
c©2012 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 64, No. 2 (2012) pp. 489–506
doi: 10.2969/jmsj/06420489

Necessary and sufficient conditions for the existence

of an n-subtle cardinal

By Peter Barendse

(Received May 1, 2010)
(Revised Sep. 17, 2010)

Abstract. We extend the work of Abe in [1], to show that the strong

partition relation C → (n + 2)n+1
<-reg, for every C ∈ WNS∗κ,λ, is a consequence

of the existence of an n-subtle cardinal. We then build on Kanamori’s result
in [10], that the existence of an n-subtle cardinal is equivalent to the existence
of a set of ordinals containing a homogeneous subset of size n + 2 for each
regressive coloring of n + 1-tuples from the set. We use this result to show
that a seemingly weaker relation, in the context of Pκλ is also equivalent. This
relation is a new type of regressive partition relation, which we then attempt
to characterize.

1. Introduction.

Subtle cardinals were introduced in an unpublished manuscript of 1969 by R.
Jensen and K. Kunen, as part of a group of combinatorial large cardinal hypothe-
ses between weakly compact and measurable in consistency strength. The other
significant member of this group is the ineffable cardinals.

In 1975, J. Baumgartner published his monumental study of the n-subtle and
n-ineffable cardinals, where he proves a key lemma [3, Theorem 4.1] relating n-
subtle cardinals to indescribability, using it to reduce n-ineffable cardinals to a
sort of composition of n-subtle cardinals and indescribability. This line of study
is continued in [9] and [2].

In that study, Baumgartner also proved that both subtle and ineffable cardi-
nals have equivalent formulations in terms of a regressive partition relation and a
♦-like statement.

Around the same time as Jensen and Kunen were introducing subtle cardinals,
the study of strong combinatorial hypotheses on the structure Pκλ = {x ⊆ λ :
|x| < κ} began with the introduction of supercompact cardinals by Solovay and
Reinhardt, which are equivalent to the existence of a normal ultrafilter on Pκλ for
every λ ≥ κ. Soon after it was realized that the rich variety of strong combinatorial
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hypotheses on Pκλ was worth studying for its own sake.
The initial studies in this direction were done by Jech [8], Menas [12], and

Magidor [11] who found properly intertwined hierarchies with supercompactness
being the common limit. Although Jech, Menas, and Magidor had considered
regressive functions on Pκλ, they had used choice functions (f(x1, x2, . . . , xn) ∈
x1) for this. By the late 1980’s, the work of Carr and Pelletier [6], [4], [5] had
convinced most researchers that using f(x1, . . . , xn) < x1 where <=def {〈x, y〉 :
x ⊂ y and |x| < |y ∩ κ|}, was the “right” way to generalize regressive functions to
Pκλ.

While Carr and others found satisfying analogues of ineffable and weakly
compact cardinals in the Pκλ context, it was not so with subtle cadinals. In 2005,
Y. Abe gave a Pκλ version of subtlety which satisfies a key lemma analogous
to Baumgartner’s [1]. Unlike Carr’s analogues, however, Abe’s notion, called
“strongly subtle”, was in fact no stronger than subtle.

In Section 3, we prove that the generalization of Abe’s lemma to strongly
n-subtle yields a strong partition-theoretic consequence of n-subtlety, which may
be equivalent.

On the other hand, in [10], Kanamori had showed that the existence of a
n-subtle cardinal is actually equivalent to a weaker regressive partition relation
than that given by Baumgartner. In Section 4, we give an (ostensibly) weaker
condition for the existence of a n-subtle cardinal, involving a new type of partition
relation (“ordertype-regressive”) on Pκλ.

In the final section, we attempt to characterize this partition relation.

2. Preliminaries.

Our set theoretic terminology is standard: α, β, . . . stand for ordinals, while
κ, λ, . . . usually denote cardinals. Also, [X]n denotes the set of unordered n-tuples
from X.

We first introduce the partition relation and regressive partition relation for
cardinals and subsets of cardinals, which were first studied by Ramsey and ex-
tended into the transfinite by Erdős and Rado [7], who introduced the “arrow”
notation:

• A → (m)n
k means:

For all f : [A]n → k, there exists H ∈ [A]m homogeneous for f , i.e. there
exists a γ such that for every α1, α2, . . . , αn ∈ [H]n, f(α1, α2, . . . , αn) = γ.

This γ will be called “the color of H”.

• For a set A of ordinals, A → (m)n
reg means:
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For all f : [A]n → A such that f(α1, α2, . . . , αn) ∈ α1 (“f is regressive”),
there exists H ∈ [A]m homogeneous for f , i.e. there exists γ such that for all
α1, α2, . . . , αn ∈ [H]n, f(α1, α2, . . . , αn) = γ.

Again, this γ will be called “the color of H”.
We will also need the following notations and facts concerning ideals over κ:

Definition 2.1. An ideal I on κ is a subset of P (κ) satisfying:

( i ) ∀X(X ∈ I ∧ Y ⊆ X → Y ∈ I), and
( ii ) ∀X∀Y (X ∈ I ∧ Y ∈ I → X ∪ Y ∈ I).

Definition 2.2. An ideal I is κ-complete if it is closed under unions of size
< κ: ∀〈Xα : α < γ〉 ∈ [I]<κ,

⋃
Xα ∈ I.

Definition 2.3. An ideal is normal if it is closed under diagonal unions:
∀〈Xα : α < κ〉 ∈ [I]κ, ∇Xα

.= {β : ∃α < β(β ∈ Xα)} ∈ I.

