilical points. As the
characteristic circles are lines of curvature, they also vary continuously in the
complement of umbilical points of leaves. Let γ ⊂ Λ4 be the curve corresponding
to a leaf L. Let us consider a value of the parameter t which is not an extremity
of the domain of definition of γ. Then the characteristic circle Ct ⊂ Σt = γ(t)⊥ is

the boundary of two spherical caps of the sphere
.
Σt =

.
γ(t)⊥ ∩S3

∞. The condition

L (
→
kg) > 0 implies that either the spheres

.
γ(t + h)⊥ ∩ S3

∞, for h small enough,
are nested, or that their intersection occurs “only in one side” of the characteristic

circles. In the latter case, the vector
..
γ (t) is space-like but the condition L (

→
kg) > 0

implies that the sphere
..
γ (t)⊥ ∩S3

∞ intersects the sphere
.
γ(t)⊥ ∩S3

∞ on one side
of the characteristic circle. Therefore we can continuously chose a component Dt

of
.
γ(t)⊥ ∩ S3

∞ \ Ct. For small enough values of h, all the discs Dt+h are disjoint.
Their union when h belongs to a small interval [−h0, h0] form a solid cylinder
C ylh0 .

Let us now consider a leaf L′, envelope of the spheres corresponding to the
point of a curve γ′ ⊂ Λ4, through a point m′ ∈ S3 \ C ylh0 close enough from a
point m ∈ Ct. Let us call Cτ the characteristic circle containing the point m′.
It cannot cross the “vertical” part of the boundary of C ylh0 when m′ is close
enough from m. Therefore it has to “go around” it (see Figure 7). More precisely,

the characteristic circle Cτ bounds on the sphere
.
Σ′t =

.
γ′(t)⊥ ∩ S3

∞ a disc which
intersects the vertical part of ∂C ylh0 in a closed curve close (in the C 1-topology)
to Ct.

Remark. If a leaf L accumulates on a toral leaf, the family of characteristic
circles of L converges to a family of characteristic circles on the toral leaf.

Figure 7. How a nearby characteristic circle encircles
the solid cylinder bounded by a piece of leaf.
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2.5. Conformal axis of a surface of revolution.
Surfaces of revolution of R3 are envelopes of spheres centred on the axis

of revolution of the surface. The characteristic circles are contained in planes
orthogonal to this axis.

In this article we will adopt a wider, conformal definition.

Definition 2.5.1. A surface of revolution is a regular canal such that the
spheres that define it are all orthogonal to a given circle C called the axis of the
surface of revolution.

Remarks.

- The image of C by a stereographic projection of S3 on R3 sending a point of the
axis C to infinity is the usual rotational axis of the image of the envelope which
is a surface of revolution of R3 in the usual sense.

- The spheres orthogonal to a given circle C form a totally geodesic surface ΛC ⊂
Λ4. All the surfaces ΛC are isometric copies of the 2-dimensional de Sitter space
Λ2 ⊂ R3, where R3 is endowed with the Lorentz “metric” L (x) = x2

0−x2
1−x2

2,
and Λ2 has the equation L (x) = −1. Therefore, when a regular canal is a surface
of revolution the curve γ ⊂ Λ4 defining it has to be contained in some ΛC .

Lemma 2.5.2. A regular canal is a surface of revolution if and only if the
curve γ corresponding to the spheres of the family is contained in a totally geodesic
2-dimensional de Sitter space Λ2

C ⊂ Λ4.

Proof. Consider the pencil of spheres containing the axis C. It corresponds
to a geodesic circle of Λ4 of the form hC ∩ Λ4, where hC is a space-like plane of
L5. The totally geodesic Λ2

C is then h⊥C ∩ Λ4. ¤

Remarks.

- The curve γ ⊂ Λ4 corresponding to a surface of revolution determines the “axis”
C. If γ is a geodesic, then the spheres form a pencil and do not define a regular
envelope.

- The only surfaces of revolution that have two axes are the Dupin cyclides. Notice
that, to find the two axes, we need to use the two different curves of Λ4 which
give the Dupin cyclide as an envelope in two different ways.

Another property of leaves of a foliation by surfaces of revolution is:

Lemma 2.5.3. Two asymptotic leaves have a common axis.

