Addendum to: Characterizations of topological dimension by use of normal sequences of finite open covers and Pontrjagin-Schnirelmann theorem

[The original paper is in this journal, Vol. 63 (2011), 919-976]

By Hisao Kato

(Received July 2, 2010)

Abstract

In our recent paper [5] in this journal, we have studied strong relations between metrics of spaces and box-counting dimensions by use of Alexandroff-Urysohn metrics d induced by normal sequences. In this addendum, we intend to improve the main theorems given in [5, Theorem 0.1 and 0.2] and give the complete solution for a problem of metrics and two box-counting dimensions.

1. Introduction.

In this addendum we improve the main theorems given in [5] and give the complete solution for a problem of metrics d and box-counting dimensions $\underline{\operatorname{dim}}_{B}(X, d)$ and $\operatorname{dim}_{B}(X, d)$.

We follow directly the notations of [5]. For a topological space X, we denote by $\operatorname{dim} X$ the topological (covering) dimension of X (see [4], [6], [7], [9]). For a totally bounded metric d on X and $\epsilon>0$, let

$$
N(\epsilon, d)=\min \left\{|\mathscr{U}| \mid \mathscr{U} \text { is a finite open cover of } X \text { with } \operatorname{mesh}_{d}(\mathscr{U}) \leq \epsilon\right\},
$$

where $|A|$ denotes the cardinality of a set A. Then the lower and upper boxcounting dimensions of (X, d) (see [10]) are given by

$$
\begin{aligned}
& {\underset{\operatorname{dim}}{B}}(X, d)=\liminf _{\epsilon \rightarrow 0} \frac{\log N(\epsilon, d)}{|\log \epsilon|} \\
& \overline{\operatorname{dim}}_{B}(X, d)=\limsup _{\epsilon \rightarrow 0} \frac{\log N(\epsilon, d)}{|\log \epsilon|} .
\end{aligned}
$$

[^0]We obtain the following result which is the complete solution for a problem of metrics and two box-counting dimensions.

Theorem 1.1 (cf. [5, Theorem 0.2]). Let X be an infinite separable metric space. For any $\alpha, \beta \in[\operatorname{dim} X, \infty]$ with $\alpha \leq \beta$, there is a totally bounded metric $d=d_{\alpha \beta}$ on X such that

$$
\begin{aligned}
{[\alpha, \beta]=} & \left\{\left.\liminf _{k \rightarrow \infty} \frac{\log N\left(\epsilon_{k}, d\right)}{\left|\log \epsilon_{k}\right|} \right\rvert\,\left\{\epsilon_{k}\right\}_{k=1}^{\infty}\right. \text { is a decreasing sequence } \\
& \text { of positive numbers with } \left.\lim _{k \rightarrow \infty} \epsilon_{k}=0\right\} .
\end{aligned}
$$

In particular, $\underline{\operatorname{dim}}_{B}(X, d)=\alpha$ and $\overline{\operatorname{dim}}_{B}(X, d)=\beta$.
To prove Theorem 1.1, we need the following theorem which is more precise result than [5, Theorem 0.1]. To prove it, we extend the technique of Banakh and Tuncali (see [2, Theorem 6.1]).

Theorem 1.2 (cf. [5, Theorem 0.1]). Let X be a nonempty separable metric space. Then

$$
\begin{aligned}
\operatorname{dim} X= & \min \left\{\left.\liminf _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{U}_{i}\right|}{i} \right\rvert\,\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}\right. \text { is a normal star-sequence of } \\
& \text { finite open covers of } X \text { and a development of } X\} \\
= & \min \left\{\left.\liminf _{i \rightarrow \infty} \frac{\log _{2}\left|\mathscr{U}_{i}\right|}{i} \right\rvert\,\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}\right. \text { is a normal delta-sequence of } \\
& \text { finite open covers of } X \text { and a development of } X\}
\end{aligned}
$$

Moreover, there exists a normal star-sequence $\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}$ of finite open covers of X which is a development of X such that

$$
\operatorname{dim} X=\lim _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{U}_{i}\right|}{i} .
$$

Also, there exists a normal delta-sequence $\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}$ of finite open covers of X which is a development of X such that

$$
\operatorname{dim} X=\lim _{i \rightarrow \infty} \frac{\log _{2}\left|\mathscr{U}_{i}\right|}{i} .
$$

