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Abstract. We extend the one dimensional Denjoy-Sacksteder theorems
to some diffeomorphism groups of smooth compact closed n-dimensional man-
ifolds. More precisely, we show the existence of a non trivial stabilizer for
actions of “quasi-conformal groups” admitting an “exceptional” minimal set
which is of “strongly decreasing type”; our results include the classical Denjoy-
Sacksteder theorems.

Introduction.

Let G be a finitely generated group of C2-diffeomorphisms of the circle. If it
admits a Cantor set E as minimal set, there exist g ∈ G and x ∈ E such that

g(x) = x and |g′(x)| < 1.

This is the celebrated theorem of Sacksteder for group actions (see [11]) and our
goal here is to extend it to suitable finitely generated groups of diffeomorphisms
of closed manifolds of any dimension.

To do so, we first introduce the notion of “exceptional minimal sets”. A mini-
mal set E for a group G acting on a closed manifold M will be called “exceptional”
if it has empty interior and is such that the open set M\E has infinitely many com-
ponents all of whose closures are pairwise disjoint. Now it happens that, for any
ε > 0, McSwiggen constructed in [7] infinite cyclic groups of C3−ε-diffeomorphisms
of the 2-torus which preserve such an exceptional minimal set but don’t admit any
non trivial stabilizer. Therefore in order to really extend Sacksteder, we make a
double restriction

i) we assume that the minimal sets E are of “strongly decreasing type” that is
the sum of the diameters of the complementary components is bounded (see
1.1),

ii) the group of diffeomorphisms G are “quasi-conformal” that is the pointwise
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dilatation of all their elements are uniformly bounded by some constant K (see
1.3).

In this setting, Sacksteder’s theorem extends and we provide a proof following quite
closely the procedure of proof of the original work of Sacksteder (see 3.2). Indeed
Sacksteder’s theorem holds under a somewhat weaker differentiability hypothesis
and so will it be for our generalization.

Thanks to the referee for his careful reading of the paper and his valuable
corrections and suggestions.

1. Exceptional minimal sets, wandering sequences and quasi con-
formal groups.

We first introduce and describe the particular class of closed sets which we
will choose as minimal sets for our group actions. After that we adapt to our
setting the usual notion of wandering domains and finally we introduce the family
of quasi-conformal groups.

1.1. Exceptional sets and exceptional minimal sets.
Consider a closed Riemannian manifold (M, g) and denote by δ(A) the diam-

eter of any subset A ⊂ M .

Definition 1.1. A closed subset E of M is called exceptional if

i) E has empty interior,
ii) the complement M \ E of E in M has infinitely many connected components

{Uj}j∈N whose closures Wj are pairwise disjoint.

From the metric point of view, we say furthermore that E is of

1. decreasing type if limj→+∞ δ(Wj) = 0,
2. strongly decreasing type if

∑+∞
j=0 δ(Wj) < +∞.

Moreover, E will be called a Sierpiński-set if it is of decreasing type and all com-
ponents Wj are contractible.

Of course an exceptional set of strongly decreasing type is of decreasing type
and M being compact, these two notions do not depend on the metric. Indeed
they characterize two families of exceptional sets which are of interest.

Example 1.2.

1) A Cantor set embedded in a compact manifold M is exceptional if and only if
M = S1 and any such Cantor set is of strongly decreasing type.

2) The triadic Sierpiński carpet is an exceptional set; it is of decreasing but not
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strongly decreasing type.
3) In [14], Whyburn showed that the standard Sierpiński carpet is homeomorphic

to any closed subset of the two dimensional sphere S2 obtained by removing
the interiors Uj of mutually disjoint closed topological disks {Dj}j∈N whose
diameters tend to 0, provided that it has empty interior. Now if Dj has radius
1/j2 for example, the corresponding set is a Sierpiński set of strongly decreasing
type. It may have strictly positive measure, therefore it is homeomorphic but
not diffeomorphic to the standard Sierpiński carpet in general.

More generally, one can extend these constructions and considerations to subsets
of any closed manifold (see for example the so-called Sierpiński M -sets introduced
in [2]).

Let’s come over to Dynamics. Recall that any open equivalence relation on a
closed manifold M admits at least one minimal set; that is a minimal element in
the set of all closed saturated subsets of M ordered by inclusion. Now a natural
question is to ask whether an exceptional closed set E can be a minimal set for
some equivalence relation, depending on the regularity of this relation. If so, it
will be called an exceptional minimal set.

