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Abstract. In 1932, Pontrjagin and Schnirelmann [15] proved the classi-
cal theorem which characterizes topological dimension by use of box-counting
dimensions. They proved their theorem by use of geometric arguments in some
Euclidean spaces. In this paper, by use of dimensional theoretical techniques
in an abstract topological space, we investigate strong relations between met-
rics of spaces and box-counting dimensions. First, by use of the numerical
information of normal sequences of finite open covers of a space X, we prove
directly the following theorem characterizing topological dimension dim X.

Theorem 0.1. Let X be a nonempty separable metric space. Then

dim X = min


lim inf
i→∞

log3 |Ui|
i

˛̨
˛̨ {Ui}∞i=1 is a normal star-sequence

of finite open covers of X and a development of X

ff

= min


lim inf
i→∞

log2 |Ui|
i

˛̨
˛̨ {Ui}∞i=1 is a normal delta-sequence

of finite open covers of X and a development of X

ff
.

Next, we study box-counting dimensions dimB(X, d) by use of Alexandroff-
Urysohn metrics d induced by normal sequences. We show that the above theo-
rem implies Pontrjagin-Schnirelmann theorem. The proof is different from the
one of Pontrjagin and Schnirelmann (see [15]). By use of normal sequences, we
can construct freely metrics d which control the values of log N(ε, d)/| log ε|. In
particular, we can construct chaotic metrics with respect to the determination
of the box-counting dimensions as follows.
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Theorem 0.2. Let X be an infinite separable metric space. For any ∞ ≥
α ≥ dim X, there is a totally bounded metric dα on X such that

[α,∞] =


lim inf
k→∞

log N(εk, dα)

| log εk|

˛̨
˛̨ {εk}∞k=1 is a decreasing sequence

of positive numbers with limk→∞ εk = 0

ff
,

where N(εk, dα) = min{|U | | U is a finite open cover of X with meshdα (U ) ≤
εk}. In particular, dimB(X, dα) = α.

1. Introduction.

Let X be a topological space and let U be a collection of subsets of X. For
any p ∈ X, we mean by the order of U at p the number of members of U which
contain p, and we denote it by ordp U . If there exist infinitely many such members,
then ordp U = ∞. Let U and V be finite open covers of X. If for each U ∈ U
there exists V ∈ V such that U ⊂ V , then we call U a refinement of V , and we
denote this relation by U ≤ V . For a topological space X, we denote by dim X

the topological (covering) dimension of X:

(1) dimX ≤ n (n = −1, 0, 1, 2, . . . ) if every finite open cover V of X has a
finite open cover U such that U ≤ V and ordU ≤ n + 1, where ordU =
sup{ordp U | p ∈ X}.

(2) dimX = n if dimX ≤ n but not dimX ≤ n− 1.
(3) dimX = ∞ if dimX ≤ n does not hold for any n.

Note that topological dimension is originally defined in terms of local cardinality,
order of cover. For topological dimension theory, see [5], [8], [10] and [11].

Recently, there has been an increase in the importance of fractal sets in the
sciences, and fractal dimension theory has been studied by many scientists and
mathematicians (e.g., see [1], [6], [9] and [14]). Fractal dimensions depend on the
metrics of spaces and hence the analysis of metrics of the spaces is very important.
In this paper, we study some properties of topological dimension, metrics and box-
counting dimensions of separable metric spaces from a point of view of general
topology. In general topology, the notion of normal sequence of open covers is
one of the most useful tools for the study (e.g., see [10], [11], [12]). For example,
the notion is the essence of metrizability of spaces (see Theorem 2.1). The key
word of this paper is “normal sequence” of finite open covers. In this paper,
we investigate directly the numerical properties of normal sequences of finite open
covers on a given separable metric space X and we give another proof of Pontrjagin-
Schnirelmann theorem. Furtheremore, by use of normal sequences we construct
metrics d which can control the values of log N(ε, d)/| log ε|. In particular, we can
construct chaotic metrics with respect to the determination of the box-counting
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dimensions. The methods used in this paper are based on dimensional theoretical
techniques in an abstract topological space.

In fractal dimension theory, Pontrjagin and Schnirelmann [15] proved the
following fundamental result involving topological dimension dimX and (lower)
box-counting dimension dimB(X, d) for a compact metric space (X, d): For a
metric d on X and ε > 0, let

N(ε, d) = min{|U | | U is a finite open cover of X with meshd(U ) ≤ ε}

and

dimB(X, d) = sup
{

inf
{

log N(ε, ρ)
| log ε|

∣∣∣∣ 0 < ε < ε0

} ∣∣∣∣ 0 < ε0

}(
= lim inf

ε→0

log N(ε, d)
| log ε|

)
,

where |A| denotes the cardinality of a set A. Then

dimX = min{dimB(X, d) | d is a metric on X}.