Proof. We can suppose that $\operatorname{dim} X=n<\infty$. Let $M=[0,1]^{2 n+1}$ be the unit cube in the $(2 n+1)$-dimensional Euclidean space $\boldsymbol{R}^{2 n+1}$. For $a \in \boldsymbol{N}$, we divide the edges of $M=[0,1]^{2 n+1}$ into a equal subintervals and we obtain the collection $\mathscr{C}(1 / a)$ of all $a^{2 n+1}$ subcubes of M with edge $1 / a$. For each $i=$ $0,1,2, \ldots$ we obtain the collection $\mathscr{C}\left(1 / 3^{i}\right)$ of all $3^{i(2 n+1)}$ subcubes of M with edge $1 / 3^{i}$. Let $\boldsymbol{a}=\left\{a_{i}\right\}_{i=1}^{\infty}$ be any increasing sequence of natural numbers, i.e., $a_{0}=0<a_{1}<a_{2}<\cdots<a_{i}<a_{i+1}<\cdots$. We shall construct an n-dimensional Menger universal compactum M_{a} as follows. First we put

$$
\mathscr{M}_{\boldsymbol{a}}\left(a_{0}\right)=\left\{[0,1]^{2 n+1}\right\} .
$$

For each $a_{0}+1=1 \leq i \leq a_{1}$, we put

$$
\mathscr{M}_{a}(i)=\left\{\left.D \in \mathscr{C}\left(\frac{1}{3^{i}}\right) \right\rvert\, D \text { intersects an } n \text {-dimensional face of }[0,1]^{2 n+1}\right\} .
$$

For each $a_{1}+1 \leq i \leq a_{2}$, we put

$$
\begin{aligned}
\mathscr{M}_{\boldsymbol{a}}(i)= & \left\{\left.D \in \mathscr{C}\left(\frac{1}{3^{i}}\right) \right\rvert\, \text { there is } C \in \mathscr{M}_{\boldsymbol{a}}\left(a_{1}\right) \text { such that } D \subset C \text { and } D\right. \\
& \text { intersects an } n \text {-dimensional face of } C\} .
\end{aligned}
$$

For each $a_{2}+1 \leq i \leq a_{3}$, we put

$$
\begin{aligned}
\mathscr{M}_{\boldsymbol{a}}(i)= & \left\{\left.D \in \mathscr{C}\left(\frac{1}{3^{i}}\right) \right\rvert\, \text { there is } C \in \mathscr{M}_{\boldsymbol{a}}\left(a_{2}\right) \text { such that } D \subset C \text { and } D\right. \\
& \text { intersects an } n \text {-dimensional face of } C\} .
\end{aligned}
$$

We iterate this procedure with respect to the sequence $\boldsymbol{a}=\left\{a_{i}\right\}_{i=1}^{\infty}$ and we obtain the collection $\mathscr{M}_{\boldsymbol{a}}(i)$ of subcubes with edges $1 / 3^{i}$ for each $i \in \boldsymbol{N}$. Put

$$
M_{\boldsymbol{a}}(i)=\bigcup\left\{C \mid C \in \mathscr{M}_{\boldsymbol{a}}(i)\right\} \subset \boldsymbol{R}^{2 n+1}
$$

Then $M_{\boldsymbol{a}}(i) \supset M_{\boldsymbol{a}}(i+1)$ for each $i \in \boldsymbol{N}$. We put

$$
M_{\boldsymbol{a}}=\bigcap_{i=1}^{\infty} M_{\boldsymbol{a}}(i)
$$

By use of Anderson-Bestvina's Characterization Theorem of Menger compacta (see [1] and [3]), we see that $M_{\boldsymbol{a}}$ is homeomorphic to the n-dimensional Menger universal compactum. Note that $\mathscr{M}_{\boldsymbol{a}}(i) \subset \mathscr{C}\left(1 / 3^{i}\right)$ and $M_{\boldsymbol{a}}$ is a subset of the standard n-dimensional Menger compactum $M_{\dot{\boldsymbol{a}}}$, where $\dot{\boldsymbol{a}}=\left\{\dot{a}_{i}\right\}_{i=1}^{\infty}$ and $\dot{a}_{i}=i$ for $i \in \boldsymbol{N}$.

We shall construct a normal star-sequence $\left\{\mathscr{W}(\boldsymbol{a})_{i}\right\}_{i=1}^{\infty}$ of finite open covers of $M_{\boldsymbol{a}}$ as follows. For each $i \in \boldsymbol{N}$ we put

$$
\mathscr{W}(\boldsymbol{a})_{i}=\left\{\operatorname{Int}_{M_{\boldsymbol{a}}} S t\left(C, \mathscr{M}_{\boldsymbol{a}}(i)\right) \mid C \in \mathscr{M}_{\boldsymbol{a}}(i)\right\},
$$

where $S t\left(C, \mathscr{M}_{\boldsymbol{a}}(i)\right)=\bigcup\left\{D \in \mathscr{M}_{\boldsymbol{a}}(i) \mid D \cap C \neq \phi\right\} \cap M_{\boldsymbol{a}}$. Then we see that $\left\{\mathscr{W}(\boldsymbol{a})_{i}\right\}_{i=1}^{\infty}$ is a normal star-sequence of finite open covers and a development of the space $M_{\boldsymbol{a}}$. Also, we see that $\left|\mathscr{W}(\boldsymbol{a})_{i}\right|=\left|\mathscr{M}_{\boldsymbol{a}}(i)\right|$.

