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Abstract. We derive explicit and simple conditions which in many cases
allow one to decide, whether or not a Denjoy domain endowed with the
Poincaré or quasihyperbolic metric is Gromov hyperbolic. The criteria are
based on the Euclidean size of the complement. As a corollary, the main theo-
rem allows us to deduce the non-hyperbolicity of any periodic Denjoy domain.

1. Introduction.

In the 1980s Mikhail Gromov introduced a notion of abstract hyperbolic
spaces, which have thereafter been studied and developed by many authors. Ini-
tially, the research was mainly centered on hyperbolic group theory [8], but lately
researchers have shown an increasing interest in more direct studies of spaces en-
dowed with metrics used in geometric function theory [4], [6], [7], [21], [22].

One of the primary questions is naturally whether a metric space (X, d) is
hyperbolic in the sense of Gromov or not. The most classical examples, mentioned
in every textbook on this topic, are metric trees, the classical Poincaré hyperbolic
metric developed in the unit disk and, more generally, simply connected complete
Riemannian manifolds with sectional curvature K ≤ −k2 < 0.

However, it is not easy to determine whether a given space is Gromov hyper-
bolic or not. In recent years several investigators have been interested in show-
ing that metrics used in geometric function theory are Gromov hyperbolic. For
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instance, the Klein-Hilbert and Kobayashi metrics are Gromov hyperbolic (un-
der particular conditions on the domain of definition, see [5], [11] and [3]); the
Gehring-Osgood j-metric is Gromov hyperbolic; and the Vuorinen j-metric is not
Gromov hyperbolic except in the punctured space (see [9]). Also, in [12] the hy-
perbolicity of the conformal modulus metric µ and the related so-called Ferrand
metric λ∗, is studied.

Since the Poincaré metric is also the metric giving rise to what is commonly
known as the hyperbolic metric when speaking about open domains in the complex
plane or in Riemann surfaces, it could be expected that there is a connection
between the notions of hyperbolicity. For simply connected subdomains Ω of the
complex plane, it follows directly from the Riemann mapping theorem that the
metric space (Ω, hΩ) is in fact Gromov hyperbolic. However, as soon as simply
connectedness is omitted, there is no immediate answer to whether the space hΩ

is hyperbolic or not. The question has lately been studied in [1] and [13]–[20].
The related quasihyperbolic metric has also recently been a topic of inter-

est regarding the question of Gromov hyperbolicity. In [6], Bonk, Heinonen and
Koskela found necessary and sufficient conditions for when a planar domain D en-
dowed with the quasihyperbolic metric is Gromov hyperbolic. This was extended
by Balogh and Buckley, [4]: they found two different necessary and sufficient con-
ditions which work in Euclidean spaces of all dimensions and also in metric spaces
under some conditions.

In this article we are interested in Denjoy domains. In this case the result of
[6] says that the domain is Gromov hyperbolic with respect to the quasihyperbolic
metric if and only if the domain is the conformal image of an inner uniform domain
(see Section 3). Although this is a very nice characterization, it is somewhat
difficult to check that a domain is inner uniform, since we need to construct uniform
paths connecting every pair of points.

In this paper we show that it is necessary to look at paths joining only a
very small (countable) number of points when we want to determine the Gromov
hyperbolicity. This allows us to derive simple and very concrete conditions on when
the domain is Gromov hyperbolic. However, the main purpose of the results on the
quasihyperbolic metric is that they suggest methods for proving the corresponding
results for the hyperbolic metric, which is the main contribution of the paper. To
the best of our knowledge, this is the first time that Gromov hyperbolicity of any
class of infinitely connected domains has been obtained from conditions on the
Euclidean size of the complement of the domain. It means that we are relating
Euclidean conditions to properties of non-Euclidean metrics.

The main results in this article are the following:

Theorem 1.1. Let Ω be a Denjoy domain with Ω ∩ R = (−∞, 0) ∪
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⋃∞
n=1(an, bn), bn ≤ an+1 for every n, and limn→∞ an = ∞.

(1) The metrics kΩ and hΩ are Gromov hyperbolic if

lim inf
n→∞

bn − an

an
> 0.

(2) The metrics kΩ and hΩ are not Gromov hyperbolic if

lim
n→∞

bn − an

an
= 0.