Concerning these exceptional minimal sets, there are several well known facts:

i) In dimension 1, an exceptional set is a Cantor set and the celebrated theorem
of Denjoy asserts that a C2-diffeomorphism of the circle S1 never admits an
exceptional minimal set.

ii) If a finitely generated group G of C2-diffeomorphisms of the circle admits an
exceptional minimal set E , then by Sacksteder’s theorem, there exist a point
x ∈ E and an element g of the group such that g(x) = x and |g′(x)| < 1.

iii) It is shown in [1], that for a homeomorphism of the torus T 2, any locally con-
nected minimal set without locally separating points either is finite or equals
T 2 or is a Sierpiński set.

1.2. Group actions and wandering sequences.
Here we introduce the basic technical tools that we will use all over the paper.

We start recalling some notations and conventions concerning finitely generated
groups.

Definition 1.3. Let G∗ be a finite symmetric set of generators of a finitely
generated group G.

i) For any g ∈ G, the least integer n such that g can be written as a composition

g = γn ◦ · · · ◦ γ1
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of n generators γi ∈ G∗, is called the length of g (with respect to G∗) and
denoted by l(g), the length of the neutral element being equal to 0 by definition.

ii) Further if G acts on a space M , any orbit Γ of G is naturally endowed with a
metric defined by

d(u, v) = min
v=g(u)

l(g)

for any pair of points u, v ∈ Γ. Moreover, u and v being fixed, there exists at
least one element g such that v = g(u) and l(g) = d(v, u); we call it a shortcut at
u (or u-shortcut). Finally, we call infinite u-shortcut any sequence g = {gn}n∈N

of u-shortcuts of length n such that, for any n, the length l(gn+1 ◦ g−1
n ) = 1

which means that γn+1 = gn+1 ◦ g−1
n is an element of G∗.

Note that if gn = γn ◦ · · · ◦ γ1 is a u-shortcut of length n, then clearly gj =
γj ◦ · · · ◦ γ1 is a u-shortcut of length j for any 1 ≤ j ≤ n. Note also that a
change of generating set will induce an equivalent distance on the orbits modifying
consequently the set of shortcuts. Anyway we fix once and for all the set G∗.

Lemma 1.4. For a finitely generated group G acting on M and any point
u ∈ M , the following conditions are equivalent :

i) the orbit Γ(u) of u is infinite,
ii) there exists an infinite u-shortcut.

Proof. Of course ii) ⇒ i). To prove the converse, take an infinite sequence
{uj}j∈N of pairwise distinct points of Γ(u); there exists for any j an integer pj

and a u-shortcut gpj of length pj such that uj = gpj (u). Then because G is finitely
generated, the set of u-shortcuts of length pj is finite for any j and therefore it
is possible to extract by a diagonal process an infinite subsequence A ⊂ N such
that for any two consecutive elements r < s of A, the length of ḡr,s = gpr

◦ g−1
ps

is equal to pr − ps. For r ∈ A, we write gpr as a composition of generators and
introducing all partial compositions gn for 0 ≤ n ≤ pr, we obtain an infinite
sequence g = {gn}n∈N which is the wanted infinite u-shortcut. ¤

Now assume that G is a group of homeomorphisms of a closed Riemannian
manifold (M, g) and let ρ(G) be the associated open equivalence relation. For any
subset C ⊂ M , we denote by sat(C) =

⋃
g∈G g(C) the saturation of C with respect

to ρ(G).

Remark and Definition 1.5. Assume that the group G admits an ex-
ceptional minimal set E . If U is a connected component of M\E , any connected
component of sat(U) is of type g(U) for some element g ∈ G and the same claim
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holds for its closure W .

i) Next defining in the obvious way the orbit Γ(W ) of W in the set of all closed
subsets of M , we can endow it with a metric similar to that defined in 1.3
for the orbit of a point thus extend the associated notions of shortcuts and
define W -shortcuts and infinite W -shortcuts. Statement and Proof of Lemma
1.4 transpose immediately to this new setting.

ii) Finally, W will be called a wandering domain if its orbit is infinite and the
sequence Wg = {gn(W )}n∈N associated to an infinite W -shortcut g = {gn}n∈N

will be called a wandering sequence initiated by the wandering domain W and
defined by the infinite W -shortcut g.

