
c©2011 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 63, No. 3 (2011) pp. 1027–1037
doi: 10.2969/jmsj/06331027

A non-autonomous model problem

for the Oseen-Navier-Stokes flow with rotating effects

By Matthias Geissert and Tobias Hansel

(Received Apr. 27, 2010)

Abstract. Consider the Navier-Stokes flow past a rotating obstacle with
a general time-dependent angular velocity and a time-dependent outflow con-
dition at infinity. After rewriting the problem on a fixed domain, one obtains a
non-autonomous system of equations with unbounded drift terms. It is shown
that the solution to a model problem in the whole space case Rd is governed
by a strongly continuous evolution system on Lp

σ(Rd) for 1 < p < ∞. The
strategy is to derive a representation formula, similar to the one known in the
case of non-autonomous Ornstein-Uhlenbeck equations. This explicit formula
allows to prove Lp-Lq estimates and gradient estimates for the evolution sys-
tem. These results are key ingredients to obtain (local) mild solutions to the
full nonlinear problem by a version of Kato’s iteration scheme.

1. Introduction and main result.

In this paper we consider a model problem in Rd for the flow of an incom-
pressible, viscous fluid past a rotating obstacle with an additional time-dependent
outflow condition at infinity. The equations describing this problem are the Navier-
Stokes equations in an exterior domain varying in time with an additional condition
for the velocity field at infinity.

In order to motivate our model problem, let O ⊂ Rd be a compact obstacle
with smooth boundary, let Ω := Rd \ O be the exterior of the obstacle and let
m ∈ C([0,∞);Rd×d) be a continuous matrix-valued function. Then, the exterior
of the rotated obstacle at time t > 0 is represented by Ω(t) := Q(t)Ω where Q(t)
solves the ordinary differential equation

{
∂tQ(t) = m(t)Q(t), t > 0,

Q(0) = Id.
(1.1)
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With a prescribed velocity field v∞ ∈ C1([0,∞);Rd) at infinity, the equations for
the fluid on the time-dependent domain Ω(t) with no-slip boundary condition take
the form

vt −∆v + v · ∇v +∇q = 0 in Ω(t)× (0,∞),

div v = 0 in Ω(t)× (0,∞),

v(t, y) = m(t)y on ∂Ω(t)× (0,∞), (1.2)

lim
|y|→∞

v(t, y) = v∞(t) for t ∈ (0,∞),

v(0, y) = u0(y) in Ω,

where v and q are the unknown velocity field and the pressure of the fluid, respec-
tively.

The disadvantage of this description is the variability of the domain Ω(t), and
the fact that the equations do not fit into the Lp-setting, due the velocity condition
at infinity. Assume for the time being that m(t) is skew symmetric for t > 0; this
implies that for all t > 0 the matrix Q(t) is orthogonal. Then, by setting

x = Q(t)Ty, u(t, x) = Q(t)T(v(t, y)− v∞(t)), p(t, x) = q(t, y), (1.3)

the above equations can be transformed to the reference domain Ω and the new
velocity field u vanishes at infinity. Then (1.2) is equivalent to the following system
of equations

ut −∆u−M (t)x · ∇u + M (t)u + Q(t)Tv∞(t) · ∇u

− Q(t)T∂tv∞(t) + u · ∇u +∇p

}
= 0 in Ω× (0,∞),

(1.4)
div u = 0 in Ω× (0,∞),

u(t, x) = M (t)x−Q(t)Tv∞(t) on ∂Ω× (0,∞),

lim
|x|→∞

u(t, x) = 0 for t ∈ (0,∞),

u(0, x) = u0(x) in Ω,

where M (t) := Q(t)Tm(t)Q(t). The main difficulty in dealing with this problem
arises since the term M (t)x · ∇ has unbounded coefficients. In particular, the
lower order terms cannot be treated by classical perturbation theory for the Stokes
operator.

Note that even if we assume that m(t) ≡ m is independent of time (this
implies that also M (t) ≡ M is independent of time), equation (1.4) is still non-
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autonomous due to the time-dependent first order term Q(t)Tv∞ · ∇ (except in
some special cases discussed below).

