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Abstract. This article is the third in a series of our investigation on a
complete non-compact connected Riemannian manifold M . In the first series
[KT1], we showed that all Busemann functions on an M which is not less

curved than a von Mangoldt surface of revolution fM are exhaustions, if the

total curvature of fM is greater than π. A von Mangoldt surface of revolution
is, by definition, a complete surface of revolution homeomorphic to R2 whose
Gaussian curvature is non-increasing along each meridian. Our purpose of this
series is to generalize the main theorem in [KT1] to an M which is not less
curved than a more general surface of revolution.

1. Introduction.

The Gauss–Bonnet theorem says that the total curvature c(S) of a compact
Riemannian 2-dimensional manifold S is a topological invariant, i.e.,

c(S) = 2πχ(S).

Here χ(S) denotes the Euler characteristic of S.
In 1935, Cohn-Vossen generalized the Gauss–Bonnet theorem for complete

non-compact Riemannian 2-dimensional manifolds as follows:

Theorem 1.1 ([CV1, Satz 6]). If a connected, complete non-compact,
finitely connected Riemannian 2-manifold M admits a total curvature c(M), then,

c(M) ≤ 2πχ(M)

holds. Here χ(M) denotes the Euler characteristic of M .
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Notice the total curvature c(M) is not a topological invariant anymore. But
2πχ(M)− c(M) is a geometric invariant depending only on the ends of M , which
is a consequence from the isoperimetric inequalities (see [SST, Theorem 5.2.1]).

In 1984, Shiohama proved the next result peculiar to geometry of total cur-
vature on surfaces:

Theorem 1.2 ([S, Main Theorem]). Let M be a connected, complete non-
compact, finitely connected and oriented Riemannian 2-manifold with one end. If
the total curvature c(M) satisfies

c(M) > (2χ(M)− 1)π,

then all Busemann functions on M are exhaustions. In particular, if the total
curvature of M is greater than π, then M is homeomorphic to R2 and also all
Busemann functions are exhaustions.

Here the Busemann function Fγ : M −→ R of a ray γ in a complete non-compact
Riemannian (any dimensional) manifold M is, by definition,

Fγ(x) := lim
t→∞

{t− d(x, γ(t))},

and a function ϕ : M −→ R is called an exhaustion, if ϕ−1(−∞, a] is compact for
all a ∈ R.

Theorem 1.2 was generalized to higher-dimensional manifolds in [KT1].
Roughly speaking, it was proved in [KT1] that all Busemann functions on a com-
plete non-compact connected Riemannian manifold not less curved than a von
Mangoldt surface of revolution M̃ are exhaustions, if the total curvature of M̃ is
greater than π (The theorem will be later stated in full detail as Theorem 1.4 in
this article).

A von Mangoldt surface of revolution is, by definition, a complete surface
of revolution homeomorphic to R2 whose Gaussian curvature is non-increasing
along each meridian. The monotonicity of the Gaussian curvature of a von Man-
goldt surface of revolution looks restrictive, but very familiar surfaces such as a
paraboloid or a 2-sheeted hyperboloid are von Mangoldt surfaces of revolution.

Although Cohn-Vossen restricted himself to 2-dimensional manifolds, he has
developed fundamental techniques, such as drawing a circle or a geodesic poly-
gon, and joining two points by a minimal geodesic segment, to investigate the
structures of complete Riemannian 2-dimensional manifolds. We, Riemannian ge-
ometers, should be awed by the fact that such techniques are ever now not only



Total curvatures of model surfaces control topology III 187

useful, but also powerful for investigating the topology of any dimensional com-
plete Riemannian manifolds.

Furthermore, as pointed out in the preface of [SST], it took more than thirty
years to obtain higher-dimensional extensions of Cohn-Vossen’s results for com-
plete non-compact Riemannian 2-dimensional manifolds. They are the splitting
theorem by Toponogov [To], the structure theorem with positive sectional cur-
vature by Gromoll and Meyer [GM], and the soul theorem with non-negative
sectional curvature by Cheeger and Gromoll [CG]. Hence, it requires many years
and is also very difficult to generalize some results peculiar to geometry of surfaces
to any dimensional complete Riemannian manifolds. In fact, one may find such
results in [SST], which have not been generalized in higher dimensions yet.

