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Abstract. In 1932, Pontrjagin and Schnirelmann [15] proved the classi-
cal theorem which characterizes topological dimension by use of box-counting
dimensions. They proved their theorem by use of geometric arguments in some
Euclidean spaces. In this paper, by use of dimensional theoretical techniques
in an abstract topological space, we investigate strong relations between met-
rics of spaces and box-counting dimensions. First, by use of the numerical
information of normal sequences of finite open covers of a space X, we prove
directly the following theorem characterizing topological dimension dim X.

THEOREM 0.1. Let X be a nonempty separable metric space. Then

dim X = min { lim inf {%;}32, is a normal star-sequence

71— 00

logs ||
7

of finite open covers of X and a development of X}

logy |%
7g2‘| i {%;}2, is a normal delta-sequence
i

= min < liminf
71— 00

of finite open covers of X and a development of X }

Next, we study box-counting dimensions dimp(X,d) by use of Alexandroff-
Urysohn metrics d induced by normal sequences. We show that the above theo-
rem implies Pontrjagin-Schnirelmann theorem. The proof is different from the
one of Pontrjagin and Schnirelmann (see [15]). By use of normal sequences, we
can construct freely metrics d which control the values of log N (e, d)/|loge|. In
particular, we can construct chaotic metrics with respect to the determination
of the box-counting dimensions as follows.
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THEOREM 0.2. Let X be an infinite separable metric space. For any oo >
« > dim X, there is a totally bounded metric do on X such that

log N d
[, 00] = {lim inf log N(ek, da)

{er}72  is a decreasing sequence
k—oo ‘ log €k | -

of positive numbers with limy_, o € = 0},

where N (e, do) = min{|%| | % is a finite open cover of X with meshq, (%) <
€r }. In particular, dimp(X,ds) = a.

1. Introduction.

Let X be a topological space and let % be a collection of subsets of X. For
any p € X, we mean by the order of % at p the number of members of % which
contain p, and we denote it by ord, % . If there exist infinitely many such members,
then ord, % = oco. Let % and ¥ be finite open covers of X. If for each U € %
there exists V € ¥ such that U C V, then we call % a refinement of ¥, and we
denote this relation by % < ¥. For a topological space X, we denote by dim X
the topological (covering) dimension of X:

(1) dimX < n (n = —1,0,1,2,...) if every finite open cover ¥ of X has a
finite open cover % such that % < ¥ and ordZ < n + 1, where ord Z =
sup{ord, | p € X}.

(2) dim X = n if dim X < n but not dimX <n — 1.

(3) dim X = oo if dim X < n does not hold for any n.

Note that topological dimension is originally defined in terms of local cardinality,
order of cover. For topological dimension theory, see [5], [8], [10] and [11].
Recently, there has been an increase in the importance of fractal sets in the
sciences, and fractal dimension theory has been studied by many scientists and
mathematicians (e.g., see [1], [6], [9] and [14]). Fractal dimensions depend on the
metrics of spaces and hence the analysis of metrics of the spaces is very important.
In this paper, we study some properties of topological dimension, metrics and box-
counting dimensions of separable metric spaces from a point of view of general
topology. In general topology, the notion of normal sequence of open covers is
one of the most useful tools for the study (e.g., see [10], [11], [12]). For example,
the notion is the essence of metrizability of spaces (see Theorem 2.1). The key
word of this paper is “normal sequence” of finite open covers. In this paper,
we investigate directly the numerical properties of normal sequences of finite open
covers on a given separable metric space X and we give another proof of Pontrjagin-
Schnirelmann theorem. Furtheremore, by use of normal sequences we construct
metrics d which can control the values of log N(¢,d)/|loge|. In particular, we can
construct chaotic metrics with respect to the determination of the box-counting
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dimensions. The methods used in this paper are based on dimensional theoretical
techniques in an abstract topological space.

In fractal dimension theory, Pontrjagin and Schnirelmann [15] proved the
following fundamental result involving topological dimension dim X and (lower)
box-counting dimension dimpg(X,d) for a compact metric space (X,d): For a
metric d on X and € > 0, let

N(e,d) = min{|%| | % is a finite open cover of X with meshy(%) < €}

and

log N log N (e, d
dimp(X,d) = sup q inf L(e’p) 0<e<ep|0<e zliminngi(Q) ,
| log €| e—0  |loge]

where |A| denotes the cardinality of a set A. Then
dim X = min{dimp(X,d) | d is a metric on X}.

More generally, Bruijning ([3] or [11, p.81, Corollary]) showed that if X is a
separable metric space, then

dim X = min{dimpg(X,d) | d is a totally bounded metric on X}.

Pontrjagin and Schnirelmann proved their theorem by use of geometric arguments
in some Euclidean spaces. In fact, such a metric d on X with dim X = dimpg(X, d)
was obtained by use of geometric arguments (embedding arguments) on polyhedral
approximations of n-dimensional sets in the (2n 4 1)-dimensional Euclidean space
R*F1 (see [11] and [15]).

2. Normal sequences of open covers, star-refinements and delta-
refinements.

In this paper, we need the following terminology and concepts. Let % and ¥
be open covers of a space X. From now we assume that any topological space X
is not empty and each element of any open cover of a space is not an empty set.

Suppose that A is a subset of a space X and % is an open cover of X. Then
we denote

StA %)=\ JITU e |UNA#¢}.

Inductively, we define St°(A, %) = A, St'(A, %) = St(A, %) and
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St A, ) = SUS(A, %), %) = | U e  |UNSIP(A,%) # ¢} (p>1).
We put
U*={StU,%)|Uc%} and %> = {St(z,%) |z c X}.

Note that if |% | is finite, then |%*| and |% 2| are finite. Also, we put %* = %,
YA = v, Y+ = ™, and YA = A, Inductively, we define

xPt1

w = (U = {StW,u) | Wew}

and

AT = (wP)A = {St(x,u™") |z € X ).

An open cover ¥ of X is a star p-refinement of an open cover % of X if ¥* < %.
An open cover ¥ of X is a delta p-refinement of an open cover % of X if ¥2" < % .
An open cover ¥ of X is a star-refinement of an open cover % of X if ¥ is a star
1-refinement of 2. An open cover ¥ of X is a delta-refinement of an open cover
U of X if ¥ is a delta 1-refinement of % . Note that ¥ < ¥4 < ¥* < yA*

Let % (i =1,2,...) be open covers of X. Then the sequence {%;}2, is called
a normal star-sequence (e.g., see [10], [11] and [12]) if %41 is a star-refinement
of % (i=1,2,...). Also, the sequence {%;}5°, is called a normal delta-sequence
if %41 is a delta-refinement of %; (i = 1,2,...). The sequence {%;}5°, is called
a normal sequence (e.g., see [10], [11] and [12]) if either (x) {%;}52; is a normal
star-sequence or (A) {%;}32, is a normal delta-sequence. The sequence {%;}5°,
is called a development of X if {St(x,%;)| i =1,2,...} is a neighborhood base for
each point x of X.

The following theorem is well known as Alexandroff-Urysohn metrization the-
orem (e.g., see [10], [11], [12]). In this paper, we need some additional properties
of the metrics.

THEOREM 2.1 (Alexandroff-Urysohn metrization theorem). A Tj-space X
is metrizable if and only if there exists a sequence {%;}32, of open covers of X
such that {%;}52, is a normal sequence and a development of X .

For any normal space X (# ¢) and natural numbers & and p, we define the
following indices:

(1) The index } (X) is defined as the least natural number m such that for every
open cover % of X with |%| = k, there is an open cover ¥ of X such that
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|| <m and #*" < % (see [13]).

(2) The index A} (X) is defined as the least natural number m such that for every
open cover % of X with |%| = k, there is an open cover ¥ of X such that
|7 <m and ¥2" < % (see [13]).

(3) The index A?(X) is defined as the least natural number m such that for every
open covering % of X with |% | = k, there is an open covering ¥ of X such
that | 7| <m and {StP(z,?) |z € X} < %.

(4) The index *} (X) is defined as the least natural number m such that for every
open covering % of X with |%| = k, there is an open covering ¥ of X such
that || <m and {SP(V.?) |V eV} <%.

By Ck | we shall denote the set of all m-element subsets of the set {1,2,...,k}
and by (}) its cardinality, i.e.,

For natural numbers k,m and p with k > m, we define the following indices;

N k\ (i1 Jp-1
A(k7m7p) = Zmz,nZJZZZ]pZI <]1> (j2> o ( Z.;p >

- k j o .
*(k;mip) = B>y 2> 2,21 ( ) (]-1) (‘]p- 1) Jp-
J1) \J2 Jp

In [4], Bruijning and Nagata determined the index A} (X), and in [7],
Hashimoto and Hattori determined the index *}.(X). In [2] Bogatyi and Kar-
pov determined the indices A?(X) and % (X) for all k,p. They did not state the
next theorem (=Theorem 2.2), but by use of their results, we can easily determine
the indices A} (X) and «7(X) for all k,p. In this paper, we need more detailed
properties of the indices. For completeness, in Appendix of Sections 7 we will give
the complete proof of Theorem 2.2 and the more detailed information of the in-
dices (see Corollary 7.10). Also we will give other characterizations of topological
dimension by use of the indices.

and

THEOREM 2.2 (Corollary 7.10). Let X be an infinite normal space with
dim X =m < oo and let k and p be natural numbers. Then
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o [ @) 4]

1
;(k;m+1;<2>(3p—1)), if k>m+1,
and

Alk; k20~ 1)y = (2071 4+ 1)k — (207 1)F ) if k<m+1

ARX) =14 _ .
A(kym +1;2P71), if k>m+ 1.

3. Topological dimension and normal sequences of finite open cov-
ers.

In this section, we prove Theorem 3.1, which means that topological dimension
is characterized in terms of the growth of the global cardinality |%;| of members
%; of normal sequences.

THEOREM 3.1. Let X be a (nonempty) separable metric space. Then

log. |%; )
7g3‘| d {%;}52, is a normal star-sequence
11— 00 7

(1) dimX = min { lim inf

of finite open covers of X and a development ofX}

and

1 ,
(2) dim X = min { lim inf log, | %]

11— Z

{%:}22, is a normal delta-sequence

of finite open covers of X and a development ofX}.

For the proof of Theorem 3.1, we need the followings.

LEMMA 3.2. Let X be a normal space and m > 0. Then dim X > m if and
only if there is an open covering #1 = {W1,Wa, ..., Wit1} of X such that if ¥
is any open shrinking of W1 (i.e., ¥ = {V1,Va,...,Vins1} is an open cover of X
such that V; C W; (i =1,2,...,m+ 1)), then ¥ has a non-empty intersection.

PrOOF. See Engelking [5, Theorem (1.6.9)].



Characterizations of topological dimension 925

PROPOSITION 3.3. Let X be an infinite normal space with dim X > m > 0.
Suppose that Wy = {W1,Wa,...,Wpy1} is an open cover of X as in Lemma 3.2.

(1) If{Z%}2, is a normal star-sequence of finite open covers of X and #1 > U,
then |%;] > *(m + 1;m + 1;(1/2)(3° — 1)) for each i.

(2) If{#;}22, is a normal delta-sequence of finite open covers of X and #i > U,
then | %] > A(m 4+ 1;m + 1;2'=1Y) for each i.

