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Abstract. In this paper, we proved the generalized resolvent estimate
and the maximal Lp-Lg regularity of the Stokes equation with first order
boundary condition in the half-space, which arises in the mathematical study
of the motion of a viscous incompressible one phase fluid flow with free surface.
The core of our approach is to prove the #Z boundedness of solution operators
defined in a sector Xe 4, = {X € C\ {0} | |arg\| < m — €, |A| > Y0} with
0 < e<7/2and v > 0. This Z boundedness implies the resolvent estimate
of the Stokes operator and the combination of this % boundedness with the
operator valued Fourier multiplier theorem of L. Weis implies the maximal
Lp-Lg regularity of the non-stationary Stokes. For a densely defined closed
operator A, we know that what A has maximal L, regularity implies that the
resolvent estimate of A in A € X¢ ,,, but the opposite direction is not true
in general (cf. Kalton and Lancien [19]). However, in this paper using the %
boundedness of the operator family in the sector X, »,, we derive a systematic
way to prove the resolvent estimate and the maximal L, regularity at the same
time.

1. Introduction.

This paper is concerned with the generalized resolvent estimate and the max-
imal L,-L, regularity of the Stokes problem with first order boundary condition in
the half-space, which arises in the study of the free boundary problem of viscous
incompressible one phase fluid flow. This problem is mathematically to find a time
dependent domain €, ¢ being time variable, in the n-dimensional Euclidean space
R"™, an n-vector of functions v(x,t) = (vi(x,t),...,v,(x,t)) and a scalar function
p(x, t) satisfying the following Navier-Stokes equations:
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v+ (v-V)v=DivS(v,p)=f, dive=0 inQ, t>0,
S, png —coHny =0, V,=v-n; only ¢t>0, (1.1)

V]t=0 = o, in o,

where V,, is the velocity of the evolution of I'; in a normal direction, n; =
(ng1,...,Myy) is the unit outer normal to I'y, S(v,p) = —pl + puD(v) is the
Stokes stress tensor, I = (d;;) is the n x n identity matrix, D(v) is the Cauchy
stress tensor with elements Dy (v) = Djv, + Dyv; (D; = 0/0x;),

i*" component of Div S(v, p)

= Z D](/J,(DZUJ + Dj’l)i) — (S”p) = /J(A’(h + Dz div ’U) — sz,
j=1

i*" component of S(v, p)n

n n
=Y {uDiv; + Djvi) = ip3ne; = > p(Divy + Djvi)ne j — png s,
j=1 j=1

dive = 377 Djv;, (v-V)v = 377 v;Dju, H is the doubled mean curvature
of I'y, p is a positive constant describing viscosity, and ¢, is a positive constant
describing the coefficient of surface tension.

The following two problems have been studied by many mathematicians: (1)
the motion of an isolated liquid mass and (2) the motion of a viscous incompressible
fluid contained in an ocean of infinite extent. In case (1), the initial domain Qg
is bounded. A local in time unique existence theorem was proved by Solonnikov
[39], [42], [44], [45] in the Lo Sobolev-Slobodetskii space, by Schweizer [29] in
the semigroup setting, by Moglilevskii and Solonnikov [22], [45] in the Holder
spaces when ¢, > 0; and by Solonnikov [41] and Mucha and Zajaczkowski [23]
in the L, Sobolev-Slobodetskii space and by Shibata and Shimizu [33], [34] in
the L, in time and L, in space setting when ¢, = 0. A global in time unique
existence theorem for small initial velocity was proved by Solonnikov [41] in the
L,, Sobolev-Slobodetskii space and by Shibata and Shimizu [33], [34] in the L,
in time and L, in space setting when ¢, = 0; and by Solonnikov [40] in the
L5 Sobolev-Slobodetskii space and by Padula and Solonnikov [25] in the Holder
spaces under the additional assumption that the initial domain g is sufficiently
close to a ball when ¢, > 0. In case (2), the initial domain  is a perturbed
layer like: Qo = {z € R3 | —b < 23 < n(z'), 2’ = (x1,72,23) € R*}. A local
in time unique existence theorem was proved by Beale [7], Allain [3] and Tani
[61] in the Ly Sobolev-Slobodetskii space when ¢, > 0 and by Abels [1] in the
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L, Sobolev-Slobodetskii space when ¢, = 0. A global in time unique existence
theorem for small initial velocity was proved in the Lo Sobolev-Slobodetskii space
by Beale [7] and Tani and Tanaka [52] when ¢, > 0 and by Sylvester [47] when
¢; = 0. The decay rate was studied by Beale and Nishida [9], Sylvestre [48] and
Hataya [17].

We remark that in the two phase fluid flow case, the free boundary problem
also has been studied by Abels [2], Denisova and Solonnikov [12], [13], [14], [15],
Giga and Takahashi [18], Takahashi [49], Nouri and Poupaud [24], Priif and Si-
monett [26], [27], 28], Shibata and Shimizu [32], Shimizu [36], [37], [38], Tanaka
[60] and references therein.

Our purpose is to prove a local in time unique existence theorem of (1.1) in
the L, in time and L, in space setting and in the case where the initial domain {2y
satisfies more general assumptions including the above physical situation. In fact,
the L, in time and L, in space approach relaxes the regularity assumption and
compatibility condition on initial data and the general domain setting allows us
to treat several different physical situations at the same time. The core of our
approach is to prove the maximal L,-L, regularity of the Stokes problems with
first order boundary condition in a general domain. Since to achieve our approach
is a rather long journey, we decide to divide it into three parts. In this paper, we
prove the maximal L,-L, regularity of Stokes equations with first order boundary
condition in the half-space. And in the forthcoming papers, we shall discuss the
same problem in a general domain and the local in time unique existence theorem
of free boundary problems of the Navier-Stokes equations in a general domain in
the L, in time and L, in space setting.

Another issue of this paper is to drive a systematic way to prove the resolvent
estimate and the maximal L, regularity at the same time in the model problem
case. On the one hand, we know that the maximal regularity implies the resolvent
estimate, but that the opposite direction is not true in general (cf. Kalton and
Lancien [19]), but on the other hand, using the # boundedness of the operator
family in the sector X »,, we can prove the resolvent estimate and the maximal
L, regularity at the same time at least in the model problem case.

Now, we formulate our problem in this paper. Let R} and Rj be a half-space
and its boundary and let Q4 and Qg be their cylindrical domains. Namely,

R} ={z=(x1,...,2,) € R" | 2, >0}, R{ ={x=(21,...,2,) € R" | 2, =0},
Qi ={(z,t) |z R}, t >0} Qo = {(z,t) |z € R}, t > 0}.

Let n = (0,...,0,—1) be the unit outer normal to Rfy. We consider the following
four problems:
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Au—DivS(u,0) = f, divu=g in R,
S(u,0)n=h on Ry; (1.2)

U,~DivS(U,0)=F, divU =G inQ.,

S(U,0)n=H on Qy,
Ul = 0: (1.3)

Au —DivS(u,0) = f, divu=g in R,

A +u, =d on R,
S(u,0)n+ (cg — c,A')Yym =h  on R{; (1.4)

U —DivS(U,0)=F, divU=G inQy,

Y;+U,=D in Qo,

S(U,0)n+ (cg —ceA)Yn =H on Qo,
Uli=o = 0. (1.5)
Here, ¢4 and ¢, are positive constants; U = (Uy,...,Uyp), u = (u1,...,uy), ©, 0,
Y and 7 are unknown functions while F' = (Fy,...,F,), H = (H1,...,H,), f =
(fi,---s fn), h=(h1,...,hy), G, g, D and d are given functions; A'n = Z;L;ll D?n,
and (1.2) and (1.4) are the corresponding generalized resolvent problems to the

evolution equations (1.3) and (1.5), respectively.

To state our main results exactly, we introduce several symbols. Given €
(0 <e<m/2)and v > 0, we set

Yeno ={A € C\{0} [ |arg A[ <™ — €, |A| = 70},

where C stands for the set of all complex numbers. Given domain G, Ly(G) and

W (G) denote the usual Lebesgue space and Sobolev space while || - ||z, (g) and
- Hqu(G) denote their norms, respectively. For the differentiations of scalar  and
n-vector u = (uq,...,u,), we use the following symbol:

VO = (D10,...,D,0), V20 = (D;D;0 |i,j=1,...,n),

Vu=(Dyu; |i,j=1,...,n), Vzu:(DiDjuk|i,j,k:1,...,n).

Given Banach space X with norm || - || x, X™ denotes the n-product space of X,

that is X™ = {f = (f1,...,fn) | fi € X}. The norm of X" is also denoted by
| - |Ix for simplicity and
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Ifllx = lIfillx for f=(fr,.... fn) € X"

j=1
Set
W(G) = {0 € Lg1oc(G) | VO € Ly(G)"}, W)(G) = {0 € WHG) | 0lac = 0},

where OG denotes the boundary of G. Let Wq’ (@) denote the dual space of
qu,’O(G), where 1/g+1/¢' = 1. For § € Wq_l(G) N Ly(G), we have

0||Wq1(G)=sup{‘/Gt9gpdm

For 1 < p < oo, Lp(R, X) and W, (R, X) denote the usual Lebesgue space and
Sobolev space of X-valued functions defined on the whole line R, and || - ||z, (r,x)
and || - ||W};m( R,x) denote their norms, respectively. Set

| (NS W;/7Q(G)7 ||V<,0||Lq/(G) = 1}

Lporo (B, X)={f:R— X |e ™ f(t) € L,(R,X), f(t)=0 for t <0},
e (B X) = {f € Lpoqyo (R, X) | e D] f(t) € Ly(R,X), j=1,...,m},
LP,O(R’X) = Lp,O,O(Ra X)v 1?,10(R7X) = ITO,O(Ra X)

Let £ and f;l denote the Laplace transform and its inverse, that is

200 = [ eMrwa 2060 -0 [ Mayar

— 00 - g —0o0
where A = v 4 i7. Given s € R and X-valued function f(t), we set
ASF(8) = 27 HIAPZIAMN@).
We introduce the Bessel potential space of X valued functions of order s as follows:

Hy o (R X)={f:R— X |e A f(t) € Ly(R, X)
for any v > 70, f(t) =0 for t <0},
Hyo(R, X) = Hj (R, X).

The following four theorems are our main results of the paper.
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THEOREM 1.1. Let0<e<m/2 and 1< q < oo. Then, for any A € X, ,
FeL(RY), geli; (R NWHRY, heW!(R),

problem (1.2) admits a unique solution (u,0) € W2(R)™ x Wt} (RY) that satisfies
the estimate:

(N, A2V, V20, VO)| 1, ey

< C{ICf N 29, Vg, Y20, V) Ly ryy + Mgl (e )

for some constant C' = Cy, 4., depending only on n, q, € and p.

THEOREM 1.2. Let 1< p,q < oo and v9 > 0. Then, for any

F€Lyon (R Ly(RY)"), G €Ly (RWHRE))NWoo., (RW, 1 (RY)),

,0,70
H € Ly (RWHRY)) NHYS. (R, Ly(RL)"),

P,0,7%

problem (1.3) admits a unique solution (U,©) such that
U € (Lpoqo (R WF(RL)") N Wy g (R Ly(RE)")): © € Ly, (R W, (RY))
that satisfy the estimate:

He_’ﬁ(Un ’YU) A}//ZVU7 VZU’ VG)) HLP(R’L‘Z (Ri))

<C{|le™ (P A2G VG NPHVE)| L )

+ ||677t(Gta’YG)HL,,(R,VT/Q’I(Ri))}

for any v > o with some constant C = C,, p 4., depending only on n, p, q and .

THEOREM 1.3. Let 0 < € < 7/2 and 1 < ¢ < oo. Then, there exists a
constant yo > 1 depending on € such that for any X € X, ,,,

fe LR, geW, N(RL)NW (RY), heW,(RL), deW;(RL),

problem (1.4) admits a unique solution (u,0,n) € WZ(R})™ x qu (R}) xW2(RY)
that satisfies the estimate:
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H(|)\|u, |)\|1/2Vu,v2u,ve, ‘)\|1/29~7 Vé)HLq(Ri) + |>\|||77||W(12(R1) + ||77HWQ3(R1)
< {04, INM20, T 0. V20, B, g+ Wl )+ Iz

A2 nllwy gy < CLICF A9, Vg, 2R, VR[],

+ Mgl gy + Ndllwzry) + |/\|1/2||d||wa(Rg;)},

for some constant C' = C, 4.c,, depending only on n, q, € and p.

THEOREM 1.4. Let1l < p,q < co. Then, there exists a constant vy > 1 such
that for any

F € Lpon (R, Lg(R})™), G € Lponq (R W, (RY)NW,

,0,7%

(R, W, (RY)),

H € Lyo (RWHRY)NHY (R, Ly(RY)™), D€ Lyon, (R W2RL)),

P,0,7

problem (1.5) admits a unique solution (U,0,Y) such that

U € Lo (R WG(RE)") N W0, (R Lo(RE)"), O € Lyos (R W, (RL)),
Y € Lpon (Rv WS(Ri)) nw,

P,0,7

(RWE(RY)
that satisfy the estimate:

le™" U AU, A 2VU V2O N O ey

e Yo V), rowz ey + e Y |2, (rwsre))

< C{[le™" (R AY?G, VG NPH VH)|| gy

+ e GO, (mav (ry ) + e Dl mwzrn) }

for any v > o with some constant C = C,, p 4., depending only on n, p, ¢ and p.
If we assume that D € H;ﬁ% (R,W,(RY)) in addition, then Y €
HYC. (R,W(RL)) and

p,0,7%
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He_’wA’?;mYHLp(R,qu(Ri))

< C{|le(F,AY?G, VG, A2 H, VH)HLP (RLo(RD))

+ Hef'Yt(Gt?7G)||LP(R,W;1(R1)) + Hei’ytDHLp(R,Wg(Ri)

+[le” " AY2DI L, (rows rn ) -

REMARK 1.5. The case of non-zero initial values in (1.3) and (1.5) can be
treated by the semigroup, whose generation are guaranteed by Theorem 1.1 and
Theorem 1.3 with g = 0 and h = 0, respectively.