In the case

0 = lim inf
n→∞

bn − an

an
< lim sup

n→∞
bn − an

an
,

which is not covered by the previous theorem, one can construct examples to show
that the metrics kΩ and hΩ may or may not be Gromov hyperbolic. In this sense
our result is optimal.

In this theorem the most relevant and difficult part is the second one, whereas
the first one is a kind of converse. Both of them joined even provide a char-
acterization when the limit exists. Consider the following example: Ω := C\
∪∞n=1{(log n)αnβAn} with limn→∞(log n)αnβAn = ∞; Theorem 1.1 gives directly
that Ω is hyperbolic if and only if A > 1.

The main difficulty in the proof is that it is impossible to determine the
precise location of the geodesics with these metrics (we do not even have an explicit
expression for the Poincaré density).

It is interesting to note that in the case of Denjoy domains many of the results
seem to hold for both the hyperbolic and the quasihyperbolic metrics. In fact, we
know of no planar domain which is Gromov hyperbolic with respect to one of these
metrics, but not the other.1

In the previous theorem, the boundary components have a single accumulation
point, at ∞, and the accumulation happens only from one side. It turns out that if
this kind of domain is not Gromov hyperbolic, then we cannot mend the situation
by adding some boundary to the other side of the accumulation point, as the
following theorem shows.

1After the completion of this paper, we have been able to prove that no such domain exists,
see [10, Theorem 4.6].
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Theorem 1.2. Let Ω be a Denjoy domain with (−∞, 0) ⊂ Ω and let F ⊆
(−∞, 0] be closed. If kΩ is not Gromov hyperbolic, then neither is kΩ\F ; if hΩ is
not Gromov hyperbolic, then neither is hΩ\F .

One might think that the assumption F ⊆ (−∞, 0] is superfluous; however the
following example shows that the conclusion is false in general when we consider a
closed set F not contained in the negative half axis: let Ω be as in Theorem 1.1(2)
and F := [0,∞). Then Ω is not hyperbolic, but Ω \F = C \F is hyperbolic, since
it is simply connected.

Theorem 1.2, in particular, allows to deduce the same conclusions as Theorem
1.1(2), removing the technical hypothesis (−∞, 0) ⊂ Ω.

If E0 is any closed set contained in the open set {z = x+iy ∈ C : x, y ∈ (0, 1)}
and Em,n := E0 + m + in, then it is clear that C \ ∪m,n∈ZEm,n is not Gromov
hyperbolic, since its isometry group contains a subgroup isomorphic to Z2 (a
non-hyperbolic group).

It might be reasonable to think that any periodic Denjoy domain is hyperbolic,
since its isometry group is (in the generic case) isomorphic to Z, which is a hyper-
bolic group. However, in the following example we prove the non-hyperbolicity of
any periodic Denjoy domain (as a direct consequence of Theorem 4.2):

Example 1.3. Let E0 ⊂ [0, t) be closed, t > 0, set En := E0 + tn for n ∈ N

or n ∈ Z, and Ω := C \ ∪nEn. Then hΩ and kΩ are not Gromov hyperbolic.

2. Definitions and notation.

By H we denote the upper half plane, {z ∈ C : Im z > 0}, and by D the
unit disk {z ∈ C : |z| < 1}. For D ⊂ C we denote by ∂D and D its boundary
and closure, respectively. For z ∈ D ( C we denote by δD(z) the distance to the
boundary of D, mina∈∂D |z − a|. Finally, we denote by c, C, cj and Cj generic
constants which can change their value from line to line and even in the same line.

Recall that a domain Ω ⊂ C is said to be of hyperbolic type if it has at least
two finite boundary points. The universal cover of such domain is the unit disk
D. In Ω we can define the Poincaré metric, i.e. the metric obtained by projecting
the metric ds = 2|dz|/(1 − |z|2) of the unit disk by any universal covering map
π : D −→ Ω. Equivalently, we can project the metric ds = |dz|/ Im z of the upper
half plane H. Therefore, any simply connected subset of Ω is isometric to a subset
of D. With this metric, Ω is a geodesically complete Riemannian manifold with
constant curvature −1, in particular, Ω is a geodesic metric space. By λΩ we
denote the density of the Poincaré metric in Ω, i.e. the positive function such that
λ2

Ω(z)(dx2 + dy2) is the Poincaré metric in Ω. The Poincaré metric is natural and
useful in complex analysis; for instance, any holomorphic function between two
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domains is Lipschitz with constant 1, when we consider the respective Poincaré
metrics.