More generally, Bruijning ([3] or [11, p. 81, Corollary]) showed that if X is a
separable metric space, then

dimX = min{dimB(X, d) | d is a totally bounded metric on X}.

Pontrjagin and Schnirelmann proved their theorem by use of geometric arguments
in some Euclidean spaces. In fact, such a metric d on X with dimX = dimB(X, d)
was obtained by use of geometric arguments (embedding arguments) on polyhedral
approximations of n-dimensional sets in the (2n + 1)-dimensional Euclidean space
R2n+1 (see [11] and [15]).

2. Normal sequences of open covers, star-refinements and delta-
refinements.

In this paper, we need the following terminology and concepts. Let U and V
be open covers of a space X. From now we assume that any topological space X

is not empty and each element of any open cover of a space is not an empty set.
Suppose that A is a subset of a space X and U is an open cover of X. Then

we denote

St(A,U ) =
⋃
{U ∈ U | U ∩A 6= φ}.

Inductively, we define St0(A,U ) = A, St1(A,U ) = St(A,U ) and
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Stp+1(A,U ) = St(Stp(A,U ),U ) =
⋃
{U ∈ U | U ∩ Stp(A,U ) 6= φ} (p ≥ 1).

We put

U ? = {St(U,U ) | U ∈ U } and U ∆ = {St(x,U ) | x ∈ X}.

Note that if |U | is finite, then |U ?| and |U ∆| are finite. Also, we put U ?0
= U ,

U ∆0
= U , U ?1

= U ?, and U ∆1
= U ∆. Inductively, we define

U ?p+1
= (U ?p

)? =
{
St(W,U ?p

) | W ∈ U ?p}

and

U ∆p+1
= (U ∆p

)∆ =
{
St(x,U ∆p

) | x ∈ X
}
.

An open cover V of X is a star p-refinement of an open cover U of X if V ?p ≤ U .
An open cover V of X is a delta p-refinement of an open cover U of X if V ∆p ≤ U .
An open cover V of X is a star-refinement of an open cover U of X if V is a star
1-refinement of U . An open cover V of X is a delta-refinement of an open cover
U of X if V is a delta 1-refinement of U . Note that V ≤ V ∆ ≤ V ? ≤ V ∆2

.
Let Ui (i = 1, 2, . . . ) be open covers of X. Then the sequence {Ui}∞i=1 is called

a normal star-sequence (e.g., see [10], [11] and [12]) if Ui+1 is a star-refinement
of Ui (i = 1, 2, . . . ). Also, the sequence {Ui}∞i=1 is called a normal delta-sequence
if Ui+1 is a delta-refinement of Ui (i = 1, 2, . . . ). The sequence {Ui}∞i=1 is called
a normal sequence (e.g., see [10], [11] and [12]) if either (?) {Ui}∞i=1 is a normal
star-sequence or (∆) {Ui}∞i=1 is a normal delta-sequence. The sequence {Ui}∞i=1

is called a development of X if {St(x,Ui)| i = 1, 2, . . . } is a neighborhood base for
each point x of X.

The following theorem is well known as Alexandroff-Urysohn metrization the-
orem (e.g., see [10], [11], [12]). In this paper, we need some additional properties
of the metrics.

Theorem 2.1 (Alexandroff-Urysohn metrization theorem). A T1-space X

is metrizable if and only if there exists a sequence {Ui}∞i=1 of open covers of X

such that {Ui}∞i=1 is a normal sequence and a development of X.

For any normal space X (6= φ) and natural numbers k and p, we define the
following indices:

(1) The index ?p
k(X) is defined as the least natural number m such that for every

open cover U of X with |U | = k, there is an open cover V of X such that
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|V | ≤ m and V ?p ≤ U (see [13]).
(2) The index ∆p

k(X) is defined as the least natural number m such that for every
open cover U of X with |U | = k, there is an open cover V of X such that
|V | ≤ m and V ∆p ≤ U (see [13]).

(3) The index ∆̃p
k(X) is defined as the least natural number m such that for every

open covering U of X with |U | = k, there is an open covering V of X such
that |V | ≤ m and {Stp(x,V ) | x ∈ X} ≤ U .