PRrROOF. By the proofs of Theorem 7.2, Theorem 7.5 and Proposition 7.9 of
Appendix, we know that

(%) *? (X, #;) = min{|¥| | ¥ is a finite open cover of X such that »*" < #;}

;<m+1;m+1;;(3p1)>,
(A) AP(X,#;) = min{|¥|| ¥ is a finite open cover of X such that 2" < #}
=A(m+1;m+1;2071)).

We will prove the case (1). The case (2) can be proved similarly to the case
(1). Since

WA= US> U U > U > U > U

we see that %* < #4, hence by (x), we see that
- 1 .
\%;| > % m+1;m+1;§(31—1) .

PROOF OF THEOREM 3.1. We shall prove the case (1). The case (2) can
be proved similarly to the case (1). We may assume that |X| is infinite. Suppose
that X is a separable metric space with dim X = m < oo. The case dim X = oo
is proved similarly with the aid of Lemma 3.5 below. Let k be a fixed natural
number with £ > m + 1. Note that

o . k\ (1 oot
*Esm 4 1p) = Ymi12) 25> 25,21 (j1> (J’z) ( ?'p T

Since k and m + 1 are fixed, we can choose a real number b > 0 such that for any
p=12,... andany j; (i=1,2,...,p) withm+1>j, >jo>--->j,>1,
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D))
1< (. R } < b.
- (Jl) (Jz Jp Ip

Note that

3

m+p><m+1’>!

Y1351 >ja> >y >11 = |ma1 Hp| =
m41>51>j2>>45,> |Tn+ P‘ p m!p!

where ,,1H, denotes the set of the repeated combinations choosing p elements
from m + 1 elements. Hence

lm+1Hp| < *(ksm + 1;p) < |my1Hpl - b.

Then we see that

*(k; 1; 1 H 1 l/plm!
i 08*ksm A 1ip) L loglmsi Hyl - logl(m +p)!/plm]
poo logp p—oe  logp P00 log p
_ iy [08(m +p) +log(m —1+p)+--- +log(1+p) —log(m}) _
oo log p -

By Theorem 2.2, we see that

Then

Since X is a separable metric space, we may assume that X is totally bounded
and hence we can choose a sequence {#;}32; of finite open covers of X such that
Wip1 < W; for each i and {#;}32, is a development of X. Also, we may assume
that #1 = {W1,Ws, ..., Wy,41} satisfies the condition of Lemma 3.2.

Put k1 = |[#1|(= m + 1). Let {¢}32, be a decreasing sequence of positive
numbers with lim;_, ., €; = 0. Since

. logs *i:l (X)
lim —32 %

71— 00 7

:m’



Characterizations of topological dimension 927

we can choose a finite open cover #; of X and a sufficiently large natural number
p1 such that

1 VZ
”//1*p1 < #; and 0g37|1| <m+e.
b1

For each j = 1,2,...,p1, we put %; = ¥ 77 Note that

logy |%,| _ logs| %]

=% (i=1,2,...,p1 —1) and s o

<m —+ €.

Next, we consider the following open cover of X:
Wo NV ={WNV|WeWVehWnV+#ap}

Let ko = |#2 A ¥1|. Since

. logg *22 (X)
lim —2—~

= ’]”]’L7
71— 00 7

we can choose a finite open cover 5 of X and a sufficiently large natural number
p2 such that

logs |74
7/2*p2 < W AN, and M <m+ €.
P2
For each j =1,2,...,p2, we put %,,+; = 7/2*1,27]». Then
1 1
083 | %p, +p, | < ogs |72 <m+ e
D1+ p2 D2
Also, note that %, < %; for each i = 1,2,...,p1 + p2. If we continue this pro-
cedure, we obtain a sequence %7, %5, ... of finite open covers of X and a sequence
p1,P2, ... of natural numbers such that for ¢ > 2 we have
i lo v;
”I/i*p <W;N\V¥;_1 and M <m+e.
bi
By use of the sequence #1, %3,..., we obtain a sequence {%;}2, of finite open

covers of X such that {%;}$2, is a normal star-sequence and a development of X
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satisfying

lim inf M <

1—00 1

m = dim X.

By Proposition 3.3, we see that |%;| > %, ,(X) for each ¢ > 1. In particular, we
can conclude that

f 10g3|%b|

limin =m = dim X.
71— 00 7
Furthermore, by Lemma 3.5 (see the next lemma in this section), we see that if
{%;}52, is any normal star-sequence of finite open covers of X and a development

of X, then there is some ig such that |%;| > *ﬁgfrol (X) for i > i, in particular,

logs | % i3 (X) i —i
liminfM > lim inf ”?Jrl(, ) B R
1—00 7 1— 00 1 — 1 7
Consequently we see that
logs |%;
dim X = min { lim inf M {%;}2, is a normal star-sequence
71— 00 A

of finite open covers of X and a development of X }

This completes the proof.

For separable metric spaces, we need the Alexandroff-Urysohn metric induced
by normal sequences of finite open covers. We also need some additional properties
of the metrics in the following sections: Define the functions D, : X x X — [0, 9]
and Da : X x X — [0,4] as follows:

(%) Let {#;}32, be a normal star-sequence of finite open covers of X and a de-
velopment of X. For any pair of points z,y of X, we define the function
D,: X x X —[0,9] by
(1) Dy(z,y) =9 if {x,y} is not contained in any element of %4,

(2) Dy(z,y) = 1/37=2 if {z,y} is contained in an element of %; and {x,y} is
not contained in any element of %; for j > 1,
(3) Dy(z,y) =0 if {z,y} is contained in an element of %; for each i.

(A) Let {%;}32, be a normal delta-sequence of finite open covers of X and a

development of X. For any pair of points x,y of X, we define the function
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Da: X x X —[0,4] by

(1) Da(z,y) =4 if {z,y} is not contained in any element of %/,

(2) Da(z,y) = 1/21=2 if {x,y} is contained in an element of %; and {x,y} is
not contained in any element of %; for j > 1,

(3) Da(z,y) =0 if {z,y} is contained in an element of %; for each i.

PROPOSITION 3.4. Let X be a Ti-space.

(1) If{#;}2, is a normal star-sequence of finite open covers of X and a devel-
opment of X, then {%;}2, induces a totally bounded metric d, on X such
that

d*(if,y) S D*(xvy) S 6d*(x7y)

for any x,y € X. In particular, X is a separable metric space.

(2) If {%}52, is a normal delta-sequence of finite open covers of X and a devel-
opment of X, then {%;}32, induces a totally bounded metric da on X such
that

dA(xvy) S DA(J:,:U) S 4dA(fE,y)

for any x,y € X. In particular, X is a separable metric space.

PROOF. We shall prove the case (1). The proof is slightly different from the
one of the case (2). The proof of the case (2) can be found in [10, p. 13, Theorem
2.16]. We construct such a metric d, as follows: Let {%;}32, be a normal star-
sequence of finite open covers of X and a development of X. Put % = {X}. Then
D(= D,) satisfies the following conditions; for any z,y,u,v € X

D(z,z)=0
D('Tay) ZD(y,l‘)
D(z,y) < 3max{D(z,u), D(u,v), D(v,y)}.

We shall prove that
D(z,y) < 3max{D(z,u), D(u,v), D(v,y)}.
Choose i > 0 such that

max{D(z,u), D(u,v), D(v,y)} = 3702,
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We may assume that ¢ > 1. Then there are Uy,Us,Us € %; such that x,u €
Uy,u,v € Uy,v,y € Us. There is V € %;_; such that

x,y € Uy UUUUs C St(Us, %) CV € Ui—1.
Then
D(z,y) < 3703 = 3max{D(z,u), D(u,v), D(v,y)}.
Set

d*(x,y)(: d(ac,y)) = inf{D(x,xl) + D(x17x2> +oee D(xmy) |
n=1,2,..., and z; € X}.

Since {%;}2, is a development of X, d.(= d) is a metric on X satisfying d(z,y) <
D(z,y). Now we shall show that

d(z,y) < D(z,y) < 6d(z,y).
First, we prove the following inequality
D(l’,y) < 3D(l’,l’1) + 6D(Z’1, x2) + 6D(£C27£L'3) +eeet 6D(1’n,1,1’n) + 3D((En,y)

Suppose, on the contrary, that the inequality is not true. Then there is a minimum
number N for which

D(z,y) > 3D(x,21) +6D(x1,22) + 6D(z2,23) + - - +6D(xNn_1,2N) +3D(zN, y).
Recall the condition
D(z,y) < 3max{D(z,u), D(u,v), D(v,y)}.
Then N > 2. Put g =z, zy+1 = y. Set
k1 = min{r| D(x,y) < 3D(z,z,)}.
Then 1 < k7. Set

ko = max{r| D({E,y) < 3D(x7’7y)}
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Then ky < N. We show that k1 < ky. Suppose, on the contrary, that k1 > ko.
Then

D(z,y) > 3D(x,xk,—1)
D(xvy) > SD(x]ﬂ—la'rkl)
D(z,y) > 3D(zk,,y).

This contradicts the inequality
D(Jj, y) <3 maX{D(x, 3?];1—1), D(mk1—17 Ty )’ D(xlﬂ ) y)}

Hence k1 < ky. Since D(x,y) > 3D(x,2k,—1) and D(z,y) > 3D(xk,+1,y), we
have

D(*T7 y) S 3D(£k1*1a :Ekerrl)-
Then we have

D(l’,y) < 3D(l‘,l‘k1)
D(z,y) < 3D(xk, -1, Thyt1)
D(x,y) < 3D(2py,y)-

Hence

D(z,y) < D(z,xk,) + D(xk, -1, Thy+1) + D(xky,y)
< (8D(z, 1) + 6D(x1,22) + 6D (x2,73)
+ -+ 6D(xp, —2, Tk, —1) + 3D(xk,—1, Tk, )
+ (3D(2k, 1, k) + 6D (g, , Ty 1)
+ o+ 6D (Thy 1, Thy) + 3D(Ty, Thyt1))
+ (3D (s Thy41) + 6D (Thy 11, Thy42)
+ - +6D(@N-1,2N) +3D(zN,Y))
< 3D(z,z1) + 6D(x1,x2) + 6D(x2,x3)
++6D(xNn-1,2N) + 3D (2N, Y).

This is a contradiction. Hence we have
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D(z,y) <3D(x,21) + 6D(x1,22) + 6D(x2,23) + - - + 6D(xp_1,2,) + 3D(2n,y).
Consequently we have
d(x,y) < D(z,y) < 6d(z,y).
Note that for each i > 3,
St(x, %1) C Ug(x,1/372) C St(x, %),

where Uy(z, €) is the e-neighborhood of z in X. Then we see that d is compatible
with the topology of X and diamg(U) < 1/3*~2 for each U € %;. Hence d (= d,)
is a totally bounded metric on X.

The proof of the case (2) can be found in [10, p. 13, Theorem 2.16]. We will
give the outline of the proof. Let {%;}52, be a normal delta-sequence of finite
open covers of X and a development of X. Set

da(z,y)(= d(z,y))
= inf{D(x,z1) + D(z1,22) + -+ D(xp,y) | n=1,2,..., and z; € X}.
Then da(= d) is a metric on X such that d(x,y) < D(z,y) < 4d(z,y) (see [11,

p.15]). Clearly, we see that diamg(U) < 1/2¢=2 for each U € %;. Hence d is a
totally bounded metric on X.

LEMMA 3.5. Let X be an infinite separable metric space with dim X > m >
0. Then the followings hold.