However, by using localization techniques similar to [GHH06], this problem
is finally reduced to a model problem in Rd and a model problem in a bounded
domain. Since Q(t)∂tv∞(t) ≡ F (t), t > 0, i.e. it is constant in space, we may put
this term in the pressure p. Hence, in this paper we discuss the following linearized
model problem in Rd

ut −∆u− (M(t)x + f(t)) · ∇u + M(t)u +∇p = 0 in Rd × (0,∞),

div u = 0 in Rd × (0,∞), (1.5)

u(0) = u0 in Rd,

where we allow general coefficients M ∈ C([0,∞);Rd×d) and f ∈ C([0,∞);Rd).
If we set M(t) := Q(t)Tm(t)Q(t) and f(t) := −Q(t)Tv∞(t) then we obtain the
linearization of equation (1.4) with Ω = Rd. Such a model problem also arises in
the analysis of a rotating body with translational velocity −v∞(t), see [Far05].

Existence and uniqueness of a mild solution of an autonomous variant of
problem (1.2) without an outflow condition, i.e. v∞ ≡ 0, and m(t) ≡ m, was
investigated in quite a few papers, see [His99a], [His99b], [GHH06] and [HS05].
Hishida was even able to deal with a time dependent rotation in [His01], however
only for angular velocities of a special form.

For the problem including an additional outflow condition at infinity, there
are only a few results. Indeed, in the special case, where m(t)x = ω(t)×x and ω :
[0,∞) → R3 is the angular velocity of the obstacle and v∞ : [0,∞) → R3 a time-
dependent outflow velocity, Borchers [Bor92] constructed weak non-stationary
solutions for the equations (1.4). Moreover, Shibata [Shi08] studied the special
case where m(t) ≡ m, v∞(t) = v∞ and mv∞ = 0. The condition mv∞ = 0,
i.e. Q(t)Tv∞ = kv∞ for k ∈ {−1, 1}, ensures that (1.4) is still an autonomous
equation and the solution of (1.4) is governed by a C0-semigroup which is not
analytic. The physical meaning of the additional condition mv∞ = 0 is that the
outflow direction of the fluid is parallel to the axis of rotation of the obstacle. The
stationary problem of this latter situation was analysed in [Far05].

The assumption mv∞ = 0 was recently relaxed by the second author in
[Han10]. Indeed, he was able to deal with the model problem in Rd where
m(t)v∞ 6= 0 and v∞(t) ≡ v∞. However he assumes that m(t) and m(s) com-
mute for all t, s > 0 which can physically be interpreted by the fact that the axis
of rotation is fixed.

The aim of this work is to remove the latter additional condition, i.e. m(t)
and m(s) need not to commute and v∞ may be time-dependent.



1030 M. Geissert and T. Hansel

As usual the Helmholtz projection P allows us to rewrite (1.5) as an abstract
Cauchy problem in Lp

σ(Rd), where Lp
σ(Rd) denotes the space of all solenoidal

vector fields in Lp(R)d:

u′(t)−A(t)u(t) = 0, t > 0,

u(0) = u0.
(1.6)

Here:

A(t)u := P (∆u + (M(t)x + f(t)) · ∇u + M(t)u),

D(A(t)) :=
{
u ∈ W 2,p(Rd)d ∩ Lp

σ(Rd) : M(t)x · ∇u ∈ Lp(Rd)d
}
.

Note that it immediately follows from [HS05] that for fixed t > 0, the operator
A(t) is the generator of a C0-semigroup, which is not analytic. The fact that the
semigroup is not analytic prevents us from employing standard generation results
for evolution systems, see [Paz83, Chapter 5] and references therein. For the
same reason, Lp-Lq estimates and gradient estimates don’t follow from standard
arguments.

Therefore, we first derive a representation formula for the solution of (1.5). In
order to derive this representation formula we transform (1.5) to a non-autonomous
heat equation which can be explicitly solved, see Section 3. It turns out that
the transformation to a non-autonomous heat equation is crucial to deal with
our problem in this generality since the different transformation used in [Han10]
caused the additional assumption that M(t) and M(s) commute for all t, s > 0.

In the following we denote by {U(t, s)}t,s≥0 the evolution system on Rd gen-
erated by the family of matrices {−M(t)}t≥0, i.e.

{
∂tU(t, s) = −M(t)U(t, s),

U(s, s) = Id.
(1.7)

Note that ∂sU(t, s) = U(t, s)M(s).
We are now ready to present our main result.