Iκ denotes the ideal of bounded subsets of κ.
NSκ denotes the ideal of nonstationary subsets of κ (the dual of the club

filter). It is also the least normal ideal.
For any ideal I ⊆ P (κ), I∗ denotes the filter dual to I, and I+ the sets not

in the ideal. Using these notations, we can extend our partition relation notation
in two ways:

• I+ → (m)n
k means:

For all X ∈ I+, X → (m)n
k .

And also:

• A → (J+)n
k means:

For all f : [A]n → k, there exists H ∈ J+ homogeneous for f , i.e.
∃γ(∀α1, α2, . . . , αn ∈ [H]n, f(α1, α2, . . . , αn) = γ).

These notations can also be used with the regressive partition relation. For
example, Fodor’s theorem is expressible as: “I is normal iff I+ → (I+)1reg”.

For every one of the combinatorial properties P we will define for κ in this
paper, we say that X ⊆ κ has property P if the same sentence holds with κ

replaced by X. Also, if κ has one of these properties P, then the corresponding
ideal I of sets not having the property P will generally be proper, κ-complete, and
also normal.

In his seminal paper [3], Baumgartner studied the n-subtle cardinals, gener-
alizations of the subtle cardinals introduced by Kunen and Jensen. There Baum-
gartner showed that n-subtle cardinals have equivalent characterizations in terms
of regressive partition relations and a ♦-like statement:
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Definition 2.4. κ is n-subtle iff:

( i ) NS∗κ → (n + 2)n+1
reg (i.e. ∀C ∈ NS∗κ, C → (n + 2)n+1

reg ).
( ii ) NS∗κ → (γ)n+1

reg , for any γ < κ.
(iii) ∀C ∈ NS∗κ,∀〈Sα1,...,αn

: α1 < · · · < αn < κ〉 where Sα1,...,αn
⊆ α1, ∃β1 <

· · · < βn+1 all in C satisfying Sβ2,...,βn+1 ∩ β1 = Sβ1,...,βn .

3. Subtlety in the Pκλ context.

To get large cardinals beyond measurable cardinals, set theorists entertained
elementary embeddings j : V → M in which M is closed under ever longer se-
quences. This led to the notions of λ-compactness and λ-supercompactness, the
latter of which turned out to have a characterization analogous to measurability,
in terms of normal ultrafilters on the set Pκλ = {x ⊆ λ : |x| < κ}.

This prompted the consideration of various Pκλ-generalizations of the par-
tition relations and ♦-like statements which had been considered for cardinals.
However, each cardinal notion can be generalized in multiple ways, and the equiv-
alences which were found between partition relations and ♦-like statements on
cardinals often do not carry through to Pκλ. The result is that we have a much
more muddled picture for these two-cardinal notions.

Some partition-theoretic large cardinal axioms have obvious Pκλ generaliza-
tions which reflect most of the properties of the cardinal version. In the case of
weakly compact and n-ineffable, these analogues are called Partn(κ, λ) and λ-n-
ineffable, and they form a properly intertwined hierarchy with λ-supercompactness
(see Menas [12]). In contrast, as we will see, the notion of a subtle cardinal is not
so easily generalized to the Pκλ context.

We first define the basic notions of the κ-complete and normal and the well-
known bounded and nonstationary ideals, which behave very much like the corre-
sponding notions for subsets of cardinals.

Definition 3.1. An ideal I on Pκλ is a subset of P (Pκλ) satisfying the
same conditions (i) and (ii) for ideals on cardinals.

The definition of κ-completeness for these ideals is also identical.

Definition 3.2. An ideal I is fine if ∀α ∈ λ({y : α /∈ y} ∈ I).

The first two fine ideals we define are analogous to the ideals Iκ and NSκ on
κ, defined earlier:

Definition 3.3. Iκ,λ = {X ⊆ Pκλ : ∃y ∈ Pκλ∀x ∈ X(y * x)} is the set of
bounded subsets of Pκλ, and
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NSκ,λ = {X ⊆ Pκλ : ∃C(C is club ∧ C ∩X = ∅)}

where a set X ⊆ Pκλ is called club if it is:

( i ) unbounded: ∀x ∈ Pκλ,∃y ∈ X(x ⊆ y), and
( ii ) closed: for every chain in X x0 ⊆ x1 ⊆ · · · ⊆ xα ⊆ · · · of length < κ,⋃

xα ∈ X.

Thus NSκ,λ denotes the set of non-stationary subsets of Pκλ. It is also the
least normal ideal on Pκλ ([4]):

Definition 3.4. An ideal I is normal if it is fine and closed under diagonal
unions: ∀〈Xα : α < λ<κ〉 ∈ λI, ∇Xα

.= {x : ∃α ∈ x(x ∈ Xα)} ∈ I.

Normality is again equivalent to the regressive partition relation I+ → (I+)1reg
(this is the Pκλ version of Fodor’s theorem). Here, the subscript “reg” means we
are quantifying over all functions such that f(x) ∈ x,∀x ∈ Pκλ.

In the early 1970’s, Menas proved that the most obvious generalization of
subtlety to the Pκλ context is a consequence of subtlety in the cardinal context
(for the case n = 1):

Definition 3.5 ([12]). X ⊆ Pκλ is λ-subtle if ∀C ∈ NS∗κ,λ,∀〈Sx : x ∈ Pκλ〉
where Sx ⊆ x, ∃x ( y both in C ∩X such that Sy ∩ x = Sx.

Theorem 3.6 ([12]). ∀λ ≥ κ, if κ is subtle, then κ is λ-subtle.

Here, we use the convention “κ is λ-subtle” to mean that Pκλ is λ-subtle
(and thus the corresponding ideal is proper). A similar convention is used for any
property of subsets of Pκλ. The converse of this theorem is not true, as noted by
Usuba [13], but the exact consistency strength of its negation is not known.