(1) If {#:}2, is a normal star-sequence of finite open covers of X and a devel-
opment of X, then there is some ig such that

1.
|%|>;<m+l;m+1;2(3l’°—1)>

for i > ig. In particular,

1 U;
lim inf 0g37_|l| >m.
71— 00 1

(2) If{#:}32, is a normal delta-sequence of finite open covers of X and a devel-
opment of X, then there is some ig such that
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%] > A(m + 1;m +1;207%01)
for i >1ig. In particular,

lim inf IOL% > m.

1—00 {2

ProoF. We shall prove the case (1). The case (2) can be proved similarly
to the case (1). By (1) of Proposition 3.4, we have the Alexandroff-Urysohn metric
d (= dy) on X induced by the normal star-sequence {%;}:2,. Then there is the
completion (X, (Z) of (X, d) which is obtained by considering all Cauchy sequences
{z,}52, of points of X (e.g., see [Theorem 27, p. 196, J. L. Kelley, General Topol-
ogy, New York, 1955]). Since d is a totally bounded metric, (X, CZ) is a compact
metric space. Note that the natural embedding i : (X,d) — (X,d) is an isome-
try. Since dim X > m, there is an open covering #; = {W1,Wa, ... ,Wpi1} of
X such that if ¥ is any open shrinking of %4, then ¥ has a non-empty intersec-
tion. Let € > 0 be a Lebesgue number of the open cover #;. Choose iy such that
€ > 1/3%=2, For any cover ¥ of a space, we set

v = (SN ) |V oe v

For each ¢ > iy, we consider the closed cover of X;

*i

T = (s N T ) | U e w),

where % = {U | U € %} and U denotes the closure of U in X. Since diamg(U) <
1/3%=2 for each U € %;, we see that

meshg(%*i_io) < ( > x 3Pt = 1 < €.

3i—2 Jio—2

Since %; is a closed cover of X , for eacy U € %; we can choose a sufficiently small
open neighborhood U’ of U(€ %;) in X such that

meshd(%’f_io) <
where % = {U'" | U € %;}. Then

ig

i
'y <.
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By (1) of Proposition 3.3, we have
! * Lopivi

Then
- 1 ..
10g3*(m +1;m+ 1 5(31_’0 - 1))

.. . logs |% .
lim inf M > lim inf - =m.
1—00 1 1—00 1

4. Another proof of Pontrjagin-Schnirelmann theorem.

In this section, we give another proof of Pontrjagin-Schnirelmann theorem.
We consider the Alexandroff-Urysohn metrics d, and da which are defined in the
proof of Proposition 3.4. From now the metrics d, and da mean the Alexandroff-
Urysohn metrics induced by some normal sequences of finite open covers. First,
we prove the following.

PROPOSITION 4.1.  Let X be a separable metric space. Then

(1) dim X = min{dimp(X,d,) | di is the Alexandroff-Urysohn metric on X in-
duced by a sequence {%}2, which is a normal star-sequence of finite open
covers of X and a development of X},

(2) dim X = min{dimp(X,da) | da is the Alexandroff-Urysohn metric on X
induced by a sequence {%;}32, which is a normal delta-sequence of finite open
covers of X and a development of X}.

Proor. First, we prove the case (1). By Theorem 3.1, there is a normal
star-sequence {%;}5°, of finite open covers of X and a development of X such that

1 .
lim inf M =dim X (=m).
1—00 2

We may assume that m < oco. The case m = oo can be proved similarly. Let d,
be the Alexandroff-Urysohn metric induced by {%;}2,. We recall the index

N(e,dy) = min{|%| | % is a finite open cover of X with meshy, (%) < €}.

Note that for each i,
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logs |%;]
log N (€, d, 1 83 [ %

|10g€| 10g3p
logs |%; ;
:inf{Og?" i:io,io—i—l,...} < liminf 28|41 _
7,—2 1—00 7
Hence
log N (e, d
dimp(X,dy) :sup{inf{mg“og;*) ’O <e< 60}‘0 < 60} <m =dimX.

Next, let {%;}$2, be any normal star-sequence of finite open covers of X and a
development of X. Let d, be the Alexandroff-Urysohn metric induced by {%;}52;.
Suppose that 1/3 > €; > ex > €3 > -+ is a sequence of positive numbers such
that limy_. o €, = 0 and

lim inf 1Og3 N(6k7 d*) —
k—o00 ‘ 10g3 €k|

For each k, we choose the natural number n(k) such that 1/3"F)+1 < ¢, < 1/37(F),
Let # be a finite open cover of X such that |#'| = N(eg, dy) with meshy, (#) < .
Let W € # and x € W. Choose V € %, with x € V. If y € W € #/, then
1/3"%) > d, (x,y) > (1/6)- Di(z,y) and hence 1/3"*¥) =2 > D_(z,y). This implies
that there is U € %) such that U contains x and y (recall the definition of
D, (z,y)). Then

W C St(a:,@/n(k)) C Sﬁ(V, %n(k)> S %:(k) < %n(k)fl

and hence ¥ < %, )—1. Since {%;}2, is a normal star-sequence of finite open
covers and a development of X, there is iy as in Lemma 3.5. Put

p

Vn(k)—p-1 = v

for each p=0,1,2,...,n(k) — 2. Then the finite sequence {“//i}?:(?_l satisfies the
condition that ;1 is a star-refinement of 7;. Note that %; > 7; and ¥;,(x)—1 = #'.

By the proof of Proposition 3.3 and Lemma 3.5, we see that

N(eg,d,) = [#| > 87170 (X).
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Then
n(k)—1—1 n(k)—1—1
logs N(ep,d.) _ logy [#/| _ logg iy (X)) _ loggxp iy~ (X)
| logs €| [loggex| —  |logg 3n(F)+1] n(k) +1
_ logy s k) 1oy n(k) = 1—ig
n(k) — 1 —1g n(k)+1
We see that
logs N N
B:liminfw >m-1=m.

k— o0 | 10g3 €k‘

Hence dimp(X,d,) > m. We have completed the proof of the case (1). The case
(2) can be proved similarly to the case (1).

By the proof of Proposition 4.1, we obtain the following.

PROPOSITION 4.2.  Let X be a separable metric space and let {%;}2, be any
normal star (resp. delta)-sequence of finite open covers and a development of X.

If

log |%; log, | %
lim inf 2821 % _ 5 <resp. lim inf 2821 %41 _ 6)
1 (2

11— 00 71— 00

and dy (resp. da) is the Alexzandroff-Urysohn metric on X induced by {%}324,
then

dimp(X,d.) < B (resp. dimp(X,da) < B).

Let X be a metrizable space and let p; and p2 be two metrics on X. Then p;
is Lipschitz equivalent to po if there are positive (real) numbers a and b such that
for xz,y € X,

a-p2(z,y) < pr(x,y) <b-pa(z,y).

PROPOSITION 4.3.  Let (X, p) be a metric space. Suppose that {%}32, is a
normal star (resp. delta)-sequence of finite open covers of X and a development
of X. Then the followings are equivalent.

(1) The Alexandroff-Urysohn metric d (= dx or da) induced by {%}32, is Lips-
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chitz equivalent to p.
(2) There are positive numbers ca > ¢1 > 0 such that for each i,

{Up<x,;) xeX}S%S{UP<x,;> xeX}
Cc1 C2
<r65p. {Up(x,Qi> xGX}S%g{Up<z,2i> :EGX}).

PrOOF. We prove the case that {%;}52, is a normal star-sequence. We use
the notations as in the proof of Proposition 3.4. First, we shall show that (1)
implies (2). Suppose that d(= d,) is Lipschitz equivalent to p. Then there are
positive numbers a and b such that for z,y € X,

Put ¢; = a/2 and ¢z = 9b. We will show that

(oe)eer) s o) e

Let € X. We choose U € %, with x € U. If y € X with p(z,y) < ¢1/3,
then 6d(z,y) < (6/a) - p(z,y) < 6c1/(a-3") = 1/3""1. Since Dy(x,y) < 6d(x,y) <
1/3"=1, there is U, € %41 such that z,y € U,. Hence there is U’ € %; such
that if y € X with p(z,y) < ¢1/3%, then y € U, C St(U,%+1) C U'. Then
U,(z,c1/3") C U'. This implies that

(e

Let V € %. Choose z € V. If y € V, d(z,y) < Dy(x,y) < 1/372. Then
plx,y) <b-d(z,y) <b/3772 = ¢y /3" Hence V C U,(x,cy/3"). This implies that

U < {Up(x,gj) xeX}.

Next, we show that (2) implies (1). Put a = ¢1/33. Also, choose iy such that
ca/3% < ¢1/3%. Put b=2-3"2¢;. Let z,y € X. Suppose that 0 < p(x,y) < ¢1/3.
Choose i such that ¢;/3! < p(z,y) < ¢1/3%. Then there is U € %; such that
y € Uy(z,c1/3") CU € %. Since x,y € U € %;, we have

xéX}g%.
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1

d(l’,y) S D*(l’,y) § 31'_2'

Then

c 1 c
a-d(z,y) < <3£1,,> (Si_Q) = 3;1 < p(z,y).

Now we show that for any U € %;+i,, U does not contain both x and y. Suppose,
on the contrary, that there is U € %4;, with =,y € U. By the assumption,
there is z € X such that x,y € U C U,(z,ce/3" ). This implies that p(z,y) <
2c9 /310 < 201 /312 < ¢1/3"1. This is a contradiction. Hence D, (z,y) >
1/3i*%=3 Then

b-d(z,y) > b(é)D*(x,y) > b(é) (3“}03) - g—l > p(z,y).

Then we see that if p(z,y) < ¢1/3,

Since % < {U,(z,c2/3") | @ € X} for each i, we can choose a positive number
¢ > 0 such that if p(z,y) > ¢1/3, then d(x,y) > (1/6)Dy(z,y) > c. Since %; is a
finite open cover of X and %; < {U,(x,c2/3") | z € X} for each i, we see that p is
totally bounded. Since d and p are bounded, we see that there exist a sufficiently
small positive number a’ and a sufficiently large positive number b’ such that for
any z,y € X with p(x,y) > ¢1/3,

a -d(z,y) < p(z,y) <V -d(z,y).
Hence we see that (2) implies (1).

The next proposition implies that for any separable metric space X there is
a natural bijection from the set of all totally bounded metrics on X to the set
of Alexandroff-Urysohn metrics on X induced by normal sequences of finite open
covers which are developments of X, up to Lipschitz equivalence.

PROPOSITION 4.4. Let X be a separable metric space and let p be a totally
bounded metric on X. Then there is a normal star (resp. delta)-sequence {%}2,
of finite open covers of X such that {%}52, is a development of X and p is
Lipschitz equivalent to d, where d is the Alexandroff-Urysohn metric induced by
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{%}2,. In particular, dimp(X, p) = dimp (X, d).

PROOF. Let {¢;}52; be a sequence of positive numbers such that €;/4 > €;14
and 1/3° > ¢; for each i. Since p is a totally bounded metric on X, for each
i =1,2,... we can choose a finite subset A; of X such that if z € X, then there
is a point a € A; such that p(x,a) < €;41. Put

a e Al},

1
-folei o

where U (a, €) denotes the open e-neighborhood of a in (X, p). Clearly, %; is a finite
open cover of X. We shall show that %%, < %. Let U = U(a,1/3"" + ¢;41) €

W1 1. Note that St(U,%+1) C U(a,1/3" + 3€;41). Then we choose a’ € A; such
that p(a,a’) < €;4+1. This implies that U(a,1/3" + 3¢;41) C U(a’,1/3" 4+ 4€;41) C
U(a',1/3" +¢€;) € % and hence St(U, % 1) C U(a’,1/3" + €;) € % Then

T < U

Note that {%;}2, is a development of X. Let d(= d,) be the Alexandroff-Urysohn
metric induced by {%;}5°,. If we put ¢; = 1,3 = 2, the normal sequence {%;}2,
satisfies the condition (2) of Proposition 4.3. By Proposition 4.3, p is Lipschitz
equivalent to d(= d,). Also, we see that dimp(X, p) = dimpg(X,d). The proof of
the case of normal delta-sequence is similar.