The quasihyperbolic metric is the distance induced by the density 1/δΩ(z). By
kΩ and hΩ we denote the quasihyperbolic and Poincaré distance in Ω, respectively.
Length (of a curve) will be denoted by the symbol `d,Ω, where d is the metric with
respect to which length is measured. If it is clear which metric or domain is used,
either one or both subscripts in `d,Ω might be omitted. The subscript Eucl is used
to denote the length with respect to the Euclidean metric. Also, as most of the
proofs apply to both the quasihyperbolic and the Poincaré metrics, we will use the
symbol κ as a “dummy metric” symbol, where it can be replaced by either k or h.

It is well known that for every domain Ω of hyperbolic type

λΩ(z) ≤ 2
δΩ(z)

∀ z ∈ Ω, `h,Ω(γ) ≤ 2`k,Ω(γ) ∀ γ ⊂ Ω,

and that for all domains Ω1 ⊂ Ω2 we have λΩ1(z) ≥ λΩ2(z) for every z ∈ Ω1.
A geodesic metric space (X, d) is said to be Gromov δ-hyperbolic, if

d(w, [x, z] ∪ [z, y]) ≤ δ

for all x, y, z ∈ X; corresponding geodesic segments [x, y], [y, z] and [x, z]; and
w ∈ [x, y]. If this inequality holds, we also say that the geodesic triangle is δ-
thin, so Gromov hyperbolicity can be reformulated by requiring that all geodesic
triangles are thin. In order to simplify the notation, we say that d is Gromov-
hyperbolic (instead of (X, d) is Gromov-hyperbolic).

A Denjoy domain Ω ⊂ C is a domain whose boundary is contained in the
real axis. Since Ω ∩R is an open set contained in R, it is the union of pairwise
disjoint open intervals; as each interval contains a rational number, this union is
countable. Hence, we can write Ω ∩ R = ∪n∈Λ(an, bn), where Λ is a countable
index set, {(an, bn)}n∈Λ are pairwise disjoint, and it is possible to have an1 = −∞
for some n1 ∈ Λ and/or bn2 = ∞ for some n2 ∈ Λ.

In order to study Gromov hyperbolicity, we consider the case where Λ is
countably infinite, since if Λ is finite then hΩ and kΩ are easily seen to be Gromov
hyperbolic by Proposition 3.5, below.

3. Some classes of Denjoy domains which are Gromov hyperbolic.

The quasihyperbolic metric is traditionally defined in subdomains of Eu-
clidean n-space Rn, i.e. open and connected subsets Ω ( Rn. However, a more
abstract setting is also possible, as Bonk, Heinonen and Koskela showed in [6].
They show that if (X, d) is any locally compact, rectifiably connected and non-
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complete metric space, then the quasihyperbolic metric kX can be defined as usual,
using the weight 1/ dist(x, ∂X).

Given a real number A ≥ 1, a rectifiable curve γ : [0, 1] → Ω is called A-
uniform for the metric d if

`d(γ) ≤ A d(γ(0), γ(1)) and

min{`d(γ|[0, t]), `d(γ|[t, 1])} ≤ A distd(γ(t), ∂Ω), for all t ∈ [0, 1].

Moreover, a locally compact, rectifiably connected noncomplete metric space is
said to be A-uniform if every pair of points can be joined by an A-uniform curve.
The abbreviations “A-uniform” and “A-inner uniform” (without mention of the
metric) mean A-uniform for the Euclidean metric and Euclidean inner metric,
respectively.

Uniform domains are intimately connected to domains which are Gromov
hyperbolic with respect to the quasihyperbolic metric (see [6, Theorems 1.12,
11.3]). Specifically, for a Denjoy domain Ω these results imply that kΩ is Gromov
hyperbolic if and only if Ω is the conformal image of an inner uniform domain.

Here we will use the generalized setting in [6] to show that for Denjoy domains
with the quasihyperbolic metric it actually suffices to consider the intersection of
the closed upper (or lower) halfplane with the actual domain. The same result
holds for the Poincaré metric:

Lemma 3.1. Let E ⊂ R be a closed set with at least two points, and denote
by Ω = C \ E and Ω0 = Ω ∩ {z ∈ C | Im z ≥ 0} = Ω ∩ H2. Then the metric
space Ω0, with the restriction of the Poincaré or the quasihyperbolic metric in Ω,
is δ-Gromov hyperbolic, with some universal constant δ.