A relatively straightforward generalization of the proof given in [3] gives a
partition relation sufficient for λ-subtlety analogous to that for subtlety:

Theorem 3.7. X ⊆ Pκλ is λ-subtle if ∀C ∈ NS∗κ,λ, C ∩X → (3)2reg.

Prior to the 1980’s, researchers in set theory had generalized “regressive”
functions to the Pκλ setting as choice functions, so

f(α1, . . . , αn) < α1 and Sα ⊆ α were generalized to:

f(x1, . . . , xn) ∈ x1 and Sx ⊆ x.

As various conjectures about these generalizations languished unsolved, a new
generation of set theorists, beginning with Donna Carr [4], [5], began using the
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ordering <=def {〈x, y〉 : x ⊂ y and |x| < |y ∩ κ|} on Pκλ, investigating the
“<-regressive” notions

f(x1, . . . , xn) < x1 and Sx ⊆ Pκxx,

where κx
.= |x ∩ κ|, and so Pκx

x
.= {z : z < x}.

Thus, “Pκλ → (n + 1)n
<-reg” means:

For all f : [Pκλ]n< → Pκλ such that f(x1, x2, . . . , xn) < x1, there is a chain
H = {x1, x2, . . . , xn+1} such that ∀i ≤ n, xi < xi+1, and ∃γ(∀{x1, x2, . . . , xn} ∈
[H]n<, f(x1, x2, . . . , xn) = γ) (i.e, H is homogeneous in color γ), where [X]n<

.=
{{x1, x2, . . . , xn} ∈ [X]n : x1 < x2 < · · · < xn}.

Note that whenever we seek a “homogeneous” set of finite size in the Pκλ

context, we necessarily mean a homogeneous chain, since any antichain trivially
satisfies the homogeneity condition.

These ideas also led naturally to a new version of “normality”:

Definition 3.8. An ideal I ⊆ P (Pκλ) is called strongly normal if:

∀〈Xx : x ∈ Pκλ〉 ∈ PκλI, ∇<Xα
.= {x : ∃y < x(x ∈ Xy)} ∈ I.

There is also the following generalization of Fodor’s lemma, and a minimal
strongly normal ideal:

Theorem 3.9 ([6]). I is strongly normal iff I+ → (I+)1<-reg.

If f : Pκλ → Pκλ, let Cf = {x ∈ Pκλ : f“Pκxx ⊆ Pκxx}. Then:

WNSκ,λ = {X ⊆ Pκλ : X ∩ Cf = ∅ for some f : Pκλ → Pκλ}

is the least strongly normal ideal on Pκλ. It is proper iff κ is Mahlo or κ = ν+,
with ν<ν = ν [6].

Using these ideas, Abe in 2005 [1] defined a stronger version of subtlety for
subsets of Pκλ, called “strongly subtle”. Abe then showed this property is equiv-
alent to subtlety for cardinals. We now generalize this definition and theorem to
arbitrary n-tuples. Note that “strongly 1-subtle” is just Abe’s “strongly subtle”.

Definition 3.10. κ is λ-strongly n-subtle (or just strongly n-subtle, if the
value of λ is clear) if ∀C ∈ WNS∗κ,λ,∀〈Sx1,...,xn : x1, . . . , xn ∈ [Pκλ]n<〉 where
Sx1,...,xn

⊆ Pκx1
x1, ∃H ∈ [C]n+1

< such that Sx1,...,xn
= Sy1,...,yn

∩Pκx1
x1, whenever

x1, . . . , xn and y1, . . . , yn are both in [H]n<, and x1 < y1 or x1 = y1.
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Theorem 3.11. For all λ ≥ κ and n < ω, κ is λ-strongly n-subtle if κ is
n-subtle.

The proof is a straightforward generalization of Abe’s proof for the case n = 1
(Theorem 2.6, Proposition 2.7 in [1]).

In the same paper, Abe also proves a Pκλ version of the key lemma of Baum-
gartner relating subtlety and indescribability. To describe this lemma, we first
need a Pκλ -definition of indescribability. For this, we need an appropriate model
to do the “describing”, which is one whose universe of discourse is essentially “Vλ

up to κ”, or the sets in Vλ of size (hereditarily) less than κ, defined as follows:

( i ) V0(κ, λ) = λ

( ii ) Vα+1(κ, λ) = Pκ(Vα(κ, λ)) ∪ Vα(κ, λ)
(iii) Vα(κ, λ) = ∪β<αVβ(κ, λ), for any limit ordinal α ≤ κ

Definition 3.12 ([3]). X ⊆ Pκλ is Πm
n -indescribable iff for every sentence

φ (of type Πm
n ), and every R ⊆ Vκ(κ, λ), if 〈Vκ(κ, λ),∈, R〉 |= φ, then there exists

an x ∈ X such that |x ∩ κ| = x ∩ κ and 〈Vκx(κx, x),∈, R ∩ Vκx(κx, x)〉 |= φ.

The ideal of non-Πm
n -indescribable subsets of Pκλ is denoted Πm

n , as it is for
the cardinal version of indescribable. The difference between these notions/ideals
and the indescribability mentioned earlier (for cardinals and subsets of cardinals)
will always be clear from the context.

Lemma 3.13 ([1]). If X ⊆ Pκλ is strongly subtle and Sx ⊆ Pκxx for all
x ∈ Pκλ, then {x ∈ X : {y ∈ X ∩ Pκxx : Sy = Sx ∩ Pκyy} is not Πn

m-indescribable
for some n,m (as a subset of Pκx

x)} is not strongly subtle.