(4) The index ?̃p
k(X) is defined as the least natural number m such that for every

open covering U of X with |U | = k, there is an open covering V of X such
that |V | ≤ m and {Stp(V, V ) | V ∈ V } ≤ U .

By Ck
m, we shall denote the set of all m-element subsets of the set {1, 2, . . . , k}

and by
(

k
m

)
its cardinality, i.e.,

(
k
m

)
=

k!
m!(k −m)!

.

For natural numbers k, m and p with k ≥ m, we define the following indices;

∆̃(k;m; p) = Σm≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)

and

?̃(k;m; p) = Σm≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp.

In [4], Bruijning and Nagata determined the index ∆1
k(X), and in [7],

Hashimoto and Hattori determined the index ?1
k(X). In [2] Bogatyi and Kar-

pov determined the indices ∆̃p
k(X) and ?̃p

k(X) for all k, p. They did not state the
next theorem (=Theorem 2.2), but by use of their results, we can easily determine
the indices ∆p

k(X) and ?p
k(X) for all k, p. In this paper, we need more detailed

properties of the indices. For completeness, in Appendix of Sections 7 we will give
the complete proof of Theorem 2.2 and the more detailed information of the in-
dices (see Corollary 7.10). Also we will give other characterizations of topological
dimension by use of the indices.

Theorem 2.2 (Corollary 7.10). Let X be an infinite normal space with
dimX = m < ∞ and let k and p be natural numbers. Then
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?p
k(X) =





?̃

(
k; k;

(
1
2

)
(3p − 1)

)
= k

[(
1
2

)
(3p − 1) + 1)

]k−1

, if k ≤ m + 1

?̃

(
k;m + 1;

(
1
2

)
(3p − 1)

)
, if k ≥ m + 1,

and

∆p
k(X) =

{
∆̃(k; k; 2p−1) = (2p−1 + 1)k − (2p−1)k, if k ≤ m + 1

∆̃(k;m + 1; 2p−1), if k ≥ m + 1.

3. Topological dimension and normal sequences of finite open cov-
ers.

In this section, we prove Theorem 3.1, which means that topological dimension
is characterized in terms of the growth of the global cardinality |Ui| of members
Ui of normal sequences.

Theorem 3.1. Let X be a (nonempty) separable metric space. Then

(1) dimX = min
{

lim inf
i→∞

log3 |Ui|
i

∣∣∣∣ {Ui}∞i=1 is a normal star-sequence

of finite open covers of X and a development of X

}

and

(2) dimX = min
{

lim inf
i→∞

log2 |Ui|
i

∣∣∣∣ {Ui}∞i=1 is a normal delta-sequence

of finite open covers of X and a development of X

}
.

For the proof of Theorem 3.1, we need the followings.

Lemma 3.2. Let X be a normal space and m ≥ 0. Then dimX ≥ m if and
only if there is an open covering W1 = {W1,W2, . . . , Wm+1} of X such that if V
is any open shrinking of W1 (i.e., V = {V1, V2, . . . , Vm+1} is an open cover of X

such that Vi ⊂ Wi (i = 1, 2, . . . , m + 1)), then V has a non-empty intersection.

Proof. See Engelking [5, Theorem (1.6.9)].
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Proposition 3.3. Let X be an infinite normal space with dimX ≥ m ≥ 0.
Suppose that W1 = {W1,W2, . . . , Wm+1} is an open cover of X as in Lemma 3.2.

(1) If {Ui}∞i=1 is a normal star-sequence of finite open covers of X and W1 ≥ U ?
1 ,

then |Ui| ≥ ?̃(m + 1;m + 1; (1/2)(3i − 1)) for each i.
(2) If {Ui}∞i=1 is a normal delta-sequence of finite open covers of X and W1 ≥ U ∆

1 ,
then |Ui| ≥ ∆̃(m + 1;m + 1; 2i−1) for each i.

Proof. By the proofs of Theorem 7.2, Theorem 7.5 and Proposition 7.9 of
Appendix, we know that

(?) ?p (X, W1) ≡ min{|V | | V is a finite open cover of X such that V ?p ≤ W1}

= ?̃

(
m + 1;m + 1;

1
2
(3p − 1)

)
,

(∆) ∆p(X, W1) ≡ min{|V | | V is a finite open cover of X such that V ∆p ≤ W1}
= ∆̃(m + 1;m + 1; 2p−1)).