Our purpose of this article is to generalize the main theorem in [KT1] to
a complete non-compact connected Riemannian manifold not less curved than a
more general surface of revolution. To state this precisely, we will begin on the
definition of a non-compact model surface of revolution.

Let M̃ denote a complete 2-dimensional Riemannian manifold homeomorphic
to R2 with a base point p̃ ∈ M̃ . Then, we call the pair (M̃, p̃) a non-compact
model surface of revolution if its Riemannian metric ds̃2 is expressed in terms of
geodesic polar coordinates around p̃ as

ds̃2 = dt2 + f(t)2dθ2, (t, θ) ∈ (0,∞)× S1
p̃ . (1.1)

Here f : (0,∞) −→ R is a positive smooth function which is extensible to a
smooth odd function around 0, and S1

p̃ := {v ∈ Tp̃M̃ | ‖v‖ = 1}. The function
G ◦ γ̃ : [0,∞) −→ R is called the radial curvature function of (M̃, p̃), where we
denote by G the Gaussian curvature of M̃ , and by γ̃ any meridian emanating from
p̃ = γ̃(0). Remark that f satisfies the differential equation

f ′′(t) + G(γ̃(t))f(t) = 0

with initial conditions f(0) = 0 and f ′(0) = 1. For each constant number δ > 0,
a sector Ṽ (δ) ⊂ M̃ is defined by

Ṽ (δ) :=
{
x̃ ∈ M̃ | 0 < θ(x̃) < δ

}
.

Notice that the n-dimensional model surfaces of revolution are defined similarly,
and they are completely classified in [KK].

The total curvature c(M̃) of (M̃, p̃) is formally defined as the improper inte-
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gral, i.e.,

c(M̃) :=
∫
fM

G+ ◦ t dM̃ +
∫
fM

G− ◦ t dM̃

if

∫
fM

G+ ◦ t dM̃ < ∞, or
∫
fM

G− ◦ t dM̃ > −∞.

Here we set

G+(t) := max{G(γ̃(t)), 0} =
G + |G|

2

and

G−(t) := min{G(γ̃(t)), 0} =
G− |G|

2
.

Notice that G = G+ ◦ t + G− ◦ t. If c(M̃) exists, c(M̃) = 2π(1 − limt→∞ f ′(t))
holds, since dM̃ = fdtdθ and f ′(0) = 1. By Theorem 1.1,

c(M̃) ≤ 2π

holds. Thus, c(M̃) > −∞ means that M̃ admits a finite total curvature (if c(M̃)
exists).

Let (M, p) be a complete non-compact n-dimensional Riemannian manifold
with a base point p ∈ M . We say that (M, p) has radial curvature at the base
point p bounded from below by that of a non-compact model surface of revolution
(M̃, p̃) if, along every unit speed minimal geodesic γ : [0, a) −→ M emanating
from p = γ(0), its sectional curvature KM satisfies

KM (σt) ≥ G(γ̃(t))

for all t ∈ [0, a) and all 2-dimensional linear spaces σt spanned by γ′(t) and a
tangent vector to M at γ(t). Notice that, if the Riemannian metric of M̃ is
dt2 + t2dθ2, or dt2 + sinh2 t dθ2, then G(γ̃(t)) = 0, or G(γ̃(t)) = −1, respectively.

For this definition, the radial curvature geometry looks artificial, but this is
not the case, i.e., we can construct a model surface of revolution for any complete
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Riemannian manifold with an arbitrary given point as a base point (see [KT2,
Lemma 5.1]). The existence of a (M̃, p̃) is therefore very natural on the above
definition.

Now, we are in a point where we will state our main theorem: Let RM denote
the set of all rays on M and Rp the set of all rays emanating from p. Moreover,
for each γ ∈ RM , let Π(γ) denote the set of all α ∈ Rp which is a limit ray of
the sequence of minimal geodesic segments joining p to γ(ti) for some divergent
sequence {ti}. Hence, α ∈ Π(γ) is an asymptotic ray to γ emanating from p.
Notice that Π(γ) = {γ}, if γ ∈ Rp.