THEOREM 4.5 (Pontrjagin-Schnirelmann and Bruijning theorem).  Let X be
a separable metric space. Then

dim X = min{dimg (X, p) | p is a totally bounded metric for X}.

PRrROOF. By Proposition 4.4, we see that if p is any totally bounded metric
on X, then there is a normal star-sequence {%;}5°, of finite open covers of X
such that {%;}$2, is a development of X and dimg(X, p) = dimp(X,d), where d
is the Alexandroff-Urysohn metric induced by {%;}2,. By use of this fact and
Proposition 4.1, we complete the proof of Theorem 4.5.

An open cover % of a space X is essential if for any U € Z, | {V e % |V #
U} £ X.

COROLLARY 4.6. Let X be a separable metric space and let p be a totally
bounded metric on X . Suppose that {%;}32, is a normal star (resp. delta)-sequence
of finite open covers of X and a development of X and d is the Alexandroff-Urysohn
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metric induced by {%}52,. If {%}5°, satisfies the condition (2) of Proposition
4.3 (see also Proposition 4.4), then

dimp (X, p) = dimp (X, d) < liminf 2831 %]

1—00 (3

%
(resp. dimg (X, p) = dimp(X,d) < liminf g2| |>

11— 00

Moreover, if U is essential for each i, then

dimp (X, p) = dimp(X,d) = liminf ——— g3 |%|

17— 00

log, | %
(resp. dimp(X, p) = dimp(X,d) = liminf 0g2||)
1—00 1
PROOF. We assume that {%;}32, is a normal star-sequence. Let d (= d,) be
the Alexandroff-Urysohn metric induced by {%;}:2,. By the proof of Proposition
4.1, we see that

dimp (X, p) = dimg(X,d) < liminf ——— logs |%|

1—00 )
From now we suppose that %; is essential for each i. Suppose, on the contrary,

that

dimp(X,d) < limin

11— 00

logs | %
f Og3.| | (: Oé).
i
We assume that a < co. Put dimpg(X,d) = 8 and § = « — 3 > 0. Then we
can choose a sequence 1/3 > e€; > eg > €3 > -+ of positive numbers such that
limy_.o € = 0 and for each k,

1Og3 N(Gk,d) g
S <B+ 3
logy —

€k

For each k, we choose the natural number n(k) such that 1/3"F)+1 < ¢ < 1/37(*),
Let # be a finite open cover of X such that |#| = N(ex, d) with meshy(#) < €.
For any W € # and any x,y € W,



Characterizations of topological dimension 941

1

Du(z,y) <6-d(z,y) < 755

By the proof of Proposition 4.1, we see that % < %,)—1. Since %,)—1 is
essential, we can easily see that [#'| > |%,x)—1|. Then

logs N(ex, d) _ logs |W'| _ logs |%um)—1| _ logs | %] n(k) -1
logy 37(k)+1 n(k) —1 n(k)+1

) 1 ) 1
0gs — 0gs —
83 % 83 .
Hence we see that

10g3 N(Ek, d)

k—oo
logz —
€k

This is a contradiction. Hence

dimg (X, p) = dimp(X,d) = lim inf M

1—00 1
The case o = 0o can be proved similarly.

The next example implies that some normal sequences can be used to calculate
dimp (X, p) of given separable metric spaces (X, p).

EXAMPLE 1. Let F be the von Koch curve [6, p.xv] in the plane and let p
be the usual Euclidean metric. By considering vertices of each stage E1, Eo, ...
of the construction of F' (see [6, p.xv]), we have a natural normal star-sequence
{%;}52, of finite open covers of F' such that
(1) {%:}32, is a development of F,

(2) |2 =4+1=5,|%|=4%>+1=17,... and in general |%;| = 4° + 1 for each

Z’
(3) {#;}32, satisfies the condition (2) of Proposition 4.3,
(4) %; is essential for each 1.
By Corollary 4.6, we see that

logs | %
dimpg(F, p) = lim inf log, [#4] = logs 4.

17— 00 1

EXAMPLE 2. Let F be the Sierpinski gasket [6, p.xvi] in the plane and let
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p be the usual Euclidean metric. By considering vertices of each stage F1, Fs, ...
of the construction of F' (see [6, p.xvi]), we have a natural normal delta-sequence
{%;}52, of finite open covers of F' such that

(1) {%:}32, is a development of F,

(2) |24| = 6, |%| = 15,... and in general |%;| = 3 + (3/2)(3" — 1) for each i,
(3) {#:}52, satisfies the condition (2) of Proposition 4.3,

(4) %; is essential for each i.

By Corollary 4.6, we see that

dimpg(F, p) = limin

11— 00

plog %l _ 0 o

i

REMARK 1. If {%}$2, is a normal star-sequence of finite open covers of
X and a development of X such that liminf; . (logs |%])/i = dim X (= m)
and d is the Alexandroff-Urysohn metric induced by the sequence {%}2,, then
dim X = m, where (X,d) is the compactification of (X,d) defined in Lemma 3.5.
In fact, m = dim X < dim X < dimp(X,d) = dimp(X,d) = m.

5. Chaotic metrics with respect to the determination of the box-
counting dimensions.

In this section, we construct chaotic metrics with respect to the determination
of the box-counting dimensions. By Theorem 3.1, we know that for any separable
metric space X, there is a normal star (resp. delta)-sequence {%;}52, of finite open
covers of X which is a development of X such that

¢ 10g3.|@/i| £ 10g2.|%i|

lim in
71— 00 1

=dim X (resp. lim in

] =dim X > .

71— 00 7

We call such a normal sequence {%;}5°, a fundamental normal sequence of X. In
this section, we consider the case dim X > 1. In the next section, we also consider
the case dim X = 0 (see Theorem 6.4).

THEOREM 5.1. Let X be a separable metric space with dimX = m >
1. Suppose that {%}2, is a fundamental normal star-sequence of X (i.e.,
liminf; . (logs |%]|)/i = dimX). Let o be any real number with o > m
(= dim X) or a = oo. Then there is a subsequence {%;,}52, of {%}2, such

that
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log, |%;
[cr, 0] = {lim inf M

k—o0 N

o ) .
{nk}32, is an increasing subsequence

of natural numbers} .

Also, if do (= dy) is the Alexandroff-Urysohn metric on X induced by the subse-
quence {%;}52,, then

log N (e, d
[, 00] = {lim inf log N(€x, da) {ex}2, is a decreasing sequence

k—o0 |10g €k|

of positive numbers with limg_, €, = ()}7
where N(e,dy) = min{|% | | % is a finite open cover of X with meshg, (%) < €}.
In particular, dimp(X,d,) = a.

PrOOF. We assume that a is a real number. The case @ = oo can be
proved similarly. Let {d;}7°, be a decreasing sequence of positive numbers with
limy 0 6 = 0. Take a countable subset T' = {ay | k = 1,2,...} of o, 00) such
that T = [, 00). Note that ax/m > 1. Since

lim inf M =m

- )
i—00 7

for §; and a; we choose a finite sequence {i; 5:1:1 of natural numbers such that

(6] ) . a1 .

— << — 1

m =1 m (+1)
and

10g3 |62/ij1 |
J1

log, |%;. s
M ] <y
25y J1

— a1

For 2 and ag, we choose a finite sequence {ij}gijl 41 of natural numbers such
that
Qg . . Qg . .
— - (J—g)+i, << —=-(J—Jg1+1)+1y
m (J—J1) +ij <1y m (= ) +ij,

and
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logs | % i |

loga |%;. i
- 7g3| ”2"%*2*042 < 6a.
J2

— Q2 p
Lja J2

We continue this procedure. For each §; and «y, we choose a finite sequence
{i;} of natural numbers such that
J J =Jjr—1+1

(J_]k 1)+Z]k 1§Z]<7 (]_]k 1+1)+7’Jk 1

and

logs |%;, | i, ol <
- . . — 0| > 0.

logs |%jk | N ‘
— = | = .
Lk Jk

Jk

In this procedure we choose the sequence {jj}7>; such that

10g3 |a2/23k|
m —"
k—oo U

= m(=dim X) and lim (jx11 — i) = oo.

Consequently, we obtain a sequence {ji }7° ; of natural numbers and a subsequence
(U, }52, of {%:}32,. Note that i;/j > a/m for each j. In fact, i;/j > a/m for
each 1 < j < j;. If we assume that i;, _,/jk—1 > a/m, then for j_1 +1 < j < ji

e

. ( . )+a . <ak ( . )+. <
. = — _— _ —_— o —_— _ _ 7/ 7/-.
J m J = Jk-1 m]kl_m J = Jk—1 et S

3e

Hence i;/j > a/m for each j. Then

logs |%;. lo
tim ing 1288 1%l _ jp g 10831 %01
J—00 j J—00 Z] j m

By the construction, we see that

. ogy | %, | . . .
[, 00] = { liminf ————*— | {n;}7°, is an increasing subsequence

k—o0 Nk

of natural numbers}.

Let d,, (= d4) be the Alexandroff-Urysohn metric on X induced by the subsequence
{;;}52,. First, we show that
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dimp(X,dy) > a.

Suppose that 1/3 > €; > €2 > €3 > --- is a sequence of positive numbers such
that limg_ €5 = 0. For each k, we choose the natural number n(k) such that
1/37+1 < ¢ < 1/3™F). Let # be a finite open cover of X such that |#/| =
N (e, dy) with meshg, (#') < €. Let W € # and x € W. Choose V € %,
with z € V. If y € W € #, then 1/3"*) > d,(2,y) > (1/6) - D,(z,y) and hence
1/3"")=2 > D, (x,y). This implies that there is U € % _,, such that U contains
x and y. Then

(k)

W C St(z, %) C St(V, %,

In(k)

) €U, < U

n(k) — n(k)—1

and hence W < %, _,-
there is i¢ as in Lemma 3.5. Similarly to the proof of Proposition 4.1, we see that

Since {%;}52, is a normal star-sequence of open covers,

N(eg,do) = [#] > 507 (X).

Then
logs N(ex, i) _ logy |#] _ logg i “(X) _ loggxi ™ (X)
|logs €| |loggex| —  |logg 3n(R)+1]| n(k)+1
_ log *Z$171710 (X) Cin(ky—1 —% n(k) =1
In(k)—1 — 0 nk)—1 n(k)+1
We have
1 N
1iminfw >m-2 =
k—o0 |10g3 6k| m
Hence

dimp(X,ds) > a.