REMARK 1.6. We use the Fourier multiplier theorem with respect to time
variable, so that it is natural to use Bessel potential spaces with respect to time
variable. Especially, A}/ 2 plays an essential role to treat the original nonlinear
problem.

Theorem 1.1 and Theorem 1.3 were proved by Shibata and Shimizu [31] and
[35], respectively. Theorem 1.2 was essentially proved by Shibata and Shimizu
[34]. Theorem 1.4 is only new. But it is the purpose of this paper that we
investigate a systematic approach by means of the Z boundedness of the operator
family in the sector X, , to obtain the both of the generalized resolvent estimate
and the maximal L,-L, regularity at the same time, and therefore we reprove the
results obtained in [31], [35] and [34].

The paper is organized as follows. In Section 2, we introduce Z boundedness,
operator valued Fourier multiplier theorem and several results used in later sec-
tions. In Section 3, we prove the generalized resolvent estimate and the maximal
L,-L, regularity in the whole space. In Section 4, we derive solution formulas
to problems (1.2) and (1.3). In Section 5, we prepare several technical lemmas
used to prove our main results. In Section 6, applying technical lemmas to the
solution formulas, we prove Theorems 1.1 and 1.2 at the same time. In Section 7,
we derive solution formulas of (1.4) and (1.5), and applying technical lemmas to
these formulas, we prove Theorems 1.3 and 1.4 at the same time.

2. Z-boundedness and operator valued Fourier multiplier theo-
rem.

Let X and Y be two Banach spaces, and || - ||x and || - ||y denote their norms,
respectively. Let .Z(X,Y) denote the set of all bounded linear operators from X
into Y and Z(X) = Z(X, X).

DEFINITION 2.1. A family of operators . C Z(X,Y) is called Z-bounded,
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if there exist constants C' > 0 and p € [1,00) such that for each m € N, N
being the set of all natural numbers, T; € 7, z; € X (j =1,...,N) and for all
sequences {r;(u) };Vzl of independent, symmetric, {—1, 1}-valued random variables
on [0, 1], there holds the inequality:

(2.1)

E 7i(u)Tj(z5)

The smallest such C is called Z-bound of .77, which is denoted by Z(.7).

Let 2(R,X) and . (R, X) be the set of all X valued C*° functions having
compact supports and the Schwartz space of rapidly decreasing X valued func-
tions, while 2'(R,X) = Z(2(R),X) and Y'(R,X) = Z(S(R),X), respec-
tively. Here, 2(R) = 2(R,C) and .¥(R) = (R, C).

DEFINITION 2.2. A Banach space X is said to be a UMD Banach space,
if the Hilbert transform is bounded on L,(R,X) for some (and then all) p with
1 < p < oo. Here, the Hilbert transform H of a function f € (R, X) is defined
by

Hf =21t 1(s)

T e—0+ |[t—s|>e€ t—s

ds (t € R).

Given M € Lj(R,Z(X,Y)), let us define the operator Ty :
FZ719(R,X) — ' (R,Y) by the formula:

o =7 ' IMZF[¢]], (F[¢] € 2(R X)) (2.2)

Here and hereafter, .# and .# ! denote the Fourier transform and its inversion
formula, that is

Y

O=FO= [ e fa)da

F @) = F W) = e [ o€ de

THEOREM 2.3 (Weis [55]). Let X and Y be two UMD Banach spaces and
1 <p<oo. Let M be a function in C*(R\ {0}, Z(X,Y)) such that

Z({M(p) | p € R\{0}}) = ko <00, Z({pM'(p) | p € R\{0}) = ki1 < oo
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Then, the operator Ty defined in (2.2) is extended to a bounded linear operator
from Ly(R, X) into L,(R,Y). Moreover, denoting this extension by Tar, we have

1Tyl 2, (rx),L,(RY)) < C(ko + K1)

for some positive constant C' depending on p, X and Y.

THEOREM 2.4 (Bourgain [10]). Let X be a UMD Banach space and 1 <
p < 0o. Let m(p) be a scalar function in C*(R\ {0}) such that

Im(p)l < M, |pm/(p)l < M (r € R\ {0})

for some positive constant M. Let T,, be a Fourier multiplier defined by the for-
mula:

Tnf =7 [mZ(f]] (Z[f] € 2(R X)).

Then, T,, is extended to a bounded linear operator on L,(R,X). Moreover, de-
noting this extension by T,,, we have

1Tl 2L, (rx)) < CM

for some positive constant C' depending on p and X.

REMARK 2.5. Theorem 2.4 was extended to the several variables case by
Zimmermann [56].

In order to prove the Z-boundedness, we use the following two propositions
whose proofs were given in Denk-Hieber-Prif§ [11].

PROPOSITION 2.6. Let 1 < ¢ < oo and A be an index set. Let {kx(z) |\ €
A} be a family of functions in Li10c(R™) and let us define the operator Ky of a
function f by the formula:

Kaf@) = [ kala-n)f)dy (e ),
Assume that there exists a constant M independent of A € A such that

A [ Larmy < M fllLomry  (f € La(RY), A € A), (2.3)
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> 00ka(x)| < Ma|~"FY (e R\ {0}, A€ A). (2.4)

la|=1

Then, the set {Kx | A € A} is an Z-bounded family in £ (Lq(R™)) and Z({K) |
A€ A}) <Gy, oM for some constant C,, 4 depending on n and q.

PROPOSITION 2.7.  Let G be a domain in R™, A an index set and 1 < q < oo.
Let {kx(z,y) | A € A} be a family of functions in L1 10c(G x G) and let us define
the operator Ky of a function f by the formula:

1.f@) = [ Henfwidy (@),
Assume that there exists a function ko(z,y) € L110c(G X G) such that
[kx(z, y)| < ko(z,y)  ((z,y) € GX G, A€ A). (2.5)

Let us define the operator Ko of a function f by the formula:

Tof(z) = /G ke i) dy (z€G. AeA).

If Ty € ZL(L¢(G)), then the set {T | A € A} is an Z-bounded family in £ (Ly(G))
and Z({Tx | X € A}) < CyclTollz (L, (c)) for some positive constant Cy depending
on q.

Finally, we give a theorem used in proving the resolvent estimate and the
maximal L,-L, regularity.

THEOREM 2.8. Let1l < p, g<o00,0<e<7/2andy > 0. Let G be a
domain in R™ and ®) be a C* function of T € R\ {0} when A\ = y+it € X, , with
its value in L (Ly(G)). Assume that the sets {®x | A € Ec 4} and {7(d/dT)®) |
X =7+iT € X, } are Z-bounded families in £ (Lq(G)). In addition, we assume
that there exists a constant M such that

R({Pr | A€ e o)) < M, %({qub\ |[A=~v+ire EEWD}) <M.
T

Then, we have

[®xfllz,e) < Mfllye (f € Le(G), A€ Xeq)
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for some constant C; depending on q.
Moreover, if we define the operator ¥ of a function f € L,(R, Ly(G)) by the
formula:

Uf(e,t) = 2 LN, t) = " F BT AN (A= +ir)

where

Fle " f](r) = / e 0, dt

— 00

then there exists a constant Cp 4 depending on p and g such that
le™ "W fllL,(rL,c) < CpaMlle™ " fll, (r,L.(c)

for any v > .

PROOF. Since the set {®y | A € X} is an Z-bounded family in
Z(L¢(@G)), it is easy to see from the definition of the % boundedness that the
set {®y | A € X} is a bounded family in Z(L,(G)). Moreover, we have

1@xfllz, ) S Z{Px A € Zero DIl fIz ) < M SfllL,c)-
On the other hand, by the assumption we have

#((@sr I re RAON) <01, #({rien reRVO}] ) <M

for any v > 7o, and therefore applying Theorem 2.3 with X = L,(G) to the
formula:

TS (,1) = T @i Pl FID(D),

we have

Heifyt\lijLp(R,Lq(G)) < CP,(ZM”ei’thHLp(R7Lq(G))' -
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3. Problems in the whole space.
In this section we consider the generalized resolvent problem and non-
stationary Stokes equations in R™ as follows:
Au —Div S(u,0) = f, divu=g in R", (3.1)
U, —DivS(U,0)=F, divU =G in R" x (0,00), (3.2)

subject to the initial condition: U(z,0) = 0. We prove the following theorem.

THEOREM 3.1.  Let1<p,qg<o0,0<e<m/2and vy > 0.

(1) For any A € ¢, f € Ly(R™)™ and g € Wq_l(R") NW,(R"), problem
(3.1) admits a unique solution (u,0) € WZ(R™)™ N qu(R") that satisfies the
following estimate:

[(A, A2V, V20, VO

S Cn,q,&u{”(fa |A|1/297V9)H%(R”) =+ |>\|||g||W;1(R")}

(2) For any F € Ly o,(R, Ly(R")) and G € Ly, (R, W, (R") N W,
(R, Wq_l(R")), problem (3.2) admits a unique solution

10,7

(U,0) € (Lpoqo(RWHR™M™) N Wy g (R, Lg(R™)™) X Lo, (R, W, (R"))

;0,7

that satisfies the estimate:

||6_’7t(Ut7 IVUy A’l}/2VU7 VQU’ VG) HLP(R,LQ(R"))

< Chpgud|le " (F,AY2G, VG)HLP(Rqu(R”)) + e GG, (vt (rey )

for any v > vo.

First, we reduce the problems (3.1) and (3.2) to the case where ¢ = 0 and
G = 0. To do this, we use the following lemma.

LEMMA 3.2. Letl <p,q< 0.
(1) For any g € W (R™) N W, (R"), there exists a v € W2(R™)™ such that
dive = g in R™ and there hold the estimates:
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[vll,rm) < Crgllglly1(rn)
||VU||LQ(R") < Cn,q”g”Lq(R")a (3.3)

1920012, ) < oIVl

(2) For any G € W, (R, Wq_l(R”)) N Lyo(R, W} (R")), there exists a V €
Lpo(R,W2(R")") such that divV = G in R" X R and

e (Ve V) Ly (R, Lo(B) < Crpaalle™ " (G YO 1 vyt ()

—ytA1/2 —ytA1/2
H6 ! A’y/ vVHL,,(R,Lq(la',n)) = Cnvpvqne ! A,y/ GHLP(R,LQ(R"))’ (3.4)
le™" VWVl (rL, () < Cnpalle™ VL, m.L, R0
for any v > 0.
PROOF.
(1) Defining v;(z) by the formula:
~1[€9(8)
,Uj(a:) = yg 1|: |j§|2 (l‘),
and setting v = (v1,...,v,), obviously we have divv = g in R™. Moreover, by the

Fourier multiplier theorem of S. G. Mihlin, we have

IVUllL,r) < CrglgllL,mmy,  1V?0lL,m) < CrgllVllL,rm):-

In order to estimate [|v||L, (rn), we take any ¢ € C5°(R") and we consider a vector
of function ®(z) = (®1(x),...,P,(x)) defined by the formula:

o,(0) = - 97 L]

Setting (17,()r» = [g.n(x)¢(x)dz, by the definition we have (vj,p)rn =
(9,®;)mn. Since

IV®;llL, (rr) < Crgllelliyrm)

as follows from the Fourier multiplier theorem of S. G. Mihlin, we have
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(W5, @) re | < gl (m) IV 5L, (r) < Crgr gl (mmy €1, (7

which implies that [[v||L, (rn) < Ch.gr HgHW 1(gny- Therefore, we have proved (3.3).
(2) Regarding t as a parameter, deﬁmng Vj(z,t) by the formula:

Vi t) = F¢ [@Kfﬁ 2o

and setting V = (V4,...,V,,), obviously we have divV = G in R" for all ¢t > 0.
Moreover, Vj(z,t) = 0 for t < 0 because G(z,t) = 0 for ¢ < 0 by the assumption.
Since

(DeVj(@,t),7Vj(x,t), AY2Vj(a, 1))

i€;(GL(€,1),1G(E, 1), ZIN*GI(€, 1))
€2

=7 (),

applying the same argument as in the proof of (1), we have (3.4). This completes
the proof of the lemma. O

In view of Lemma 3.2, we set v = v+w and U =V + W in (3.1) and (3.2),
respectively, and then setting f = f — (A\v — uDivD(v)) and F = F — (V; —
uwDiv D(V)), we see that (3.1) and (3.2) are converted to the following equations:

divw=0 in R",
, diviW =0 in R" x (0,00),

Aw — Div S(w,0) =

f
W, — DivS(W,0) = F

subject to the initial condition: W (x,0) = 0, respectively. By Lemma 3.2 we have
£, rey < IfllLg(rm) + Cn,q{\MHQHV‘(/;l(Rn) + el VallL,mm }s (3.7)
e Fllz, (r.Ly )

<Ne " Fllr,(r L, (r)

+ Cn,q{ ||e_’Yth||Lp(R,Wq_1(R"’)) + /14||6_’YtVG||Lp(R7Lq(Rn)) } (38)

Since Div D(u) = Awu when divu = 0, in what follows instead of (3.5) and (3.6)
we consider the equations:
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A—pAu+VO=f divu=0 in R", (3.9)
—pAU+VO =F, divU=0 in R" x (0,0), (3.10)

subject to the initial condition: U(x,0) = 0, respectively. By using the Fourier
transform, we have the following solution formulas:

_ s 1[POFO], Py (G
ety = 55 [POLTTEN 0y~ -2 {zf Fe0]

where P(£) is an n x n matrix whose (j,k) component Pj;(§) is given by the
formula: Pj(€) = 65 — &;&k|€| 72 and 4, denote the Kronecker delta symbols
defined by the formula: §;; = 1 when j = k and §;, = 0 when j # k. Note that

t%ﬂ@nsz/?fWwa@QWﬁ

/ / e N THED) = P (g ) ddt

By a technical reason, instead of v and U we consider

_ [P OFO] Ly g = gt [ FO],
ue(z) = F¢ [ Nt e ]( ), be(x) = —F¢ [ 1€]2 }()’

[e<lF Pe) 2 Z[F)(€, A
Ul(wt) = 27 7¢ [ @ru‘gi € )}(az,t),

ie~ Ve Fg,0))
e

O (x,t) = fﬁgl {
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for € > 0. We see that

e — pAue + Vo, = fo, divue =0 in R",
(U)t — uAU. + VO, =F,, divU. =0 in R" x (0,00),

where f.(z) = ﬁgl[e—f‘f‘zf(f)](m) and F(z,t) = 95—1[6—6|§|2F(§, t)](x). In order
to estimate Au. and (Ue):, we consider a family of kernel functions k. »(z) and
operators K » defined by the formulas:

)\66|§|2P(§):| .