Again, Abe proves only the case for strongly 1-subtle, but his proof may
possibly be generalized to any n < ω by following Baumgartner’s original proof
for n-subtle subsets of κ:

Conjecture 3.14. If X ⊆ Pκλ is strongly n-subtle and S = 〈Sx1,...,xn ⊆
Pκx1

x1 : x1, . . . , xn ∈ [Pκλ]n<〉. Let Y = {x ∈ X : ∀H ⊆ Pκx
x such that H is

homogeneous for S, H is not Πn
m-indescribable, for some n,m}. Then X \ Y is

not strongly n-subtle.

where “H is homogeneous for S” means Sx1,...,xn
= Sy1,...,yn

∩ Pκx1
x1, whenever

x1, . . . , xn and y1, . . . , yn are both in [H]n<, and x1 ≤ y1.
Using this lemma, we now prove that a strong regressive partition relation

on Pκλ is also implied by subtlety. The reader can verify that, if the above
conjecture holds, then we may change subtle to n-subtle and 2 to n + 1 in the
following theorem:
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Main Theorem 1. If X ⊆ Pκλ is strongly subtle then ∀C ∈ WNS∗κ,λ, C ∩
X → (3)2<-reg.

Proof. Assume X is strongly subtle. Let f : [Pκλ]2< → Pκλ be a <-
regressive function, i.e. ∀〈x, y〉 ∈ [Pκλ]2<, f(x, y) < x. Define fy : Pκy

y → Pκy
y by

fy(x) = f(x, y).
Let p : [λ]2 → λ be any injective function, and set

C
.= {x ∈ Pκλ : p“[x]2 ⊆ x}.

If y0 ∈ Pκλ, then recursively define, for each i ∈ ω, yi+1 = yi ∪ p“[yi]2.
So for any α < β both in yω =

⋃
i<ω yi, α and β are both in yi for some i,

and so p(α, β) ∈ yi+1. Since κ is subtle, and hence regular and uncountable,
yω ∈ Pκλ. Therefore yω ∈ C, proving that C is unbounded. C is obviously closed,
so C ∈ NS∗κ,λ. Also note that by the same reasoning, C∩Pκy

y ∈ NS∗κy,y, whenever
y ∈ C and cf(κy) > ω.

Define ot(x) to be the ordertype of x as a set of ordinals, well-ordered by ∈.
In what follows, if x < y are both in Pκλ, then for each i < ot(y), define yi to
be the ith element in y, and xi to be the ith element in x, if x has an ith element,
and to be the first (least) element of x, otherwise.

Now define φ : [Pκλ]2< → Pκλ by:

φ(x, y) =
{
p(xs(i), ys(i)) : i < ot(y)

}
,

where s(i) = i + 1 if i < ω and s(i) = i otherwise.
We claim that φ is injective: Assume φ(x′, y′) = φ(x, y). Since |x| < |y|,

there will be exactly one ordinal which equals xi for multiple i (for i = 0 and
ot(x) < i < ot(y)), and similarly with x′. So, using the injectiveness of p, x0 = x′0.
Also using the injectiveness of p, it is easy to see that the other elements of x and
x′ are the same, as well as the elements of y and y′. So by extensionality, x′ = x

and y′ = y.
Note for every y ∈ C, φ“[Pκyy]2 ⊆ Pκyy. We therefore define Sy = φ“fy for

all y ∈ C (and Sy = ∅, otherwise).
By Abe’s Lemma, Y = {y ∈ X : {x ∈ Pκy

y : Sx = Sy ∩ Pκx
x} is not

totally indescribable in Pκy
y} is not strongly subtle. So, X \ Y = {y ∈ X : {x ∈

Pκy
y : Sx = Sy ∩Pκx

x} is totally indescribable in Pκy
y} is strongly subtle (totally

indescribable means Πn
m-indescribable for every m,n ∈ ω). Let y ∈ (X \ Y )

∩C ∩ {y : κy is a strongly inaccessible cardinal}. (This last set is in WNS∗κ,λ [6],
so the intersection is nonempty since the non-strongly subtle sets form a strongly
normal ideal). Let Zy = {x ∈ Pκy

y : Sx = Sy ∩ Pκx
x} ∩ C, so Zy is totally
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indescribable in Pκy
y, and so in particular is in WNS+

κy,y since the non-totally
indescribable sets form a strongly normal ideal.

Now let gy : Zy → Pκy
y be given by gy(x) = f(x, z) for some (any) z ∈ Zy

such that x < z. gy is evidently <-regressive, and is well-defined: Such a z exists
since κy is a strongly inaccessible cardinal. If z and z′ are two such members of
Zy, then since Sz = Sy∩Pκz

z, Sz′ = Sy∩Pκz′ z
′, and x is in both Pκz

z and Pκz′ z
′,

we get that φ(x, f(x, z)) ∈ Sz and φ(x, f(x, z′)) ∈ Sz′ are both members of Sy.
Thus, φ(x, f(x, z)) = φ(x, f(x, y)) = φ(x, f(x, z′)). But φ is injective, so z′ = z

and f(x, z) = f(x, y) = f(x, z′).
Finally, we apply the fact that Zy ∈ WNS+

κy,y and the strong version of Fodor’s
lemma to get a subset Hy ∈ WNS+

κy,y homogeneous for gy. So, ∀x ∈ Hy∀z ∈ Hy,
if x < z, then gy(x) = gy(z), and by the inaccessibility of y, ∃z′ > z such that
z′ ∈ Hy also. So f(x, z) = f(x, z′) = f(z, z′), meaning {x, z, z′} is a homogeneous
chain for f . ¤

Remark 3.15. A stronger conclusion has actually been derived: We always
find not just a homogeneous chain of length n + 1 for every <-regressive coloring
of [Pκλ]n<, but a homogeneous set which is in WNS+

κy,y, for many y ∈ Pκλ (at
least WNS+

κ,λ many). In particular, we will always get a homogeneous chain of
any length γ < κ.