Proof. We consider now a pairs of points (xt, yt), xt ∈ L1, yt ∈ L2, t ∈ R,
such that d(xt, yt) → 0 when t → ∞. We suppose also that the two points stay
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away from umbilical points. As the two leaves L1 and L2 are asymptotic, and
as the foliation is of class C 2, therefore a fortiori of class C 1, the tangent planes
through xt and yt respectively, get arbitrarily close. Moreover, as the foliation is of
class C 2, the principal directions at the points xt and yt get close. The continuity
of the principal directions implies that the integral curves of each of these line field
also get close. Therefore, in particular the characteristic circles C1,t at the points
xt and C2,t at yt get close. The characteristic circle at a point of a canal surface

is the intersection of the two spheres Σt = γ(t)⊥ ∩ S3 and
.
Σt =

.
γ(t)⊥ ∩ S3; the

first sphere is tangent to the surface, the second normal to it. At the points xt

we get this way a sphere Σ1,t ⊃ C1,t tangent to L1 at xt and a sphere
.
Σ1,t ⊃ C1,t

normal to L1. Similarly we get two spheres Σ2,t ⊃ C2,t and
.
Σ2,t ⊃ C2,t respectively

tangent and normal to L2 at yt. The corresponding spheres get close when xt ∈ L1

and yt ∈ L2 do. Therefore the two curves γ1 ⊂ Λ4 and γ2 ⊂ Λ4 corresponding
to the two families of spheres having L1 and L2 as envelopes are asymptotic or
have the same limit which should be a point where they are tangent. This last
possibility is not allowed when L1 and L2 are leaves of a foliation: if the tangent
vector to the limit point of the two curves is space-like, the two leaves should share
a circle where they are tangent to the same sphere, if the limit tangent is light-like,
the two leaves share a point where they are tangent (see Proposition 3.2.2).

As the two leaves are surfaces of revolution, the first is the envelope corre-
sponding to a curve γ1 ⊂ ΛC1 , and the second the envelope corresponding to a
curve γ2 ⊂ ΛC2 . If ΛC1 and ΛC2 are different, these two surfaces can intersect in

1. two antipodal points,
2. a geodesic hyperbola of Λ4 or two parallel light-rays,
3. a geodesic circle γ0 of Λ4.

The last case is the only one which is compatible with the existence of such asymp-
totic curves γ1 ⊂ ΛC1 and γ2 ⊂ ΛC2 . Fortunately, in that case the envelopes would
not be of bounded geometry (for any of the conformally equivalent metrics of S3).
To see that, first recall that a geodesic circle in Λ4 corresponds to a pencil of
spheres with a base circle.

Our two curves γ1 and γ2 are now asymptotic to the circle γ0. The Dupin
necklaces on the two leaves therefore get thinner and thinner when t goes to infinity,
contradicting the fact that leaves of a smooth foliation (without singularities) have
bounded geometry.

Therefore one needs to have ΛC1 = ΛC2 that is C1 = C2 = C. The common
axis of the two leaves is the circle C. ¤
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3. Canal Reeb components.

3.1. Toy examples in dimension 2 and 3.
As foliations with leaves which are conformal surfaces of revolution and mu-

tually asymptotic are envelopes of spheres which are orthogonal to the same circle
Γ ⊂ S3, it is natural to consider the intersection of the foliation with the spheres of
the pencil of axis Γ. This way we obtain one-dimensional foliations on two-spheres.

In dimension 2, the envelope of the circles corresponding to a circle β ⊂ Λ3

is the union of two circles. When the circle β is of radius larger than 1, that is
when β = Λ3 ∩ H, where H is an affine space-like 2-space such that, using the
notations of the paragraph about Dupin cyclides in Subsection 2.2, L (OxH) < 0,
the two envelope circles are disjoint. The intersection Λ3 ∩ Span(O, H) is a two-
dimensional de Sitter space Λ2 which also contains β. The interpretation of β as
a set of pairs of points on a circle is not enlightening here. Nevertheless, given a
pair of points on a circle Γ0 ⊂ Σ0 ⊂ S3, there is a unique circle in Σ0 orthogonal
to Γ0 and containing the two points. There is also a unique sphere orthogonal to
Γ0 containing the same two points (and the previous circle).

Therefore, we can construct simultaneously a Poincaré component of the an-
nulus and a Reeb component of a solid torus bounded by a regular Dupin cyclide
from a family of curves in Λ2 (see Figure 8).