-1
Fealr) = 7 [ PRE

Xe=l" P(¢) f(€)
A+ pléP?

Kelfle) = [ boate =)t dy = 7| (@)

We have

)\ue(l‘> = Ke,/\[f](m)v
Uoe(w,t) = LT EALFIN(E) = " F [Keyqir [F [ FIT] (@)
Now, we prove that for any 0 < ¢ < 7/2 sets {K.x | A € 3,0} and
{r(d/dT)Kc x| A € s} are Z bounded families in £ (L,(R™)), whose # bounds

do not exceed some constant C' which depends only on o, i and n. We start with
the following well-known fact.

LEMMA 3.3. Let 0 < 0 < 7w/2 and N\ € X,0. Then, |X+ pl¢?| >
sin(o/2)(|A] + pl¢]?).
LEMMA 34. Let0 <o <7w/2 and s € R. Set No = N U{0}. Then, for

any A € Lo and multi-indexr o = (a1, ..., a,) € N§, we have

[DEO+ pl€l)*] < Con o A2+ [)Z7.
PROOF. Setting f(t) = t*, by the Bell formula and Lemma 3.3 we have

| Dg (A + ulel)”]
ol

SCa |FON+pEP)] D DI+ )] |DEN A+ el
/=1

ag+top=a
lag|>1
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||

< Casguo (A2 +[€D2670 > el

=1 k+2(0—k)=|a|

< Casguo (A2 + )21
where we have used the facts that 2¢ — k = |a| and |¢]F < (]A[Y/2 + [€))F =
(A2 + fe2e- el 0

Now, we check the conditions stated in Proposition 2.6. By the Parseval
formula, we have

Ae—<l€P preYF(€) |2 1/2
IK by = ( /R ‘ e AHL|(§>2f(£> dé)

Noting that

a A ipT|€[?

T - )
Or A+ ulgl (A +plgl?)?

we have also

0 ; 2 7e|§|2P p 2 1/2
2 Ko alf] - ( / inrléf*e < P(E) (6 d§>
or La(R™) n (A + plgl?)
< CollfllLo(mrm) (A€ S00), (3.12)
where we have used the fact that
A4 ulel®?] = 77N+ ulg®? — 7

To continue the estimate, we use the following lemma.

LEMMA 3.5.  For any € > 0 and multi-index o € N, there exists a constant
C, independent of € and £ such that

’D?e—£|f|2’ < Cae_(5/2)|5|2|§\_|a‘.
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PROOF. Setting f(t) = e~ by the Bell formula we have

lex|

IDge™ I < SO Y [Detel - [ Dge el

=1 arttag=a
s [>1

]

< Co S el g rlal < e (IR g ~lel,
=1

where we have used the facts that |Dg[¢[?| < 2|¢[>~1°l and e=<lEl” (el¢2) <

Cge_(€/2)|5|2 for some constant C, independent of ¢ and £. This completes the
proof of the lemma. O

By Lemma 3.5 and the Leibniz formula, we have

)\6,€|§|2P(§) )
af e < —lal
‘Df (Z@ A+ pll? )’C“’“""g' ’

a g (. )\6_6|5|2P<£) 1—|af
pe{r (2 ) | < il

for j=1,...,nand (A, &) € Xy x (R™\ {0}), which combined with Lemma 3.6
below due to Shibata and Shimizu [30, Theorem 2.3] implies that

IDikA @) < ool Do 5 ha(@) )| < Coplel 40 (319
T

for any A € ¥, and z € R™ \ {0}.

LeEMMA 3.6. Let N and n be a non-negative integer and positive integer,
respectively. Let 0 < o <1 and set s = N + o0 —n. Let {(o) be a number defined
in such a way that £(c) =0 when 0 < o <1 and (c) =1 when o = 1. Let f(&)
be a function in CN+TUOFL( R\ {0}) which satisfies the following two conditions:

(1) Dgf € Li(R"™) for any multi-index v € N§ with |y] < N.
(2) For any multi-index v € N§ with |y| < N + 1+ (o) there exists a number
C, such that

|DLF(E)] < Colél*~M (6 € R\ {0}).
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Then, there exists a constant C,, s depending essentially only on n and o such that
F =z <C’na( max C)x_("+s) r e R™"\ {0}).
FE @] < O _max, O )al ™ (@€ B\ {0)

In view of (3.12), (3.11) and (3.13) we can apply Proposition 2.6 and therefore,
there exists a constant M, 4, > 0 depending essentially only on n, ¢, o and p
such that

%({Ke,)\ ‘ A€ ZO’,O}) < Mn,qﬁ,uv

%({T;TKE,A X e 2070}> < My gop (3.14)

which combined with Theorem 2.8 implies that
[AellLy(R) < Cngoull fllLy(r7)s (3.15)
le™" Ue)ellz, (r.Lo(rm) < Crpaplle” " Fllo, L, mm) (3.16)

for any v > 0.
Now, we discuss the limit process. We have

(676\5\2 _ efe’lflz)p(g)
A+ plé]?

)] @

_ g1
ue(z) —ue (z) = F; [
Since

2 ’ 2 2 1 /] 1—0)¢’ 2
el _ =€l Z (e _ )| / o~ OO 4o
0
by Lemma 3.5 and the Leibniz formula we have
2 ’ 2 . ’ 2
|D§t(efd£\ — e €l )| < Cyle — €]|g|# 1ol g (min(ee)/2)Iel™

which implies that

—elél® _ o—¢IéI?
a 4 (6 € )P(g) —|a| ,—(min(e,e’)/2)|€|?
e o (5 < Caoile = €lg]olemminte /e

for £ = 0,1. Setting
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e=elél” — e=<Is”) p(g)
A+ plgf?

hewa(z) = Z! [( (@),

Keea[fl(z) = - keen(z —y)f(y) dy

for A € ¥, 0, by the same argument as in the proof of (3.14) we have
B Kern | N E Si0}) < Mgrle — .

%({T;KE)EI))\ | A€ 2070}) < Mn,q,o’,u|€ — €/|. (317)
T

Since
Ue — e = Ke o \[f], Ue— U = " F K o \[Fe " F)(1)]],
combining (3.14) and Theorem 2.8 implies that
e = uerllL,(rry < Cngoule = € fll,mm,
le™ (Ve = ULy (RoLy(R?)) < Crpaguile = €€ Fllz,(rL,(rm))-
Therefore, {uc¢}eso and {Ue(z,t)}eso are Cauchy sequences in L,(R"™) and

L,(R,L,(R")), respectively, which implies that there exist v € L,(R"™) and
Ue L,(R,Ly(R™)) such that

i - n = i 7’Yt - n == .
Jim Jjue —ullz,(rey =0, lim fle™(Ue = Uz, (rL,(rr) =0 (3.18)
for any v > 0, respectively. Combining (3.15) and (3.18) implies that

[A\ullz,(rr) < Cnogoull fllLy(rr)-

On the other hand, to estimate U; we use the following fact.

THEOREM 3.7 (cf. [16]). Let 1 < p < oo, let Q be a domain in R" and
let X be a reflexive Banach space. Let p' be a conjugate exponent of p, that is
1/p+1/p’ =1. Then,

L,(Q,X)" =Ly(Q,X"), Ly(Q,X)" =L,(2 X),

where Y* stands for the dual space of Y.
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Note that C§°(R"™1) is dense in L,(R, Ly(R")) when 1 < p < oo and 1 <
q < c0. Given any ¢ € C§°(R"1), we have

(e_’YtUtﬂ <10)R’L‘*'1 = _(U7 (e_vts‘))t)R"‘*'l =U-Uc+U (e_vt@)t)R"'*'M

and therefore

|(€77tUt> ©)Rn+1 |
< e (U = U, (r.z,mey (VelL, ri, @) + e, ri, @)

+ |\€_7t(Ue)tHLP(R,LQ(Rn))||90||Lp,(R,Lq,(Rn))-
Letting € — 0+ and using (3.16) and (3.18), we have
(e Us, p)rrt1| < Copaulle ™ Fllo,mLymon @)L, (L, (r):
which combined with Theorem 3.7 implies that

le™ " UillL,(r.L,(R) < Crpaulle” " FllL,(r.L,(r)

for any v > 0.
Analogously, considering that

T —el&l2p(§)
1 - 1|7€ .
ke,/\(@ —yg W} z);
1 [IN2e 1 P(e)
o) = 7 [P ST o)
1 [&€re e P(e)

we can show the following estimates:

We "UllL,(roLy 5y < Crpaulle " Flio, (r,L,(r7):
|)\|1/2||DjU||Lq(Rn) < CngoulfliL,rm,

He_wA’lY/QDjUHLp(R,Lq(Rn)) < Cpqulle™ " FllL, (.1, (7))
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1D; Diullz,(rny < Crygaoull L, (mm),

le™ D DyU|| L, (R Loy(r)) < Cnpagulle™ FllL,(r.L,rm)

for any A € ¥, and v > 0, respectively. Therefore, we have proved the existence
of solutions v and U to problems (3.9) and (3.10), which satisfy the estimates:

[, A2Vu, V20)| gy < Crgon

|fllz,(r)

e VAU AY2VU, V20, g ey

=< Cn,p,q,u||€_7tF||Lp(R,Lq(Rn)), (3.19)

respectively. About the estimates of the pressure terms 6 and O, we use the
estimates (3.19) and the equations (3.9) and (3.10). The uniqueness of solutions
follows from the existence of solutions to the dual problem. What F' = 0 when
t < 0 implies that U also vanishes when ¢ < 0. In fact, we know the estimate

Ne Ul r.1,r) < Cpgulle™ Fllz, L, (rm) (3.20)

for v > 79 with some vy > 0. Since F' = 0 when ¢ < 0, we have

MU L, ((—00,0), Lo () < AT UllLy((—00,0),L,(Rmy) < Ve UllL, (r,L (R
< Clle™ " FllL,(rL,rr) = Clle™ " FllL, (0,000, L, (R")

< Clle™ Fll L, ((0,00), Ly (R7))-

Letting v — oo, we have ||U||L,((~00,0),L,(rR")) = 0, which implies that U = 0
when ¢ < 0. This completes the proof of Theorem 3.1.

4. Solution formula of the model problem without surface tension
in the half-space.
In this section we consider the following generalized resolvent problem and
non-stationary Stokes equations in R}:
Au—pAu+Vo=f, divu=g inRY, S(ufd)n=h on Ry, (4.1)
U —pAU+VO=F, divU=G inQ4, S{UBOn=H onQ,, (4.2)

subject to the initial condition: U|;—¢ = 0, respectively. In order to reduce (4.1)
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and (4.2) to the case where g = 0 and G = 0, respectively, we use the following
lemma.

LEMMA 4.1. Let 1 <p,q < oo and v > 0.
(1) For any g € W, (R) "W, (RY), there exists a v € WZ(R})"™ such that
dive = g in Q and there hold the estimates:

[vllz,ry) < Cralldlliyr mnys
IVUllL,ry) < Crallglle,ry),
IV?0llL,(rr) < CoallV9llL,re)-

(2) For any G € Ly ,(R, W} (R})) N W, (R, Wq’l(Rﬁ)), there exists a V
such that

V€ Lyoo (RWF(RL)") N W0 o, (R L(RL)")

,0,7%

and divV = G in Q4. Moreover, for any v > 7o there hold the estimates:

le™ (Ves W)z ez o(rey)) < Cnglle” ™ (G A L i (r)»

Hei’ytA}y/zvVHLp(R,Lq ) = Cn,q Hei’YtA}‘/zGHLP(RvLQ(Ri

(RY) )’

le™ V2V |z, (r.L,(ry)) < Cnalle™ " VGIL,(RL, Ry

PROOF.