We set

Ap :=
{
γ′(0) ∈ Sn−1

p | γ ∈ Rp

}
,

where Sn−1
p := {v ∈ TpM | ‖v‖ = 1}, and denote by diam(Ap) the diameter of

Ap. A subset S of Ap is said to be a δ-covering of Ap, if

Ap ⊂
⋃

v∈S

Bδ(v),

where Bδ(v) := {w ∈ Sn−1
p | ∠(v, w) ≤ δ}.

Main Theorem. Let (M, p) be a complete non-compact connected Rieman-
nian n-manifold M whose radial curvature at the base point p is bounded from below
by that of a non-compact model surface of revolution (M̃, p̃). Assume that

(MT–1) c(M̃) > π, and
(MT–2) M̃ has no pair of cut points in a sector Ṽ (δ0) for some δ0 ∈ (0, π].

Then, for any γ1, γ2, . . . , γk ∈ RM such that {α′(0) ∈ Sn−1
p | α ∈ ⋃k

i=1 Π(γi)} is
a δ0-covering of Ap,

max{Fγi | i = 1, 2, . . . , k}

is an exhaustion. Moreover, if

diam(Ap) ≤ δ0,

then Fγ is an exhaustion for all γ ∈ RM .

The property (MT–1) does not always mean that the Gaussian curvature of M̃
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is non-negative everywhere. In fact, the model surface in [KT1, Example 1.2]
satisfies both properties (MT–1) and (MT–2), but limt→∞G◦ γ̃(t) = −∞ for each
meridian γ̃.

If a non-compact model surface of revolution M̃ admits a finite total curvature,
then, for each ε > 0, there exists a compact subset K̃ε of M̃ such that

∫
fM\ eKε

|G| dM̃ < ε.

Hence, we might conjecture that the Gaussian curvature of M̃ should be almost
flat outside of a compact subset of M̃ . The following theorem shows that this
conjecture is false and that the radial curvature function G(t) may change signs
wildly.

Theorem 1.3 ([TK]). Let (M̃, p̃) be a non-compact model surface of revo-
lution with its metric (1.1). If M̃ admits

−∞ < c(M̃) < 2π,

then, for any ε > 0, there exists a model surface of revolution (M̂, p̂) with its
metric

ĝ = dt2 + m(t)2dθ2, (t, θ) ∈ (0,∞)× S1
bp ,

satisfying the differential equation m′′(t) + Ĝ(t)m(t) = 0 with initial conditions
m(0) = 0 and m′(0) = 1, and admitting a finite total curvature c(M̂) such that

(1)
∥∥G(γ̃(t))− Ĝ(t)

∥∥
L2
≤ ε,

(2) c(M̃) ≥ c(M̂) ≥ c(M̃)− ε (respectively c(M̃) + ε ≥ c(M̂) ≥ c(M̃)),

(3) G(γ̃(t)) ≥ Ĝ(t) (respectively Ĝ(t) ≥ G(γ̃(t))) on [0,∞), and

(4) lim inft→∞ Ĝ(t) = −∞ (respectively lim supt→∞ Ĝ(t) = ∞).

The property (MT–2) is satisfied by a von Mangoldt surface of revolution, i.e.,
Ṽ (π) has no pair of cut points. In fact, it was proved in [T] that the cut locus of a
point on a von Mangoldt surface of revolution is empty or a subray of the meridian
opposite to the point. The assumption (MT–2) is not strong. For example, consider
a non-compact model surface of revolution whose radial curvature function is non-
increasing (or non-positive) along a subray of a meridian. If the surface admits a
finite total curvature, then the surface admits a sector which has no pair of cut
points (see [KT2, Sector Theorem]). We do not know if (MT–2) can be removed
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from Main Theorem or not.

Since it is clear that diam(Ap) ≤ π, as a corollary to Main Theorem, we get

Theorem 1.4 ([KT1, Main Theorem]). Let (M, p) be a complete non-
compact Riemannian n-manifold M whose radial curvature at the base point p is
bounded from below by that of a non-compact von Mangoldt surface of revolution
(M∗, p∗). If c(M∗) > π, then all Busemann functions on M are exhaustions.

A related result for Main Theorem is Kasue’s [K, Theorem 4.3], where he assumed
that sectional curvature is non-negative, and he controlled diameter of each ideal
boundary to be less than π/2 in his sense.