The converse of Main Theorem 1 is also true, as Usuba notes:

Theorem 3.16 ([13]). If ∀C ∈ WNS∗κ,λ, C ∩X → (3)2<-reg, then X ⊆ Pκλ

is strongly subtle.

Proof. Let 〈Sx ⊆ Pκx
x : x ∈ Pκλ〉, and C ∈ WNS∗κ,λ. We may assume

that either ∀x ∈ X(∅ ∈ Sx) or ∀x ∈ X(∅ /∈ Sx). Define f : [C ∩X]2< → Pκλ by:

f(x, y) =

{
an arbitrary element of Sx4(Sy ∩ Pκx

x) if Sx 6= Sy ∩ Pκx
x

0 else
.

Note that by our assumption, f(x, y) 6= ∅ whenever the first clause applies.
By the premise, we obtain x < y < z forming a homogeneous set for f . If
f(x, y) = f(x, z) = f(y, z) = ∅, then Sx = Sy ∩ Pκx

x and we are done. If
f(x, y) = f(x, z) = f(y, z) = a 6= ∅, then either we have a ∈ Sx \Sy, in which case
a ∈ Sz \ Sy and so a ∈ Sx ∩ Sz, or we have a ∈ (Sy ∩ Pκxx) \ Sx, in which case
a ∈ Sy \ Sz and so a /∈ Sx ∪ Sz. Either case is a contradiction. ¤

In the case X = Pκλ, collecting these results together with Abe’s (Theorem
3.11 above) yields:
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Theorem 3.17. The following are equivalent :

( i ) κ is subtle.
( ii ) WNS∗κ,λ → (3)2<-reg for every λ ≥ κ.
(iii) κ is λ-strongly subtle for every λ ≥ κ.

4. A minimal condition for the existence of a subtle cardinal.

In [10], Kanamori proved that the existence of an n-subtle cardinal is a con-
sequence of the existence of a cardinal κ containing a homogeneous subset of size
n + 1 for each regressive coloring of [κ]n, instead of a homogeneous subset of each
club subset of κ. In other words, one could remove the quantification over all
club sets in the statement of “there exists an n-subtle cardinal”, and still have a
proposition which is just as strong. The only other change necessary is to exclude
0 and 1, since these would trivially yield a homogeneous set.

The following is essentially Kanamori’s theorem:

Theorem 4.1. For all n ≥ 2, If κ is the least cardinal such that (κ \ 2) →
(n + 1)n

reg, then κ is (n− 1)-subtle.

Given the current state of the literature, which mostly deals with choice-
regressive (reg) and <-regressive (< -reg) functions on Pκλ, one would naturally
try as a Pκλ analogue to Kanamori’s theorem something like one or more of the
following propositions:

Conjecture 1a. If κ is the least ordinal such that, for some λ > κ,
P[2,κ)λ → (n + 1)n

reg, then ∀C ∈ NS∗κ,λ, C → (n + 1)n
reg.

Conjecture 1b. If κ is the least ordinal such that, for some λ > κ,
P[2,κ)λ → (n + 1)n

<-reg, then ∀C ∈ WNS∗κ,λ, C → (n + 1)n
<-reg.

where P[γ,κ)λ
.= {x ⊂ λ : γ ≤ ot(x) < κ}.

It is necessary to exclude singleton sets and ∅ in Conjectures 1a and 1b,
as it was in Kanamori’s theorem, so that the premise is not merely a conse-
quence of ZFC, since if we include singleton sets then we are forced, for any x

containing as a subset some {α1, α2, α3, . . .} of ordertype ω, into f({α1}, x) =
0, and so (to avoid a homogeneous set of size 3) f({α1, α2}, x) = 1 and
f({α1, α2, α3}, x) = 2, etc. But now f({α1, α2, α3, . . .}, x) = n, for some n ∈ ω, so
{α1, α2, α3, . . . , αn+1}, {α1, α2, α3, . . .}, and x form a homogeneous chain of length
3. A similar chain of length n+1 can be constructed for any f with domain [Pκλ]n⊆
or [Pκλ]n<, where n ≥ 2.

However, in trying to prove these conjectures, an unexpected Pκλ-analogue
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of Kanamori’s threorem was found involving a heretofore unstudied notion of re-
gressiveness, although one which has equal claim to be the natural generalization
to Pκλ:

Definition 4.2. A function on [Pκλ]n is ordertype-regressive (otreg) if
∀x1, x2, . . . , xn ∈ [Pκλ]n such that x1 ( x2 ( · · · ( xn, f(x1, x2, . . . , xn) ∈ ot(x1).

Although it is easily seen for (choice) regressive functions that only those
partition relations with κ a cardinal need be considered, in the ordertype-regressive
setting it is not immediately obvious that the same applies. So, provisionally,
when we say Pκλ in the context of ordertype-regressive partition relations, we are
technically speaking of the set {x ⊆ λ : ot(x) < κ} (the fact that, when κ is a
cardinal, {x ⊆ λ : ot(x) < κ} = {x ⊆ λ : |x| < κ} justifies this overloading of the
notation).

4.1. Construction of jα
n .

In this subsection, we construct functions jα
n , for every ordinal α, n ∈ ω,

witnessing P[α,α+1)λ 9 (n + 1)n
otreg. These functions are used in the proof of the

main theorem in the following subsection.
Here P[α,γ)λ → (n+1)n

otreg is defined similarly to P[α,γ)λ → (n+1)n
reg, only the

quantification over all regressive (choice) functions f : [P[α,γ)λ]n⊂ → λ is replaced
by a quantification over all ordertype-regressive functions f : [P[α,γ)λ]n⊂ → γ.