(1) Throughout the paper, given function f(x) defined on R"™ and F(z,t)
defined on R} x R, f¢, F° and f°, I'° denote their even and odd extensions,
respectively, that is

flx) for z, >0 f(z) for z, >0
f(x) = , fo(x) = ,
fl@,—x,) fora, <0, —f(',—z,) forz, <0,
F(z,t) for z, >0 F(z,t) for z, >0
Fé(x,t) = Fo(z,t) =
F(z',—xp,t) for z, <0, —F(2',—xp,t) for z, <0,

where 2’ = (21,...,2n—1). Setting

i&; F9°1()

vile) = =% 51[ TE

}(:fc» o(@) = (01 (@), va(2)),
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we have dive = g% in R". First, we prove that ||v|z,(ry) < C”ﬂ'-gHWq_l(Rﬁ_)‘
From the proof of Lemma 3.2 we see that

sl acrey < Coallg”lli ooy (43)
while we have

19° vy < 2Ml9llirr (- (4.4)

In fact, we choose ¢ € C§°(R"™) arbitrarily and we observe that

(6° @) = /R 9(2)(p(z) — p(a!, ) do.

n

Since p(z) — p(z', —x,) € W;/_’O(Ri% we have

6”@l < 2Nl g IV ) < 2Nl s IVl
which implies (4.4). Combining (4.3) and (4.4) yields that

||”jHLq(R1) < [lvjllL,rmy < Cn,q”goHW;l(Rn) < 2Cn,q||g||W;1(R1)'
By the Fourier multiplier theorem of S. G. Mihlin, we have
IV |, (rm) < Crgllg®llL,(rr) < 2CnqllgllL,(ry)-

Since Dyg° = (Dgg)° for k=1,...,n — 1, we have

19040312, () < Cogll(Dk9)° 2, () < 2Cig

[Digllrymry (G=1,...,n).

Moreover, if we write

we have

DRkl gy < Crall(Drg)°llz,(rry < 2Cnqll Digllr, (rey)- (4.5)
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Since dive = ¢g* in R", we have D?v,, = Dng—zz;ll D2vy, in R}, which combined
with (4.5) yields that

HDTQLUWHL R") <C ,q||VQ||L R")

Summing up, we have proved the assertion (1).
(2) Defining V; and V by the formulas:

71G°)(€ 1))

Ve, t) = —41[2@ = ]<x>, Ve t) = (Vi 0),..., Ve, 1),

regarding t as a parameter and using the same argument as in the proof of the

assertion (1), we have the assertion (2). This completes the proof of Lemma 4.1.
0

Setting u = v +w, f = f — (\v — pDiv D (v )), h = h — pD(v)n in (4.1) and
U=V+W,F=F—(V,—uDivD(V)), H=F —uD(V)n in (4.2), rebpectlvely,
we have

—-

M —pAw+Vl=f, divw=0 inR?, Sw,@n=hr onRy, (46)
W, —pAW +VO =F, divW =0 inQ,, SW,0)n=H onQy, (4.7)

subject to W|;=o = 0. By Lemma 4.1 we have

||f\|Lq(R¢) < flleyry) + Cn,q{\)\||\9|\wq—1(1z¢) +ullVallz,rr)}s
IAY2)R] ., (R7) + HVﬁHLq(R )
< ARz, (rr) VAL, rr) + Cn Az, ry) + 1Vl )
le™ " Fll 1, (r.1,(r2))
< e Fllr,rr,ry)
+ Cn,p,q{|‘6_7thHLP(R,Wq—1(R1)) + N||€_7tVG||Lp(R,Lq(R1))}a
e (AY2H,VH) ||L (R,Ly(R?))
—~t 1/2 —~t 1/2
<|le™ (A’Y/ H, vH)HLP(R,LQ(RQ)) + Crpgntf|e™” (Av/ G, vG)HLP(R,LQ(I%Q))

Below, we consider (4.1) with ¢ = 0 and (4.2) with G = 0, respectively. First
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of all, we reduce these problems to the case where f = 0 and F' = 0. For this
purpose, setting ¢f = (ff,..., fo_q, ff) and oF = (FY,...,F°_1,F¢), let us define
(v(z),7(z)) and (V(z,t), T(x,t)) by the formulas:

g [POFUAO] ) oy gt [E T,
R b = R e e e
O FuF) ()

A+ plgf? }(:v,t),

Ta,t) = 7! [%f;}@t)] (@).

Vix,t) =2 F! {P(

Employing the same argument as in Section 3, we have

(v.7) € Wi (R")" x W, (R"),
M —pAv+Vr=1f, divv=0 in R",
H(|)\|v, |)\\1/2VU7V27)’VT)HLQ(R71)
< Cn;Q:@MHI’fHLq(R") < 2Cn,q,0,u||f||Lq(Ri) (4.8)

for any A\ € Y50 and 0 < 0 < 7/2. And also, when F' € L, o(R,L,(R})") we
have
Ve Lo(RWZR")")NWE (R, Ly(R"), Y€ Lyo(R W (R")),
Vi —uAV +VY =F, divV =0 in R" x (0,00), V]t=0=0,

™" (Vi, 2V, A2V, V2V, V) HLp(Rqu(R"))

< Copaulle ™ Fllr,r.z,r) (4.9)

for any v > 0, where we have used |le ™ ".F ||, (r.L,(r")) < 2||e_7tF||LP(R’Lq(R1)).
Moreover, from the definition of +f and +F it follows that

Dypvy |Rp=0, 7 |rp=0, DV, |[rp=0, T |rz=0

(cf. Shibata and Shimizu [31], [34]). .
Now, setting u =v+w, 0 =7+ K, h =h — uD(v)n in (4.1) with g = 0 and
U=V+W,0="Y+E H=H—pDV)nin (4.2) with G = 0, respectively, we

have
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Aw —Div S(w,k) =0, divw=0 in R}, S(w,k)n=h on Ry, (4.10)
W, —DivD(W,Z) =0, divW =0 in Qs, SW,E)n=H onQo (411)

subject to Wl;=9 = 0. By (4.8) and (4.9) we have

||(|)\|1/2}~L’V}~L)HL,1(R1) < ||(|)‘|1/2h7Vh)HLq(R1) JrCH,Q»UyHHf”Lq(Ri)v

e (AY2H, VH) ||LP(R,Lq(R1))

< |le""(AY?H,VH) L, mL, @®ayt Cogmplle " Flli,(rL,(r7))

for any A € ¥, and v > 0, and H =0 for ¢t < 0. Therefore, in what follows we
consider (4.1) and (4.2) under the conditions that f =0, g =0and F =0, G =0,
respectively. Since Div S(u,6) = pAu — V6 when divu = 0, in what follows we
consider the problems:

A—pAu+VE=0, divu=0 in RY,
w(Dypuj + Dju,) =—h; (j=1,...,n—1) on Ry,
2uDpu, — 0 =—h, on Rj, (4.12)
U —pAU +VO =0, divU =0 in Qy,
w(DpU; + D;Uy) = —H; (j=1,...,n—1) on Qo,
2uD U, —© =—-H, on Qo, (4.13)

subject to Ul—o = 0 under the conditions that h € W] (R}) and H €

Lyo(R, W, (RT)) N H;ﬁ(R, L,(R7)). To get the solution formula to (4.12), we
apply the partial Fourier transform with respect to &’ = (z1,...,2,—1) that is
defined by the formula:

o) = [ T ) e, € = (e ) (4.14)
Rn—1
to (4.12) and therefore, setting

A=[¢], B=viut+[¢2, (4.15)

we have
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)‘ﬁj(glﬂxn) + MAQﬁj(gl7xn) - MDiﬁj(f/; mn) + ifjé(f/a mn) =0 (-Tn > O),
Nt (€, 20) + pA%, (€, 20) — pD20n (€, 20) + Dpf(€,20) = 0 (zn > 0),
n—1
> & (€ wn) + Dyiin (€, 20) =0 (2, > 0),
j=1

M(Dnaj(glv O) + igjﬁn(glv O)) = _]Alj (g/a O)a

20Dy hy (€1,0) — B(€',0) = —h,(€',0),  (4.16)
where j runs through 1 to n — 1. Setting
W;(€,2p) = aje” A 4 Bre B f(¢ a,) = ye AT

and inserting these formulas into (4.16), we have

paj(B? — A%) +i&y =0, pog, (B — A%) — Ay =0,
n—1 n—1
> ikkay — Aay, =0, > ik — BBy =0,
k=1 k=1
/J,(AO(]‘ + Bﬁj + igj(an + ﬁn)) = ilj(g/a 0), ZM(Aan + Bﬁn) += ﬁn(€/70)7
(4.17)
where j runs through 1 to n — 1. Solving (4.17) and setting
D(A,B) = B® + AB? + 3A%B — A3, (4.18)
we have
’L€ n—1
.= J 2iB 7 / _ A2 BQ An /
Qj M(B—A)D(A,B){ ¢ ggkhk(fao) ( + )h (§,0)},
Z§ n—1
= J A%+ B —4AB) i&hi (¢ 2AB%h,, (¢
ﬂ] ,UB(B—A)D(A,B){( + )Zlgkhk(gvo)'i_ hn(§70)}

k=1
1 -~
—h. 4

+ILLB ‘7(5)0)7

n—1

{2AB > i&khi(,0) = (4% + Bz)Afzn(f’,O)},
k=1

Ay =

1
 u(B—A)D(A,B)
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n—1

1 e 7 et Tl
O = (B = A)D(A, B) {<A2 B ) iGuhel€,0) — 28%%e ’0)}’

k=1

= g (28 X e 0~ (4 B0

where j runs through 1 to n — 1. Therefore, setting

e—an _ e—A:cn

(A Bwy) = (4.19)
we have
uj(z) = — Zg" _m%m, B, x,) (i€ - 1'(€',0) — Bhy (€, 0))] (')
-5 [ A .0 w)
+ 5 B i (€0 + (B = A)hnl€.0) | )
+ 75" :eg" hy(e, 0)] @) (G=1,....,n—1), (4.20)
un () = g [/w(jB)///(A,B,xn)@Bif’ h'(€,0) — (A% + B>, (¢, 0))]( ")
+ 7! [%((3 A)ig" - 1’ (€,0) + A(A + B)h, (¢, o))]( )(4 N
0(a) = - 7 LB (i I (€,0) - (47 + B)hn(€.0) | ),
(4.22)

where we have set & - b/ = 22;11 &:hy, for the notational simplicity and ﬁgl
denotes the Fourier inverse transform with respect to & = (§1,...,&,-1), that is

F W) = gy [ o€ ag

Using the partial Fourier transform with respect to z’ and the Laplace trans-
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form with respect to ¢, we have the following solution formula to (4.13) as follows

Uj(a,t) = — L T _%’Eﬂfﬁf;’x") (i¢ - 2 F[H'(€,0,))
— BZ.Z[H,] (0, A))] (')
r 7Ba:
R e SR P [
— -2-5' —Azn o 1/ &
1y§/1 _%(25 gy[H}(f ,0, )

_ _ e
+ % 1&}?[
Al (
Un(z,t) =2 Jf,[
+$;1ﬁ€71{

Ox,t) = — L' Fa {

where we have set

2 F[H]

g,\_lyg_/l[G(fa Tn, A)]

—Bz,
uB

uD(A, B)

1[(A+ Be
D(A, B)

f?xTM

+(B—-A)ZZ[H,|,0, /\))} (2, t)

zﬁ[Hﬂ(&ﬂo,m}(ﬂ,w G=1..on—1),
(4.23)

A, B, zn) (2Bi¢’ - LF[H')(€,0,))

— (A? + BH 2.7 [H,](¢,0, )\))} (z',1)

) (B—A)i¢' - £Z[H'|(€,0,\)
+ A(A+ B)2Z[H,](¢,0, )\)):| (a',t), (4.24)

— Az,

(2Bi¢" - L FZ[H'|(€',0,\)

— (A + B> 2Z[H,)(¢,0, )\))] (z',1), (4.25)

e~ Attigla’ H(z', zp, t) dtdx’
RTL
= F 7.
1
(2m)"
=N I TS

wle " H( @, )€ ) (A= +ir),

/ NGy, N) drde!

(xlvt) =

YG(E 2n,y +i7)](2, 1)
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5. Technical lemmas.

In this section, we show several estimates of Fourier multipliers, which will
be used to estimate solution formulas obtained in Section 4. First of all, we
introduce two classes of multipliers. Let 0 < € < 7/2 and vy > 0. Let m(A, &)
be a function defined on ¥, ,, which is infinitely many times differentiable with
respect to 7 and £ when A = v +ir € ¥, and & € R"'\ {0}. If there exists
a real number s such that for any multi-index o/ = (aq,...,,_1) € Ng_l and
(N, &) € e py x (R™1\ {0}) there hold the estimates:

|DE/mA )| < Carconpn (N2 + A1,

o Om o
‘D?/ <T07'()\’€/)>’ < Careonl(|A? + A)*~ 1 (5.1)

for some constant Cy/ ¢, depending on o', €, 7o and p only, then m(\, &) is
called a multiplier of order s with type 1. If there exists a real number s such that
for any multi-index o/ = (@, ..., 1) € Ny ' and (A, &) € Z,, x (R"1\{0})
there hold the estimates:

|DE'mNE)| < Carcau(IAI12 + A)* A1,

‘D ¢ (T$(A’§’))‘ < Carrenp i (IA[V/2 + A)* A1 (5.2)

for some constant Cy/ ¢, depending on ', €, 7o and p only, then m(A,&’) is
called a multiplier of order s with type 2. In what follows, we denote the set of
all multipliers defined on X, x (R"~!\ {0}) of order s with type ¢ (¢ =1,2) by
M 4. ~,- For example, the Riesz kernel &;/|¢'| belongs to Myseo (j=1,...,n—
1). A function |A* = (v + 72)%/2 belongs to Mag1 o when s > 0. A function
MA|71/2 belongs to M 1 c~,. The following lemma follows from the definition of
M 4 ¢ ~, and the Leibniz rule.