We will prove the case (1). The case (2) can be proved similarly to the case
(1). Since

W1 ≥ U ?
1 ≥ U1 ≥ U ?

2 ≥ U2 ≥ U ?
3 ≥ U3 . . . ,

we see that U ?i

i ≤ W1, hence by (?), we see that

|Ui| ≥ ?̃

(
m + 1;m + 1;

1
2
(3i − 1)

)
.

Proof of Theorem 3.1. We shall prove the case (1). The case (2) can
be proved similarly to the case (1). We may assume that |X| is infinite. Suppose
that X is a separable metric space with dim X = m < ∞. The case dim X = ∞
is proved similarly with the aid of Lemma 3.5 below. Let k be a fixed natural
number with k ≥ m + 1. Note that

?̃(k;m + 1; p) = Σm+1≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp.

Since k and m + 1 are fixed, we can choose a real number b > 0 such that for any
p = 1, 2, . . . and any ji (i = 1, 2, . . . , p) with m + 1 ≥ j1 ≥ j2 ≥ · · · ≥ jp ≥ 1,
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1 ≤
(

k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp < b.

Note that

Σm+1≥j1≥j2≥···≥jp≥11 = |m+1Hp| =
(

m + p
p

)
=

(m + p)!
m!p!

,

where m+1Hp denotes the set of the repeated combinations choosing p elements
from m + 1 elements. Hence

|m+1Hp| ≤ ?̃(k;m + 1; p) < |m+1Hp| · b.

Then we see that

lim
p→∞

log ?̃(k;m + 1; p)
log p

= lim
p→∞

log |m+1Hp|
log p

= lim
p→∞

log[(m + p)!/p!m!]
log p

= lim
p→∞

log(m + p) + log(m− 1 + p) + · · ·+ log(1 + p)− log(m!)
log p

= m.

By Theorem 2.2, we see that

?i
k(X) = ?̃

(
k;m + 1;

1
2
(3i − 1)

)
.

Then

lim
i→∞

log3 ?i
k(X)
i

= lim
i→∞

log3 ?̃

(
k;m + 1;

1
2
(3i − 1)

)

log3

1
2
(3i − 1)

= m.

Since X is a separable metric space, we may assume that X is totally bounded
and hence we can choose a sequence {Wi}∞i=1 of finite open covers of X such that
Wi+1 ≤ Wi for each i and {Wi}∞i=1 is a development of X. Also, we may assume
that W1 = {W1,W2, . . . , Wm+1} satisfies the condition of Lemma 3.2.

Put k1 = |W1|(= m + 1). Let {εi}∞i=1 be a decreasing sequence of positive
numbers with limi→∞ εi = 0. Since

lim
i→∞

log3 ?i
k1

(X)
i

= m,
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we can choose a finite open cover V1 of X and a sufficiently large natural number
p1 such that

V ?p1

1 ≤ W1 and
log3 |V1|

p1
< m + ε1.

For each j = 1, 2, . . . , p1, we put Uj = V ?p1−j

1 . Note that

U ?
i+1 = Ui (i = 1, 2, . . . , p1 − 1) and

log3 |Up1 |
p1

=
log3 |V1|

p1
< m + ε1.

Next, we consider the following open cover of X:

W2 ∧ V1 = {W ∩ V | W ∈ W2, V ∈ V1,W ∩ V 6= φ}.

Let k2 = |W2 ∧ V1|. Since

lim
i→∞

log3 ?i
k2

(X)
i

= m,

we can choose a finite open cover V2 of X and a sufficiently large natural number
p2 such that

V ?p2

2 ≤ W2 ∧ V1 and
log3 |V2|

p2
< m + ε2.

For each j = 1, 2, . . . , p2, we put Up1+j = V ?p2−j

2 . Then

log3 |Up1+p2 |
p1 + p2

≤ log3 |V2|
p2

< m + ε2.

Also, note that U ?
i+1 ≤ Ui for each i = 1, 2, . . . , p1 + p2. If we continue this pro-

cedure, we obtain a sequence V1,V2, . . . of finite open covers of X and a sequence
p1, p2, . . . of natural numbers such that for i ≥ 2 we have

V ?pi

i ≤ Wi ∧ Vi−1 and
log3 |Vi|

pi
< m + εi.

By use of the sequence V1,V2, . . . , we obtain a sequence {Ui}∞i=1 of finite open
covers of X such that {Ui}∞i=1 is a normal star-sequence and a development of X
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satisfying

lim inf
i→∞

log3 |Ui|
i

≤ m = dim X.