More generally, we can consider a foliation of a sphere Σ by curves with leaves
which are the envelope of circles and extend it to a domain of S3 foliated by the
envelope of the spheres containing the circles and orthogonal to Σ. This would
provide a family of foliations with a constraint weaker that the requirement that
all leaves are conformally surfaces of revolution, and so we will not consider them
in this article.

Let us first construct a foliation of an annulus contained in S2 or R2, that
we will call Poincaré component; we will call the leaves of a Poincaré component
which are lines Poincaré leaves. The starting point is the graph of an even function

Figure 8. The circles defining a Poincaré leaf ending with a circular cap.
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Figure 9. Poincaré leaf, first step.

f : (−1, 1) → R whose graph has two vertical asymptotes x = ±1. We can now
fill the vertical strip with Poincaré leaves translating vertically the previous curve
(see Figure 9). The quotient ([−1, 1] × R)/(0, 1) · Z is a foliated annulus. The
two boundary circles are leaves. The other leaves are lines which spiral to the
two boundary circles. In dimension 3, we should follow the classical construction
of Reeb component of the solid torus (D2 × R))/Z. We recall it here. Then,
in dimension 3, from the graph of our function f that we see contained in the
vertical (x, z)-plane, we can obtain a surface of revolution of axis Oz asymptotic
to the cylinder of equation x2 + y2 = 1. This surface has an umbilic point at
the origin. The images by vertical translations of this surface and the boundary
cylinder foliate the solid cylinder {x2 +y2 ≤ 1}. The quotient of this solid cylinder
by the unit vertical translation is a foliated solid torus D2 × S1. In the interior
of the torus, the leaves are planes asymptotic to the torus. Any foliation obtained
from the above by a diffeomorphism is called a Reeb component (see [Re], [CC]
etc.).

Let us now construct a Poincaré component the leaves of which are envelopes
of one parameter family of circles which are orthogonal to a given circle (see Figure
8).

The set of circles of a sphere S2 or the set of circles-or-planes of the Euclidean
plane R2 forms a quadric Λ3 ⊂ L4. Therefore we can repeat what has been done
for spheres in S3 for circles in S2. We could have considered also zero dimensional
circles, that is pairs of points, in S1. These form a two dimensional quadric
Λ2 ⊂ L3. Circles orthogonal to a given circle C ⊂ S2 intersect it in two points.
Notice also that the circles orthogonal to a given circle C correspond to the points
of the intersection of Λ3 with the hyperplane P ⊂ L4 orthogonal to the line
generated by the point σC ∈ Λ3 corresponding to the circle C. This intersection
Λ2

C is the quadric of the 3-dimensional affine subspace P given by the equation
L |P = 1, where L |P is the restriction to P of the Lorentz form L of L4.
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Consider the intersection of Λ2
C with an affine space-like plane Q ⊂ P which

does not contain the origin. It is a circle β ⊂ Λ2
C . The envelope of the circles

corresponding to the points of β is the union of two circles bounding an annulus
of S2 (see [LW]). Let us denote by ` the time-like line orthogonal to Q. It is
oriented as the x4-axis of L4.

Let us now consider a curve δ : (−∞, T ] → Λ2
Γ; the curve δ is contained in the

region above β starting at a point with light-like tangent, space-like everywhere
else and asymptotic to β (see Figure 8 again). We suppose that the projection of
δ on ` is increasing, and that the absolute value of the geodesic curvature of δ goes
to infinity when t approaches T . For the choice of the metric on S3 associated to
the time-like line ` the two circles boundary of the annulus are equidistant from a
geodesic and the circles of the family are centred on this geodesic.

As was explained in Subsection 2.3, we have

Proposition 3.1.1. The extremity v of the curve δ, where the tangent vector
is light-like, corresponds to a circle which is the osculating circle to the envelope
of the circles corresponding to δ at the only vertex U of this envelope.

We can also consider a circle Γ ⊂ S3. The two-dimensional de Sitter quadric
Λ2

Γ is now embedded in Λ4. The curve β ⊂ Λ2
Γ corresponds to spheres which

envelope a Dupin cyclide. The curve δ ⊂ Λ4 corresponds to a family of spheres
which envelopes a planar leaf contained in a solid torus. The only umbilic of a
planar leaf is its intersection with the circle Γ.

Figure 13 shows how to obtain a more complicated Reeb leaf: the curve in Λ2

may cross the limit circle and may be immersed.