LEMMA 5.1.  Let s1, s3 € R.

(1) Given m; € My, 1.¢~, (i =1,2), we have mima € Mg, 4 5,.1,¢70-
(2) Given £; € M, i, (1 =1,2), we have {1l € Mg, 15, 2.¢ ~0-
(3) Given n; € My, 2., (1 =1,2), we have ning € Mg, 15, 2.¢.~0-

From now on, we show several lemmas which will be used to estimate solution
formulas given in Section 4.
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LEMMA 5.2. Lets€ R and0 < e <m/2. Let A, B and D(A, B) be symbols
defined in (4.15) and (4.18), respectively. Then, there exists a positive constant ¢
depending on € and p such that

c(|A'? + A) <Re B < B < (™' AD? + 4, (5.3)

c(|A"? + A)? < |D(A, B)| < 6((n"A])/? + A)*. (5.4)

Moreover, we have B® € M1 c0, (A+ B)® € Msa.0 and D(A,B)® € Mss 2.0
foranyse R. If s >0, then A* € M, 0.

PROOF. The inequalities (5.3) and (5.4) were proved in Shibata and Shimizu
[31, Lemma 4.4]. Now, we prove that B® € M1 .. Employing the same argu-
ment as in the proof of Lemma 3.4, we have

D/ B*| < Cur e (N2 4+ )1,

Using the formula: 79, B° = i(2u)~ 'st(Au~" + A?)*/271 we have

o oB® s—2—|a’
]De (TaT)'<ca,,5,ﬂ,s|7|<|A|1/2+A> 2l

|)“ 1/2 s—|a’
5 (A2 + Ayl

<CO(’E STINI1/9 1 A\O
= T T+ 4

< Coreps (A2 4 A)=1el,

Combining these estimates implies that (|A|}/2 + A)* € M, 1 0.
By the Bell formula, we have also

< Ca/,sA87‘a,|- (55)

|pg’a

Since A* < (|]A]'/24 A)* when s > 0, it follows from (5.5) that A* € M 5 .o when
s> 0.
Setting f(t) = t* for t > 0, by the Bell formula we have

[’
e ST CIVEN-) ‘D?’,l(AJrB)‘ . ‘Dg’f(AJrB)
/=1

a’1+---+a2:a/
lal]>1

D¢ (A+ B)®
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lo'|

< Caregus (A2 + AP (N2 4 A)f AT
=1

< Oa’,e,u,s(|>\|1/2 + 14)5147‘0”7
where we have used (5.5) and
D¢/ B| < Care (N2 4+ 4) 711 < Coryus (N2 4+ 4) A7,
c(|)\|1/2 +A)<ReB<Re(A+B)<A+|B|< 2((|/\m—1)1/2 +A).

Since 70, (A+ B)® = 27 's(A+ B)* lrp~'(A\u~' + A —2)"/2 by the Leibniz rule
we have

o O(A+ B)*
‘D€, (Té}/]_)’
| ||T‘ Z 6/! /| AJFBS IHD ‘
B4y =
< CarequsAl D2 (A2 4 AL ATITI(INY2 4 4) 71 AP
B+ =a

S Co/,e,u,s )‘|(|>‘|1/2 =+ A)72(|>‘|1/2 + A)SAi‘all S Ca’,e,u,s(|)‘|1/2 + A)SAi‘a,"

Combining these estimates implies that (A + B)® € M2 . 0.

Since A, B € My 2.0 and D(A, B) is a cubic polynomial with respect to A
and B, by Lemma 5.1 we have D(A, B) € M3 . Setting f(t) = t* for t > 0, by
the Bell formula and (5.4) we have

’D?, D(A, B)®

o
<Co 3 IfODAB) > DDA, B)|-| DDA, B)
=1

a/1+---+0127a
Jaf|>1

|
< Carepis D (A4 4267057 (A2 4+ 42471l

=1 a4 tap=a’

lah|>1 ...(l)\‘1/2+A)3A—|0‘2|
< Ca/,e,u,s(‘)\|l/2 +A)35A_‘O‘,|'
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We have 70, D(A, B)® = stD(A, B)*"1E(A, B) with E(A,B) = i(3/2)u~'B +
in tA+i(3/2)u"tB71A2. Since E(A,B) € Mi 2. as follows from Lemma 5.1,
by the Leibniz formula we have

’D?,/ <7_8D(A, B) ) ‘

or
< Cos]|7] ‘D D(A, B)* 1HD”EA B)’
B+ =a'
< Ca',@ms )\| Z (‘)\|1/2+A)3(s_1)A_|ﬂ/‘(|)\|1/2+A)A—|’Y/\
B'+'=a’

< Correps (N2 4 A)P A1
Combining these estimates implies that D(A, B)® € M3,1,0. This completes the
proof of the lemma. O

LEMMA 53. Let £ = 0,1 and 0 < € < 7/2. We use the symbols defined
n (4.15) and (4.19). Then, for any multi-index o/ € NF™' and (N, €, x,) €
e X (RP1\ {0}) x (0,00), we have

< Ca’,e“u,(‘)\|1/2 + A)—Ia’\e—d(lx\\l/erA)wn

| g/ {(r0,) e on )

< Oy A7 o= (1/2) Az

‘D‘E"/e—A’J”
‘D?/{(T@T)Z///(A,B,mn)}‘ < Co e pl@n or |)\|_1/2)6_‘1‘4“14_|°‘I‘7

where d is a positive constant which depends on € and p but is independent of o'.

ProOOF. We write
1
M(A, B, x,) = —:pn/ e~ (1=0)A+6B)z, g
0

Setting f(t) = e~ *n by the Bell formula we have



596 Y. SHIBATA and S. SHIMIZU

’Dg’(((ke)AwB)xn

- ‘D?,/f((l A+ 93)\

o)
<Co S |fOUa-0)A+0B) Y \Dgﬁ((1—9)A+eB)\
=1

cx/1+---+cx2:cx/

laf 21 o
. ‘Dg,"((l A+ 93)‘
o)

<C. Zxfle—((1—9)A+c9(\,\|1/2+A))a:n ((1 _ H)Al—\a“ + 9(|)\|1/2 + A)1—\a’1|)
=1
(= g) A loel (V2 + A)lf\azl),
where we have used |e~((1=0)A+0B)zn| — =((1=0)A+0Re B)zn and (5.3). When
0 = 0, we have

lo'|

‘Dg,’e—f“x" < Cor Y abe A AT < Cprem (/D AT g=1l] L (5.6)
=1

When 0 = 1, we have

/

la'|
‘D?/'ewan <C., folefc(\)dl/%%A)a:”( >\|1/2 + A)€7|a'\
(=1
< Ca,e_(c/Q)(l)“l/Q""A)zn(lA‘1/2 + Ayl (5.7)

For general 0 < 6 < 1, since we may assume that 0 < ¢ < 1 without loss of
generality, we have

‘D?I'ef((lfe)A+eB)zn

|o|
< Cy Zxﬁe—<(1—9>A+9c<|M1/2+A>)zn (1= 0)A+0(NY2 + A))ZA—WI
(=1

|o|
< Cu Zxf;e—c«l—e)Aw(w1/2+A>>wn (1= 0)A+0(IN"Y2+ A))EA—IQ’I
{=1

< Ca/e—(c/Q)((1—6)A+9(\>\|1/2+A))m,,,A—|a’|’ (5.8)

which implies that
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D¢ M (A, B, x,)

1
<c. / = (/A=) AT 2+ )2 g g=1o|
0

1
0
On the one hand, integrating the last formula with respect to 6, we have

| D (A, B, 2)| < Car(e/2) 7} N7/ 2em (/DA g1, (5.9)

but on the other hand, using the estimate: e= 0/ 2z < 1, we have

(Dg,’///(A, B, ay)| < Covarpe(c/DA0n g=1o"l (5.10)

Since 9,e~B*» = —i(2u) "'z, B~te~P¥n by the Leibniz formula, Lemma 5.2
and (5.7)

‘D?,, (T@Te_B"c”)

< Cyxn Z ’Dgﬁ/[ (TaTB) ‘ ‘Dg/’e_an
B+ =a

< Cuyn Z (‘)\'1/2+A)l—\ﬁ/le—c(|,\‘1/2+A)wn(|/\‘1/2+A)_h/‘
B+ =a

< Core™ /DN E M)z (N [1/2 1 g)=lel,

Since

—1 2 1
Tg///(A,B,xn):iw/ 9Bl (1=0)A+6B)en gg
or 2 0

by the Leibniz rule, Lemma 5.2 and (5.8) we have
Dg (r0..4(A, B, xn))’

1
< Oy || Z /O BN + A) 118 e= (/A= AONZ+ A))zn 4=17| 49,2
B+~ =a

1
e / BN 4 A)ye (/2 =OA+OIN 2420 410’ 4

(A2 +4)2 Jy
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1 -
< Ca/xn/ o~ (e/D((1=) A+6(IA >+ Az gg 4—lo|
0
1 1/2 ’
_ axn/ o~ (/A0 )z gp 4-la]
0
Therefore, by the same argument as in obtaining (5.9) and (5.10) we have
]Dg/ (10l (A, B, 2))| < Cor (2 01 |\[71/2)e (/D ATn g=10],

This completes the proof of the lemma. O

LEMMA 5.4. Let 0 < e < 7w/2, 1 < g < o0 and v > 0 and we use the
symbols defined in (4.14), (4.15) and (4.19). Let m; € Mo ¢, (i =1,2), and we
define the operators K;(\) (j =1,2,3,4,5) for X € X, by the formulas:

[K1(A)g)(x) = /O N Fe [mi(\ €A Pem Blontumd g (¢ y,)] (2) dyn,
Kaal(a) = [ [maln€) AP 109(€ o)) )

Kagl(0) = [ 75 [l €)Ae A 01506, 0"

Kagl(0) = [ 75 ma\ €)% 44, B + )€ )] ()
KsOal(0) = [ F5 fmalh €A 2AM (A, B + )36 )] ()

Then, for £ = 1,2 and j = 1,2,3,4,5, the sets {(10;)°K;(A) | A € X} are
R-bounded families in £ (Lq(RY)), whose Z bounds do not exceed some constant
Ch.q.e,70,n depending essentially only onn, q, €, o and p.

ProoF. In what follows, we say that the family of operator {A(X) | A €
Yo} has the required properties if {(79;)A(N) | A € B, } are %Z-bounded
families in Z(Lq,(R")), whose Z bounds do not exceed some constant Cy, g e.~o.u
which depends essentially only on n, ¢, €, 70 and p. First, we consider Ki(\).
Setting kq x(z) = 3‘}71[7711(/\,§’)|/\\1/2e_B“"](x’), we have

[K1(\)gl(x) = - ki@ =y xn + yn)g(y) dy.
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We prove that there exists a constant Cy, ¢ ~,,, depending essentially only on 7, e,
Yo and p such that

|k17)\(.23)‘ < Cn,e,vo,u|x|_n (Ae Yeror TE R"\ {0})7 (5-11)

0
ku\(x)

Tor < Cnenonlel™ (A €Dy, v R\ {0}). (5.12)

By the assumption, the Leibniz rule and Lemma 5.3 we have
|Dg (s (0, €A 2P
< Ca’,é,'yo,u|>‘|1/2(|/\|1/2 + A)ila/lefd(‘All/QJrA)w". (5.13)

Using the identity:

n—1
e’il’/f/ _ Z .Z‘J 8 eim/'fl
. 3
ilz’|? 0¢;

j=1

k1 x(x) can be written in the form:

ia’ o 1 ! iz’ ¢ Ha' —Bzx
kia(z)= Y <|$,|2> <2W> /Rn_le D (ma(\, &) A 2e B dg’

=

Applying (5.13) to the above formula and using the change of variables: &' =
IA|*/2" imply that

7@ < o’ [ NN + )7 e

= Cn,e,vo,u

ol [,
Moreover, by (5.13) we have
1 nl 1/2 !
|E1a(z)] < (2> / CE’%’#|/\‘1/26—¢1(|)\\ 1Dz get
m Rn-1

. (1>Cn' [ e ag
S (dzn)™ Jgn—
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1\ Cemyun! n
S = 1 "y
(%) it [ e an

Combining above two estimations implies (5.11).
Recall that 70,k1 x(x) = yg,l[TaT(ml()\,§’)|)\|1/26_B$")](m’). Noting that

79- (m1 (X, )N 1/26731")

A / 2 —Bx,
= D 2 TR LW (125

by the Leibniz rule, the assumption and Lemma 5.3 we have

o’ 2 1/2 —Bzx,,

sca/,e,w{ ST A2+ AN (A2 4 A) T A A

B/“F'Y/:a/ )
T 1/2 —lo/| ,—d(AY 2+ A)z,
+ A2+ 47
< Careroul A2 (A2 + A) 7o TemdIAR 2 ) (5.14)

Employing the same argument as in proving (5.11) by (5.13), we have (5.12) by
using (5.14).