By Proposition 3.3, we see that |Ui| ≥ ?i
m+1(X) for each i ≥ 1. In particular, we

can conclude that

lim inf
i→∞

log3 |Ui|
i

= m = dim X.

Furthermore, by Lemma 3.5 (see the next lemma in this section), we see that if
{Ui}∞i=1 is any normal star-sequence of finite open covers of X and a development
of X, then there is some i0 such that |Ui| ≥ ?i−i0

m+1(X) for i ≥ i0, in particular,

lim inf
i→∞

log3 |Ui|
i

≥ lim inf
i→∞

?i−i0
m+1(X)
i− i0

· i− i0
i

= m.

Consequently we see that

dimX = min
{

lim inf
i→∞

log3 |Ui|
i

∣∣∣∣ {Ui}∞i=1 is a normal star-sequence

of finite open covers of X and a development of X

}
.

This completes the proof.

For separable metric spaces, we need the Alexandroff-Urysohn metric induced
by normal sequences of finite open covers. We also need some additional properties
of the metrics in the following sections: Define the functions D? : X ×X → [0, 9]
and D∆ : X ×X → [0, 4] as follows:

(?) Let {Ui}∞i=1 be a normal star-sequence of finite open covers of X and a de-
velopment of X. For any pair of points x, y of X, we define the function
D? : X ×X → [0, 9] by
(1) D?(x, y) = 9 if {x, y} is not contained in any element of U1,
(2) D?(x, y) = 1/3i−2 if {x, y} is contained in an element of Ui and {x, y} is

not contained in any element of Uj for j > i,
(3) D?(x, y) = 0 if {x, y} is contained in an element of Ui for each i.

(∆) Let {Ui}∞i=1 be a normal delta-sequence of finite open covers of X and a
development of X. For any pair of points x, y of X, we define the function
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D∆ : X ×X → [0, 4] by
(1) D∆(x, y) = 4 if {x, y} is not contained in any element of U1,
(2) D∆(x, y) = 1/2i−2 if {x, y} is contained in an element of Ui and {x, y} is

not contained in any element of Uj for j > i,
(3) D∆(x, y) = 0 if {x, y} is contained in an element of Ui for each i.

Proposition 3.4. Let X be a T1-space.

(1) If {Ui}∞i=1 is a normal star-sequence of finite open covers of X and a devel-
opment of X, then {Ui}∞i=1 induces a totally bounded metric d? on X such
that

d?(x, y) ≤ D?(x, y) ≤ 6d?(x, y)

for any x, y ∈ X. In particular, X is a separable metric space.
(2) If {Ui}∞i=1 is a normal delta-sequence of finite open covers of X and a devel-

opment of X, then {Ui}∞i=1 induces a totally bounded metric d∆ on X such
that

d∆(x, y) ≤ D∆(x, y) ≤ 4d∆(x, y)

for any x, y ∈ X. In particular, X is a separable metric space.

Proof. We shall prove the case (1). The proof is slightly different from the
one of the case (2). The proof of the case (2) can be found in [10, p. 13, Theorem
2.16]. We construct such a metric d? as follows: Let {Ui}∞i=1 be a normal star-
sequence of finite open covers of X and a development of X. Put U0 = {X}. Then
D(= D?) satisfies the following conditions; for any x, y, u, v ∈ X

D(x, x) = 0

D(x, y) = D(y, x)

D(x, y) ≤ 3max{D(x, u), D(u, v), D(v, y)}.

We shall prove that

D(x, y) ≤ 3max{D(x, u), D(u, v), D(v, y)}.

Choose i ≥ 0 such that

max{D(x, u), D(u, v), D(v, y)} = 3−(i−2).
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We may assume that i ≥ 1. Then there are U1, U2, U3 ∈ Ui such that x, u ∈
U1, u, v ∈ U2, v, y ∈ U3. There is V ∈ Ui−1 such that

x, y ∈ U1 ∪ U2 ∪ U3 ⊂ St(U2,Ui) ⊂ V ∈ Ui−1.

Then

D(x, y) ≤ 3−(i−3) = 3 max{D(x, u), D(u, v), D(v, y)}.

Set

d?(x, y)(= d(x, y)) = inf{D(x, x1) + D(x1, x2) + · · ·+ D(xn, y) |
n = 1, 2, . . . , and xj ∈ X}.

Since {Ui}∞i=1 is a development of X, d?(= d) is a metric on X satisfying d(x, y) ≤
D(x, y). Now we shall show that

d(x, y) ≤ D(x, y) ≤ 6d(x, y).