It is important to notice that an infinite W -shortcut is also an infinite u-
shortcut for any point u ∈ W but the converse is not true. Finally we introduce
some properties of “metric type” for wandering sequences.

Definition 1.6. We say that the wandering sequence Wg = {gn(W )}n∈N

is

i) decreasing if the sequence of diameters {δ[gn(W )]}n∈N tends to 0,
ii) strongly decreasing if the latter is summable i.e. Λ = δ(Wg) =

∑+∞
n=0 δ[gn(W )]

< +∞.

As M is compact, all metrics on M are equivalent and therefore the fact that
a wandering sequence is decreasing [resp. strongly decreasing] does not depend on
the metric. Note also that a given closed set W may possibly initiate infinitely
many different wandering sequences; this number will reduce essentially to two if
the group G is cyclic.

Indeed we now show that all components of the complement of an exceptional
minimal set are wandering:

Lemma 1.7. Let E be an exceptional minimal set for a finitely generated
group G and let W be the closure of a component U of M\E . Then for any point
u ∈ ∂W , there exists a subsequence {uj}j∈N of the orbit Γ(u) such that u0 = u,
uj /∈ W for j ≥ 1 and limj→∞ uj = u.

Proof. Denoting by A ⊂ ∂W the subset of points u which verify the claim
above; we proceed in two steps:

(1) First we claim that either A = ∂W or A = ∅. Indeed for u /∈ A, there exists
a neighborhood ω of u in M such that ω ∩ Γ(u) ⊂ ∂W which, because Γ(u) is
dense in E , implies that
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ω ∩ E = ω ∩ ∂W

and the latter set is open in E . By minimality of E , the saturation sat(ω∩∂W )
is an open dense subset of E thus equal to E . In particular any point v ∈ ∂W

is mapped into ω by some element g ∈ G and g(v) ∈ g(W ) ∩W . But g(W )
is the closure of the component g(U) of M\E and by definition of exceptional
sets, we conclude that g(W ) = W and g(∂W ) = ∂W . The neighborhood
g−1(ω) of v is such that g−1(ω)∩E = g−1(ω)∩ ∂W which implies that v /∈ A;
we have proved that A 6= ∂W implies A = ∅.

(2) Now if A is empty, there exists an open neighborhood V of W such that
V ∩ E = ∂W showing that ∂W is open in E . Consequently

⋃
g∈G g(∂W )

is an open saturated subset of E which by minimality equals E . It follows
that {g(V )}g∈G is an open cover of the compact set E from which we can
extract a finite subcover {g1(V ), g2(V ), . . . , gr(V )} so that E =

⋃r
j=1 gj(∂W )

contradicting the definition of exceptional sets. We conclude that A = ∂W

which proves our claim. ¤

Theorem 1.8. Let E be an exceptional minimal set for a finitely generated
group G of homeomorphisms of a closed compact manifold M . Then the closure W

of any connected component U of M\E is wandering and for any point u ∈ ∂W ,
there exists a wandering sequence Wg = {gn(W )}n∈N which accumulates on u. In
particular E is the only minimal set for G.

Moreover if E is of decreasing type, the sequence {gn(u)}n∈N accumulates
on u.

Proof. The proof is in three steps. We fix a component W , a point u ∈ ∂W

and a subsequence {uj} of Γ(u) provided by the previous lemma.

(1) Then for any j, there exists a connected component Wj of sat(W ) such that
uj ∈ ∂Wj . Possibly after selecting an appropriate subsequence, we may as-
sume that these components Wj are mutually distinct which implies immedi-
ately that W is wandering. Next as observed in 1.5, we can apply Lemma 1.4
to W and so obtain a wandering sequence {gn(W )}n∈N which accumulates on
u thus on E by choice of u.

(2) Because M\E is open, any associated sequence {gn(x)}n∈N accumulates on E
as well; it implies that E is contained in the closure of the orbit of any x ∈ M

thus E is the only minimal set for G.
(3) Finally if E is of decreasing type, the last assertion of (1) above implies that

any sequence {gn(x)}n∈N accumulates on u. It is so in particular for the
sequence {gn(u)}n∈N itself.

The proof is complete. ¤
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Finally one may ask for examples of exceptional minimal sets of group ac-
tions, in particular examples which are not of Sierpiński’s type. The following was
suggested to us by the referee:

Example 1.9.