Now, using Proposition 2.7, we prove that K7 (\) has the required properties.
For this purpose, in view of (5.11) and (5.12) we set ko(z) = Chp eo,ulz|™™ and
we define the operator Ky by the formula:

[Kog(z) = - ko(z' — ¢ zn + yn)g(y) dy.
+

We prove that Kj is a bounded linear operator on L, (R} ), whose bound does not
exceed a constant Ci, ¢, 4. By the Young inequality we have

1Kolg] s )|, (mr—) S/O 1o Gy @n + yn) |, (mn-1) 19C yn) |2y (R 1) Ay

* g yn)ll L, (rr—1)
< Che 2 dy,,. 5.15
> U, ﬁo,u/o T+ Un Y ( )
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To continue the estimate (5.15) we use the following lemma.

LEMMA 5.5 (cf. [46]). Let k(t,s) be a function defined on (0,00) x (0,00)
which satisfies the condition: k(M,\s) = A"Yk(t,s) for any X\ > 0 and (t,s) €
(0,00) x (0,00). In addition, we assume that for some 1 < g < 0o

/ lk(1, )]s 9ds = A, < oc.
0

If we define the integral operator T' by the formula:

110 = [ k)15 ds,
0
then T is a bounded linear operator on Ly((0,00)) and

IT £z, 0,000 < Agllfllz,((0,00))-

If we set k(Zn,yn) = Chenop/(@n + Yn), then kAzn, Ayn) = A k(zp, yn)
and for 1 < ¢ < oo we have

S k(LY dy, = C Ty
(Lyn)yn T dyn = Creron | 777 = Anerom < 0
0 0 (14 yn)yn

Applying Lemma 5.5 to (5.15), we have

1Kolgllly(rez) < Anemoullgllzy(rr),

which combined with Proposition 2.7 implies that K7(\) has the required proper-
ties.

Now, we consider Ka(\). If we set ko x(z) = ﬁg,l[mg()\, ¢")Ae=B%n](2"), then
the operator K5(A) is given by the formula:

Ko@) = [ aala’ =4+ ma(w)

Therefore, as we proved that K;(A) has the required properties by using (5.11)
and (5.12), to prove that Ko(A) has the required properties it is sufficient to prove
that for any A € 3, 5, and € R™ \ {0} there hold the estimates:
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k2 a ()] < Cn,e,vo,u|x|_na |70 k2 A ()] < Cn,6ﬁ07u|33|_n' (5.16)

By the assumption, the Leibniz rule, and Lemma 5.3 we have

Dg/(ma(\, &) Ae=Prn)

S Co/ Z ‘Dgﬁ/lm2()\a€/)

v’ §' —Bx,
‘D{/ A‘ ’Dg/e

B4+~ +6'=a’
< Coevous Z A AT (A2 1 A)*|5'|€*d(\>\|1/2+A)mn
B4+ +6'=a'
< Clat oo €71 1= @M 24 A)n (5.17)

Since 7O(ma(\, &) Ae Brn) = 9,ma(N, &) Ae™B%n 4+ my(N\)Ad e~ B employing
the same argument as in (5.17), by the assumption, the Leibniz rule and Lemma
5.3 we have also

o 8 _ Bz o — 1/2 =
‘Dg, {T&_(mg()\,f')Ae B “)}’ < Clor emo €110 e A4 Dan —(5.18)

In view of (5.17) and (5.18), we apply Lemma 3.6, replacing n by n — 1 to obtain

k23 (@)] < Cryeoul?’| ™", [702k2 A (2)] < Chpeyg 2’|~ (5.19)

On the other hand, using (5.17) with @’ = 0 and the change of variables: z,&' =7/,
we have

2

n—1
n 1 —d|n’
= (xn) CO,e,fyo,;L (27‘(’) /R"—l |77/|e I’ d77/a

for £ = 0 and 1, which combined with (5.17) and (5.18) implies (5.16), and therefore
K5(X) has the required properties.

Now, we consider K3(\). Setting ks \(x) = 9{,1[mg()\,f’)Ae_Awn](m’), we
have

1\"! ,
‘(T@T)fk;z)\(x)’ < CO:@’YO,H () / |€/|e—d|§ |Zn dg/
Rnfl

Ko@) = [ Foale! =4/ + 9)a(0) o,
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so that to prove that K3(A) has the required properties it is sufficient to prove
that

ks A (@) < Cneyoul] ™, [T0-ks A(2)] < O ol (5.20)
By the Leibniz rule, the assumption and Lemma 5.3 we have
[DE {700 (ma(0.€) Ae™ %)} < Cup g T le” (D450 (= 0,1),

which combined with Lemma 3.6 implies (5.20).
Now, we consider K4(\). Setting ks x(z) = fg/l[mQ()\,{’)Az///(A,B,xn)]
x (), we have

KsWal@) = [ haale! =4z + 9)a(0) do,

so that to prove that K4(A) has the required properties it is sufficient to prove
that

[kax(@)] < Cheyoulzl™s  [707ka (@) < O eo ule] ™ (5.21)

By the Leibniz rule, the assumption and Lemma 5.3, we have

]Dg,’ {(r0,) (ma(\, €) A2 (A, B, xn))}’

: AN :
< Corepro A>T e < Cor ey, (2> AtTllem A (0 = 0,1),

which combined with Lemma 3.6 implies (5.21).

Finally, we consider K5(\). Setting ks a(z) = ﬁgl[mg()\,g')\)\ﬂﬂA
M (A, B, x,)](z"), we have

[K5(N)gl(x) = - ksa(x' =y xn + yn)g(y) dy,

so that to prove that K5(\) has the required properties it is sufficient to prove
that

ks A (@)] < Creoulzl ™ [70ks A(@)] < Ceo 2] (5.22)
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By the Leibniz rule, the assumption and Lemma 5.3, we have

‘Dg/{(TaT)f(mg(A, €)NV2 A (A, B, xn))}‘

1— ! - n —
< G oAV e (0= 0,1),

which combined with Lemma 3.6 implies (5.22). This completes the proof of the
lemma. 0

Now, we show two lemmas which will be used to estimate the solutions (u, 6)
and (U, ©), respectively.

LEMMA 5.6. Let0<e<7/2,v >0 and1 < q < oo and we use the symbols
defined in (4.14), (4.15) and (4.19). Given ko € M_11.¢, and k1 € M_32.c ~,,
we define the operators L;(X\) (j =1,2,3,4,5) by the following formulas:

[Ll()\)g](x) = /000 9571 [k;o()\, 5’)@_B(ﬂrfn-i-yn)g(gl7 yn)] (l’/) dyn,

oo

[La(N)g](x) = / T k(N §) Ae™ BEntomg(¢ y,)] (2) dyn,

oo

0
LaWala) = [ Z5 T €)M 0g(€' )] @)

LaWala) = [ F (M)A (A, B+ )€ )] (@) i

Laal@) = [ Z [N AM A, B + )il )] @)
0
Then, for £ =0,1,71=1,2,3,4,5 and j,k =1,...,n, the following sets:

{0 ALi(N) | X € By} {0 (VLi(N) | A € Bep )
{(T0) (IAN2D;Li(N) | A € Beryo } - {(T0-) (D DrLi(N) | A € Ze y }

are Z-bounded families in £ (Lq(R)), whose Z bounds do not exceed some con-
stant Ch q,e.v0,u depending only on n, q, €, o and p.

PrROOF. In what follows, we say that the set {A(X) | A € ¥, } has the
required property if {(79;)*A(N) | A € B, } (£ =0,1) are Z bounded families in
Z(Lq(RY)) whose #Z bounds do not exceed some constant C, 4 ¢, depending
only on n, g, €, 7o and p. First, we consider Li(\). We write
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oo

AlL1(M)g](z) =/O T AT ko (X, €)M e Blontumdg (el y)] (o) dya,

o}

VL1 (N)gl(2) :/0 T YT 2R (X €)M 2 Blontumdg (el y) ] (2') dy,
INMY2D, (L1 (M) g)(w) = —/ Tt [Bro(X €)A[V2em Blntumlg (el )] (') dyn.
0

Since A|A[Y2, y|A|7Y/2 and B € M 1 ~,, by Lemma 5.1 MA|="2kq, v|\|71/2k,
and Bko € Mo 1, ~,, s0 that Lemma 5.4 implies that the sets: {ALi(\) | A €
Senods (VL1 | A € 2o} and {|AY2D,,Li(\) | A € B¢, } have the required
properties.

For j,k=1,...,n— 1, we write

IAY2D;[L1(N)g](2)

= /0 Fo IR (G A k(A €) Ae™ Pt g (¢ y,)] (2') dyn,
D;Dy[Li(N)g)(z) = /O F665) (16 A7 ko (X, &) Ae Bt (¢! y)] (2') dyn,
D;Dy[Li(N)g)(z) = — /0 F M (i€A)Bho(N, ) Ae™ Plontvm (¢! y)] (a) dyn.

Since |AY2 € My 1,0, 1A € Mooy, 165 € Miocr, and B € My 1y,
by Lemma 5.1 |A[Y2(i&; AN ko, (i&;)(i€xA™ ko and (i&;A~')Bky belong to
My 5. o, respectively, so that Lemma 5.4 implies that the sets {|\|'/2D;L;()\) |
A€ Berot, {DjDkLi(N) | A € Zeq} and {D;D,Li(N) | A € B} (4, =
1,...,n — 1) have the required properties. Since D2L;(\) = Ap~1Li(\) +
Z;L:_ll D3Ly()), we see easily that the set {D2Li(\) | A € 3¢ 4, } has the required
properties.
Now, we consider the operator La(\). For j,k=1,...,n — 1, we write

(ALL2(N)g)(@), y[L2(N)g)(), IAI/? D;[La(N)g)(x), Dj Di[L2(N)g) (),
Y2 D [L2(N)g](x), DuDj[L2(N)g)(x), D} [L2(A)g](x))

:/o Fa' [0 NY23&), (i) i€, — N2 B,

(—i&;) B, B*)ky (X, &) Ae” B v g(¢ y,)] (2') dyn.
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By Lemma 5.1, Ay, vk1, |\Y2(i&;) k1, (i€;)(i&k) k1, |N|Y/2 Bk, (i€;)Bky and B%k,
belong to My 3 ¢ ,, so that Lemma 5.4 implies that the sets: {ALa(X) | A € E¢ 4},
(1200 | A € Sengh INV2D;La00) | A € Senub, {D;DRLs(N) | X € S}
(j,k = 1,...,n) have the required properties, respectively. Analogously, we see
that the same assertions hold true for the operator L3(\).

Now, we consider Ly(XA). For j,k=1,...,n— 1, we write

(ALLs(N)g)(@), Y[La(N)g)(x), I\I"/? D;[La(A)g)(x), Dj Di[La(N)g) ()

= [ 22 0. e 0)
: kl()\v gl)AQ%(Aa Bv Tp + yn)?](f/» yn)] (CK/) dyn
By Lemma 5.1, Mky, vk1, |)\|1/2(i§j)k‘1 and (i€;)(i€x) k1 belong to My 2.¢ ~,, so that

Lemma 5.4 implies that the sets: {ALs(X) | A € Ec 1o}, {7La(A) | A € B, } and
{D;DyLs(N) | X € E¢ .} have the required properties, respectively. Since

D, .# (A, B, z,) = —e Brn _ A (A, B, x,), (5.23)
we have
(A2 Do [La(N)g)(x), Dj Du[La(N)g](x))

= - / Fa [(INV2,i85) Ak (A, €) Ae™ Pentum) (¢! Ly, ] (') dya
0

- /o T (A2, i) Aky (A, €) A2 (A, B, + )3 ym)] (=) dyn-

By Lemma 5.1, [A\|'/2Ak; and (i€;) Ak belong to My 2 ., so that Lemma 5.4 im-
plies that the sets: {|\|Y/2D,,L4(\) | A € &, } and {D; D, Ls(\) | XA € & -, } have
the required properties, respectively. Since D2.# (A, B,x,) = (A + B)e™B%» +
A% (A, B, x,), we have

D?L [L4()\)g]($) = /0OO 9{,1 [(A =+ B)Akl()\7 f’)Ae_B(xn+yn)g(E/) )\)] (m/) dyn
+ /O T T A\ €) A2 (A, B, + y)0(€ V)] (&) dy

By Lemma 5.1 (A+B) Ak and A%k belong to My 2,¢ ., S0 that Lemma 5.4 implies
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that the set: {D2L4()\) | A € X, .} has the required properties. Analogously, we

see that the same assertions hold true for the operator Ls(A), which completes the
proof of the lemma. O

LEMMA 5.7. Let0<e<m/2,v >0 and1 < g < co and we use the symbols
defined in (4.14), (4.15) and (4.19). Given ky € My 1,c, and ks € M_1 2 ¢ ~,, we
define the operators L;j(\) (j = 6,7,8,9,10) by the formulas:

[Ls(Ngl(z) = /0 N Fer ko (N, €)em Pentumg(el y,) ] (') dyn,
LrNl(@) = [ Z5 a0 €) Ao (€ ) 0
LsNl(@) = [ ZG Tran€) A A 11g(€' )] ()
LNgl) = [ a0 VA A, Byt + )€ )0 o
LWle) = [ (O AN 2AM A, B+ 50)a € )] &) o
Then, for £ = 0,1, i =6,7,8,9,10 and j = 1,...,n, the sels:

{FO) AL [ X € Zeno )y {(70:) DGLi(N) | X € By }

are Z-bounded families in £ (Lq(R')) whose Z bounds do not exceed some con-
stant Cy q,e,v0,u depending only on n, q, €, yo and p.