Let 8 > « be any positive number. The case § = oo can be proved similarly.
By the construction of the subsequence {%;,}32,, we can choose a subsequence
{ni}72, of natural numbers such that

lim =m and lim Zn—kzﬁ

log W/ink |
k— oo ink k—oo N m’
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Since limy 00 (Jr+1 — Jr) = 00, we may assume that

ink—3 _ ﬁ

k—oo N -3 _-Tn.
Put e, = 1/3"~2 for each k > 1. We shall show that

log N (e, dy)

lim ———=-= =
el | log €| p
Since di(z,y) < Di(z,y) for z,y € X, we see that meshy, (%, ) < 1/3m=2,
Hence we have
log N (ex, d.. logs | %, logs | %, in
Jimn sup og N (ex, dy) < lim g3 | el _ g3‘| Bl iny _ s
b0 | log ek k—oo mp — 2 k—o0 ing, ng — 2

Let # be a finite open cover of X such that [#'| = N(eg, d,) with meshy, (#) < €.
Suppose that W € # and z € W. Choose V' € %, , containing z. Since
D, (z,y) < 6di(x,y) for z,y € X, we see that if y € W, then

6 1
l)*(may) S 6d*($7y) <

- 3nk—2 < 3nk—4'

Then we have U € %, _, which contains z and y. Then

W C St(x, %, _,) C SV, %,, ,) €U, ,<U

an_Q —_ ng—3
and hence

W < U

np—3"

Now we will recall Lemma 3.5. Let ig be a natural number as in Lemma 3.5. Then
we have

W] 2 s (),
This implies that

N(eg,do) = W] > 52577 " (X).
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Then
logs N(ex, d) _ logs || _ logy iy’ " (X) _ logy " ()
| logs €| |logs ex] — logs 37+ —2 ng — 2
_ logs *imnﬂgiio (X) ing—3—ip np—3
 dp_3—1o nk—3  np—2
Then
logs N do,
lim inf 083 1 \¢k: o) (6%, da) >m- ﬁ = 0.
ko0 |logs ex| m
Hence
logs N dy
lim 83" \: %x) (¢, d.) =3.
k—oo |10g3 6k|

Consequently we can conclude that

log N dy . .
[, 00] = {lim inf log N(ex, d) {ex}72, is a decreasing sequence

k—o0 \logek|

of positive numbers with limg_, .. €5 = 0}.

REMARK 2. Let X be a separable metric space with dimX = m > 1.
Suppose that {%;}52, is a fundamental normal star-sequence of X. Then

log. |7
[dim X, c0] = {liminf 83 | )|

J—00 J

{#;,}32, is a subsequence of {%}fﬁl}

= {dimB (X,dy4) | dy is the Alexandroff-Urysohn metric on X
induced by a subsequence {%;,}52, of {%;}2,}.

In other words, all box-counting dimensions of X are generated by fundamental
normal star-sequences of X.

In case of normal delta-sequence of finite open covers of X, we also obtain the
following theorem. The proof is similar to the one of Theorem 5.1.

THEOREM 5.2. Let X be a separable metric space with dim X m >

1. Suppose that {%;}2, is a fundamental normal delta-sequence of X (i.e.,
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liminf; ,(logy |%])/i = dimX). Let a be any real number with o > m
(= dim X) or a = oo. Then there is a subsequence {%;,}52, of {%}2, such
that

n

log, |%; o - . )
—— 1 {ng}32, is an increasing subsequence
N

[a, 0] = {lim inf
k—o0
of natural numbers}.

Also, if do(= da) is the Alexandroff-Urysohn metric on X induced by the subse-
quence {%; }52,, then

log N (e, da ‘ )
[, 00] = {lim inf log N(ex, da) {ex}72, is a decreasing sequence

k—oo | log €k|

of positive numbers with limg_, o € = O}.

In particular, dimg(X,d,) = «.

PROPOSITION 5.3.  Suppose that X is a separable metric space. Let {%}2,
be a normal star (resp. delta)-sequence of finite open covers and a development
of X, and let {%,}32, be a subsequence of {%}2,. If di (resp. p1) is the
Alexandroff-Urysohn metric on X induced by {%;}2, and da (resp. p2) is the
Alexandroff-Urysohn metric on X induced by the subsequence {%;, };?":1, then
dimp(X,dy) < dimp(X,ds) (resp. dimp(X, p1) < dimp(X, p2)).

Proor. We will prove dimp(X,d;) < dimp(X,dz). Choose a sequence
1/3 > €1 > €2 > e3 > - -+ of positive numbers such that limy_. €, = 0 and

i 283 Newd2) g a0,

koo [logg ekl
For each k, we choose the natural number n(k) such that 1/3"F)+1 < ¢, < 1/37(),
Let # be a finite open cover of X such that |#| = N (e, d2) with meshg, (%) < €.
Similarly to the proof of Theorem 5.1, we see that #* < % . _,. Then we see
that meshg, (#) < 1/3in»-172, Hence

1
N<3>d) < W] = Ner,d).
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Since 1/e, < 3"+ and n(k) + 1 = (n(k) — 1) + 2 < d,4)—1 + 2, We have

dimp (X, di)
1 1
logz N FrSre—E d logz N S 12 dy
< lim inf = lim inf -
k—o00 k— oo In(k)—1 — 2

‘ 10g3 Sin(k)—l_2

1
logg N (3<>—2 : dl)
= lim inf < liminf

k—oo in(k)—l + 2 k—oo

logg N(Gk, ds)

log, —
gsek

= dimp (X, dz).
Hence
dimp (X, p1) < dimp (X, p2).
The rest of proof is similar. We omit the proof.

6. Upper box-counting dimension dimpg(X,d) and normal se-
quences of finite open covers.

In this sectin, we study some relations between upper box-counting dimension
and normal sequence of finite open covers. For a separable metric space (X, p),
we consider the upper box-counting dimension of (X, d) (e.g., see [6] and [14]):

_ log N
dimp(X,d) = limsup m.
e—0 |log €|

PROPOSITION 6.1.  Let X be a separable metric space and let {%;}2, be
a normal star (resp. delta)-sequence of finite open covers and a development
of X. If d (resp. p) is the Alexandroff-Urysohn metric on X induced by
{%}2, and limsup,_, . (logs |%])/i = B (resp. limsup,_, . (log, |%]|)/i = B),
then dimpg(X,d) < B (resp. dimp(X,p) < ).

PrOOF. We give the proof of the case of normal star-sequence. Choose a
sequence 1/3 > €; > eg > - -+ of positive numbers such that limy_,. € = 0 and

log N
lim 84 (ek, d)

= dimp(X,d).
k—o00 ‘10g6k| lmB( ’ )
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For each k, let n(k) be the natural number such that 1/3"(F)+1 < ¢ < 1/37(),
Then n(k) < n(k + 1). Since meshq(%;,x)1+3) < 1/3"F+1 < ¢, we see that

logs N (e, d) logs | % (k)+3]

limsup ——————= < limsup
1 - n(k
k—oo 10g3 o k—oo 10g33 (k)
logs |%k)+3l  n(k)+3
= 1 . < .
P T (k) + 3 nh) =P

Hence we have

By modifying the proof of Theorem 5.1, we can prove the following.

THEOREM 6.2. Let X be a separable metric space with dim X = m > 1.
Suppose that there is a sequence {%}2, which is a normal star (resp. delta)-
sequence of finite open covers of X and a development of X such that

1 U; 1 U;
lim 70g3‘| | =m (resp. lim 70g2‘| | = m).
1—00 1 1—00 1
Then for any a, 8 with m < a < 8 < oo, there is a totally bounded metric do g on
X such that

log N
[, 8] = {liminf log Ve, da.g)

{er} is a decreasing sequence of positive
k—oo | log €k|

numbers with lim €, = O}.

k—o0

In particular, dimp(X,do5) = a < 8= dimp(X,dq ).

COROLLARY 6.3. Let I = [0,1] be the unit interval and let X = I™ be
the m-cube (m > 1). Then there is a sequence {%;}5°, which is a normal star
(resp. delta)-sequence of finite open covers and a development of X such that

logs |%;
lim og3.| ‘:

1—00 2

m (resp. lim

11— 00

log, | %] _ m)
: .

Moreover, for any o, with m < a < 8 < oo, there is a metric do,g on X such
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that

log N (e, d
[, B] = {likm inf log N(€r da5) {er} is a decreasing sequence of positive

- | log €|

numbers with lim €, = 0}.
k—oo

In particular, dimp(X,do 5) = a < 3 = dimp(X,dy ).

Proor. Foreachi=1,2,..., consider the family
k kE+1 )
%: =y ar k:0,1,2,...,31_1
e |

of closed subintervals of I. Put

W (i) = {Int1<5t({;},d>> ‘k = 0,1727...731}.

Then # (i) is an open cover of I. For an open cover of I"™, we consider the following
set:

Ui =W (i) x W (i) X -+ x #(i)
={U1 x - xUp |Us, € #(i) for k=1,2,...,m}.
Then {%;}52, is a normal star-sequence of finite open covers and a development
of X such that |%;| = (3" +1)™ for each 4, in particular lim;_,(logs |%|)/i = m.
Also, note that each %; is essential for each i and if p; is the usual Euclidean metric

on I, {%}32, satisfies the condition (2) of Proposition 4.3 (see also Corollary
4.6). For the case of normal delta-sequence, we consider the family

kok+1 .
a={[E 52 [p=ona 2o n),

The proof is similar. We omit the proof.
For the case of dim X = 0, we have the following theorem.

THEOREM 6.4. Let X be an infinite O-dimensional separable metric space.
Then
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(1) there is a sequence {%}2, of disjoint finite clopen covers of X such that
{%:}32, is a development of X, Uit1 < U and |%]| =i for each i,

(2) for any o, 8 with 0 < a < B < oo, there is a totally bounded metric dyo g on
X such that

log N
[, ] = {nmmf%(%dm ‘

{er} is a decreasing sequence of positive
k—o0 ‘ lOg €k|

numbers with lim €, = O}.
k—o0

In particular, dimp(X,dag) =a < 8 = dimp(X,da ).

PROOF. Since X is an infinite 0-dimensional separable metric space, we
can easily construct a sequence {%;}5°, of disjoint clopen covers of X such that
|%| = i, U1 < % for each i and {%;}5°, is a development of X. Note that
U = ;. Hence {%}2, is a normal star-sequence of finite open covers of X and

lim log \@/ | ~ lim logi

—00 i—oo 1

=0.

We will prove that for any 0 < o < 8 < oo, there exist a subsequence {%;; }j"';l of
{%;}52, such that

.. Jlogs |, | . . .
[a, B] = ¢ liminf ———* | {n;}?2, is an increasing subsequence

k—o0 Nk

of natural numbers}.

First, we prove the case 0 < o = 3 < co. We choose a natural number p such that
(3%)PTt — (3%)P > 1 and (3%)? > p. Put i; = j for j = 1,2,...,p— 1. For j > p,
we can choose a natural number i; such that (3%)7 <4; < (3%)7*!. Then

a < Lg?'ij < a-jif 1.
J J
Consider the subsequence {%;,}52, of {#;}72,. Then

i 10g3 ‘ ‘
im
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Next, we prove the case 0 < a < f < co. We choose a sufficiently large natural
number j; such that

(3a)j1+1 _ <3a)j1 > 1, (30t)j1 > j; and (3a)j1+1 < (35)1'1.
Puti; =j for j =1,2,...,51 — 1 and choose the natural number 7; such that
(3ﬁ)j1 <ij, < (35)]’1 +1< (35)j1+1.
Then

ﬁélog.ﬂ<ﬁ~j1.—+l.
J1 J

Put
J2 = min{x € {j17j1 +1,.. } | T = +ij1 < (Sa)z}
Note that jo > ji. Then ij, + (j2 — 1) — j1 > (3*)271 and ij, + jo — j1 < (3%)72.