1) There are well known examples of cyclic groups of diffeomorphisms of the 2-
torus which admit exceptional minimal sets; of class C0 in [1] and of class at
least C2 in [7], all of Sierpiński’s type.

2) To obtain an example which is not of Sierpiński’s type, we consider a group
G of diffeomorphisms of T 3 generated by the two diffeomorphisms (ϕ × id,

id×Rα) where ϕ is a McSwiggen’s diffeomorphism ([7]) as before and Rα is an
irrational rotation on the circle. Then G admits an exceptional minimal set E
whose complement is a union of solid tori.

1.3. Quasi-conformal groups of diffeomorphisms.
In order to extend the theorems of Denjoy and Sacksteder to groups of diffeo-

morphisms of higher dimensional manifolds, we will have to restrict to a particular
class of groups; the so-called “quasi-conformal groups” which we describe now.

Our closed manifold M being still endowed with a Riemannian metric g, we
denote by |v| the norm of a tangent vector v and by T 1M the bundle of unit
tangent vectors with fiber T 1

xM over x. For any C1-diffeomorphism f : M → M ,
we introduce

i) the norm of the differential of f at x ∈ M

∥∥Dfx

∥∥ := sup
{|Dfx(v)| : v ∈ T 1

xM
}
,

ii) the dilatation of f at x ∈ M given by

Hf (x) :=
sup{|Dfx(v)| : v ∈ T 1

xM}
inf{|Dfx(w)| : w ∈ T 1

xM} .

As M is compact, the dilatation of f has an obvious upper bound

Hf (x) ≤ K[f ] :=
sup{|Df(v)| : v ∈ T 1M}
inf{|Df(w)| : w ∈ T 1M}

and the two notions are related by the following inequalities:

1
K[f ]

· ‖Dfx‖ ≤ |Dfx(v)| ≤ ‖Dfx‖,
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which hold for any x ∈ M and any unit vector v ∈ T 1
xM .

Now consider a group G of C1-diffeomorphisms of M . In general there is no
common upper bound for all the dilatations K[g], g ∈ G; to obtain one, we have
to restrict to a special class of groups:

Definition 1.10. A group G of C1-diffeomorphisms of a manifold M will
be called quasi-conformal if there exists a positive constant K such that K[g] ≤ K

for any element g ∈ G.

For example, the group of iterates of a conformal diffeomorphism is quasi-
conformal with K = 1. Also for any diffeomorphism f of S1, the dilatation Hf (x)
at any point x ∈ S1 equals 1 and therefore any group of C1-diffeomorphisms of
S1 is trivially 1-quasi-conformal. The reader may find other examples of quasi-
conformal groups in [12], [13] or [6].

2. Wandering sequences and convergence of differentials.

The mean value theorem plays a crucial role in the proof of the classical
Denjoy theorem and its generalization by Sacksteder. Its use strongly relies on
the fact that the circle is of dimension 1; here we introduce two analogues of it
adapted to our context and in the remainder of the section, we use these analogues
for the control of the differentials of short-cuts on wandering domains.

2.1. Mean value inequalities.
Consider again a Riemannian manifold (M, g) and let ε be its convexity radius.

Remark 2.1. Let W be the closure of an open connected domain U of M .
If δ(W ) ≤ ε, there exists for any x ∈ W , a unique maximal geodesically convex
disk Cx centered at x and contained in W , it verifies ∂Cx∩∂W 6= ∅. Finally there
is a point cW ∈ W such that CcW

has maximal radius which we denote by ρ(W ).

Now our mean value inequalities will be the following:

Lemma 2.2. For any W and any diffeomorphism f of M , there exist points
z, y ∈ W such that :

i) ρ(W ) · ‖Dfz‖ ≤ K[f ] · δ[f(W )] if δ[f(W )] ≤ ε,
ii) δ[f(W )] ≤ δ(W ) · ‖Dfy‖ if δ(W ) ≤ ε.

Proof. (1) To prove claim i), we take the convex disk Cf(cW ) ⊂ f(W )
defined above in 2.1. Because Cf(cW ) meets ∂f(W ), the set E∗ = f−1[Cf(cW )]
meets ∂W and containing by definition the point cW , it verifies
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δ(E∗) ≥ ρ(W ).