To construct the functions jα
n , we construct jα

2 : [P[α,α+1)λ]2 → α con-
taining no homogeneous set of size 3, and set jα

n (x1, x2, . . . , xn) = jα
2 (x1, x2),

since if {h1, h2, . . . , hn+1} is a homogeneous set for jα
n , then it is immediate that

{h1, h2, h3} is homogeneous for jα
2 .

Whenever xi ( xj , define µij = min(xj \ xi) and εij = min(β ∈ xi : β > µij),
and let φ : α× α ↪→ |α| be any injection.

Define jα
2 (xi, xj) = φ(ot(xi ¹ µij), ot(xj ¹ εij)).

Theorem 4.3. jα
2 witnesses P[α,α+1)λ 9 (3)2otreg.

Proof. Let xi ( xj and ot(xi) = ot(xj) = α. We first show ot(xi ¹
µij) < α: If not, then µij is greater than every ordinal α ∈ xi, so that xj is an
end-extension of xi, which contradicts the assumption that they have the same
ordertype. So ot(xi ¹ µij) < α. This implies that εij exists. Since εij ∈ xi by the
definition, we have εij ∈ xj , hence xj ¹ εij cannot have ordertype α since it does
not contain εij itself. Therefore, jα

2 is well-defined, and jα
2 is ordertype-regressive

simply because it outputs a number less than |α| ≤ α = ot(xi).
Suppose that H = {x1, x2, x3} with x1 ⊆ x2 ⊆ x3 is a homogeneous set for



500 P. Barendse

jα
2 . Then by the injectivity of φ, ot(x1 ¹ µ12) = ot(x1 ¹ µ13) = ot(x2 ¹ µ23), and

ot(x2 ¹ ε12) = ot(x3 ¹ ε13) = ot(x3 ¹ ε23).
Therefore, x1 ¹ µ12 = x1 ¹ µ13. Also, x1 ¹ µ12 = x2 ¹ µ12, x1 ¹ µ13 = x3 ¹ µ13,

and x2 ¹ µ23 = x3 ¹ µ23 by the definition of µij . So, since ot(x1 ¹ µ12) = ot(x2 ¹
µ23), we have:

x3 ¹ µ13 = x1 ¹ µ13 = x1 ¹ µ12 = x2 ¹ µ12 = x2 ¹ µ23 = x3 ¹ µ23

The fact that x3 ¹ µ13 = x3 ¹ µ23 shows that µ13 = µ23, since both are
members of x3. So µ13 = µ23 < µ12 since µ23 ≤ µ12 by x1 ⊆ x2 ⊆ x3, and
µ23 6= µ12 since µ23 /∈ x2 and µ12 ∈ x2.

Now ε23 = µ12 since µ23 < µ12 and x2 ¹ µ23 = x2 ¹ µ12. So ε13 > ε23, since
ε13 ≥ ε23 by x1 ( x2 and µ13 = µ23, and ε13 6= ε23 = µ12 since ε13 ∈ x1 and
µ12 /∈ x1.

So ot(x3 ¹ ε13) > ot(x3 ¹ ε23) since ε23 ∈ x2 ⊆ x3. So jα
2 (x1, x3) 6= jα

2 (x2, x3),
using the injectivity of φ. So H is not homogeneous. ¤

4.2. The main theorem.
Main Theorem 2. If n > 1 and κ is the least ordinal such that, for some

λ > κ, P[2,κ)λ → (n+1)n
otreg, then (κ\2) → (n+1)n

reg (and so κ is (n−1)-subtle).

Proof. As in the proof of Kanamori’s theorem, we begin by noting that
κ > ω, i.e. P[2,ω)λ 9 (n + 1)n

otreg: Witness the ordertype-regressive function
f : [P[2,ω)λ]n → ω given by f(x1, x2, . . . , xn) = ot(x1)− 1. Since every xi is finite,
x1 ( x2 implies ot(x1)− 1 � ot(x2)− 1, so no chain of size n + 1 is homogeneous.

Also as in Kanamori’s proof, we can assume that, if we can always find a
homogeneous set, then we can always find a homogeneous set consisting only of
infinite sets:

Lemma 4.4. If P[2,κ)λ → (n + 1)n
otreg, then P[ω,κ)λ → (n + 1)n

otreg.

Proof. If f : [P[ω,κ)λ]n → κ witnesses P[ω,κ)λ 9 (n + 1)n
otreg, then we can

assume by renumbering the outputs < ω that f(x1, x2, . . . , xn) > 1 always.
Define f ′ : [P[2,κ)λ]n → κ by:

f ′(x1, x2, . . . , xn) =





ot(x1)− 1 if ot(xn) < ω

0 if |{i : ot(xi) ≥ ω}| is odd and /∈ {n, 0}
1 if |{i : ot(xi) ≥ ω}| is even and /∈ {n, 0}
f(x1, x2, . . . , xn) if ot(x1) ≥ ω
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Suppose x1 ( x2 ( · · · ( xn+1 is a homogeneous set for f ′. By the last clause,
we must have ot(x1) < ω, and by the first clause, we must have ot(xn+1) ≥ ω.
So, there exists j ≤ n such that ot(xj) < ω but ot(xj+1) ≥ ω. But now we have
f ′(x1, x2, . . . , xn) 6= f ′(x2, x3, . . . , xn+1):

The latter has one more argument xi such that ot(xi) ≥ ω than the former
(namely xn+1). So, either:

f ′(x2, x3, . . . , xn+1) = f(x2, x3, . . . , xn+1) > 1 (if ot(x2) ≥ ω), or

f ′(x2, x3, . . . , xn+1) = 0 < f ′(x1, x2, . . . , xn) = ot(x1)− 1 (if ot(xn) < ω), or

f ′(x2, x3, . . . , xn+1) = f ′(x1, x2, . . . , xn) + 1(mod2)

(if both fall under the second and third clauses).