Proof. We deal first with the quasihyperbolic metric. As the upper half-
plane is uniform in the classical case, the same curve of uniformity (which is an
arc of a circle orthogonal to R) can be shown to be an A-uniform curve in the
sense of [6] for the set Ω0, for some absolute constant A. Hence Ω0 is A-uniform.
By [6, Theorem 3.6] it then follows that the space (Ω0, kΩ0) is Gromov hyperbolic.
(Note that kΩ0 is the same as kΩ restricted to Ω0.)

We also have that Ω0 is hyperbolic with the restriction of the Poincaré metric
hΩ, since it is isometric to a geodesically convex subset of the unit disk (in fact,
for every pair of points in Ω0, there is just one geodesic contained in Ω0 joining
them). Therefore, Ω0 has log(1 +

√
2)-thin triangles, as the unit disk does (see,

e.g. [2, p. 130]). ¤

Definition 3.2. Let Ω be a Denjoy domain of hyperbolic type. Then Ω ∩
R = ∪n≥0(an, bn) for some pairwise disjoint intervals. We say that a curve in Ω is
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a fundamental geodesic if it is a geodesic (with respect to the metric considered in
Ω) joining x0,n ∈ (a0, b0) and xn ∈ (an, bn), n > 0, which is contained in the closed
halfplane H2 = {z ∈ C : Im z ≥ 0}. We denote by γn a fundamental geodesic
corresponding to n. Some examples are shown in Figure 1.

Figure 1. Fundamental geodesics for n = 2, 5, 11.

The next result was proven for the hyperbolic metric in [1, Theorem 5.1].
In view of Lemma 3.1 one can check that the same proof carries over to the
quasihyperbolic metric.

By a bigon we mean a polygon with two edges.
We say that an inequality holds quantitatively if it holds with a constant

depending only on the constants in the assumptions.

Theorem 3.3. Let Ω be a Denjoy domain of hyperbolic type and denote by
κΩ the Poincaré or the quasihyperbolic metric. Then the following conditions are
quantitatively equivalent :

(1) κΩ is δ-hyperbolic.
(2) There exists a constant c1 such that for every choice of fundamental geodesics

{γn}∞n=1 we have κΩ(z,R) ≤ c1 for every z ∈ ∪n≥1γn.
(3) There exists a constant c2 such that for a fixed choice of fundamental geodesics

{γn}∞n=1 we have κΩ(z,R) ≤ c2 for every z ∈ ∪n≥1γn.
(4) There exists a constant c3 such that every geodesic bigon in Ω with vertices in

R is c3-thin.

Note that the case Ω ∩R = ∪N
n=0(an, bn) is also covered by the theorem.

Corollary 3.4. Let Ω be a Denjoy domain of hyperbolic type and denote
by κΩ either the Poincaré or the quasihyperbolic metric. If there exist a constant
C and a sequence of fundamental geodesics {γn}n≥1 with `κ,Ω(γn) ≤ C, then κΩ

is δ-Gromov hyperbolic, and δ depends only on C.

If Ω has only finitely many boundary components, then it is always Gromov
hyperbolic, in a quantitative way:

Proposition 3.5. Let Ω be a Denjoy domain of hyperbolic type with Ω∩R =
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∪N
n=0(an, bn), and denote by κΩ either the Poincaré or the quasihyperbolic metric.

Then κΩ is δ-Gromov hyperbolic, where δ is a constant which only depends on N

and

c0 = sup
n

κΩ

(
(an, bn), (an+1, bn+1)

)
.

Note that we do not require bn ≤ an+1 (although the intervals {(an, bn)}n

are, as always, pairwise disjoint).

Proof. Let us consider the geodesics g∗n with respect to κΩ joining (an, bn)
and (an+1, bn+1) in Ω+ := Ω ∩H2. Then `Ω(g∗n) ≤ c0 for 0 ≤ n ≤ N − 1.