PROOF.  Asin the proof of Lemma 5.6, we say that the set {A(A\) | A € E¢ 4, }
has the required property if {(70,;)*A(\) | A € Zc,} (¢ = 0,1) are #Z bounded
families in £ (Ly(R'})) whose # bounds do not exceed some constant Cp g.c.vo,u
depending only on n, q, €, 7o and u. We consider Lg(\) and we write

A2 [Lo(N)g)(x) = /0 T [la(V €Y 2eBEtg (¢! )] (27) dy.

Since ks € My 1.c.,, Lemma 5.4 implies that the set {|\[/2Lg(\) | A € ¥ -, } has
the required properties. For j =1,...,n — 1 we write

D;[Le(N)g](x) = /0 h F (18 A ko (N, &) Ae™Blmtum)g(! )] (2) dy.
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Since ifjA_l € My 3e~,, by Lemma 5.4 (ifjA_l)k:g € My 1,c,, S0 that Lemma
5.4 implies that the set {D;Ls(\) | A € X, } has the required properties. Finally,
using the identity

B=p (AATEBTYAE + (ABTY 4,
we write
Dy [Le(N)g)(x)

=t /0 T {ANT2B ko (X, €Y 2e B35 yn) | (27) dyn
+ / F (ABYho(\, €) A Bt g(&! )] (o) dyn.

By Lemma 5.1, >\|A‘_1/2B_1k’2 S M071,€7’Yo and AB_le S M()727E7,\/07 so that
Lemma 5.4 implies that the set {D,Lg(\) | A € X, } has the required prop-
erties.

By Lemmas 5.1 and 5.4, we see easily that the assertions for L;(\), Lg(}),
Lg(\) and Lqp(A) hold true. This completes the proof of the lemma. O

6. Proofs of Theorem 1.1 and Theorem 1.2.

In this section, applying Lemma 5.6, Lemma 5.7 and Theorem 2.8 to the
solution formulas given in (4.20), (4.21), (4.22), (4.23), (4.24) and (4.25), we prove
Theorems 1.1 and 1.2. Using a trick due to Volevich [54] and (5.23), and writing
V' - W = Y721 Dihy, from (4.20) we have

uj(x) =

2/,6_1 Z/ ‘/5’ |:£J£f4B))A2%(A’ B,z + yn)y[Dnhk](£l7 y"):l (x/> dyn

— o — [ 5 -B
+2 1/ Tt =2l A Bntu) Z(V WY ya) | (27) dyn
v B [ (€ yn) | (@) dy

ot [ [ A A B+ )P )] ()

o [2i(&;,A"1)B , ,
+ 21171/0 g&’l Z(D%AB))AQ///(Avaxn +yn)ﬁ[Dnhn](£ 7yn)} (x )dyn
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_ —1 >~ -1 B —B(xn+yn) . ! /
wt [ s e FDiha)(€ )| (") dy

> B
_ -1 ag—1 2 a . / /
ot [ gt | g A A B + i) F DI ) | )

> — A)g;(6A
>t «%IFB Bp)fi(gé) )Ae‘B(””ﬂ“ﬂ‘[Dnhk](fxyn>]<x’>dyn

> — A)(gA!
—u_l/o 5‘%/1[(3 D(A)(gBj) )Ae_B“"*y")ff[V’~h’]<£’7yn>}<w’)dyn

n—1 00 ) Afl
Yot [Tt (S e At (D, )€ ) | ) i

_ -1 > 71- ij —A(xn+yn) 1ot /
ot [ G FIV KN )| () dy,

> [2i(B — A)(&A7T
ot [ [P A e S D€ ) 0 o

o0 [ B—A
_ 9,1 g—1 —Alzntyn) Z[D. / /
24 /O J{' _D(A,B) Ae /[D]hn](f ayn)] (:U )dyn

4! / F B e Bt ZD, (€, )] (2') dya
0

B ] EA L B TR P NIV P P
/J/ o &’ B2 € vl 7yn €T yn

n—1 .

_ < [i&A™ 5

B D A L T DGR (E
k=1

Lemma 5.1 and Lemma 5.2 imply that the symbols:

& (&A™ & (A B B
D(A7 B) ’ D(A, B)’ D( ,B) ’ D(A, B) ’ (6 1)
(B—A)&(GA™Y) (B-A)(GA™)  B-A A '
BD(A,B) D(A,B) ' D(A,B)’ B2

belong to M_3 5 (o and that the symbols:
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B71 >\|)\|71/2

T gz (6.2)

belong to M_1 1 ¢ 0. Therefore, by Lemma 5.6 and Theorem 2.8 we have

[z, |NM 2V, 92 < Crgren| (VR AR 1y ()

uj)HLq(Ri)
forany A€ ¥cpand j=1,...,n—1, and

e (U)o 1 U5 A2V UL V2D iy

< Cnm,q’uHeﬂt(VH’ A}ymH)HLp(R,Lq(Ri))

foranyy>0and j=1,...,n—1.
Using a trick due to Volevich [54] and the relations: B—A = u~'A\(A+ B)™!
and B = (u= A+ A?)B~L, from (4.21) we have

U (2)
n—1
2iB(&x A~ / ’
oy / [P 4% a4, B +) F DI )| )
2iB
_ -1 5~71 B(@ntyn) 7! . B1(£ !
i [T |G A B S )] )
_ 1 e 71- 2iB 2 a 7! . B (! !
W T DA, B)A M(A, B,z +yp) F[V' - 1(€ 7yn)} (") dyn
ot mﬁfl- 24 A2 (A, B, 2y + yn) Z[Dnhn (€ yn) | (2') dy
o E/ (A’ B) b b n n n'n yJIN n

- — 2251@ _
1 E : g—1 B(zn+yn) g / /
1L /0 Jé/ |: ( ’ )Ae F [thn](f ,yn):| (SU )dyn

n—1 .
— gt - z-1 ﬂ 2 T / /
" ;/0 Te [D(A,B)A M (A, B, xn + yn) Z [Dihnl(€' yn) | (27) dyn

[ AN
—p? 54‘[ A2 (A, B, 2y + y3) F Dby (€ n}az’dn
i [ [ A B) Z Dl (€ ) | ) dy

o [ o [ ATV ) a2 / /
— M 0 ‘/f’ (A B)Ae meen J[l)" hn}(g,yn) (:c)dyn
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B oo B )\|>\|71/2
_ 2 g1 2 73 1/2 / /
12 /0 ‘/5’ {D(z‘LB)A M(A, B, xn + yn) FAZha] (€ yn) | (2) dyn

s /0“’ o [ B gt FD )| )

_ o0 iBEA NN Y2 , /
—H 22/0 Zo! { NIy *y’ﬁfHAW?hk](s,yn>](a:)dyn
+pu 1/0Oo /1 A+B (I"er")J[D h ](flayn):| (’JJ/) dyn

oo A B 1/2
_ M / yg 1 |: ; )\|)\| Ae_B(zn“!‘yn)y[l)\1/2hn](€/7yn):| (.’L‘I) dyn
0

o0 A+ B)(i€x)
D(A,B)B

+p IZ/O

Lemma 5.1 and Lemma 5.2 imply that the symbols:

g | i A e ) F D€ )| (0

A AT (B&GATHAN
D(A,B)’ D(A,B)’ D(A,B)B
A+B  (A+BMNY? (A+B)&
D(A,B)’ D(A,B)B ' D(A,B)B

(6.3)

and the symbols appearing in (6.1) belong to M_s 2 ¢, and therefore by Lemma
5.6 and Theorem 2.8 we have

||(|)\|un,|)\|1/2Vun,V2 S CnaQa57H

Un)HLq(Ri) |(Vha |>‘|1/2h)||Lq(R1)

for any A € X, and

Heivt ((Un)ta YU, A’ly/2VU"’ szn) HLP(R7L‘1(R1))

< Chpagulle ™ (VH, AV H)||,

- p(R,Lq(R%))
for any v > 0.

Concerning the pressure terms 6 and ©, we know that VO = —Au + pAwu and
VO = —U; + uAU, and therefore
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V0, ) < Crgel| (Vi AR (A €Xco),

)HLQ(Ri)

|70, (R Ly(Rr) < Crpaulle”™ (VH, A2 H v > 0).

)HLP(R,LQ(R;)) (
This completes the proofs of Theorem 1.1 and Theorem 1.2.

7. About the surface tension problem.

In this section, we consider problems (1.5) and (1.4) and we prove Theorem
1.3 and Theorem 1.4. Let (v,7) and (V,T) be solutions to problems:

Av —DivS(v,7) = f, divv=g in RY,
S(v,T)n="h on Ry; (7.1)

Vi—=DivS(V,YT)=F, divV =G inQy4,
SV, Y)n=H on Qo,
Vl]t=o =0, (7.2)

and weset u =v+w, 0 =7+rkin (14) and U =V + W, 0 =T + E in (1.5),
respectively. Then, the problems (1.4) and (1.5) convert to the following problems,
respectively:

Aw —DivS(w,k) =0, divw=0 in RY,
M +w, =d—v, onR{,
S(w,k)n+ (cg — co A ) =0 on R{; (7.3)
W, — DivS(W,E) =0, divW =0, inQ,,
Y, +W,=D—V, onQo,
SW,E)n+ (¢g — ceA )Y =0 on Qo,
Wlieo =0, Yo =0. (7.4)

Therefore, instead of (7.3) and (7.4) we consider problems (1.4) with f =0,¢g=0
and h = 0, and (1.5) with 7 =0, G = 0 and H = 0 in what follows. Namely, we
consider the following problems:

Au — Div S(u,0) =0, divu=0 in RY,
A +u, =d on R,



Mazximal Lp-Lg regularity of the Stokes problem 613
S(u,0)n+ (cg — ceA')ym =0 on Ry; (7.5)

Ut — Div ;S’(Uv7 @) = O, divU = 0, in Q+,
Y;+U,=D on Qq,
S(U,0)n+ (cg —ceA")Yn =0 on Qy,
Ult=o =0, Y=o =0. (7.6)
First, we derive the solution formula of the problem (7.5). In Shibata and Shimizu

[35], the solution formula of the problem (7.5) was obtained, but for the complete-
ness we discuss it again. As was done in the Section 4, applying the partial Fourier

transform with respect to 2’ = (z1,...,2Zn—1) to (7.5), we have

A+ pA?)ij (€, n) — pD2iti (¢, ) +i60(¢ ) = 0 (€0 > 0),

A+ uA?)an (€ 20) — pDyin (€, 2n) + Dné(ﬁlaxrﬂ =0 (zn > 0),
n—1

> & (€ wn) + Dptin (€, 20) =0 (2, > 0),
j=1

M(€,0) + (¢, 0) = d(€',0),
#(Dnij(§',0) +i;in(€',0)) = 0,
20Dy (€,0) — B(E',0) + (cg + co A%)i) = 0, (7.7)

where j runs through 1 to n — 1 in the 1st equation and 5th equation. Setting
hi(€,0) =0 (j=1,...,n—1) and h,(¢,0) = (c; + c, A?)7(¢',0) in (4.16), by
(4.20), (4.21) and (4.22) we have

(A% + B?)e”Ammig;
n(B - A)D(A, B)
2ABe~Ponig;
n(B —A)D(A, B)
A(A? + B2)e~ A
n(B - A)D(A, B)

2A3¢~Bzn
W(B—A)D(A,B)'
(A+ B)(A2% + B2?)e~Aon
D(A, B)

(& an) = — (g + coA?)i(E',0)

(cg + caA)i(€, 0), (7.8)

ﬁn(§/79€n) = (cg +CGA2)77(§I70)

CQ + CO-AQ)ﬁ(f/’ O)a (79)

é(flv xn) -

(cg + ca A%)AI(E',0). (7.10)
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Therefore, combining the 4th equation in (7.7) and (7.9) we have

p~'D(A, B)

md(&l’ 0), (7.11)

n(¢',0) =
where we have set

L(A,B) = (B — A)D(A, B) + u~2A(cy + ¢, A?)
= (A% 4+ B?)? —4A°B + % A(cy + ¢, A?). (7.12)

Let ¢(x,,) be a function in C*°(R) such that ¢(x,) = 1 when z,, < 1 and ¢(z,) =0
when z,, > 2 and in view of (7.11) we set

1(z) = p(n) Fe!

1 _Ax
K D(A>B)e s / /
0] @), (7.13)
Moreover, we define Y (z,t) by the formula:

p'D(A, B)e=A®n
(A+ B)L(A, B)

Y(x,t) = p(xn) L5 T { ZLZFD](¢,0, /\)} (2',t), (7.14)

where D is a given function in (7.6). We show the following lemma.

LEMMA 7.1. Letl <p,q< oo and 0 < e < m/2. Then, there exists ayp > 1
depending on € such that the following assertions hold true:

(1) If A€ Xey, and d € WZ(RT), thenn e W2 (RY) and

|)‘|||77||W§(R1) + ||77||W§’(Ri) < Cn,q,e,vo”dHW(f(Ri)v

|/\|3/2||n||wg(R1) < Cn,q,e,vo\)\|1/2Hd||wg(R1)-

(2) If D € Lyoo(RW2(RL)), then Y € Lyoq,(RW2(RL) N Wi (R,

W2(R?)) and

,0,7%

e 0% )l mwz e + eVl rwp )

= Cnm,qﬁo||677tD||Lp(R7Wq2(Ri))

for any v < 70 If D € HYS. (R,WXH(RL)), then Y € Hoy (R,WL(R™L))

P,0,7% P,0,7%
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and
le™ AY2Y | mwacrny < Crpanolle™ DDl mwi )y

for any v > vo.