In the following sections, all geodesics will be normalized, unless otherwise
stated.

Acknowledgements. The first author would like to express to Professor
S. Ohta his deepest gratitude for his helpful comments on the first version of our
main theorem in the differential topology seminar at Kyoto University, 14th July,
2009.

2. Mass of rays on model surfaces.

This section is set up as a preliminary to the proof of Main Theorem (Theorem
3.6) in the next section. Throughout this section, let (M̃, p̃) denote a non-compact
model surface of revolution which admits a total curvature c(M̃) > π.

Lemma 2.1. There exists a positive number r1 such that

∫

V

GdM̃ > π + 2Λ0

holds for all open set V ⊂ M̃ containing Br1(p̃) as a subset. Here we set

Λ0 :=
c(M̃)− π

3 .

Proof. Since c(M̃) is finite, for each positive number ε, there exists a
positive number rε such that

∫
fM\Brε (p̃)

|G| dM̃ < ε
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holds. In particular, for ε := Λ0, there exists a positive number r1 such that

∫
fM\Br1 (p̃)

|G| dM̃ < Λ0. (2.1)

Let V ⊂ M̃ be an open set containing Br1(p̃) as subset. It is clear that

∫

V

GdM̃ ≥ c(M̃)−
∫
fM\V

|G| dM̃

≥ c(M̃)−
∫
fM\Br1 (p̃)

|G| dM̃. (2.2)

By (2.1) and (2.2), we get

∫

V

GdM̃ > π + 2Λ0. ¤

Since c(M̃) > π, it follows from Cohn -Vossen’s theorem [CV2, Satz 5] that
M̃ has no straight line. Thus, by [SST, Lemma 6.1.1], the next lemma is clear:

Lemma 2.2. There exists a number r2 > r1 such that no ray emanating
from a point in M̃ \Br2(p̃) passes through Br1(p̃).

Lemma 2.3. For each q̃ ∈ M̃ \ Br2(p̃), there exists a number r3 > r2 such
that, for any x̃ ∈ M̃ \Br3(p̃),

∠(p̃q̃x̃) ≥ π

2
+ Λ0.

Here ∠(p̃q̃x̃) denotes the angle at the vertex q̃ of the geodesic triangle 4(p̃q̃x̃).

Proof. Take any point q̃ ∈ M̃ \ Br2(p̃) and fix it. Let Vq̃ denote the
connected component of

M̃ \
⋃

eγ∈Rq̃

γ̃([0,∞))

containing Br1(p̃), where Rq̃ denotes the set of all rays emanating from q̃. Notice
that the existence of Vq̃ is guaranteed by Lemma 2.2, and that the boundary ∂Vq̃

consists of two rays α̃+, α̃− ∈ Rq̃, which might be the same. From Lemma 2.1,
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c(Vq̃) :=
∫

Vq̃

GdM̃ > π + 2Λ0

holds. On the other hand, since Vq̃ does not admit a ray in Rq̃, it follows from
[SST, Lemma 6.1.3] that c(Vq̃) equals the interior angle at q̃ of Vq̃. Hence, the
interior angle at q̃ of Vq̃ is greater than π. Therefore, we get

∠
(
α̃′+(0), α̃′−(0)

)
= 2π − c

(
Vq̃

)
< π − 2Λ0.

Since Vq̃ does not admit a ray in Rq̃ and α̃+, α̃− are symmetric under the reflection
with respect to the meridian µq̃ passing through q̃,

max
{
∠

(
γ̃′(0), µ′q̃(d(p̃, q̃))

) | γ̃ ∈ Rq̃

}
= ∠

(
α̃′+(0), µ′q̃(d(p̃, q̃))

)

= ∠
(
α̃′−(0), µ′q̃(d(p̃, q̃))

)

<
π

2
− Λ0. (2.3)

In particular, by (2.3),

∠
(
γ̃′(0), µ′q̃(d(p̃, q̃))