First, we prove the following inequality

D(x, y) ≤ 3D(x, x1) + 6D(x1, x2) + 6D(x2, x3) + · · ·+ 6D(xn−1, xn) + 3D(xn, y).

Suppose, on the contrary, that the inequality is not true. Then there is a minimum
number N for which

D(x, y) > 3D(x, x1)+6D(x1, x2)+6D(x2, x3)+ · · ·+6D(xN−1, xN )+3D(xN , y).

Recall the condition

D(x, y) ≤ 3max{D(x, u), D(u, v), D(v, y)}.

Then N > 2. Put x0 = x, xN+1 = y. Set

k1 = min{r| D(x, y) ≤ 3D(x, xr)}.

Then 1 < k1. Set

k2 = max{r| D(x, y) ≤ 3D(xr, y)}.
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Then k2 < N . We show that k1 ≤ k2. Suppose, on the contrary, that k1 > k2.
Then

D(x, y) > 3D(x, xk1−1)

D(x, y) > 3D(xk1−1, xk1)

D(x, y) > 3D(xk1 , y).

This contradicts the inequality

D(x, y) ≤ 3max{D(x, xk1−1), D(xk1−1, xk1), D(xk1 , y)}.

Hence k1 ≤ k2. Since D(x, y) > 3D(x, xk1−1) and D(x, y) > 3D(xk2+1, y), we
have

D(x, y) ≤ 3D(xk1−1, xk2+1).

Then we have

D(x, y) ≤ 3D(x, xk1)

D(x, y) ≤ 3D(xk1−1, xk2+1)

D(x, y) ≤ 3D(xk2 , y).

Hence

D(x, y) ≤ D(x, xk1) + D(xk1−1, xk2+1) + D(xk2 , y)

≤ (3D(x, x1) + 6D(x1, x2) + 6D(x2, x3)

+ · · ·+ 6D(xk1−2, xk1−1) + 3D(xk1−1, xk1))

+ (3D(xk1−1, xk1) + 6D(xk1 , xk1+1)

+ · · ·+ 6D(xk2−1, xk2) + 3D(xk2 , xk2+1))

+ (3D(xk2 , xk2+1) + 6D(xk2+1, xk2+2)

+ · · ·+ 6D(xN−1, xN ) + 3D(xN , y))

≤ 3D(x, x1) + 6D(x1, x2) + 6D(x2, x3)

+ · · ·+ 6D(xN−1, xN ) + 3D(xN , y).

This is a contradiction. Hence we have
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D(x, y) ≤ 3D(x, x1) + 6D(x1, x2) + 6D(x2, x3) + · · ·+ 6D(xn−1, xn) + 3D(xn, y).

Consequently we have

d(x, y) ≤ D(x, y) ≤ 6d(x, y).

Note that for each i ≥ 3,

St(x,Ui+1) ⊂ Ud(x, 1/3i−2) ⊂ St(x,Ui−2),

where Ud(x, ε) is the ε-neighborhood of x in X. Then we see that d is compatible
with the topology of X and diamd(U) ≤ 1/3i−2 for each U ∈ Ui. Hence d (= d?)
is a totally bounded metric on X.

The proof of the case (2) can be found in [10, p. 13, Theorem 2.16]. We will
give the outline of the proof. Let {Ui}∞i=1 be a normal delta-sequence of finite
open covers of X and a development of X. Set

d∆(x, y)(= d(x, y))

= inf{D(x, x1) + D(x1, x2) + · · ·+ D(xn, y) | n = 1, 2, . . . , and xj ∈ X}.

Then d∆(= d) is a metric on X such that d(x, y) ≤ D(x, y) ≤ 4d(x, y) (see [11,
p. 15]). Clearly, we see that diamd(U) ≤ 1/2i−2 for each U ∈ Ui. Hence d is a
totally bounded metric on X.

Lemma 3.5. Let X be an infinite separable metric space with dimX ≥ m ≥
0. Then the followings hold.

(1) If {Ui}∞i=1 is a normal star-sequence of finite open covers of X and a devel-
opment of X, then there is some i0 such that

|Ui| ≥ ?̃

(
m + 1;m + 1;

1
2
(3i−i0 − 1)

)

for i ≥ i0. In particular,

lim inf
i→∞

log3 |Ui|
i

≥ m.