By Theorem 3.3, we only need to prove that there exists a constant c, which
only depends on c0 and N , such that κΩ(z,R) ≤ c for every z ∈ ∪N

n=1γn.
For each 0 ≤ n ≤ N−1, let us consider the geodesic polygon P in Ω+, with the

following edges: γn, g∗0 , . . . , g∗n−1, and the geodesics joining their endpoints which
are contained in (a0, b0), . . . , (an, bn). Since (Ω+, κΩ) is δ0-Gromov hyperbolic,
where δ0 is a constant which only depends on c0, by Lemma 3.1, and P is a
geodesic polygon in Ω+ with at most 2N + 2 sides, P is 2Nδ0-thin. Therefore,
given any z ∈ γn, there exists a point w ∈ ∪N−1

k=0 g∗k ∪ R with κΩ(z, w) ≤ 2Nδ0.
Since `Ω(g∗k) ≤ c0 for 0 ≤ k ≤ N − 1, there exists x ∈ R with κΩ(x,w) ≤ c0/2.
Hence, κΩ(z,R) ≤ κΩ(z, x) ≤ 2Nδ0 + c0/2, and we conclude that κΩ is δ-Gromov
hyperbolic. ¤

Theorem 3.6. Let Ω be a Denjoy domain with Ω ∩ R = ∪∞n=0(an, bn),
(a0, b0) = (−∞, 0) and bn ≤ an+1 for every n. Suppose that bn ≥ Kan for a fixed
K > 1 and every n. Then hΩ and kΩ are δ-Gromov hyperbolic, with δ depending
only on K.

Proof. Fix n and consider the domain

Ωn =
1
an

Ω =
{

x

an

∣∣∣∣ x ∈ Ω
}

.

If we define D := C \ ([0, 1] ∪ [K,∞)), then D ⊂ Ωn, and `k,Ωn
(γ) ≤ `k,D(γ) for

every curve γ ⊂ D. The circle σ := S1(0, (1 + K)/2) goes around the boundary
component [0, 1] in D and has finite quasihyperbolic length:

`k,D(σ) ≤
∫

σ

|dz|
K − 1

2

= 2π
K + 1
K − 1

.
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Consider the shortest fundamental geodesics joining (a0, b0) with (an, bn), with
the Poincaré and the quasihyperbolic metrics, γh

n and γk
n, respectively. Then,

`k,Ω(γk
n) = `k,Ωn

(
1
an

γk
n

)
≤ `k,Ωn

(σ) ≤ `k,D(σ) ≤ 2π
K + 1
K − 1

,

`h,Ω(γh
n) ≤ `h,Ω(γk

n) ≤ 2 `k,Ω(γk
n) ≤ 4π

K + 1
K − 1

.

Therefore, by Corollary 3.4, hΩ and kΩ are δ-Gromov hyperbolic (and δ depends
only on K). ¤

Proof of Theorem 1.1(1). If lim infn→∞(bn − an)/an > 0, then we can
choose K > 1 so that (bn − an)/an > K − 1 for every n, whence bn > Kan. Thus
the previous theorem implies the claims. ¤

4. Some classes of Denjoy domains which are not Gromov hyper-
bolic.

To use the characterization of Bonk, Heinonen and Koskela [6], one would
need to show that the domain is not the conformal image of an inner uniform
domain. However, this seems to be very difficult. Let us prove that the domain is
not A-inner uniform. We will then use the ideas to provide a direct proof for the
claim.

So, suppose for a contradiction that the domain is A-inner uniform for some
fixed A > 0. We define sn := max1≤m≤n(bm−am). It is clear that sn is an increas-
ing sequence and the assumption of the theorem implies that limn→∞ sn/an = 0.
If we define gn :=

√
sn/an, then bm − am ≤ ang2

n for every 1 ≤ m ≤ n and
limn→∞ gn = 0.

Since gn > 0, we can choose a subsequence {gnk
} with gnk

≥ gm for every
m ≥ nk; consider a fixed n from the sequence {nk}. Set cn = (bn + an)/2, the
mid-point of (an, bn). We define xn = cn + icngn and yn = cn − icngn. Since
[xn, yn] ⊂ Ω, we have `Eucl,Ω([xn, yn]) = 2cngn. Let γ be an A-inner uniform
curve joining xn and yn, and let z ∈ γ ∩ R. Since |xn − z|, |yn − z| ≥ cngn, we
conclude by the uniformity of the curve that δΩ(z) ≥ cngn/A. On the other hand,
the uniformity of γ also implies that |z − cn| ≤ 2Acngn.