3.2. General Reeb components and turbulization.
It is now easy to visualize a Poincaré component such that the boundary of

the annulus is a pair of disjoint closed curves in S2 (see Figure 10, in our example
the circles the envelope of which is the boundary of the annulus are all orthogonal
to an equator Γ, so we had drawn the curve γout corresponding to these circles on
ΛΓ ⊂ Λ3).

To the boundary of an annulus A contained in a 2-sphere Σ ⊂ S3, which is
the envelope of the circles of a curve γ0 ⊂ Λ3

Σ ⊂ Λ4, we can associate, considering
γ0 as a curve of Λ4, a torus boundary of a solid torus. The torus intersects Σ
orthogonally along ∂A.

To recognize, looking just at two curves γ1 ⊂ Λ4 and γ2 ⊂ Λ4, if the cor-
responding envelopes intersect is not easy. The condition that a one-parameter
family {γa(t)} of curves should satisfy in order to guarantee that the envelopes
are the leaves of a foliation is easier, as it is enough to check that locally leaves
do not intersect. Locally the one-parameter family of curves can be seen as a map
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Figure 10. The circles defining the boundary of a Poincaré component.

from an open disc of R2 to Λ.

Proposition 3.2.1. If the plane Span(
.
γ a0

(t0), (∂γa/∂a)(t0)) is of mixed
type, then the envelopes of the spheres of the curves γa form a foliation around
a point of the characteristic circle C(a0, t0) of the envelope of the spheres of the
curve γa0 .

Proof. Let ΣD(a0, t0) be the sphere (
.
γa0

(t0))⊥ ∩S3. The condition guar-
antees that the circles C(a0, t0) and ΣD(a0, t0) ∩ γa(t) are disjoint, and that their
Hausdorff distance is of the order of |a − a0| for a close enough to a0 and t close
enough to t0 that is (|t− t0| ≤ M |a− a0| for some constant M). As the distance
between the two circles C(a, t) and ΣD(a0, t0) ∩ γa(t) is negligible compared to
|a−a0|, this guarantees that locally the envelope of γa does not meet the envelope
of γa0 near C(a0, t0). ¤

Let us now start with a closed curve contained in Λ such that L (
.
γ0) < 0 and

L (
→
kg(γ0)) > 0; the associated envelope is a torus. We can construct an annulus

contained in Λ4 as the union of arcs of time-like geodesics “centred” at the points
of γ0, We then view this annulus as an interval bundle over γ0. Proposition 3.2.1
shows that it is enough to construct disjoint curves in this annulus which spiral to
γ0 on one end, and have an end point satisfying the conditions of Subsection 2.3
and which are local sections of the bundle.

We can directly perform the construction in Λ2
Γ if we want to obtain a foliation

by leaves which are conformally surfaces of revolution (with “axis” Γ).
Let us now state a proposition which gives a negative answer in the particular

case of canal foliation to a question of the second author (see [Bo])

Proposition 3.2.2. To an unbounded curve with one extremity with tangent
light-like direction corresponds a canal planar leaf. This extremity corresponds to
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the only umbilical point of the planar leaf.

Curves corresponding to leaves of a turbulized (that is, obtained by the pro-
cedure of turbulization described in details in, for example, [CC, vol. I, Section
3.3]) Reeb component (see Figures 12 and 13) cannot be seen as “monotone in the
fibre direction” in some interval bundle over the curve γout corresponding to the
boundary of the component. Nevertheless we can observe that these curves will
spiral towards two closed curves γout and γin. The situation is not too difficult to
analyse as the solid “larger” foliated torus is the union of the balls corresponding
to the oriented spheres of γout and the smaller is the union of the balls corre-
sponding to the oriented spheres of −γin (note the sign) (see [H-J–P, p. 26]). The
orientations of the limit spheres of a leaf are reversed as the orientations of the two
limit circles of a Poincaré component. But, as when we wanted to “close” a planar
leaf, there will necessarily be some singular points on the curve γL corresponding
to the leaf L. Let us first prove that the leaf has to cross one of its defining spheres
at a tangency point.