(2) If {Ui}∞i=1 is a normal delta-sequence of finite open covers of X and a devel-
opment of X, then there is some i0 such that
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|Ui| ≥ ∆̃(m + 1;m + 1; 2i−i0−1)

for i ≥ i0. In particular,

lim inf
i→∞

log2 |Ui|
i

≥ m.

Proof. We shall prove the case (1). The case (2) can be proved similarly
to the case (1). By (1) of Proposition 3.4, we have the Alexandroff-Urysohn metric
d (= d?) on X induced by the normal star-sequence {Ui}∞i=1. Then there is the
completion (X̃, d̃) of (X, d) which is obtained by considering all Cauchy sequences
{xn}∞n=1 of points of X (e.g., see [Theorem 27, p. 196, J. L. Kelley, General Topol-
ogy, New York, 1955]). Since d is a totally bounded metric, (X̃, d̃) is a compact
metric space. Note that the natural embedding i : (X, d) → (X̃, d̃) is an isome-
try. Since dim X̃ ≥ m, there is an open covering W1 = {W1,W2, . . . , Wm+1} of
X̃ such that if V is any open shrinking of W1, then V has a non-empty intersec-
tion. Let ε > 0 be a Lebesgue number of the open cover W1. Choose i0 such that
ε > 1/3i0−2. For any cover V of a space, we set

V ?p

=
{
St(1/2)(3p−1)(V, V ) | V ∈ V

}
.

For each i ≥ i0, we consider the closed cover of X̃;

Ui
?i−i0

=
{
St(1/2)(3i−i0−1)(U,Ui) | U ∈ Ui

}
,

where Ui = {U | U ∈ Ui} and U denotes the closure of U in X̃. Since diamd(U) ≤
1/3i−2 for each U ∈ Ui, we see that

meshd̃

(
Ui

?i−i0 ) ≤
(

1
3i−2

)
× 3i−i0 =

1
3i0−2

< ε.

Since Ui is a closed cover of X̃, for each U ∈ Ui we can choose a sufficiently small
open neighborhood U ′ of U(∈ Ui) in X̃ such that

meshd̃

(
U ′?i−i0

i

)
< ε,

where U ′
i = {U ′ | U ∈ Ui}. Then

U ′?i−i0

i ≤ W1.
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By (1) of Proposition 3.3, we have

|Ui| = |U ′
i| ≥ ?̃

(
m + 1;m + 1;

1
2
(3i−i0 − 1)

)
.

Then

lim inf
i→∞

log3 |Ui|
i

≥ lim inf
i→∞

log3 ?̃

(
m + 1;m + 1;

1
2
(3i−i0 − 1)

)

i
= m.

4. Another proof of Pontrjagin-Schnirelmann theorem.

In this section, we give another proof of Pontrjagin-Schnirelmann theorem.
We consider the Alexandroff-Urysohn metrics d? and d∆ which are defined in the
proof of Proposition 3.4. From now the metrics d? and d∆ mean the Alexandroff-
Urysohn metrics induced by some normal sequences of finite open covers. First,
we prove the following.

Proposition 4.1. Let X be a separable metric space. Then

(1) dim X = min{dimB(X, d?) | d? is the Alexandroff-Urysohn metric on X in-
duced by a sequence {Ui}∞i=1 which is a normal star-sequence of finite open
covers of X and a development of X},

(2) dim X = min{dimB(X, d∆) | d∆ is the Alexandroff-Urysohn metric on X

induced by a sequence {Ui}∞i=1 which is a normal delta-sequence of finite open
covers of X and a development of X}.

Proof. First, we prove the case (1). By Theorem 3.1, there is a normal
star-sequence {Ui}∞i=1 of finite open covers of X and a development of X such that

lim inf
i→∞

log3 |Ui|
i

= dim X (= m).

We may assume that m < ∞. The case m = ∞ can be proved similarly. Let d?

be the Alexandroff-Urysohn metric induced by {Ui}∞i=1. We recall the index

N(ε, d?) = min{|U | | U is a finite open cover of X with meshd?(U ) ≤ ε}.

Note that for each i0,
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inf
{

log N(ε, d?)
| log ε|

∣∣∣∣ 0 < ε ≤ 1
3i0−2

}
≤ inf

{
log3 |Ui|∣∣∣∣ log3

1
3i−2

∣∣∣∣

∣∣∣∣∣ i = i0, i0 + 1, . . .

}

= inf
{

log3 |Ui|
i− 2

∣∣∣∣ i = i0, i0 + 1, . . .