Now take points a, b ∈ ∂E∗ such that d(a, b) = δ(E∗). As Cf(cW ) is convex,
there exists a geodesic γ joining f(a) to f(b) in Cf(cW ). Let l(γ) be its length and
let l(λ) be the length of the path λ = f−1 ◦ γ parametrized by arc length. Then
λ joins a to b in E∗ thus verifies

l(λ) ≥ δ(E∗) ≥ ρ(W ).

Finally, according to the usual mean value theorem and the definition of K[f ],
there exist a point s ∈ [0, l(λ)] and a vector v ∈ T 1

z M , with z = λ(s), such that

δ[f(W )] ≥ δ(Cf(cW )) ≥ l(γ) = l(λ) · |Dfz(v)| ≥ l(λ) · 1
K[f ]

· ‖Dfz‖.

Formula i) follows by combination of the two previous inequalities.
(2) To prove claim ii), we choose points a, b ∈ ∂W such that d[f(a), f(b)] =

δ[f(W )]. The assumption δ(W ) ≤ ε implies that W is contained in a convex
disk in which there exists a geodesic λ joining a to b with l(λ) ≤ δ(W ). Then
γ = f ◦ λ joins f(a) to f(b) and verifies l(γ) ≥ δ[f(W )]. Applying again the usual
mean value theorem to λ, we see that there exist s ∈ [0, l(λ)] and v ∈ T 1

y M with
y = λ(s) such that, by definition of the norm, we get

δ[f(W )] ≤ l(γ) = l(λ) · |Dfy(v)| ≤ δ(W ) · ‖Dfy‖.

This is claim ii). ¤

Observe that these inequalities were obtained under the only assumption that
f is of class C1.

2.2. Convergence on wandering domains.
Notations 2.3. In order to simplify our notations, we will from now on

write ‖Df(x)‖ instead of ‖Dfx‖ for x ∈ M .

We look for an analytical description of wandering sequences. So let G be a
finitely generated group of diffeomorphisms of M admitting an exceptional mini-
mal set E and consider

Wg = {gn(W )}n∈N = {Wn}n∈N

a wandering sequence for G, initiated by the closure W of a component U of M\E .
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Our next goal is to control the sequences {‖Dgn(x)‖}, x ∈ W , when n tends
to ∞. To do so, we have to compare the differentials of the diffeomorphisms gn at
any two different points x and y of W . Here as for the original Denjoy-Sacksteder
theorems, we must increase the order of differentiability of G.

Definition 2.4. We say that a C1-diffeomorphism g is of class C1+L if the
continuous function Log ‖Dg(x)‖ is Lipschitz and we say that the group G is of
class C1+L if all its elements are of this class.

Then if G is finitely generated, we can find a common Lipschitz constant θ

for all functions Log ‖Dγ(x)‖ with γ ∈ G∗; we call it a Lipschitz constant of G∗.

For example, a group of C2-diffeomorphisms of a compact manifold is of
course of class C1+L. It will also be convenient to introduce a particular type of
wandering sequences:

Definition and Remark 2.5. The wandering sequence Wg will be called
controlled if δ(Wn) ≤ ε for any n ∈ N , where ε is the convexity radius of M ; this
means in particular that any Wn is contained in a convex closed disk.

For example consider any wandering sequence Wg = {Wn}n∈N , then any Wq

is of course wandering as well and, q being fixed, we define an infinite Wq-shortcut
h = {hp}p∈N by setting hp = gp+q ◦ g−1

q . The corresponding wandering sequence
Vh = {hp(V )}p∈N initiated by V = Wq will be called the q-tail of Wg and if Wg

is decreasing, there exists an integer q such that its q-tail Vh is decreasing and
controlled.

The next lemma is crucial.

Lemma 2.6. Let G be a K-quasi-conformal group of diffeomorphisms of
a closed manifold M admitting an exceptional minimal set E and let Wg be a
wandering sequence for G, initiated by a wandering domain W . Then if G is of
class C1+L and Wg is strongly decreasing, we obtain the following properties:

i) for any two points x, y ∈ W and any n ∈ N , we get

‖Dgn(x)‖ ≤ eβ · ‖Dgn(y)‖,

where θ is a Lipschitz constant for the generating set G∗, ∆ =
∑+∞

n=0 δ(Wn)
and β = θ ·∆,

ii) if Wg is controlled, then for any x ∈ W and any n ∈ N ,

‖Dgn(x)‖ ≤ K

ρ(W )
· eβ · δ(Wn),
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iii) in general, the sequence {‖Dgn(x)‖}n∈N converges uniformly to 0 on W and
there exists a positive constant R (depending on Wg) such that

+∞∑
n=0

‖Dgn(x)‖ ≤ R

for any x ∈ W .