Now, we consider the special sequence $\ddot{\boldsymbol{a}}=\left\{\ddot{a}_{i}\right\}_{i=1}^{\infty}$ of natural numbers, where $\ddot{a}_{i}=2^{i}$ for $i \in \boldsymbol{N}$ and we obtain a desired n-dimensional Menger universal compactum $Y=M_{\ddot{\boldsymbol{a}}}$. We shall prove that the normal sequence $\left\{\mathscr{W}(\ddot{\boldsymbol{a}})_{i}\right\}_{i=1}^{\infty}$ of Y satisfies the condition

$$
\lim _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{W}(\ddot{\boldsymbol{a}})_{i}\right|}{i}=n
$$

For each natural number k, we consider the sequence $\boldsymbol{k}=\left\{k_{i}\right\}_{i=1}^{\infty}$ such that $k_{i}=i$ for each $1 \leq i \leq 2^{k}$ and $k_{i}=2^{k}\left(i+1-2^{k}\right)$ for each $i>2^{k}$. Note that $Y=M_{\ddot{a}} \subset M_{\boldsymbol{k}}$ and $\left|\mathscr{W}(\ddot{\boldsymbol{a}})_{i}\right| \leq\left|\mathscr{W}(\boldsymbol{k})_{i}\right|$ for $i \in \boldsymbol{N}$. We can calculate $\lim _{i \rightarrow \infty} \log _{3}\left|\mathscr{W}(\boldsymbol{k})_{i}\right| / i$ as follows (see [2, Theorem 6.1]). For $a \in \boldsymbol{N}$, we put

$$
\begin{aligned}
H(a) & =\sum_{j=0}^{n} 2^{2 n+1-j} C_{j}^{2 n+1}(a-2)^{j} \\
& =2^{2 n+1} \cdot a^{n}\left[\sum_{j=0}^{n} C_{j}^{2 n+1}\left(\frac{a-2}{2 a}\right)^{j} \cdot a^{j-n}\right],
\end{aligned}
$$

where $C_{p}^{q}=q!/(p!(q-p)!)$. Note that

$$
\left.H(a)=\left\lvert\,\left\{\left.D \in \mathscr{C}\left(\frac{1}{a}\right) \right\rvert\, D \text { intersects an } n \text {-dimensional face of }[0,1]^{2 n+1}\right\}\right. \right\rvert\, .
$$

Note that there is a number $T>0$ such that for any $a \in \boldsymbol{N}$

$$
H(a) \leq 2^{2 n+1} a^{n} T
$$

Let i be a sufficiently large natural number with $i \geq 2^{k}$. Put $i=2^{k}+2^{k} p+q$, where $p, q \in \boldsymbol{N} \cup\{0\}$ and $0 \leq q<2^{k}$. Then

$$
\left|\mathscr{W}(\boldsymbol{k})_{i}\right|=H(3)^{2^{k}} H\left(3^{2^{k}}\right)^{p} H\left(3^{q}\right) .
$$

Then

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{W}(\boldsymbol{k})_{i}\right|}{i} & =\lim _{p \rightarrow \infty} \frac{2^{k} \log _{3} H(3)+p \log _{3} H\left(3^{2^{k}}\right)+\log _{3} H\left(3^{q}\right)}{2^{k}+2^{k} p+q} \\
& =\frac{\log _{3} H\left(3^{2^{k}}\right)}{2^{k}} \leq n+\frac{(2 n+1) \log _{3} 2+\log _{3} T}{2^{k}}
\end{aligned}
$$

Since

$$
\limsup _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{W}(\ddot{\boldsymbol{a}})_{i}\right|}{i} \leq \lim _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{W}(\boldsymbol{k})_{i}\right|}{i}
$$

for any $k \in \boldsymbol{N}$, we see that

$$
\limsup _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{W}(\ddot{\boldsymbol{a}})_{i}\right|}{i} \leq n
$$

By [5, Theorem 0.1], we can conclude that

$$
\lim _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{W}(\ddot{\boldsymbol{a}})_{i}\right|}{i}=n
$$

Let X be an n-dimensional compactum. Since Y is a universal space of the class of n-dimensional spaces, we may assume that $X \subset Y$. Put $\mathscr{U}_{i}=\mathscr{W}(\ddot{\boldsymbol{a}})_{i} \mid X$ for each $i \in \boldsymbol{N}$. Also by [5, Theorem 0.1], the normal sequence $\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}$ of X satisfies the desired condition

$$
\lim _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{U}_{i}\right|}{i}=n
$$

The existence of desired normal delta-sequence can be proved similarly.