Let us first consider a “baby case”: a piece of foliation of the plane. The
envelope of a one-parameter family of circles of the plane is, as in Figure 11,
formed of two sheets, each one performing a U-turn. We claim that the curve
in Λ3 corresponding to this family of circles, parametrized by the arc-length of
one of the sheets of the envelope, should have at least one singular point. First
notice that, between Γ1 and Γ2, one circle Γosc of the family should cross the sheet
L1, therefore be an osculating circle. This implies that Γosc is also an osculating
circle of the second sheet L2 of the envelope at the point of contact of Γosc and
L2 obtained from the definition of L1 ∪L2 as an envelope. This can be seen using
Proposition 2.1.1. The point σ ∈ Λ3 can be expressed, using the curvature k of
the circle Γ corresponding to σ and the point of contact m1 ∈ L1 by σ = km1 +n.
Differentiating, we get

.
σ =

.
km1 + T1(k− κ1)1, where κ1 is the curvature of L1 at

Figure 11. U-turn and a circle of the family which is osculating.
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Figure 12. The leaf turns, the curve in Λ has a cusp.

Figure 13. The spheres defining a leaf after turbulization
(leaves are surfaces of revolution).

m1 and T1 a unit vector tangent to L1 at m1. At the point σosc ∈ Λ3, m1
osc ∈ L1

corresponding to the osculating circle Γosc we have
.
σosc =

.
km1

osc. If
.
k is not zero

at m1
osc the tangent to the curve γ = {σ} ⊂ Λ3 is lightlike. Using now the second

sheet L2 of the envelope to parametrize γ (and a ′ to note derivatives with respect
to some arc-length on L2) we get σ′osc = k′m2+(k−κ2)T2, where κ2 is the curvature
of L2 at m2 and T2 a unit vector tangent to L2 at m2. Therefore, as the tangent
direction to γ does not depend on the choice of the parametrization if the latter is
proper, we have κ2 = k at the point m2 corresponding to Γosc. As m1

osc and m2

(or rather m2
osc) are different points we conclude that

.
σosc = σ′osc = 0, proving

the parametrized curve γ is singular. Once more we can prove that, generically,
this singularity is a cuspidal singularity of the curve γ.
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Coming back to leaves of foliations of S3, let us suppose that, travelling on
γL (that is for t ∈ (−∞−A]), we start from spheres close to the one defining the
inward torus T2, and suppose these are oriented as boundary of the balls B(t), the
union of which is the solid torus ST2. Because of the turn, the end of γL (that is
t ∈ [+A,+∞)) is formed of spheres B(t) bounding the exterior of the balls Bint,
the union of which is the solid torus ST1. On the way, the complement Ext(t)
of a ball B(t) has to intersect the torus T1 in at least an annulus. The leaf L is
now tangent from the inside to the ball Ext(t). Letting t increase, the leaf L will
eventually be tangent to the ball Ext(t) from the inside and will approach the
balls Bint, the union of which is the solid torus ST1. This implies the existence of
a value t0 of t such that the leaf crosses the defining sphere at a tangency point.
This point m0 therefore has to be an umbilic. Then (see Subsection 2.3) the other
points of the characteristic circle ΓCar(t0) have to be umbilics too (we could have
used Proposition 2.1.1 and a computation similar to that of the baby case to show
that the whole characteristic circle through an umbilical point is made of umbilics).
In fact, we know that the “other” osculating sphere along ΓCar(t0) form a Dupin
cyclide, the Dupin necklace of ΓCar(t0). As this Dupin necklace shares the point
γ(t0) with γ, it has to degenerate in a point, and the geodesic curvature of γ has to
go to ∞ when t goes to t0. We have in particular proved that the lines of principal
curvature of L of second family cross simultaneously the defining sphere Σ(t0).

4. Classification of foliations by canal surfaces.

4.1. Reeb decomposition of S3.
A decomposition of S3 as the union of two solid tori Ta and Tb is obtained

considering S3 as the unit sphere of equation |z1|2 + |z2|2 = 1 in the complex
two-dimension space C2. For two real numbers 0 < a < 1; 0 < b < 1; a2 + b2 = 1
we can define Ta = {(z1, z2) ∈ S3 | |z1| ≤ a} and Tb = {(z1, z2) ∈ S3 | |z2| ≤ b}.
The intersection Ta ∩ Tb is the Dupin cyclide Da,b of equation |z1| = a, |z2| = b.
The cores of the Dupin cyclide are not only defined using the standard metric of
S3 ⊂ C2 as the circles C1 of equations |z1| = 0, |z2| = 1 and C2 of equations
|z2| = 0, |z1| = 1, but can also be defined in a purely conformal way (see [LW]).
The Dupin cyclide Da,b is in two different ways the envelope of a one-parameter
family of spheres; let γ1 and γ2 be the corresponding curves in Λ4. Say that Ta