So f ′ witnesses P[2,κ)λ 9 (n + 1)n
otreg. ¤

We are now ready for the main argument.
Let g : [κ \ ω]n → κ be any regressive function, and for all ξ < κ, let gξ :

[P[ω,ξ)λ]n → ξ be an ordertype-regressive function which witnesses P[ω,ξ)λ 9
(n + 1)n

otreg. We may assume (by doubling all finite outputs) that ran(g) and
ran(gξ) contain no odd finite numbers.

For the case n > 2, define an ordertype-regressive function f : [P[ω,κ)λ]n → κ

by:

f(x1, x2, . . . , xn)

=





g(ot(x1), ot(x2), . . . , ot(xn)) if ot(x1) < ot(x2) < · · · < ot(xn)

got(x1)+1(x1, x2, . . . , xn) if ot(x1) = ot(x2) = · · · = ot(xn) < κ

(or κ− 1 if it exists)

jκ−1
n (x1, x2, . . . , xn) if ot(x1) = ot(x2) = · · · = ot(xn) = κ− 1

type{ot(x1), ot(x2), . . . , ot(xn)} otherwise

where type {β1, β2, . . . , βn} = 3ψ15ψ2 · · · pψn−1
n , where pi is the ith prime, and

ψi =

{
0 if βi < βi+1

1 if βi = βi+1

.

Let H = {h1, h2, . . . , hn+1} be our hypothetical homogeneous set of color
η < κ.

If η is an odd finite number, then the fourth clause is used on every n-tuple
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from H. So, there exists i < n such that either:

ot(hi−1) < ot(hi) = ot(hi+1) or ot(hi−1) = ot(hi) < ot(hi+1)

In either case, by the unique decomposition into primes,

type{ot(h1), ot(h2), . . . , ot(hn)} 6= type{ot(h2), ot(h3), . . . , ot(hn+1)}.

So it must be the case that either

ot(h1) < ot(h2) < · · · < ot(hn+1) or ot(h1) = ot(h2) = · · · = ot(hn+1).

The latter case is impossible by the second and third clauses in the defi-
nition of f : If ot(hi) < κ − 1, it contradicts our assumption that got(hi)+1 :
[P[ω,ot(hi)+1)λ]n → ξ is an otreg function which witnesses P[ω,ot(hi)+1)λ 9
(n + 1)n

otreg. If ot(hi) = κ − 1, it contradicts the fact that jκ−1
n witnesses

P[κ−1,κ)λ 9 (n + 1)n
otreg.

Therefore, 1 < ot(h1) < ot(h2) < · · · < ot(hn+1), and, by the first clause, the
n + 1 ordinals {ot(h1), ot(h2), . . . , ot(hn+1)} form a homogeneous set for g. Since
g was an arbitrary regressive function, this shows that (κ \ 2) → (n + 1)n

reg.
For the case n = 2, we again let g : [κ\ω]2 → κ be any regressive function, and

∀ξ < κ, let gξ : [P[ω,ξ)λ]2 → ξ be an ordertype-regressive function which witnesses
P[ω,ξ)λ 9 (3)2otreg.

This time we consider the ordertype-regressive function h : [P[ω,κ)λ]2 → κ

defined by:

h(x1, x2) =





fe
κ(g(ot(x1), ot(x2))) if ot(x1) < ot(x2)

fo
ot(x1)

(got(x1)+1(x1, x2)) if ot(x1) = ot(x2) < κ

(or κ− 1 if it exists)

fo
ot(x1)

(jκ−1
2 (x1, x2)) if ot(x1) = ot(x2) = κ− 1

where fe
ν and fo

ν are bijections from ν to the even and odd ordinals less than ν,
respectively.

Let H = {h1, h2, h3} be our hypothetical homogeneous set, of color η. If η is
an odd ordinal, then ot(h1) = ot(h2) = ot(h3). This ordertype cannot be κ − 1
(if it exists), since that would contradict our theorem about jκ−1

2 , and cannot be
< κ− 1 either, since that would contradict our assumption about got(x1)+1. So it
must be that ot(h1) < ot(h2) < ot(h3).

Therefore, by clause 1, the three ordinals {ot(h1), ot(h2), ot(h3)} form a
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homogeneous set for g. Since g was an arbitrary regressive function, this shows
that (κ \ ω) → (3)2reg. ¤

Main Theorem 2 is analogous to Kanamori’s theorem, and Conjectures 1a/1b.
It seems natural to now ask about the quantified version of this partition relation,
NS∗κ,λ → (n + 1)n

otreg, and its relationship to n − 1-subtlety. A result in this
direction has been discovered by Usuba:

Theorem 4.5 ([13]). Suppose κ is not subtle but Pκγ is γ-subtle for some
γ > κ. If λ is the least such that Pκλ is λ-subtle, then NS∗κ,λ → (3)2otreg.

4.3. Consequences.
We now collect the equivalences resulting from Main Theorem 2:

Corollary 4.6. The following are equivalent :

( i ) P[2,κ)λ → (n + 2)n+1
otreg for some λ ≥ κ.

( ii ) P[2,κ)λ → (n + 2)n+1
otreg for every λ ≥ κ.

(iii) (κ \ 2) → (n + 2)n+1
reg .

(iv) κ ≥ the least n-subtle cardinal.