By the proof of [5, Theorem 5.1], we have the following corollary.
Corollary 1.3. Let X be an infinite separable metric space. For any $\alpha, \beta \in$ $[\operatorname{dim} X, \infty]$ with $\alpha \leq \beta$, there is a normal star (resp. delta)-sequence $\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}$ of finite open covers of X which is a development of X such that

$$
[\alpha, \beta]=\left\{\left.\liminf _{k \rightarrow \infty} \frac{\log _{3}\left|\mathscr{U}_{i_{k}}\right|}{i_{k}} \right\rvert\,\left\{i_{k}\right\}_{k=1}^{\infty}\right. \text { is an increasing subsequence }
$$

$$
\text { of natural numbers }\}
$$

$$
\begin{array}{r}
\left(\text { resp. }[\alpha, \beta]=\left\{\left.\liminf _{k \rightarrow \infty} \frac{\log _{2}\left|\mathscr{U}_{i_{k}}\right|}{i_{k}} \right\rvert\,\left\{i_{k}\right\}_{k=1}^{\infty}\right. \text { is an increasing }\right. \\
\text { subsequence of natural numbers }\}) .
\end{array}
$$

Proof of Theorem 1.1. By Theorem 1.2, there is a normal star-sequence $\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}$ of finite open covers of X which is a development of X such that

$$
\operatorname{dim} X=\lim _{i \rightarrow \infty} \frac{\log _{3}\left|\mathscr{U}_{i}\right|}{i}
$$

By [5, Theorem 6.2 and Theorem 6.4], we see that there is a totally bounded metric $d=d_{\alpha \beta}$ on X such that

$$
\begin{aligned}
{[\alpha, \beta]=\left\{\left.\liminf _{k \rightarrow \infty} \frac{\log N\left(\epsilon_{k}, d\right)}{\left|\log \epsilon_{k}\right|} \right\rvert\,\left\{\epsilon_{k}\right\}_{k=1}^{\infty}\right.} & \text { is a decreasing sequence } \\
& \text { of positive numbers with } \left.\lim _{k \rightarrow \infty} \epsilon_{k}=0\right\}
\end{aligned}
$$

Remark. In this paper, "normal" sequence of open covers is essential. We can easily see that for any separable metric space X, there is a sequence $\left\{\mathscr{U}_{i}\right\}_{i=1}^{\infty}$ of finite open covers of X which is a development of X such that $\overline{\mathscr{U}}_{i+1}=\{\bar{U} \mid$ $\left.U \in \mathscr{U}_{i+1}\right\}$ is a refinement of \mathscr{U}_{i} for each i and

$$
\lim _{i \rightarrow \infty} \frac{\log \left|\mathscr{U}_{i}\right|}{i}=0 .
$$

References

[1] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. (2), 68 (1958), 1-16.
[2] T. Banakh and M. Tuncali, Controlled Hahn-Mazurkiewicz Theorem and some new dimension functions of Peano continua, Topology and its Applications, 154 (2007), 12861297.
[3] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc., 71 (1988), no. 380.
[4] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, New Jersey, 1948.
[5] H. Kato and M. Matsumoto, Characterizations of topological dimension by use of normal sequences of finite open covers and Pontrjagin-Schnirelmann theorem, J. Math. Soc. Japan, to appear.
[6] K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.
[7] J. Nagata, Modern Dimension Theory, Heldermann Verlag, 1983.
[8] J. Nagata, Modern General Topology, North-Holland, Amsterdam, 1985.
[9] J. Nagata, Open problems left in my wake of research, Topology and its Applications, 146/147 (2005), 5-13.
[10] L. Pontrjagin and L. Schnirelmann, Sur une propriété métrique de la dimension, Ann. of Math. (2), 33 (1932), 156-162.

Hisao Kato
Institute of Mathematics
University of Tsukuba
Ibaraki, 305-8571 Japan
E-mail: hisakato@sakura.cc.tsukuba.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 54F45; Secondary 28A78, 37C45, 54E35, 28A80.

 Key Words and Phrases. normal sequence of finite open covers, topological dimension, lower (upper) box-counting dimensions, Menger compacta.