is the union of the spheres corresponding to the points of γ1. The curve γ1 is
continued in an affine plane P1 ⊂ L5. The intersection of the vectorial plane p1

parallel to P1 with Λ4 corresponds to a pencil of spheres the axis of which is the
circle C2. The circle C1 can be found symmetrically starting with γ2.
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4.2. Foliations of S3.
The leaves are planes, tori and cylinders; the corresponding curves in Λ4 are

closed curves, curves unbounded on both sides, unbounded curves with light-like
tangent direction at the extremity. Recall that a foliation of S3 cannot have leaves
which are diffeomorphic to spheres. Other topological types are impossible because
the leaf is a canal surface, and therefore is a circle bundle with either a point or a
spherical cap attached (see Subsection 2.4).

Theorem 4.2.1. Any foliation F of S3 by canal surfaces is either a Reeb
foliation with toral leaf a Dupin cyclide, or is obtained from such a Reeb foliation
inserting a zone Z ' T 2 × [0, 1], a union of toral and cylindrical leaves.

Proof. The Novikov theorem (see [No] and [CC]) implies that at least
one leaf of F is a toral leaf. Let us first suppose that on both sides we get a
vanishing circle for the foliation. Then on both sides we get a Reeb component,
the characteristic circles on the planar leaves bound discs containing the umbilical
points. Characteristic circles through sequences of points approaching the bound-
ary in a Reeb component then converge to a family of meridian (round) circles on
the boundary. That way we see that the torus leaf is in two different ways a canal
surface and is therefore a Dupin cyclide. Let us now suppose that, at least on one
side, the torus leaf is a limit of leaves which are tori or cylinders. It is therefore
contained in a connected zone, diffeomorphic to T 2× I, which is a union of leaves
which are tori or cylinders. Consider now a zone Zmax containing the initial torus
leaf, and maximal for the above properties. Its boundary is the union of two tori,
which out of Zmax are limits of planar leaves; therefore the two tori are boundaries
of two Reeb components R1 and R2. As the union R1 ∪ Zmax ∪R2 is S3, the two
Reeb component are two unknotted solid tori which are linked in S3. ¤

In order to understand the structure of the foliation of Zmax we need the
following

Theorem 4.2.2. At least one leaf of a canal foliation is a Dupin cyclide.

Proof. The homotopy class of the characteristic circles of a leaf contained
in the zone Zmax have to belong to the homotopy class of the meridian of one
of the Reeb components. As these classes are the two “canonical” generators of
π1(Zmax), Remark (2.4) implies that at least one toral leaf contained in Zmax has
two families of characteristic circles and therefore is a Dupin cyclide. ¤

To finish the classification of foliations of S3 by canal surfaces just notice
that the structure of the maximal zone Zmax is very similar to the structure of
foliation of the 2-torus by curves (see [Kn] and [Go]). It contains a finite number
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Figure 14. The two types of essential zones.

Figure 15. The two of ways of spiralling.

of essential zones Zi ' T 2 × [0, 1] containing cylindrical leaves which give to the
two limit tori opposite orientations (see Figure 14). The class of the characteristic
circles of the cylindrical leaves of Zi can be the meridian class of any of the Reeb
components. We can now summarize all the information on the foliation in the
zone Zmax in the following

Theorem 4.2.3. The zone Zmax contains a maximal product lamination
T 2×K, K a compact subset of the interval ; the toral leaves are nested, that is all
the toral leaves are unknotted, and each toral leaf is contained in one solid torus
bounded by the other toral leaves. The complement of this lamination is a union
of :

- a finite number of essential zones (see Figure 14) where cylindrical leaves accu-
mulate on the two boundary tori and induce there different orientations.

- a finite or countable number of spiralling components (see Figure 15) where cylin-
drical leaves accumulate on the two boundary tori and induce there the same



Canal foliations of S3 681

orientation.

Remark. In [Wa], the Hausdorffized leaf space of a foliation of a Rieman-
nian manifolds has been defined as a metric space obtained from a suitable pseu-
dodistance function on the space of leaves by the indentification of the leaves which
lie in the pseudodistance zero. It is shown there that if the foliation is of codi-
mension one, then this space is isometric to a metric graph. In this setting, canal
foliations of S3 are represented by a very simple graph: a segment with a finite or
countable number of points distinguished on it.
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