)
<

π

2
− Λ0

holds for all γ̃ ∈ Rq̃.
Let α̃ : [0, d(q̃, x̃)] −→ M̃ denote a minimal geodesic segment joining q̃ to

a point x̃ ∈ M̃ . If d(q̃, x̃) is sufficient large, then α̃′(0) is close to some γ̃′(0),
γ̃ ∈ Rq̃. Therefore, there exists a number r3 > r2 such that, for any minimal
geodesic segment α̃ : [0, d(q̃, x̃)] −→ M̃ joining q̃ to x̃ with d(q̃, x̃) > r3,

∠
(
α̃′(0), µ′q̃(d(p̃, q̃))

)
<

π

2
− Λ0. (2.4)

The equation (2.4) implies that

∠(p̃q̃x̃) ≥ π

2
+ Λ0

for all x̃ ∈ M̃ \Br3(p̃). ¤
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3. Proof of main theorem.

Our purpose of this section is to prove Main Theorem (Theorem 3.6). In
the proof of the theorem, we will apply a new type of the Toponogov comparison
theorem. The comparison theorem was established by the present authors as
generalization of the comparison theorem in conventional comparison geometry,
which is stated as follows:

A new type of Toponogov comparison theorem ([KT2, Theorem
4.12]). Let (M, p) be a complete non-compact Riemannian manifold M whose
radial curvature at the base point p is bounded from below by that of a non-compact
model surface of revolution (M̃, p̃). If (M̃, p̃) admits a sector Ṽ (δ0), δ0 ∈ (0, π],
having no pair of cut points, then, for every geodesic triangle 4(pxy) in (M, p)
with ∠(xpy) < δ0, there exists a geodesic triangle 4̃(pxy) := 4(p̃x̃ỹ) in Ṽ (δ0)
such that

d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y) (3.1)

and that

∠(xpy) ≥ ∠(x̃p̃ỹ), ∠(pxy) ≥ ∠(p̃x̃ỹ), ∠(pyx) ≥ ∠(p̃ỹx̃). (3.2)

Here ∠(pxy) denotes the angle between the minimal geodesic segments from x to
p and y forming the triangle 4(pxy).

Remark 3.1. In [KT3], the present authors very recently generalized, from
the radial curvature geometry’s standpoint, the Toponogov comparison theorem
to a complete Riemannian manifold with smooth convex boundary.

Hereafter, let (M, p) denote a complete non-compact Riemannian n-manifold
M whose radial curvature at the base point p is bounded from below by that of a
non-compact model surface of revolution (M̃, p̃) with its metric (1.1), RM the set
of all rays on M , and Rp the set of all rays emanating from p. Moreover, for each
γ ∈ RM , let Π(γ) denote the set of all α ∈ Rp which is a limit ray of the sequence
of minimal geodesic segments joining p to γ(ti) for some divergent sequence {ti}.
Furthermore, we assume that

(MTI–1) c(M̃) > π, and
(MTI–2) M̃ has no pair of cut points in a sector Ṽ (δ0) for some δ0 ∈ (0, π].

Lemma 3.2. Let γ ∈ RM and α : [0, d(p, q)] −→ M a minimal geodesic
segment joining p to a point q ∈ M \Br2(p) such that
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∠
(
α′(0), β′γ(0)

)
< δ0

for some βγ ∈ Π(γ). Then,

∠
(
σ′(0), α′(d(p, q))

) ≤ π

2
− Λ0

holds for a ray σ emanating from q asymptotic to γ. Here Λ0 and r2 denote the
positive numbers guaranteed in Lemmas 2.1 and 2.2, respectively.

Proof. Since βγ ∈ Π(γ), there exists a divergent sequence {ti} such that
the sequence of minimal geodesic segments βi : [0, d(p, γ(ti))] −→ M joining p to
γ(ti) convergent to βγ . Since limt→0 ∠(β′i(0), β′γ(0)) = 0,there is a number i0 ∈ N

such that

∠
(
β′i(0), α′(0)

)
< δ0

for all i ≥ i0. Thus, by the new type of the Toponogov comparison theorem,
there exists a geodesic triangle 4̃(pγ(ti)q) ⊂ Ṽ (δ0) corresponding to the triangle
4(pγ(ti)q), i ≥ i0, such that (3.1) holds for x = γ(ti) and y = q, and that

∠
(− α′(d(p, q)), σ′i(0)

) ≥ ∠
(
p̃q̃γ̃(ti)

)
.