Put i; = ij, + (j — j1) for j1 < j < ja —1 and choose the natural number ¢;, such
that

(35)]'2 < ij2 < (3ﬁ)j2 +1< (3B)j2+1.
Then

5< 1Og?’l’j2 <5'j2.+1~
J2 J2

Put
js =min{x € {jo, 5o+ 1,... } |z — ja + 145, < (3%)*}.

Then j3 > 72, ij, + (js — 1) — 4o > (3a)j3—1 and ij, + j3 — J2 < (30()]’3' Put
ij =14, + (j — j2) for jo < j < j3—1 and choose the natural number 4;, such that

(35)]'3 <ij, < (35)j3 +1< (3ﬂ)j3+1.

o0

If we continue this procedure, we have increasing sequences {j}72, and {i;}52,

of natural numbers. Now we will show the following claim (*):
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(*) If j > 41 and (logg M)/j > « for some M > 0,
then (logg M)/j > (logs(M +1))/(5 + 1).

Put v = (logz M)/j. Then M = (37)7. Since v > « and j > j;, we see that
(37)7+1 > (37)7 + 1. Hence

logs M logs(37)7T! _ logs((37)7 +1)  logs(M +1)
i T T+ /2 N i R

Hence the claim (*) is true.
By the construction, we see that

log, i
lim 7og? Yk _
k—oo  Jk

Let ji < j < jr+1 — 2. Then

logs i - logs ;41
J Jj+1

In fact, (logsi;)/j > « and by the claim (*),

loggij logsijer _ logs(iy, +J —jr) _logs(ij + (i +1) —jr) _

j j+1 j j+1

Also, note that for ji < j < jry1 — 1,

logs (i, +J —jr) _ logs(ij, + (J+1) — jk) ‘

J Jj+1
logB(ijk +] 7]k) _ 10g3(7’]k +] 7]k)
J j+1
<10g3(l:jk_+j*jk):10ggij. .1 <28, .1 .
J@+1) Jj o J+1 Jj+1

Hence we know that for jy < j < jess — 2, |(logy i)/ — (o83 i341)/(G + )] is
sufficiently small if & is sufficiently large. Also, since (logsij,,,-1)/(jr+1 —1) > «
and (logs(j, + jr+1 — Jr))/(Jr+1) < @, we see that

10g3ijk+1*1 —al <28- 1
Je+1— 1 - Jkt1
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Hence

logs i,
. 3 —1
lim —23 k4170 _

k—oo  Jry1 — 1

Consider the subsequence {%;,}32; of {%;}2,. By use of the above facts, we see
that

logs W/zk

o . .
- {n}72, is an increasing subsequence

[a, 8] = {lim inf
k—oo
of natural numbers}.

The case a = 0 or § = oo can be proved similarly.
Let dy g (= di) be the Alexandroff-Urysohn metric on X induced by the
normal star-sequence {%;; }32;. Then we show that for each z,y € X,

d*(l', y) = D*(.’I}, y)
Recall

de(z,y) = inf{D,(z,21) + Dy(z1,22) + - - - + Du(z0,y)|
n=12,..., and 2} € X}.

Note that %, = % = {X}. Suppose that z # y. Put D,(z,y) = 1/3772.
Then we have U € @/ij such that z,y € U. Also we have V, V, € % such

ij41
that V, NV, = dand o € Vi, y € V,. Let 24 € X (k = 1,2,...,n). Put
ro = T, Tpy1 = y. Since %, is a disjoint cover of X, we can choose two
points xx, Tk 11 such that there exists no element V of %, , that contains x) and
Zpy1. Then Dy (zg, xs1) > 1/3772, which implies that dy(z,y) > D,(x,y). Since
dy(z,y) < Dyi(zx,y), we see that

d*(x,y) = D*(l',y).

Then

1 .
N(?),]Q)d*> = |%LJ| =1j.
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Note that for any 1/3772 < e < 1/3773, d,(x,y) < € if and only if d,(z,y) <
1/3972, and hence

1 .
Newd) = (g ) = 2, =

By use of these facts, we see that d, = d, g is a desired metric on X.

REMARK 3. The metric d, in the proof of Theorem 6.4 is an ultrametric on
X, i.e., for any x,y,z € X

dy(z,y) < max{d,(z, z),ds(2,v)}.

7. Appendix.

In this appendix, we will give the complete proof of Theorem 2.2 and we will
give other characterizations of dimension by use of AP(X, %) and (X, %).

7.1. Delta-indices and star-indices.
Recall the following indices:

(1) The index A?(X) is defined as the least natural number m such that for every
open covering % of X with |%| = k, there is an open covering ¥ of X such
that |V <m and {StP(z,?) |2 € X} < %.

(2) The index #;(X) is defined as the least natural number m such that for every
open covering % of X with |% | = k, there is an open covering ¥ of X such
that |¥| <m and {StP(V,?) |V eV} <%.

(3) The index A?(X) is defined as the least natural number m such that for every
open covering % of X with |%| = k, there is an open covering ¥ of X such
that |#'| < m and YA < gy,

(4) The index } (X) is defined as the least natural number m such that for every
open covering % of X with |% | = k, there is an open covering ¥ of X such
that |#| <m and ¥* < %.

For an open cover % of X, we define the following indices.

(5) AP(X,%) = min{|¥| | ¥ is a finite open covering of X such that {St"(z,¥) |
xeX}<u}.

(6) ¥ (X, %) =min{|¥| | ¥ is a finite open covering of X such that {St?(V,¥) |
Vevy<wy.

(7) AP(X, %) = min{|¥| | ¥ is a finite open covering of X such that #2" < %}.

(8) P(X, %) = min{|¥| | ¥ is a finite open covering of X such that ¥*" < %}.
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For natural numbers k, m and p with k > m, we define the following indices;

X k\ (71 J —1)
A(k;m;p) = >y >ja>>5 . il EERN e
(k;m;p) >j12j2>25p>1 (]1) (]2> ( Jp

and

- k ] p— .
*(k;m;p) = Em2j12j22~~2jp21 ( > <J1) (jp~ 1> Jp-
WAl J2 Jp

PROPOSITION 7.1.  Let k and p be natural numbers. Then
(1) A(k;k;p) = (p+ 1)F = pF,
(2) *(kik;p) =k(p+1)"1,
(3) Bhzjizjpzzjpz1l = [Hy| = (M571).

PrROOF. By induction on p, we shall prove (1). If p = 1, then (1) is true.
We assume that (1) is true for p — 1 (p > 2). Then

A k j1> (j —1)
Ak k;p) = Zg>jy>0>>5 ) Al EER e
(ksk;p) = B> ji>jo> 25, >1 <j1) (]2 i)

(k g1\ (7 G-
) ()6 ()
[ (BN . . .
=25 ( ) A(jr; jrsp — 1)]
L \J1
k . A
_ 27171 ( > (pal _ (p _ 1)]1)]
J1
k k j k k
=1 (] 2 Y i (p—1)"
=(p+1)F -

Next, we shall prove (2) by induction on p. The fact of the case p = 1 has
been given in [7]. For completeness, we give the proof.

kY . k—1 1 (k-1 _
Ek>j>1<j>]:k|:2k>j>1<j_1)]:k[zf_ol( ; )]:k'2k g
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We assume that (2) is true for p — 1 (p > 2).

*(k; k3 p) = Tzji 2oz 24,21 (fl) ( > . < ’ 1) Jp
() e ()6 (5
=Xk 1[(3/{) *(Ji;jup — } (]kl) (")
] (s

7.2. The indices A2(X) and *}(X).

Let X be a topological space. By a swelling of the family {As}scs of subsets
of X, we mean any family {B;}scs of subsets of X such that A; C B (s € 5)
and for every finite set of indices s1,52,...,8n € S,

mA # ¢ if and only if ﬂBsL?é(b

i=1 =

THEOREM 7.2. Let X be an infinite normal space with dim X = n and let
k and p be natural numbers. Then

_ Alkikip)=(p+1DF —pF, if k<n+1
Ar(x) = ~( p)=(@+1)"=p" if k<
A(k;n+ 1;p), if k>n+1.

To prove Theorem 7.2, we need the following lemmata.

LEMMA 7.3.  Ewvery finite family {F; | i = 1,2,...,k} of closed subsets of a
normal space X has an open swelling {U; | i=1,2,... k}.

PRrROOF. See Engelking [5, Theorem (3.1.1)].

LEMMA 7.4. Suppose that X is an infinite normal space. Let % ={U; | j €

a} be an open covering of X such that |a| < oo and every open shrinking ¥ of U

has a non-empty intersection. If # = {P; | j € a} is a closed shrinking of % and

={F; | j € a} is a closed covering of X such that F; C Int(P;) (j € ), then
for any nonempty subset B of «,
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pA( WX =F)ljea-Bn({FlieBn([{Pljca}
(=NE-F)ljea-pnE1jes})
PROOF. For each i € a, choose an open set @); such that
F,CcQ; CQ, CInt(P).
We shall show that the family
T ={P, |j€04—ﬁ}U{|:ij N (X_Qi):| ’jEﬁ}
i€a—p3

is a closed covering of X. Let x € X —|J{P; | j € o — 3}. Since .7 is a covering
of X, there is jo € a such that « € Fj, € Z. If jo ¢ (3, we see that

x¢X-F;,>0X-Q;,>2X- |J P

jea—p

This is a contradiction. Hence jo € . Also we see that z € (¢, 5(X — @;)
and hence z € Fj, N[V, (X — Q;). Then 7 is a closed covering of X and a
shrinking of 7. If .7 has an empty intersection, by Lemma 7.3 we have an open
swelling ¥ such that ¥ is a shrinking of % and ¥ has an empty intersection.
Hence we see that .7 has a non-empty intersection:

(X =@ ljca=pyn({F;lieBn[{P;ljea}#¢

Consequently we see that

(WX =F)ljca=prn({FljieBrn( {P;lijea}
SNE =@ lica-Byn({F i€ n(\{P;liecal#o.

PrROOF OF THEOREM 7.2. Let k,p be any natural numbers. We give the
proof only for the case of K > n+ 1. The case of k¥ < n+ 1 can be proved similarly
to the case of k > n + 1. Suppose that Z = {U;,Us,...,U} is an open covering
of X with |%| = k. Since dimX = n, for each i = 1,2,...,p, we can choose
a finite open shrinking ¥* = {V{, Vi, ..., Vi} of % and a finite closed shrinking
Ft={F},Fi, ..., F}} of % such that ord(#?') <n+ 1 and
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1 1 2 2 P /g N
UiDV; DF; DV DF'>---DV/DF; (j=1,2,...,k).