Theorem 1.1. Let 1 < p < ∞, M ∈ C([0,∞);Rd×d) and f ∈
C([0,∞);Rd). The solution of (1.6) is governed by a strongly continuous evo-
lution system {T (t, s)}t≥s≥0 ⊂ L (Lp

σ(Rd)d). Moreover, the evolution system
{T (t, s)}t≥s≥0 admits the following properties:

(a) For T0 > 0 set MT0 := sup{‖U(t, s)‖ : t, s ∈ [0, T0]}. Then for 1 < p < ∞ and
p ≤ q ≤ ∞ there exists C := C(MT0 , d) > 0 such that for u ∈ Lp

σ(Rd)
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‖T (t, s)u‖Lq
σ(Rd) ≤ C(t− s)(−d/2)(1/p−1/q)‖u‖Lp

σ(Rd),

0 ≤ s < t < T0, (1.8)

‖∇T (t, s)u‖Lq(Rd) ≤ C(t− s)(−d/2)(1/p−1/q)−1/2‖u‖Lp
σ(Rd),

0 ≤ s < t < T0. (1.9)

In particular, if the evolution system {U(t, s)}s,t≥0 is uniformly bounded, i.e.
MT0 ≤ M , for some M > 0 and all T0 > 0, we may set T0 = ∞.

(b) For 1 < p < q < ∞, s ≥ 0 and u ∈ Lp
σ(Rd) we have

lim
t→s, t>s

(t− s)(d/2)(1/p−1/q)‖T (t, s)u‖Lq
σ(Rd) = 0 and

lim
t→s, t>s

(t− s)1/2‖∇T (t, s)u‖Lp(Rd) = 0.

Next we consider the nonlinear problem

u′(t)−A(t)u(t) + P ((u(t) · ∇)u(t)) = 0, t > 0,

u(0) = u0,
(1.10)

with initial value u0 ∈ Lp
σ(Rd).

For given 0 < T0 ≤ ∞, we call a function u ∈ C([0, T0);Lp
σ(Rd)) a mild

solution of (1.10) if u satisfies the integral equation

u(t) = T (t, 0)u0 −
∫ t

0

T (t, s)P ((u(s) · ∇)u(s))ds, t > 0, (1.11)

in Lp
σ(Rd). By adjusting Kato’s iteration scheme (see [Kat84]) to our situation

the existence of a unique (local) mild solution follows, cf. [Han10] for details.

Corollary 1.2. Let 2 ≤ d ≤ p ≤ q < ∞, M ∈ C([0,∞);Rd×d), f ∈
C([0,∞);Rd) and u0 ∈ Lp

σ(Rd). Then there exists T0 > 0 and a unique mild
solution u ∈ C([0, T0);Lp

σ(Rd)) of (1.10), which has the properties

t(d/2)(1/p−1/q)u(t) ∈ C([0, T0);Lq
σ(Rd)), (1.12)

t(d/2)(1/p−1/q)+1/2∇u(t) ∈ C([0, T0);Lq(Rd)d×d). (1.13)

If p < q, then in addition
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t(d/2)(1/p−1/q)‖u(t)‖Lq(Rd) + t1/2‖∇u(t)‖Lp(Rd) → 0 as t → 0. (1.14)

Moreover, in the case d = p we may set T0 = +∞ provided ‖u0‖Ld(Rd) is small
enough and {U(t, s)}s,t≥0 is uniformly bounded.

Remark 1.3. In particular, {U(t, s)}s,t≥0 is uniformly bounded if M(t) is
skew symmetric for all t > 0.

2. Proof of Theorem 1.1.

Let M be as in Theorem 1.1, and let {U(t, s)}s,t≥0 be the evolution system
on Rd that satisfies (1.7). We consider the system of parabolic equations of the
form

{
∂tu(t, x)−A (t)u(t, x) = 0, t > s, x ∈ Rd,

u(s, x) = ϕ(x), x ∈ Rd,
(2.1)

for s ≥ 0 fixed, initial value ϕ ∈ Lp(Rd)d and some p ∈ (1,∞). Here the family of
operators A (t) is of the form

A (t)u(x) :=
(
∆ui(t, x) + 〈M(t)x + f(t),∇ui(t, x)〉)d

i=1
−M(t)u(t, x),

t > 0, x ∈ Rd.

As in [GL08, Lemma 3.2] or [Han10], we first develop an explicit representation
formula. To be more precise, we show in Section 3 that for p ∈ (1,∞) and
ϕ ∈ Lp(Rd)d the solution u to (2.1) is governed by a strongly continuous evolution
system {T̃ (t, s)}t≥s ⊂ L (Lp(Rd)d) which is explicitly given by

u(t, x) := (T̃ (t, s)ϕ)(x) := (k(t, s, ·)∗ϕ)(U(s, t)x+g(t, s)), t > s, x ∈ Rd, (2.2)

where

k(t, s, x) :=
1

(4π)d/2(detQt,s)1/2
U(t, s)e(−1/4)〈Q−1

t,sx,x〉,

t > s ≥ 0, x ∈ Rd, (2.3)

g(t, s) :=
∫ t

s

U(s, r)f(r)dr, Qt,s :=
∫ t

s

U(s, r)U∗(s, r)dr, t ≥ s ≥ 0.