Here σi : [0, d(q, γ(ti))] −→ M denotes a minimal geodesic segment joining q to
γ(ti). By Lemma 2.3, we get

∠
(− α′(d(p, q)), σ′i(0)

) ≥ π

2
+ Λ0

for sufficiently large i. Hence,

∠
(− α′(d(p, q)), σ′(0)

) ≥ π

2
+ Λ0

where σ denotes a limit ray of the sequence {σi}, which is asymptotic to γ. ¤

Hereafter, let Fγ denote a Busemann function of a γ ∈ RM . Notice that, by
the definition of Fγ , |Fγ(x) − Fγ(y)| ≤ d(x, y) holds for all x, y ∈ M , i.e., Fγ is
Lipschitz continuous with Lipschitz constant 1. Hence, Fγ is differentiable except
for a measure zero set. Moreover, we have

Proposition 3.3 ([KT1, Theorem 2.5]). Let γ be a ray on a complete non-
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compact Riemannian manifold M . Then, Fγ is differentiable at a point q ∈ M if
and only if there exists a unique ray emanating from q asymptotic to γ. Moreover,
the gradient vector of Fγ at a differentiable point q equals the velocity vector of the
unique ray asymptotic to γ.

Lemma 3.4. Let γ ∈ RM and α : [0, d(p, q)] −→ M a minimal geodesic
segment joining p to a point q ∈ M \Br2(p) such that

∠
(
α′(0), β′γ(0)

)
< δ0

for some βγ ∈ Π(γ). If Fγ is differentiable at α(t) for almost all t ∈ (a, b) ⊂
(r2, d(p, q)], then

Fγ(α(b))− Fγ(α(a)) ≥ (b− a) sin Λ0.

Proof. Assume that Fγ is differentiable at α(t0), t0 ∈ (a, b). By Lemma
3.2 and Proposition 3.3, we get

∠
(
(∇Fγ)α(t0), α

′(t0)
) ≤ π

2
− Λ0.

Hence, for almost all t ∈ (a, b),

d

dt
Fγ(α(t)) =

〈
(∇Fγ)α(t), α

′(t)
〉

= cos
(
∠((∇Fγ)α(t), α

′(t))
) ≥ sinΛ0.

It follows from Dini’s theorem [D] (cf. [Ha, Section 2.3], [WZ, Theorem 7.29])
that

Fγ(α(b))− Fγ(α(a)) =
∫ b

a

d

dt
Fγ(α(t)) dt ≥ (b− a) sin Λ0. ¤

Lemma 3.5. Let γ ∈ RM and α : [0, d(p, q)] −→ M a minimal geodesic
segment joining p to a point q ∈ M \Br2(p) such that

∠
(
α′(0), β′γ(0)

) ≤ δ0

for some βγ ∈ Π(γ). Then,

Fγ(q)− Fγ(α(r2)) ≥ (d(p, q)− r2) sin Λ0 (3.3)
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holds.

Proof. First, we will prove (3.3) under the assumption that

∠
(
α′(0), β′γ(0)

)
< δ0.

The general case will be completed by the limit argument. If we prove that, for
each t0 ∈ (r2, d(p, q)), there exists a number ε0 > 0 such that

Fγ(α(t))− Fγ(α(s)) ≥ (t− s) sin Λ0 (3.4)

holds for all s, t ∈ (t0 − ε0, t0 + ε0) with s < t, then the equation (3.3) is clear.
Take any t0 ∈ (r1, d(p, q)), and fix it. Since α is minimal on [0, d(p, q)],

α(t0) is not a cut point of p = α(0). Hence, there exist an open neighborhood
U ⊂ Sn−1

p around α′(0), an open neighborhood U around α(t0), and an open
interval (t0 − ε0, t0 + ε0) such that U × (t0 − ε0, t0 + ε0) is diffeomorphic to U by
a map ϕ, where ϕ−1(v, t) := expp(tv). Since Fγ ◦ ϕ−1 is Lipschitz, it follows from
Rademacher’s theorem (cf. [Mo]) that there exists a set E ⊂ TpM of Lebesgue
measure zero such that Fγ ◦ ϕ−1 is differentiable on (U × (t0 − ε0, t0 + ε0)) \ E .
Moreover, for each v ∈ U , we set

Ev := {t ∈ (t0 − ε0, t0 + ε0) | (v, t) ∈ E }.