We may assume that n is so large that cn > 2Acngn. Then z lies in the positive
real axis, which means that z ∈ (am, bm) for some m ≥ 1. If m ≤ n, then we have
bm − am ≤ sn = ang2

n < cng2
n. For m > n we have bm − am ≤ g2

mam ≤ g2
nam.

However, since am < z ≤ cn + 2Acngn < 2cn, we obtain bm − am < 2cng2
n also in

this case.
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Since δΩ(z) ≤ (bm − am)/2, we conclude that cngn/A ≤ cng2
n. Since gn → 0

and A is a constant, this is a contradiction. Hence the assumption that an A-inner
uniform curve exists was false, and we can conclude that the domain is not inner
uniform.

For the proof of our theorem, we need the following well-known fact:

Lemma 4.1. Let γ be a rectifiable curve in a domain D ⊂ Rn with end-point
a ∈ D and Euclidean length s. Then `k,D(γ) ≥ log(1 + s/δD(a)).

Proof. For completeness we give the proof even though it is well-known.
Let z ∈ ∂D be a point with δD(a) = |a − z|. Without loss of generality we
assume that z = 0. By monotonicity `k,D(γ) ≥ `k,Rn\{0}(γ). Further, it is clear
that `k,Rn\{0}(γ) ≥ `k,Rn\{0}([|a|, |a|+s]), whence the estimate by integrating the
density 1/|x|. ¤

Proof of Theorem 1.1(2). By Theorem 4.6 of [10] the space (Ω, hΩ) is
Gromov hyperbolic if and only if (Ω, kΩ) is Gromov hyperbolic, quantitatively.2

Therefore it suffices to prove the theorem for the quasihyperbolic metric. We
consider two cases: either {bm − am}m is bounded or unbounded. We start with
the latter case.

Define sn := max1≤m≤n(bm− am) and gn :=
√

sn/an. Then bm− am ≤ ang2
n

for every 1 ≤ m ≤ n and limn→∞ gn = 0. Since gn > 0, we can choose a
subsequence {gnk

} with gnk
≥ gm for every m ≥ nk. Since {bm − am}m is not

bounded we may, moreover, choose the sequence so that g2
n = (bn − an)/an for

every n ∈ {nk}. Also we may assume that gn ≤ 1 for all values of n considered.
Fix now n from the sequence {nk}. As before, we conclude that bm − am ≤ ang2

n

for m ≤ n and bm − am ≤ amg2
m ≤ amg2

n for m > n.
Consider x ∈ (an, bn) which lies on the shortest fundamental geodesic γn

joining (−∞, 0) with (an, bn). Define an angle θ = arc tan gn ∈ (0, π/2) and a set

Figure 2. The set S.

2Originally, we gave separate proofs for the two metrics. However, in the revised version of
this paper we have utilized the result from our newer investigation, [10].
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S =
[
1
2
x + ixgn, x + ixgn

]
∪ {x + ixgn + teiθ | t ≥ 0}.

The set S is shown in Figure 2. Notice that any point ζ ∈ S satisfies gn Re ζ ≤
Im ζ ≤ 2gn Re ζ. It is clear that γn hits the set S ∪ [(1/2)x + ixgn, (1/2)x]. We
claim that it in fact hits S. Assume to the contrary that this is not the case. Then
it hits [(1/2)x + ixgn, (1/2)x]. Let γ′ denote a part of γn connecting x and this
segment which does not intersect S. Since Ω is a Denjoy domain, b 7→ δΩ(a + ib)
is increasing in b > 0. Hence `k,Ω(γ′) ≥ `k,Ω([(1/2)x + ixgn, x + ixgn]). Since the
gap size in [(1/2)x, x] is at most ang2

n, we have δΩ(w) ≤
√

x2gn
2 + a2

ng4
n ≤

√
2xgn

for w ∈ [(1/2)x + ixgn, x + ixgn]. Hence

`k,Ω(γn) ≥ `k,Ω

([
1
2
x + ixgn, x + ixgn

])
≥

1
2x√
2 xgn

=
C

gn
.