Similar to [DPL07] one can show that for ϕ ∈ C∞c (Rd)d the solution u of (2.1)
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given by (2.2) is a classical solution.
A simple calculation shows that div T̃ (t, s)ϕ = 0 for ϕ ∈ C∞c,σ(Rd) and t ≥

s ≥ 0. Hence, the restriction T (t, s) := T̃ (t, s)|Lp
σ(Rd) is an evolution system on

Lp
σ(Rd). In particular, u(t) := T (t, 0)u0 is a solution to (1.6).

By similar arguments as in the proofs of [GL08, Lemma 3.2] or [Han10,
Lemma 2.4], for T0 > 0 there exists C := C(d,MT0) > 0 (see Theorem 1.1 for the
definition of MT0) such that

∥∥Q
−1/2
t,s

∥∥ ≤ C(t− s)−1/2, 0 ≤ s < t < T0,

(detQt,s)1/2 ≥ C(t− s)d/2, 0 ≤ s < t < T0.
(2.4)

Moreover, if MT0 is uniformly bounded in T0 we may write T0 = ∞ in (2.4).

Proof of Theorem 1.1. We start by showing the estimate (1.8). Let
T0 > 0. By the change of variables ξ = U(s, t)x and by Young’s inequality we
obtain

‖T (t, s)u‖Lq
σ(Rd) ≤ | det U(s, t)|1/q‖k(t, s, ·)‖Lr(Rd)‖u‖Lp

σ(Rd), t > s ≥ 0,

where 1 < r < ∞ with 1/p + 1/r = 1 + 1/q. Further, by the change of variable
y = Q

1/2
t,s z we obtain

‖k(t, s, ·)‖r
Lr(Rd) = ‖U(t, s)‖

∫

Rd

(
1

(4π)d/2
e−|z|

2/4

)r

(detQt,s)(1−r)/2dz

≤ C‖U(t, s)‖(detQt,s)(1−r)/2, t ≥ s ≥ 0,

for some C > 0. Now (2.4) yields (1.8).
To prove the gradient estimate (1.9), we first observe that

∇T (t, s)u(x) =
∫

Rd

u(U(s, t)x + g(t, s))k(t, s, y)
(
UT (s, t)Q−1

s,t y
)T dy,

t > s ≥ 0, x ∈ Rd.

Now, (1.9) follows similarly as above.
Since (2.1) is uniquely solvable for ϕ ∈ C∞c (Rd)d, see Section 3, the law of

evolution is valid, i.e.

T̃ (t, s)ϕ = T̃ (t, r)T̃ (r, s)ϕ, (2.5)
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holds for 0 ≤ s ≤ r ≤ t and every ϕ ∈ C∞c (Rd)d. The density of C∞c (Rd)d in
Lp(Rd)d yields that (2.5) even holds for all ϕ ∈ Lp(Rd)d.

In order to prove the strong continuity of the map (t, s) 7→ T̃ (t, s) on 0 ≤ s ≤ t

we apply the change of the variables y = Q
1/2
t,s z, to see that

T̃ (t, s)ϕ(x) =
1

(4π)d/2
U(t, s) ·

∫

Rd

ϕ
(
U(s, t)x + g(t, s)−Q

1/2
t,s z

)
e−|z|

2/4dz

holds. For t > s fixed, we pick two sequences (tn)n∈N and (sn)n∈N such that
tn ≥ sn holds for every n ∈ N and (tn, sn) → (t, s) as n → ∞. For every
ϕ ∈ C∞c (Rd)d and every x ∈ Rd we now obtain

ϕ
(
U(sn, tn)x + g(tn, sn)−Q

1/2
tn,sn

z
) → ϕ

(
U(s, t)x + g(t, s)−Q

1/2
t,s z

)

as n → ∞. Lebesgue’s theorem now yields T̃ (tn, sn)ϕ → T̃ (t, s)ϕ as n → ∞ for
every ϕ ∈ C∞c (Rd)d. The density of C∞c (Rd)d in Lp(Rd)d implies the strong
continuity.