Remark that the set Ev has also Lebesgue measure zero for almost all v ∈ U
(cf. [WZ, Lemma 6.5]). Thus, we may find a sequence {αj} of minimal geodesic
segments emanating from p converging to α such that each Fγ is differentiable at
αj(t) for almost all t ∈ (t0 − ε0, t0 + ε0). By Lemmas 3.2 and 3.4, for each j ∈ N ,

Fγ(αj(t))− Fγ(αj(s)) ≥ (t− s) sin Λ0

holds for all s, t ∈ (t0 − ε0, t0 + ε0) with s < t. Then, by taking the limit, we get
(3.4).

Assume that

∠
(
α′(0), β′γ(0)

)
= δ0.

It is clear that there exists a sequence {αi : [0, `i] −→ M} of minimal geodesic
segments αi emanating from p = αi(0) convergent to α such that ∠(α′i(0), β′γ(0)) <

δ0 for each i ∈ N . From the argument above,
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Fγ(αi(`i))− Fγ(αi(r2)) ≥ (`i − r2) sin Λ0.

By taking the limit, we get (3.3). ¤

Set

Ap :=
{
γ′(0) ∈ Sn−1

p | γ ∈ Rp

}
,

and denote by diam(Ap) the diameter of Ap. Then, we have our main theorem in
this article:

Theorem 3.6. For any γ1, γ2, . . . , γk ∈ RM such that {α′(0) ∈ Sn−1
p | α ∈⋃k

i=1 Π(γi)} is a δ0-covering of Ap,

max{Fγi
| i = 1, 2, . . . , k}

is an exhaustion. Moreover, if diam(Ap) ≤ δ0, or δ0 = π, then Fγ is an exhaustion
for all γ ∈ RM .

Proof. Suppose that max{Fγi | i = 1, 2, . . . , k} is not an exhaustion, i.e.,
for some a ∈ R,

X :=
k⋂

i=1

F−1
γi

(−∞, a]

is non-compact. Hence, there exists a sequence {qj} of points qj ∈ X such that

lim
j→∞

d(p, qj) = ∞.

Let αj : [0, d(p, qj)] −→ M denote a minimal geodesic segment joining p to qj .
Since limj→∞ d(p, qj) = ∞, there exists a number j0 ∈ N such that

r2 < d(p, qj)

for all j ≥ j0. Furthermore, by choosing an infinite subsequence of {αj}, we may
assume that there exists i0 ∈ {1, 2, . . . , k} such that, for each j ≥ j0,

∠
(
α′j(0), β′γj

(0)
) ≤ δ0

holds for some βγj ∈ Π(γi0). It follows from Lemma 3.5 that
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Fγi0
(qj)− Fγi0

(αj(r2)) ≥ (d(p, qj)− r2) sin Λ0

for all j ≥ j0. Since qj ∈ F−1
γi0

(−∞, a] for all j ≥ j0,

a− Fγi0
(αj(r2)) ≥ (d(p, qj)− r2) sin Λ0.

Since limj→∞ d(p, qj) = ∞, we have limj→∞ Fγi0
(αj(r2)) = −∞. This is impos-

sible, since |Fγi0
(p) − Fγi0

(αj(r2))| ≤ d(p, αj(r2)) = r2 for all j ≥ j0. Therefore,
max{Fγi

| i = 1, 2, . . . , k} is an exhaustion.
Next, we will prove the second claim. Assume that diam(Ap) ≤ δ0. Since

∠(v, w) ≤ δ0 for all v, w ∈ Ap, it is clear that {v} is a δ0-covering of Ap for each
v ∈ Ap. Hence, for each γ ∈ RM , {α′(0) ∈ Sn−1

p | α ∈ Π(γ)} is a δ0-covering
of Ap. From the argument above, this implies that Fγ is an exhaustion for all
γ ∈ RM . If δ0 = π, then the claim is clear, since diam(Ap) ≤ π. ¤

From the same argument in [KT1, Section 4], we get

Corollary 3.7. The isometry group I(M) of M is compact, if diam(Ap) ≤
δ0, or δ0 = π.
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