Proof. Main Theorem 2 says (i) → (iii), and Kanamori’s theorem (iii) →
(iv). To show that (iv) → (ii), note that if κ is greater than or equal to the
least n-subtle ordinal, λ ≥ κ, and f : [P[2,κ)λ]n+1 → κ is ordertype-regressive,
then let g : [κ \ 2]n → κ be defined by the values of f on the “central chain”
of initial segments of λ, i.e. let g(α1, . . . , αn) = f([0, α1), . . . , [0, αn)), whenever
2 < α1 < · · · < αn < κ. Then g is regressive (in the original sense). So, by
hypothesis, we have some H = {α1, . . . , αn+1} which is homogeneous for g. So
H ′ = {[0, α1), . . . , [0, αn+1)} is homogeneous for f . (ii) → (i) is trivial. ¤

Partition relations such as (i), (ii) and (iii) above posit a homogeneous set of
fixed type, i.e., one which is independent of κ, λ, or whatever set is the resource
(left side) of the partition relation. Such partition relations are generally upward
persistent in both κ and λ. Therefore we are interested only in the least κ, λ,
for which they are satisfied. In the case of (i), (ii) and (iii), we showed these are
κ = λ = the least n-subtle cardinal.

5. Characterizing otreg relations.

There is a close relationship between regressive partition relations on κ \ 2,
and ordertype-regressive partition relations on P[2,κ)λ; more so than with choice
regressive functions on P[2,κ)λ, it appears. This is in part because on any chain
C ⊆ P[η,κ)λ, an ordertype regressive function looks like a regressive function on
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the set {ot(x) : x ∈ C} ⊆ κ.
We now attempt to characterize the ordertype-regressive partition relation on

subsets of Pκλ. We first establish a strict upper bound on the size of homogeneous
sets we can expect:

Theorem 5.1. ∀n > 0,∀κ,∀λ > κ(Pκλ 9 (I+κ,λ)n
otreg).

Proof. As negations of partition relations are upward persistent in n, we
must only show the case n = 1. The ordertype-regressive function f : Pκλ → κ

given by:

f(x) =

{
sup{γ : γ ⊂ x} if x is not an ordinal

0 else

has no unbounded homogeneous set, because if H is a homogeneous set whose
color is any γ ∈ [1, κ), then no x ∈ γ̂ + 1 .= {x : γ + 1 ⊂ x} is in H, so H is not
unbounded. Also, any set which is homogeneous of color 0 cannot contain any
x ⊇ {κ}, since no ordinal member of Pκλ contains κ. ¤

As with all partition relations, if X → (I+)n
otreg and X ⊆ Y , then Y →

(I+)n
otreg, whether X and Y are subsets of κ or Pκλ. In particular, there is no

X ⊆ Pκλ such that X → (I+κ,λ)1otreg. This is another way of saying that no ideal
is “normal” in the ordertype-regressive sense, since for every X ⊆ Pκλ there is
an ordertype-regressive coloring of X with only homogeneous sets smaller than X

(bounded if X is unbounded, and of lesser cardinality if X is bounded). This is in
contrast to the choice-regressive and <-regressive partition relations, where this
“pressing down” process has fixed points (normal ideals) of NS+

κ,λ and WNS+
κ,λ,

respectively.

Question 5.2. If κ is n-subtle, what is the maximum “size” homogeneous
set (greater than n+2, yet bounded in Pκλ) we can be guaranteed to find for any
ordertype-regressive function on Pκλ?

To begin to answer this ill-defined question, we first realize that we can always
find a homogeneous chain of length γ, for any γ < κ: For any ordertype-regressive
coloring function f : Pκλ → κ, f ¹ κ is an ordinary regressive function. So, by
definition (ii) above of n-subtlety, there must be a homogeneous subchain of length
γ in the branch κ ⊂ Pκλ. Therefore we can add to our list of equivalences at the
end of the previous section:

(v) Pκλ → (γ)n+1
otreg, for every γ < κ0, where κ0 is the least n-subtle cardinal.

However:
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Lemma 5.3. If κ is the least n-subtle cardinal, then for any positive n,
Pκλ 9 (κ)n+1

otreg.

Proof. There must exist a regressive function f : [κ]n → κ for which
there is no unbounded homogeneous subset. Otherwise κ is an almost n-ineffable
cardinal, and many n-subtle cardinals exist below κ. (see [3]).

Now define an ordertype-regressive function g : [Pκλ]n → κ by:

g(x1, x2, . . . , xn)

=





2 · f(ot(x1), ot(x2), . . . , ot(xn)) if ot(x1) < ot(x2) < · · · < ot(xn)

0 if ot(x1) = ot(x2) = · · · = ot(xn)

type{ot(x1), ot(x2), . . . , ot(xn)} otherwise

Now suppose, for a contradiction, that H is a chain of length κ, homogeneous
for g. The color of H cannot be 0, since the ordertypes of elements in H are
cofinal in κ. The type function as in the proof of Main Theorem 2 prevents the
color of H from being an odd finite ordinal. Finally, if the color of H is 2 · γ, then
H ′ = {ot(x) : x ∈ H} is unbounded in κ, since it contains κ distinct ordertypes.
But then f ¹ [H ′]n = {γ}, contradicting our assumption about f . ¤

Further refinements on the answer to this question can probably be found
among the various generalizations of the basic partition relation. We mention one
possibility in particular, similar to the remark at the end of Section 2, since its
resolution may shed light on the relationship between the λ-subtle and λ-ineffable
ideals:

Conjecture 5.4. If λ ≥ κ ≥ the least n-subtle cardinal, then for any
ordertype-regressive function f : [P[2,κ)λ]n+1 → κ, γ < κ, and η < λ, there is a
homogeneous set isomorphic to some H ∈ NS+

γ,η.
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