In order to prove Theorem 1.1(b) let u ∈ Lp
σ(Rd), t − s ≤ 1 and choose

(un)n∈N ⊂ C∞c,σ(Rd) ⊂ Lp
σ(Rd), such that limn→∞ ‖u − un‖Lp(Rd) = 0. The

triangle inequality together with the Lp-Lq estimates (1.8) imply that there exist
constants C1, C2 > 0 such that

(t− s)(d/2)(1/p−1/q)‖T (t, s)u‖Lq
σ(Rd)

≤ (t− s)(d/2)(1/p−1/q)‖T (t, s)(u− un)‖Lq
σ(Rd)

+ (t− s)(d/2)(1/p−1/q)‖T (t, s)un‖Lq
σ(Rd)

≤ C1‖u− un‖Lp
σ(Rd) + C2(t− s)(d/2)(1/p−1/q)‖un‖Lq

σ(Rd),

0 ≤ t− s ≤ 1, n ∈ N .

Hence, limt→s(t − s)(d/2)(1/p−1/q)‖T (t, s)u‖Lq
σ(Rd) = 0 by letting first t → s and

then n →∞. The second assertion in Theorem 1.1(b) is proved in a similar way.
¤

3. Representation formula.

In this section the representation formula (2.2) is derived. The general idea is
to do a coordinate transformation in order to eliminate the unbounded drift and
the zero order term of the operator A (t). For this purpose we set
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z := U(s, t)x + g(t, s),

where

g(t, s) :=
∫ t

s

U(s, r)f(r)dr,

and we look for a solution u of (2.1) with initial value ϕ ∈ C∞c (Rd)d in the form

u(t, x) = U(t, s)w(t, U(s, t)x + g(t, s)). (3.1)

By recalling (1.7) we obtain from a straightforward computation that

∂tu(t, x) = −M(t)U(t, s)w(t, z)

+ U(t, s)
(〈U(s, t)M(t)x + U(s, t)f(t),∇wi(t, z)〉)d

i=1

+ U(t, s)∂tw(t, z),

holds. Moreover, we can write equation (3.1) component-wise as

ui(t, x) =
d∑

j=1

Uij(t, s)wj(t, U(s, t)x + g(t, s)), for i = 1, . . . , d,

and thus for the spatial derivatives of u we obtain

∇ui(t, x) =
d∑

j=1

Uij(t, s)U∗(s, t)∇wj(t, z),

∇2ui(t, x) =
d∑

j=1

Uij(t, s)U∗(s, t)∇2wj(t, z)U(s, t).

In particular, the drift term can be written as

〈M(t)x + f(t),∇ui(t, x)〉 =
d∑

j=1

Uij(t, s)〈U(s, t)M(t)x + U(s, t)f(t),∇wj(t, z)〉.

Thus, the function u solves problem (2.1) if and only if for every i = 1, . . . , d, the
function wi : Rd → R is a solution to
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{
∂twi(t, z) = Tr[U(s, t)U∗(s, t)∇2wi(t, z)], t > s, z ∈ Rd,

wi(s, z) = ϕi(z), z ∈ Rd.
(3.2)

By our transformation we now obtained an uncoupled system of parabolic equa-
tions with coefficients only depending on t. More precisely, for i = 1, . . . , d, the
equation (3.2) is a non-autonomous heat equation. It is well known that such a
problem can be uniquely solved (cf. [DPL07, Proposition 2.1]) and that for every
ϕi ∈ C∞c (Rd) its unique solution is explicitly given by the formula

wi(t, z) =
1

(4π)d/2(detQt,s)1/2

∫

Rd

ϕi(z − y)e(−1/4)〈Q−1
t,sy,y〉dy, (3.3)

where

Qt,s =
∫ t

s

U(s, r)U∗(s, r)dr. (3.4)

Now, via (3.1), the unique solution to our original problem (2.1) is given by the
representation formula

u(t, x) = (k(t, s, ·) ∗ ϕ)(U(s, t)x + g(t, s)), (3.5)

where the kernel k(t, s, x) is defined in (2.3).
Note that the right hand side of (3.5) is even well defined for each Lp(Rd)d-

function ϕ. Thus, this explicit formula can be used to define an evolution system
on Lp(Rd)d in the following way. For ϕ ∈ Lp(Rd)d we set

T̃ (t, s)ϕ :=

{
ϕ for t = s,

(k(t, s, x) ∗ ϕ)(U(s, t)x + g(t, s)) for t > s.

Since problem (3.2) is uniquely solvable it follows via (3.1) that T̃ (t, s)ϕ is
the unique solution of (2.1) for initial value ϕ ∈ C∞c (Rd)d.
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