For a while we assume that Lemma 7.1 holds true. In view of (7.8), (7.9)
and (7.10), setting z(x) = (¢, — co A')n(z), we define u(z), f(z) and f(x) by the

formulas:

wio) = -7 U B o) o)
a

2ABe~Brnig; , ,
0@

([A(A? + B?)e=Awn /
D = [mB o €0 )

1 2 A3~ Brn - /
[M(B - A)D(AB)Z(f 70)} ("),

ar—

_ng

2 2 e—Awn
o) = 7 | LEEEE I 0 o)

By the observations in Section 6 and Lemma 7.1 we have

u(z) € W2(RL)", 0 € W)(RY),
(v, A2V, V2U,V9)HLq(R1)

< Crgrerol| (V2 22 |1, (mn) < Crgenolldllwz(rr)

for any \ € %, ,,, where we have used the fact that |A\|*/? < |\| when A € % .
Moreover, (u,n, ) solves the problem (7.5).

And also, setting Z(x,t) = (¢g — c;A")Y (2,t) we define U(z,t) and O(z,t)
by the formulas:

Uj(,t) = =2 75" {W e trig LFZ }(g’,o,x)] (',1t)

(B~ A)D(A, B)

2ABe~Bnig;
u(B— A)D(4, B)

+27 7" [ ZLFZ)(¢,0, )\)] (z',1),
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A(A? + B?)e~Am
n(B = A)D(A, B)
2A3¢—Ben
#(B— A)D(A, B)
(A + B)(A2 + B?)e Awn
D(A, B)

Uatot) = 257 | 2F12)€ 0] (1)

705 27121030

O(z,t) = L\ T [ ff[Z](g’,O,/\)} (', 1).

By the observations in Section 6 and Lemma 7.1 we have

U € Ly o (RWERL)™) NWho ., (R Ly(RL)™), © € Lyo, (R, WHRY)),
e~ (U AU AY3VU, V20, VO) |, 1y

< Cnpaio He—vt(vz’ A}y/QZ)HLP(Rqu(Ri)) < CPJL"/OHe_’YtDHLP(R,WqZ(RQ‘_))
for any v > 79, where we have used the fact that
He_th#/QZHLp(R,Lq(Ri)) < Cwﬂ_mHe_thHLp(R,Lq(RK)) (y=v=21)
which follows from Theorem 2.4 and the inequalities:
(7O (IA2PATH] < Cy 2 (A =7 +ir € By, £=0,1).
Moreover, (U,0,Y) solves the problem (7.6). Therefore, to complete the proofs

of Theorem 1.3 and Theorem 1.4, it is sufficient to prove Lemma 7.1.
To prove Lemma 7.1, we start with the following lemma.

LEMMA 7.2. Let0 < e < /2. Then, there exists a yo > 1 depending only on
€, Cq, Co and p such that for any X\ € S ,, any & € R" "\ {0}, any multi-index

o =(ag,...,an_1) € NS“I and ¢ = 0,1 we have

| D {(r0:) L(A, B) "1}
< Careron(MA2 + A) + Aleg + ¢, A7) AT (7.15)

PrROOF. When ¢ = 0, the assertion was proved by Shibata and Shimizu [35].
Since

0,L(A,B)™' = —L(A, B) %iu(2(A* + B?) — A3B™1),
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by the Leibniz rule, Lemma 5.2 and (7.15) with £ = 0 we have
D (10, L(A, B)‘l)‘
<Copllrl ‘D?,/L(A, B)—lHDgfL(A, B)—l}
B4~ +6'=a!
: ’Dg,(2(A2 +B?) - A3B*1)‘

< Coreran NN + 4)2 + Afcy + ¢, A7)} 72471

< Corerou{ N2 + A)2 + Aley +c, A7)} AT,
which completes the proof of the lemma. O

A PROOF OF LEMMA 7.1. Let n and Y be functions defined in (7.13) and
(7.14). To estimate An and (Y;,7Y), using the identity:

(A+ B)L(A,B) = A\u"'D(A, B) + A(A + B)u%(cy + c, A?),

we write

o) = el { 3 5 e (e 0)] )

- [l et s i 0] ),

Y(z,t) = w(mn){f)\lyg/l {ie‘A‘”"EQ[D]@’ﬂ, )\)} (2',t)

— 7 {‘W@Amnzﬁ[p](g', 0, )\)} (o, t)}.
(7.16)
We set
() = K@), K@) = F* e d(€,0)] (+'),

Le-1e o 210)(¢ 0, )\)} (2 1)

Yi(et) = 2 70 {A

=27 | SZIKIDL 0,01 0| 0 (7.17)
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By Lemma 5.3 and Fourier multiplier theorem of S. G. Mihlin, we have

sup [[K1d]( 2n)llzy (re) < €

0z, (rr—1), (7.18)

where L,(R" ') is the usual L, space of functions with respect to z’ =
(z1,...,Tn—1) variables. By Theorem 2.4 we have

e (DyY1, Y1) (-, @, 1) ||LP(R,Lq(R"_1))

S OPHeiﬂwK[D('vt)]('7xn)HLP(R,Lq(Rn—l))a

H(W(Aiﬂyl)(" Tn,t) HLP(R,Lq(Rn—l))

< Gylle " KI(AY2D)(-, 1)), (7.19)

W, oz, me-)

for any v > 0. Combining (7.19) and (7.18), we have

sup ||€77t(DtY13’yY1)('axn7t)

Ty >0 ||LP(R’LQ(R"71))

< vaquﬂtD('vO’ ')HLP(R,Lq(R”*l))’

sup ||6 7t A3/2Yl)(~,xn,t)
T, >0

< Gyl (A2D)(0

Iz, (rz, o)

’.)HLP(R?LQ(Rnfl))' (7.20)

To estimate the derivatives of K|[d], by a trick due to Volevich we write

n—1

Kl = - [ 7 et (Siga) # 0l )
0 =1
+ ZDAE )| @) o
Therefore, for j,k=1,...,n — 1 we have

o n—1
D, K[d)(z) = — /O Tt {A —AEntYn) (g A (Z (i& A™N).F[Ded) (€, yn)

=1

+ FDud)(E, y>)} (&) dyn,
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D, K[d)(z) = /0 h ﬁg/l[ @ntun) <; & A™Y).F[Dyd) (€', yn)

f{Dndmcyn)ﬂ (&) dyn,

D;DyK[d|(z) = — / g@l{Ae—f“@ﬁyn)(i@A—l)
0

<n
n—1

D;D,K|d)(z) = /0 h Fat [AeA(I"“’") < > (& A™N)F[D;Ded) (€' yn)

{=1

1

(6, A~)) Z (D Ded) (€', ya) + F[DrDod) (€, y>)] (&) dyn,

~
l

1

FID;Du€ ) ) | () i
DiK[dux):—/O“,,@g,l[ Aatyn) Z e

(LA DD (€' 20) + F DDl ) | )

=1

Since ;A7 € My ¢ ., applying Lemma 5.4, we have
IV K[d]lL,r) < CrgllVidllL,mn) (7.21)

for £ = 1,2 where V'd = Vd. Aplying (7.21) to the formulas of 7, (z) and Y;(z,t)
in (7.17) and using Theorem 2.4 for the estimate of Y7, we have

\)\|1+5||V771HLQ(R¢) < Cog APVl 1, (r7) (s =0,1/2),
AV, () < ConalI V2, r)- (7.22)
€V DY AV 1, ) < Cralle VD1, )
He_"’tV1\3/2Y1

HLP(R,LQ(R")) < vaqHe_WVAyQDHL,J(R,Lq(R"))’

le™ V2D Y1, V1)1, (RoLy () < Coglle™ " VDIl (rL, ). (7-23)

In view of (7.16), we set
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—2 UA2 _ 3/ el /
a(r) = —F; ! [%Ae A (e ,0)} (),

_Q(Cg + CUAZ)

Ya(z,t) = =& ' Fo [” AL(AB) Ae—A%gy[D](g',o,A)](x’,t),

and then 7(z) = @(zn)(m(z) +72(x)) and Y (2, 1) = p(zn)(Y1(2,1) + Ya(2,1)). By
using a trick due to Volevich, we write

L(A,B)
X TR (ey + co A2)(i6A7Y)
+Z/ T { L(A, B)

- Aem Ao tun) ZDyd) (¢ yn>] (z") dyn.

e o] -2 2
o) = [ 7t | e ) gt 21Dl )| @)

Lemma 7.2 and Lemma 5.1 imply that the symbols: (¢, + ¢, A?)/(L(A, B)) and
((cg + o A%)(i&A™Y))/(L(A, B)) belong to M_1 5 ~,. Applying Lemma 5.7, we
have

) 1
N2 ln2llws (my) < Cragieno NIVl (r2) (A € Xeygr 8 =0, 2>,
le™ " (DeY2, 7Y2) L, (rwi (ry) < Crpaolle” " VDIl (L, r1)) (= 0),

e A Vel vy (ry) < Crpacrole™ VA Dl gy (72 70):
(7.24)

Moreover, for j,...,n — 1 we have

[e’e} -2 2
) _ -1 1Y (Cg + C‘TA ) —A(xn"ryn) . / /
ADma () = /0 7; [L( e FD; Dod)(€', y) | (27 dya

M =

. Ae—A(wn-&-yn)g‘[DjDed] (g” yn)} (x/) dyn,
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- 2(c + ey A)(i€n A1)
ADnte(® mZ: / Ze { L(A, B)

- Ae=A@n+v) 2D, D, d)(€, yn)} (") dyn

_ Z / - [ cg—l-c(gA’;g;ifmA_l)

¢,m=1

A FD, D€' )| o)

Lemma 7.2 and Lemma 5.1 imply that the symbols: ((¢y + ¢, A%)(i&n A7)/
(L(A, B)) belong to M_1 2. ~,. Applying Lemma 5.7, we have

IMIVZn2llz,rr) < Crgeno IVl Lyrn) (A € D),
le™ "V (DiY2,7Y2) |1, (R.2y(R)) < Crprao e V2D Ly (roLy (7)) (Y2 70)-
(7.25)

Noting that [|d(-,0)|z,(rm-1) < Cuglldllwz(rr), by (7.16), (7.18), (7.20), (7.22),
(7.23), (7.24) and (7.25) we have

Alnllwzrr) < Chgenolldlwz(ry) (A € Beq0)5
MNP0l mn) < Crgreno A2 Idllws g (A € Beq0)5
le™ " (Ye, Y )lz, (rwz(Ry ) < Crpanelle” " Dl (rwz(ry)) (v = 0),

He_%Ai/QY"LP(R,WL}(RL;)) < Cnm,qm)||e‘7tA§/2DIILP(R,W;(Rg)) (v > 0).

To estimate the 3rd spatial derivatives of 7 and Y, in view of (7.13) and (7.14),
we set

L [uiD(A, B)e=4n . '

—1 e—Azn
Ya(z,t) = L5 T [“(Aﬁ(gf()AvB) zy[p](g’,o,x)} (', 1).

Note that n(z) = p(z,)n3(z) and Y (z,t) = ¢(z,)Ys(x,t). Applying a trick due
to Volevich, we write
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o0 -1
73(2) /O Fe [m;%AeA”"*Wﬁ[d](f/,yn)]<x/>dyn

< M_lD(AvB) —A(zpn+yn ’ /
—/0 %F[Mwe Alnt )y[Dnd](ﬁ,yn)](w)dyn-

And then, for j,k=1,...,n — 1 we write

e “'D(A, B
DJDkT]g(Z‘) = /O 3‘}_/1 {MM_'_B)(L(;L)B)Ae_A(z"ﬂ’")f[DjDkd](f/vyn)} (l‘/) dyn

[T [ B
o (A+ B)L(A, B)

A=A ) (D, D, d) (€', ynﬂ (') dy,

_ ¥ o1 [nID(A, B)(i& A7)
Danng(ﬂ?)—Z/O 5‘2'1{ (A+ B)L(A, B)

. AeA(rn+yn)g[D£Dkd](§’,yn)] (") dyn

< _1D(A B) e~ Alwn+yn) . / !
+/0 5 [ e A o0 1D, D, )| ()

Dimla) =~ [ g | A g A e FIA A ) | @)

n1 oo p~1D(A, B)(i& A1)
+e§/0 «f%l[ (A+ B)L(A, B)

- Ae=A@ntyn) Z1D, D, d) (¢, yn)} (') dyp,.
Lemma 7.2, Lemma 5.2 and Lemma 5.1 imply that the symbols:

D(A, B) D(A, B)(i§;A™")  D(A, B)(i&A™")
(A+B)L(A,B)’ (A+B)L(A,B)’ (A+ B)L(A,B)

belong to M_1 5 ¢ ,, so that applying Lemma 5.7 we have

IV2n3llwi () < Cnigeno IVl mr) (A € o)

le™"" VY31, (rwi(r2) < Crgemolle” " V2D L (roL, 7)) (Y= 0),
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which completes the proof of Lemma 7.1. O
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