For a finite sequence {1,2,...,k} D A1 D Ay D --- D A, # ¢ of nonempty subsets
of {1,2,...,k}, we define the following open set:

W(A1, Az, Ay =V e Adn({X - F |j¢ A}
ANV 15 € Ay (O {X — F? | j ¢ As)
NV 15 €A} 0V {X = F} |5 ¢ As}

NP Iiedn({X-F|j¢A}.
Put

W:{W(Al,AQ,...,Ap) | {1,2,...,]6}3141 DAQDDAp#gb
and W(A17A2,...,Ap) 7&(;5}

Since ord(??1) < n+ 1, we see that W (A, As,..., A,) = ¢ if |[A1]| > n+ 1. Then
we see

k\ (j i <
V| < Bns12j1>ja>>j,>1 ( ) (j-l) (jp- 1) = A(k;n 4+ 1;p).
g1) \Jz Jp

We shall show that #  is a finite open covering of X. Let z € X. Put
Ai={je{1,2,....k} |z e F}} (i=12,...,p).
Then we see that
{1,2,...,k} DA DA DDA, #0¢
and x € W (A1, As, ..., Ap). This implies that % is a finite open covering of X.
Since #P is a covering of X, for x € X we can choose jy € {1,2,...,k} with

T € Fﬁ) . Then we shall show that

StP(z, W) C V,L C Uj,.
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Let Wy, Wa,..., W, € # such that
IEWhWimWi-‘rl?é(?b (7’:152751)71)

Put W; = W(A}, Ab,..., A?) (i=1,2,...,p). Since
zeWr=W(ALAL.. . A) c({VP lieAn({X—F|j¢ A}
we see that jo € A,. Since
oFWINWe c(V{VF1Je I n({X - F7 ¢ 45},
we see that AL C A2_ . If not, there is some j' € AL — A2 ;. Then
d=VIN(X-FE ) o(\{VFIjeAIn({X-Fr"|j¢ A} >WinWa.

This is a contradiction. Also, by use of Wy N W3 # ¢, we see that AIQ)A - A;LQ.
By induction on ¢ = 1,2, ..., p, we see that

jo€ A, C A2 C AL ,CC AL
This implies that
W, =W (A}, AL, AD) Cc ({V} |je At} CV,.

Hence

St*(x,#) C V) C Uj,.
This implies that {StP(x,#") | x € X} < % . Hence we conclude that

AY(X) < A(kin + 1ip).

Next, we shall show the converse of the inequality. Let {C(a) | @ € C¥, |}

be a family of pairwise disjoint closed subsets of X such that dim C(a) = n for
each o € C¥, | (see [4, Lemma 2]). For each a € C¥,, choose an open covering

Y(a) = {G¢ | i € a} of C(a) such that every open shrinking of ¢(«) has a
non-empty intersection. We choose an open shrinking % (o)) = {Uf* | i € a} of
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¢(a) such that % (o) = {U® | i € a} is also a shrinking of ¢(«). For each
ie{1,2,..., k), let

Ui =[x -U{caect Y ulJ{vr lieal.

Then % = {Uy,Us,...,Us} is an open covering of X. Let ¥’ be a finite open
covering of X such that {St*(z,¥") |z € X} < % . We shall show that

V| > A(k;n + 1;p).

Since X is a normal space, there is a closed shrinking # of ¥’. By Lemma 7.3,
there is an open swelling ¥ of J¢ such that ¥ < ¥’. Moreover, we may assume
that 7 = {V | V € ¥} is also a swelling of #". Then ¥ satisfies the following
property; if VW € ¥ then

(f) VNW =¢ ifand only if VNW = ¢.

Note that |¥’| = |¥| and {StP(z,¥) |z € X} < %.

We shall show the above fact in the following way: For each sequence
{1,2,...,k} D B1 D B2 D -+ D By of subsets of {1,2,...,k} with 1 < |5,| <
|61] < n+ 1, we choose an element V (81, B2, ...,0p) € ¥ such that

Gr={je{1,2,....k} | V(B1,B2,...,0p) CUj},
/62:{] S {1a27,k} | St(V([;lvﬂQv"';Bp),%) C U]}ﬂ
Bs={j€{1,2,....k} | SE(V(Br, B2, -, ), ¥) CUj},

Bp={j€{1,2,....k} | StV (B1, B2,...,Bp),¥) CUj}.

In this way we can assign in a one-to-one manner an element V' (81, O2,...,08,) € ¥
to each sequence {1,2,...,k} D1 D B2 D - DB with1 < |B,| < |01 <n+1
and hence we see that

- k 1 P -
AR(X) 2 Bpg13g1 250> 25,21 ( ) <3.1> (Jp- 1) = A(k;n + 1;p).
J1i J2 Jp

To prove this, let {1,2,...,k} D 31 D P2 D --- D B, be a sequence of subsets of
{1,2,...,k} such that 1 < |3,| < |G| <n+1. Choose v C {1,2,...,k} such that
B1N~y=¢ and Gy U'yEC”gH. Let a = (6 U~.
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For i € «, we choose a closed set H; C G¢ such that U* C Intc(a)(H;)
(i € ). For each i € o, consider the following subsets of C(«):

P?=H,

7

FY =T«

7 1

P} = C(a) = St ((Cla) = U)), 7),

7

Fl=Cla)n| J{V e 7 | VNSE((Cla) - Uy),¥) = ¢},

?

P? = C(a) = SE((Cla) = U)), ),

7

F? =Cla)n| J{V e 7 |V NS2((Cla)—Uy), V) = ¢},

2

PPl = C(a) — SPTH((C(a) = Usy), ¥),

7

FFt=Cla)n| {V e 7 |V Str—1(Cla) - U;), V) = ¢},

(2

PP =C(a) - StP((Cla) — U;), ¥).

By (#), we see that
PP C Into(yFP ™' C FP7' C Intey PP~ C - C FP C Intoo P
Since {StP(x,¥) | x € X} < %, we see that the family {P” | i € a} is a closed

covering of C'(«) and also it is a shrinking of % («). In general, we can not conclude
that the family {Intc )P/ | i € a} is a covering of C(«). Put

W(e, b1, Ba; - - -, Bp)
=P lica}n [P 1ien}-ULF 1ica-5)]
n[NPE et} -ULE 1iea-a}]
N[NHE s} —ULE? a3}

N[NP e} - LR i e aBy)]
NO{P? 1€ By}
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Note that
LCHONNNS
=N 1ieatn [P e} -UF 1iea—p}]
n[N{P21iem) - UL{F e -6}
N [N{PE 1 ess} —U{F: 1) €s— s}

NNEE e B} = ULE 15 € s = 5}
NO{PF1d €8y}
=P —F) |jea—p}
NO{(P} —F}) 1 j€bi— o)
NOV{(PF = F}) 1) € 62— Bs}

NP = FP7Y) 1 € Bpo1 — By}
N{PF|j€B}

To apply Lemma 7.4 to our proof, we put 8 = 3, and consider two families of
closed subsets of C(a):

P ={P]|jca-p}LU{P;|jep—p}
U U{PP 2 €Bpo—Bpa} U{PI T |jEBa} ={P|jca},
and
F={F}|jea-p}U{F]|j€p -}
U U{F) 72| € Bpz = Bpr JU{E) T | € Bpr — By}
U{F} |j€Bp}={F;|j€a}l

By Lemma 7.4, we see that
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W(a, Br, B2, -, Bp) # ¢

Hence we can choose © € W(«, 81, 52, ...,0p) and V =V (51, B2, ..., Bp) € ¥ with
x € V. We shall show that for each i =1,...,p,

Bi={ie{l,2,....k} | SNV (Br, Bas- -, Bp), V) C Uj}

Let j € ;. We choose i’ > i such that j € 8; — (ir41, where we put Sp11 = ¢.
Then

x€W(a,p,Ba,....0) C Pl —Fi ¢ Pl =C(a) - St"((Cla) - Uy), 7).

Since = ¢ St' ((C(a) — U;),¥), we see that St¥ (z, %) C U;. Since i’ > i and
xev(ﬂl?BQa"'v D)

StV (B, By By). V) C SNV (B, Bay ..., Bp), ¥) C St (2,7) C Uj.
This implies that
Bic{je{l,2,....k}| St (V(Br,Bas-... 0p), V) CU; }.
Next, suppose that j ¢ 5;. If j ¢ a, we see that C(a) NU; = ¢ and z €

V(B1, B2, .., B,)NC(a). Then St=Y(V (B4, B2,...,3p),¥) is not contained in Uj.
If j € «, we choose i’ < i such that j € G — 841 and we put Sy = a. Then

xr € W(Oz,ﬁl,ﬁg,..,’ﬁp) C P;’ —F;/.

Hence

v ¢ Fl =Cla)n|J{Ve? | VSt ((Cla)-U)), ) = ¢}.
This implies that V (81, 82, ..., 8,) N St* ((C(a) — U;), ¥) # ¢. Hence

St (V(B1, Bas ..., Bp), ) N (Clar) — Uy) # ¢.
Since

Stiil(v(ﬂ17ﬂ27 e 7ﬁp)77/) D) Sti/(v(ﬂhﬂQa s ’ﬂp)a Aj/)’
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we see that St'=1(V (31, Bz, ..., Bp), ¥) is not contained in U;. This implies that

Bio{je{1,2,....k}| StV (B, Ba,...,5p), V) C Uj}.
Hence
Bi={je{1,2,....k} | SETH(V (B, Bas. .., Bp). ¥) C Uj}.

Finally, we can conclude that

AR(X) = A(k;n+1;p).

This completes the proof.

THEOREM 7.5. Let X be an infinite normal space with dim X = n and let
k and p be natural numbers. Then

*(kik;p) =k(p+1)*1 if k<n+1

T (X) = { ‘
*(k;n+1;p), if k>n+1.

PROOF. The proof is similar to that of Theorem 7.2. For completeness,
we give the proof. Let k,p be any natural numbers. We give the proof only for
the case of k > n 4+ 1. The case of K < n + 1 can be proved similarly to the
case of k > n + 1. Suppose that = {U;,Us,...,Ux} is an open covering of
X with || = k. Since dimX = n, for each ¢« = 1,2,...,p, we can choose a
finite open shrinking ¥* = {V{,V4,...,V}i} of % and a finite closed shrinking
Fr={F,F},...,F}} of % such that ord(¥!) <n+ 1 and

UiDV}DF DV}DF/>---DVPDF! (j=1,2,...,k).
We may assume that {Int(F}) | i = 1,2,...,k} is an open covering of X. Let
¢ = {G1,Ga,...,Gi} be an open covering of X with G; C F]p (Gj=12,...,k).

For a finite sequence {1,2,...,k} D A1 D Ay D --- D A, # ¢ of nonempty subsets
of {1,2,...,k} and t € A, we define the following open set:

W (A1, Asy Ay t) = (Ve Ayn({X - F} | ¢ A}

ANVE G € A} (X~ B2 15 ¢ As)
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NA{VP 15e Ay {X—F}|j¢As}

NV 15 e A n(IX—FP1j¢ A}
ﬁGt.

Put

W o= {W(AL, Ay, Ay )| {1,2,.. . k} DAL DAy D DAyt
and W(Al,AQ,...,ApZt)#(b}.

Since ord(?!) < n + 1, we see that W (A, As,..., Ay 1 t) = ¢ if [A1] > n+ 1.
Then we see that

k j iy — . -
W] < Bng1251>j2>>j,>1 <]~1) (Jl) (Jp. 1) Jp = *(k;n + 1;p).

J2 Jp
Let x € X. Put
Ai={je{1,2,....k} |z e F}} (i=1,2,...,p).
Also, we choose t € A, with x € G;. Then we see that
{1,2,...,k} DA DA D--- DA, S

and x € W(Ay, Ag,..., A, : t). This implies that #  is a finite open covering of
X. Also, by the similar argument to the proof of Theorem 7.2, we see that

Stp(W(Al,Ag, .. .,Ap : t),%) C Ut.
Hence
H(X) < *(k;n +1;p).