We next construct another path σ and show that it is in the same homotopy
class as the supposed geodesic, only shorter. Let z be the midpoint of gap n and
let σ be the curve [z, z + iz]∪ [z+ iz,−z+ iz]∪ [−z+ iz,−z]. Using bn−an = ang2

n

we easily calculate

`k,Ω(σ) ≤ log
(

2z

ang2
n

)
+ C ≤ 2 log

(
1
gn

)
+ C

with an absolute constant C. The curve σ joins (−∞, 0) and (an, bn); therefore
`k,Ω(γn) ≤ `k,Ω(σ). But this contradicts the previously derived bounds for the
lengths as gn → 0.

Therefore the supposition that γn does not intersect S was wrong, so we
conclude that γn ∩ S 6= ∅. Let now ζ ∈ S ∩ γn. We claim that kΩ(ζ, R) → ∞,
which means the domain is not Gromov hyperbolic, by Theorem 3.3. Let ξ ∈ Ω∩R;
chose m so that ξ ∈ (am, bm). Let α be a curve joining ξ and ζ.

If 0 < m ≤ n, then the size of (am, bm) is at most ang2
n, so δΩ(ξ) ≤ ang2

n.
Then α has Euclidean length at least Im ζ ≥ xgn, so by Lemma 4.1, `k,Ω(α) ≥
c log(C/gn). As gn → 0, this bound tends to ∞. If, on the other hand, m > n,
then the Euclidean length of α is at least

d(ξ, ζ) ≥ d(ξ, S) ≥ ξ sin θ ≥ 1
2

ξ tan θ =
1
2

ξgn,

and the size of the gap is at most amg2
n. By Lemma 4.1 this implies that `k,Ω(α) ≥

c log(C/gn). As gn → 0, this bound again tends to ∞.
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It remains to consider m = 0, i.e., ξ < 0. We consider only the case ζ ∈
[(1/2)x+ ixgn, x+ ixgn], since the other case is similar. Now the Euclidean length
of α is at least (1/2)x. As before, δΩ(ζ) ≤ √

2xgn, and so the length of the curve
is at least

log
1
2x√
2xgn

= log
1

2
√

2gn

→∞.

Hence in every case we get a lower bound which tends to infinity as gn → 0; hence
(Ω, kΩ) is not Gromov hyperbolic, by Theorem 3.3.

This takes care of the case when {bm − am}m is unbounded. Assume next
that supm(bm − am) = M < ∞. In this case it is difficult to work with bigons,
since we do not get a good control on what the geodesics look like; the problem
with the previous argument is that we cannot choose g2

nk
= (bnk

− ank
)/ank

in
our sequence, and consequently we do not get a good bound on the length of the
curve σ, as defined above.

To get around this we consider a geodesic triangle. Assume for a contradiction
that kΩ is δ-Gromov hyperbolic.

Fix R À M2 and set w± = ±iR. Let γ0 be the geodesic segment joining w+

and w−. Choose t > 0 so large that kΩ(γ0,Ht) > δ, where Ht = {z ∈ C | Re z >

t}. Let w ∈ Ω ∩R be a point in H2 max{t,R} chosen so that the nearest boundary
point of every point on the segment [w+, w] has smaller real part than w. Let
γ+ ⊂ H2 be a geodesic joining w and w+.

Let us show that the geodesic γ+ does not dip below the ray from w through
w+. Suppose to the contrary that γ+ intersects the ray at points w1 and w2 and
lies below the ray in between. Let γ̃+ be the part of the geodesic between w1 and
w2. Let L be a line perpendicular to [w1, w2]. Since L is almost vertical, and the
gaps in the boundary are relatively small, we find that δΩ increases as we move
on L from L ∩ γ+ to L ∩ [w1, w2]. Moreover, the Euclidean length of [w1, w2] is
also smaller than that of γ̃+. Therefore `k,Ω(γ̃+) > `k,Ω([w1, w2]), a contradiction
since γ̃+ is a geodesic.

Similarly, we construct γ− and conclude that it is a geodesic. Choose now
ζ ∈ γ+ ∩ Hmax{t,R} with Im ζ =

√
R. Since γ0 ∪ γ+ ∪ γ− is a geodesic triangle,

it should be possible to connect ζ with some point in γ0 ∪ γ− using a path of
length δ. By the definition of t, kΩ(ζ, γ0) > δ. If α is a path connecting ζ and
γ−, then it crosses the real axis at some point ξ. If ξ lies in (am, bm), m > 0,
then `k,Ω(α) ≥ C log