Proof. (1) With the notations of 1.2, we write gn = γn ◦ γn−1 · · · ◦ γ1 and
by elementary linear algebra, we get the formulas

‖Dgn(x)‖ ≤
n−1∏

j=0

∥∥Dγj+1[gj(x)]
∥∥

and

Log
‖Dgn(x)‖
‖Dgn(y)‖ =

n−1∑

j=0

(
Log ‖Dγj+1[gj(x)]‖ − Log ‖Dγj+1[gj(y)]‖).

Next using a Lipschitz constant θ of G∗, we obtain the following inequalities which
imply immediately claim i):

Log
‖Dgn(x)‖
‖Dgn(y)‖ ≤ θ ·

( n−1∑

j=0

d[gj(x), gj(y)]
)
≤ θ ·

( n−1∑

j=0

δ(Wj)
)
≤ θ ·∆ = β.

(2) Now suppose that the wandering sequence Wg is controlled. Then
δ[gn(W )] ≤ ε for any n and our first mean value inequality: claim i) in 2.2,
implies that there exist points zn ∈ W such that

‖Dgn(zn)‖ ≤ K[gn]
ρ(W )

· δ(Wn) ≤ K

ρ(W )
· δ(Wn).

Claim ii) follows from i) by setting y = zn.
Under the same hypothesis, claim ii) implies claim iii) with the constant

R = (K/ρ(W )) · eβ ·∆.
(3) We return to the general case; as the sequence Wg is decreasing, there

exists an integer q such that the q-tail Vh of Wg is controlled thus verifies iii) for
some positive constant R1. Now elementary considerations show that we can find
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a constant R0 > 0 such that

q∑

j=0

‖Dgj(x)‖ ≤ R0

for any x ∈ W . The general version of iii) follows immediately with the constant
R = R0 + R1. ¤

2.3. Extending the convergence.
In a last step we extend the convergence of the sequence {‖Dgn(x)‖}n∈N

uniformly over some extension of W . With the notations introduced above, we
define two new constants:

ν̂ :=
1

2 · θ · e ·R and ν := inf
(

ν̂,
ε

2

)

and denote by Θu the closed convex geodesic disk of radius ν centered at u ∈ ∂W .

Lemma 2.7. Still assume that Wg is a strongly decreasing wandering se-
quence for a K-quasi-conformal group G of diffeomorphisms of class C1+L. Then
for any u ∈ ∂W , any x ∈ Θu and any n ∈ N , we get

‖Dgn(x)‖ ≤ e · ‖Dgn(u)‖.

In particular, the sequence {‖Dgn(x)‖}n∈N converges uniformly to 0 on Θu and
the sequence {δ[gn(Θu)]}n∈N tends to 0.

Proof. Fix u and x; by exactly the same argument as in the Proof of
Lemma 2.6, we obtain

Log
‖Dgn(x)‖
‖Dgn(u)‖ ≤ θ ·

( n−1∑

j=0

d[gj(x), gj(u)]
)

.

Now Θu being a convex disk, our second mean value inequality: claim ii) of 2.2,
gives points yj ∈ Θu such that

Log
‖Dgn(x)‖
‖Dgn(u)‖ ≤ θ · 2ν ·

n−1∑

j=0

‖Dgj(yj)‖.

Our main claim follows by induction on n, the case n = 0 being trivial because g0



Denjoy-Sacksteder theory for groups of diffeomorphisms 997

is the identity of M . Indeed using the induction hypothesis, we conclude that

Log
‖Dgn(x)‖
‖Dgn(u)‖ ≤ θ · 2ν · e ·

( n−1∑

j=0

‖Dgj(u)‖
)
≤ θ · 2ν · e ·

( +∞∑

j=0

‖Dgj(u)‖
)

,

which implies

Log
‖Dgn(x)‖
‖Dgn(u)‖ ≤ 2θ · ν · e ·R ≤ 1

by the summability Result of Lemma 2.6 and definition of ν.
The convergence of the sequence {‖Dgn(x)‖}n∈N follows using Lemma 2.6

and that of the sequence {δ[gn(Θu)]}n∈N using our second mean value inequality
(see 2.2). ¤

3. Sacksteder’s type theorems.

We are now in position to apply the previous results and extend the celebrated
theorems of Sacksteder (see [11]) and Denjoy (see [3]).