Next, we shall show the converse of the inequality. Let {C(a) | @ € C¥,;}
be a family of pairwise disjoint closed subsets of X such that dim C(a) = n for
each a € C% ;. For each a € C¥, |, we also choose an open covering ¥(a) =
{G¢ | i € a} of C(a) such that every open shrinking of ¢(«) has a non-empty
intersection. We choose an open shrinking % (o) = {U? | i € a} of ¥(a) such
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that % (o) = {UY | i € a} is also a shrinking of ¢(«). For each i € {1,2,...,k},
let

Ui =[x -U{c@acct | ulJ{orlieal.
Then % = {U;,Us,...,U;} is an open covering of X. Let ¥ be a finite open
covering of X such that {St?(V,¥) |V € ¥} < %. As in the proof of Theorem
7.2, we may assume that if V.W € ¥ then
(#) VNW =¢ ifand only if VNW = ¢.
We shall show that
V| = *(k;n +1;p).
We show this fact in the following way: For each sequence 31 D B2 D --- D 3,

of subsets of {1,2,...,k} with 1 < |8,| < |f1] <n+1and t € §,, we choose an
element V (81, B2,...,0p : t) € ¥ such that if t, ¢’ € 3, and ¢t # t/, then

V(ﬁlaﬁ?a"wﬁ]? : t) 7é V(ﬁlvﬁQa"'aﬁp : t/)a

and
51 :{j€{172,71€} | V(ﬁl,,827...,6plt) CUj},
Bo={je{l,2,...,k}| St(V(B1,B2,...,0p: 1), V) CU;},
ﬂ?} = {.] € {172a7k} | St2(v(/617625"'a5p : t)aqj/) - UJ}7
ﬂp = {] S {17277k} | Stpil(v(ﬂlaﬂ%"'?ﬂp : t)’q//) - Uj}7
Stp(v(ﬁlaﬁ27' .- 7ﬁp : t))dj/) - Ut-
In this way we can assign in a one-to-one manner an element V (81, B2,...,0, : t) €

¥ to each sequence {1,2,...,k} D1 D f2 D+ D Fp with1 < |5, < 81| <n+1
and t € 3, and hence we see that

5 kN (i o0\
(X)) 2 X155, 0> 2,21 <j1) <§;> (j’; 1) Jp = x(k;n + 15 p).
p
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To prove this fact, let {1,2,...,k} D 81 D B2 D -+ D B, be a sequence of subsets
of {1,2,...,k} such that 1 < |3,| < |6:1| < n+ 1. Choose v C {1,2,...,k} such
that 51Ny =¢ and B U~ € C’;H. Let o = 81 U~y. For i € «, we choose a closed
set H; C G% such that U® C Intcay(H;) (1 € «). As in the proof of Theorem
7.2, for each ¢ € «, consider the following subsets of C'(«):

POZHH

7

=T~

(3 7 ?

7

Fl=Cla)n| J{V e | VSt ((Cla)—U:),7) = ¢},

7

7

FP =Cla)n| Ve 7 |V S((Cla) - Uy), V) = ¢},

7

PPl = C(a) = SPTL((C(a) — Uy), ¥),

3

FFt=Cla)n| Ve 7 | VnSte-1(Cla) - U;), V) = ¢},
PP = C(a) - St((Cla) — U3), 7).

Since {StP(V,¥) | x € X} < %, we see that the family {Intc) P} |i € a}is a
covering of C(«). Also, put
W(a7ﬂ1a627"'7ﬂp) :m{(P]O_FjO) |j€0l_61}
Oﬂ{(le—F]l) ‘jeﬂl_ﬁ?}
ﬂﬂ{(Pf—FjQ) ‘jeﬁ?_ﬁ?’}

NP = F77) 1 € Bp1 = By}
ﬂﬂ{Perﬁp}.

By Lemma 7.4, we see that W («, 81, B2, ..., 0,) # ¢. For each V € ¥, we choose
f(V)e{l,2,...,k} such that StP(V,¥) C Us(y). Note that f : ¥ — {1,2,...,k}
is a function. Let ¥, = {V € ¥ | St?(V,¥) C U; for some ¢ € a}. Then for
each i € o, we put ¥, = {V € ¥ | f(V) = i}. Note that {# | i € a} is a
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decomposition of ¥,. Let W/ = [J{V € %} NC(a) (i € o). Since {W/ | i € a}
is an open covering of C'(a) such that W] C Intc )P} (i € a), we can choose
a closed shrinking {W; | i € a} of {W/ | i € a}. Applying Lemma 7.4 as in the
proof of Theorem 7.2, we can conclude that

W(a7ﬂlaﬁ27"'7ﬂp) mm{Wt ‘ te Bp} # ¢

Choose a point z € W(a, 81, B2,...,0p) N[W{W{ | t € B,}. For each t € 3,, we
can choose V(81, B2,...,0p : t) € ¥ containing the point . Then we see that
V(61,B2,-..,0p : t) satisfies the desired conditions. Finally, we can conclude that

*o(X) = *(k;n + 1;p).
7.3. Characterizations of dimension by use of AP(X,%) and
*P(X,U).
In Theorem 7.11, we give other characterizations of dimension by use of
AP(X, %) and (X, U ).
THEOREM 7.6. Let X be a normal space with dim X = n.
(1) If % is any finite open covering of X with |%| =k, then
AP(X, %) < A(k;n + 1 p).

(2) For any k > n+ 1, there is a finite open covering % of X such that |%| =k
and

AP(X, %) = A(k;n + 1;p).
Hence

. log AP(X, %)
lim ————=n
p—00 logp

PROOF. Note that

i Ny -
A(kin+15p) = Bng12j, 250> 2j,>1 ( ) (‘]-1> (jp- 1)
j1) \Jz Jp

and
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~ k jl) (j _1) .
*(ksn+1;p) =3 S>> . il EERN e .
( P) = Znt1j1 22> 25,21 <]1) (k IR

Since k and n + 1 are fixed, we can choose a real number 0 < b such that for
anyp:]—727"'7 andji (Z: 1323"'ap) Wlthn+1 2]1 2]2 2 ij Z ]-7

v (5) () () <2

and
()65
Hence
ln1Hp| < A(ksn+ 15p) < |1 Hy| - b
and

‘n+1Hp| S ;(k‘an + 17p) < |n+al‘ : b

Then we see that

log A(k;n + 1; 1 H 1 l/pin!
i 08 AR+ Lip) . loglariHy[ _ . log[(n +p)!/plnl]
p—oo logp p—oo  logp p—oo logp
. log(n+p) +log(n —1+4p)+---+log(l +p)
= lim =n
p—00 logp

Similarly, we have

log %(k; n + 1;p)
p—00 log p

By use of the proof of Theorem 7.6, we can also prove the following theorem.
THEOREM 7.7. Let X be a normal space. Then

AP
dim X = sup { lim sup M

U is a finite open covering ofX}.
p—00 logp
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Similarly, we have

THEOREM 7.8. Let X be a normal space with dim X = n.

(1) If % is any finite open covering of X with |%| =k, then
(X, U) < *(k;n+1;p).

(2) For any k > n+ 1, there is a finite open covering % of X such that |%| =k

and
(X, %) =*(k;n+1;p).
Hence
log** (X, %)
im —-———- =
p—00 log p

Consequently, if X is a normal space with co > dim X > 0,

log %P (X
dim X :sup{limsupOg(’%)

X is a finite open covering ofX}.
p—oo logp

PROPOSITION 7.9.  For any natural number p and any finite open covering
% of an infinite normal space X, we have

AP(X, %) = D" (X, %),
(X, ) =FPEV(X ),
AP(X) =AY (X) and

(X)) = xPED(x).

PROOF. First, we shall prove that for any open covering ¥ of X and a
natural number p > 1,

(1) VA (={St(x, 72" Y|z e X)) ={St" '(x,%) |z € X}.
In fact, we prove that for each p=1,2,... and z € X,

(1) St(z, 72" ) = 52" (z, 7).
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If p = 1, by definitions we can easily see that (1)’ is true. By induction on p, we
shall prove (1)’. We assume that (1)’ is true for p. Since (1) is true for p, for each
x € X, we have

St(z, V2" =U{T e v*" |z € T}

= U{St2p71(y, Y)|ye X and x € St2p71(y, V)} = St (x, ).

This implies that (1)’ is true for p + 1 and hence (1) is also true for p + 1.
Next, we shall prove that for any open covering ¥ of X and a natural number
p=1

2) 7 = {StWDE =D )| Ve

By induction on p, we shall prove that (2) is true. If p = 1, by definitions (2) is
true. We assume that (2) is true for p. If W € ¥+ there is U € #* such
that W = St(U, #*"). By the assumption, we see that there is V' € ¥ such that
U = St(/2G" =1y, ). Hence
W= J{U' e |UNU # ¢}
= U {St/AE" =Dy ) |
StAAE = (v ) 0 SEIDE DY ) oL ¢ for V! e ¥}

= St3x(1/2)(3“1)+1(v, V) = St(1/2)(3p“*1)(v, 7).

This implies that ¥*"" c {StA/2E" =10V, %) | V € #}. To prove the converse

inclusion, for each V € ¥ we put U = St(1/2G"=1(V, ). By induction, we see
that U € ¥*" and

Sty ) = st ) e v

This implies that (2) is true. By use of the facts (1) and (2), we can easily complete
the proof.

We have the following corollary which is Theorem 2.2 in Section 2.

COROLLARY 7.10. Let X be a normal space and dim X = n and let k and p
be natural numbers. Then



974 H. KAaTO and M. MATSUMOTO

Ak k20 = (20~ 4 DR — (0= 1)k if k<n+1
sy - {B0RZT = 7D -

A(k;n +1;2P71), if k>n+1
and

1 1 k-1
;(k;k;2(3pl)>_k{2(3p1)+1)] , if k<n+1
- 1 .
*(k;n+1;2(3p—1)>, if k>n+1.
Now we give other characterizations of topological dimension by use of the

indices A} (X, %) and *} (X, %) as follows.

THEOREM 7.11.  Let X be a normal space. Then

logy AP(X, %
dim X = sup { lim sup ng—(’) ‘ U is a finite open covering ofX}

p—00 p
and

logs %P (X, %
dim X = sup { lim sup M ’ U is a finite open covering of X}.

p—00

Proor. By Theorem 7.7 and Theorem 7.8, we have

log, A2 (X, %
dim X = sup < limsup 082 (X,
p—00 10g2 21)71

log, AP(X
Og2—(’%) ’ Z is a finite open covering of X}

) ‘ % is a finite open covering of X }

= sup { lim sup
p—00 p — ].

log, AP(X, %
= sup { lim sup %—(’) ’ Z is a finite open covering of X}.

p—o0 p

Similarly, we have

log. 21/DE 1) x
dim X = sup { lim sup 083 X (X, %

T ) ‘ 7 is a finite open covering of X}
P dogy L (30— 1)

1 (X, U
= sup { lim sup M ’  is a finite open covering of X}.

p—oo
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COROLLARY 7.12.  Let X be an infinite normal space with dim X = n.

(1) If 721 and % are finite open coverings of X with % < U, then

(2)

AP(X, ) > AP (X, W), *(X,2) > * (X, %),
AP(X, ) > AP(X, %), +P(X,2) > (X, %s).

There is a finite open covering % of X such that if %' is any finite open
covering of X with %' < U, then

log AP(X, %) . logd (X, %)
— L =, lim ———= =n,
p—00 log p p—00 log p
P / p /
lim log, AP(X, %) —n  lim logs *P (X, %) -
p—oo D p—oo D
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