√
R/M , by Lemma 4.1. Otherwise, ξ ∈ (−∞, 0). This case

is handled as in the first case of the proof. In each case we see that kΩ(ζ, γ−) > δ

provided R is large enough. But this means that Ω is not Gromov hyperbolic,
which finishes the proof. ¤
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In Theorem 1.1(2) the gaps (an, bn) and (an+1, bn+1) are separated by the
boundary component [bn, an+1]. We easily see from the proofs that it would have
made no difference if this boundary component had some gaps, as long as they at
most comparable to the lengths of the adjacent gaps, (an, bn) and (an+1, bn+1).
Thus we get the following stronger theorem by the same proofs. (In the proofs we
can assume that (−∞, 0) ⊂ Ω, by using Theorem 1.2).

Theorem 4.2. Let Ω be a Denjoy domain with Ω ∩R = ∪∞n=0(an, bn) and
lim supn→∞ an = ∞. Suppose G : R+ → R+ is a function with limx→∞G(x) = 0.
If bn − an ≤ anG(an) for every an > 0, then κΩ, the hyperbolic or quasihyperbolic
metric, is not Gromov hyperbolic.

The function G plays the role of g2
n in the proof of Theorem 1.1(2).

Remark 4.3. The condition Ω∩R = ∪∞n=0(an, bn) (without the hypothesis
bn ≤ an+1 for every n) allows any topological behavior; for instance, ∂Ω can
contain a countable sequence of Cantor sets.

Let E0 ⊂ [0, t) be closed, t > 0, set En := E0 + tn for n ∈ N , and Ω :=
C \ ∪nEn. Then Ω satisfies the hypotheses of Theorem 4.2 for G(x) = t/x. From
this we deduce Example 1.3, the non-hyperbolicity of periodic Denjoy domain, in
the case the index set is N . The case with index set Z follows from this and
Theorem 1.2.

We then move to the proof of the final claim. Again, the result from [10] has
allowed us to significantly simplify the proof from our original circulated preprint.

Proof of Theorem 1.2. By Theorem 4.6 of [10] the space (Ω, hΩ) is Gro-
mov hyperbolic if and only if (Ω, kΩ) is Gromov hyperbolic, quantitatively. There-
fore we present a proof only for the case of (Ω, kΩ). Since kΩ is not Gromov
hyperbolic, by Proposition 3.5, we conclude that Ω has countably infinitely many
boundary components: Ω ∩R = ∪∞n=0(an, bn). Without loss of generality we can
assume that (−∞, 0) ⊆ (a1, b1).

Let us consider fundamental geodesics γn of kΩ joining the midpoint c0 of
(a0, b0) with the midpoint cn of (an, bn) for n ≥ 2. Since γn is contained in
{z ∈ C : c0 ≤ Re z ≤ cn}, and kΩ\F = kΩ in {z ∈ C : Re z ≥ infn≥2 an}, we
deduce that γn is also a fundamental geodesic with the metric kΩ\F .

Since kΩ is not Gromov hyperbolic, there exist points zk ∈ γnk
with

limk→∞ kΩ(zk,R) = ∞ by Theorem 3.3. Since γnk
are also fundamental geodesics

with the metric kΩ\F , we deduce that limk→∞ kΩ\F (zk,R) ≥ limk→∞ kΩ(zk,R) =
∞. Consequently, (Ω \ F, kΩ\F ) is not Gromov hyperbolic. ¤
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[21] J. Väisälä, Hyperbolic and uniform domains in Banach spaces, Ann. Acad. Sci. Fenn.

Math., 30 (2005), 261–302.

[22] J. Väisälä, Gromov hyperbolic spaces, Expo. Math., 23 (2005), 187–231.

http://dx.doi.org/10.1007/s10711-006-9102-z
http://dx.doi.org/10.1007/s000140050138
http://dx.doi.org/10.1007/s00222-003-0287-6
http://dx.doi.org/10.1007/s000390050009
http://dx.doi.org/10.1090/S0002-9939-05-08053-6
http://dx.doi.org/10.1112/blms/bdp125
http://dx.doi.org/10.1007/BF02921869
http://dx.doi.org/10.1016/j.difgeo.2004.05.006
http://dx.doi.org/10.1017/S0013091504001555
http://dx.doi.org/10.1007/s10114-005-0547-z


Gromov hyperbolicity of hyperbolic and quasihyperbolic metrics 261

Peter Hästö
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