Definition 3.1. A C1-diffeomorphism g of M is a Sacksteder’s stabilizer if
there exists z ∈ M such that

g(z) = z and ‖Dg(z)‖ < 1.

The point z will then be called a contracting fix point.

Theorem 3.2. Let G be a finitely generated group of C1+L-diffeomorphisms
of a closed compact manifold M admitting an exceptional minimal set E . If G is
quasi-conformal and E is of strongly decreasing type, then E is the only minimal
set of G and

i) there exists a Sacksteder’s stabilizer g ∈ G,
ii) the group G and any of its orbits have exponential growth.

Proof. Because E is of decreasing type, we know by Theorem 1.8 that E
is the only minimal set for G. Next consider the closure W of some component
U of M\E , then again by Theorem 1.8, we know that W initiates a wandering
sequence Wg = {gn(W )}n∈N which accumulates on at least one point u ∈ ∂W .
On the other hand, as E is of strongly decreasing type, the neighborhood Θu of u

provided by Lemma 2.7 is such that the sequence {δ[gn(Θu)]} tends to 0.
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Combining these two observations, we conclude that there exists an integer q

such that gq(Θu) is contained in Θu and ‖Dgq(x)‖ < 1. Then gq has a contracting
fix point z ∈ Θu by Banach’s fix-point theorem; it belongs to the closure of the
orbit of u thus to the minimal set E .

In order to prove claim ii), we recall that any orbit of G with non exponential
growth produces a probability measure µ which is invariant by the action of G

and whose support is the minimal set E (see [10] or [4, t.B, p. 265]). Now if g

is a Sacksteder’s stabilizer fixing z ∈ E , there exists a neighborhood V of z such
that g(V ) ⊂ V and

⋂
n∈N gn(V ) = z implying µ(z) = µ(V ) > 0 and µ(E ) = +∞

which is absurd. We conclude that all orbits have exponential growth and the
same property holds for G whose growth dominates the growth of its orbits. ¤

As a cyclic group has linear growth, we obtain as corollary the following
Denjoy-type theorem:

Theorem 3.3. Let G be a cyclic diffeomorphism group of class C1+L. If it
admits an exceptional minimal set E , then

i) either G is not quasi-conformal,
ii) or E is not of strongly decreasing type.

We also recover the usual theorems of Denjoy and Sacksteder:

Corollary 3.4. Let H be a finitely generated group of orientation preserv-
ing C1+L-diffeomorphisms of the circle S1.

i) If H is cyclic, it does not admit an exceptional minimal set thus either H has
a finite orbit or all its orbits are everywhere dense.

ii) If H admits an exceptional minimal set E , there exists a point z ∈ E and an
element h ∈ H such that h(z) = z and |h′(z)| < 1.

Proof. We have to check the special assumptions of our Theorem 3.2.
Indeed as noticed in Subsection 1.3, any group H is trivially 1-quasi-conformal.
On the other hand, any exceptional minimal set E is a Cantor set thus of strongly
decreasing type, because here a connected component U of the complement of E
is just an interval whose diameter coincides with its length and the sum of the
diameters is just the measure of S1\E which is bounded by 1. ¤

In the literature, one can find a few examples of exceptional minimal sets but
only for cyclic groups of diffeomorphisms. The most relevant are the following:

Example 3.5. McSwiggen’s examples.
In [7], McSwiggen constructs for every ε > 0, a C3−ε-diffeomorphism g of
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the 2-torus which has no periodic points, is semi-conjugate to a translation and
has a wandering domain with dense orbit; in particular it admits an exceptional
minimal set E but no non trivial stabilizer.

In order to verify the coherence with our result 3.2, we make the following
additional observations:

i) The cyclic group G generated by any of McSwiggen’s diffeomorphisms g is not
quasi-conformal; otherwise by a result of Norton and Velling (see Proposition
1 in [9]), it would be conjugate to a minimal translation of T 2 contradicting
the fact that it preserves an exceptional minimal set.

ii) Moreover, by a result of Kwakkel and Markovic in [5], one concludes that the
wandering domains of G do not have “bounded geometry”. Although this
fact is not directly related to the diameters of the corresponding wandering
sequence, one may suspect that the minimal set E is not of strongly decreasing
type.
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