}
≤ lim inf

i→∞
log3 |Ui|

i
= m.

Hence

dimB(X, d?) = sup
{

inf
{

log N(ε, d?)
| log ε|

∣∣∣∣ 0 < ε < ε0

} ∣∣∣∣ 0 < ε0

}
≤ m = dim X.

Next, let {Ui}∞i=1 be any normal star-sequence of finite open covers of X and a
development of X. Let d? be the Alexandroff-Urysohn metric induced by {Ui}∞i=1.
Suppose that 1/3 > ε1 > ε2 > ε3 > · · · is a sequence of positive numbers such
that limk→∞ εk = 0 and

lim inf
k→∞

log3 N(εk, d?)
| log3 εk| = β.

For each k, we choose the natural number n(k) such that 1/3n(k)+1 ≤ εk < 1/3n(k).
Let W be a finite open cover of X such that |W | = N(εk, d?) with meshd?

(W ) ≤ εk.
Let W ∈ W and x ∈ W . Choose V ∈ Un(k) with x ∈ V . If y ∈ W ∈ W , then
1/3n(k) > d?(x, y) ≥ (1/6) ·D?(x, y) and hence 1/3n(k)−2 > D?(x, y). This implies
that there is U ∈ Un(k) such that U contains x and y (recall the definition of
D?(x, y)). Then

W ⊂ St(x,Un(k)) ⊂ St(V, Un(k)) ∈ U ?
n(k) ≤ Un(k)−1

and hence W ≤ Un(k)−1. Since {Ui}∞i=1 is a normal star-sequence of finite open
covers and a development of X, there is i0 as in Lemma 3.5. Put

Vn(k)−p−1 = W ?p

for each p = 0, 1, 2, . . . , n(k)− 2. Then the finite sequence {Vi}n(k)−1
i=1 satisfies the

condition that Vi+1 is a star-refinement of Vi. Note that Ui ≥ Vi and Vn(k)−1 = W .
By the proof of Proposition 3.3 and Lemma 3.5, we see that

N(εk, d?) = |W | ≥ ?
n(k)−1−i0
m+1 (X).
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Then

log3 N(εk, d?)
| log3 εk| =

log3 |W |
| log3 εk| ≥

log3 ?
n(k)−1−i0
m+1 (X)

| log3 3n(k)+1| =
log3 ?

n(k)−1−i0
m+1 (X)
n(k) + 1

=
log3 ?

n(k)−1−i0
m+1 (X)

n(k)− 1− i0
· n(k)− 1− i0

n(k) + 1
.

We see that

β = lim inf
k→∞

log3 N(εk, d?)
| log3 εk| ≥ m · 1 = m.

Hence dimB(X, d?) ≥ m. We have completed the proof of the case (1). The case
(2) can be proved similarly to the case (1).

By the proof of Proposition 4.1, we obtain the following.

Proposition 4.2. Let X be a separable metric space and let {Ui}∞i=1 be any
normal star (resp. delta)-sequence of finite open covers and a development of X.
If

lim inf
i→∞

log3 |Ui|
i

= β

(
resp. lim inf

i→∞
log2 |Ui|

i
= β

)

and d? (resp. d∆) is the Alexandroff-Urysohn metric on X induced by {Ui}∞i=1,
then

dimB(X, d?) ≤ β (resp. dimB(X, d∆) ≤ β).

Let X be a metrizable space and let ρ1 and ρ2 be two metrics on X. Then ρ1

is Lipschitz equivalent to ρ2 if there are positive (real) numbers a and b such that
for x, y ∈ X,

a · ρ2(x, y) ≤ ρ1(x, y) ≤ b · ρ2(x, y).

Proposition 4.3. Let (X, ρ) be a metric space. Suppose that {Ui}∞i=1 is a
normal star (resp. delta)-sequence of finite open covers of X and a development
of X. Then the followings are equivalent.

(1) The Alexandroff-Urysohn metric d (= d? or d∆) induced by {Ui}∞i=1 is Lips-



Characterizations of topological dimension 937

chitz equivalent to ρ.
(2) There are positive numbers c2 ≥ c1 > 0 such that for each i,

{
Uρ

(
x,

c1

3i

) ∣∣∣∣ x ∈ X

}
≤ Ui ≤

{
Uρ

(
x,

c2

3i

) ∣∣∣∣ x ∈ X

}

(
resp.

{
Uρ

(
x,

c1

2i

) ∣∣∣∣ x ∈ X

}
≤ Ui ≤

{
Uρ

(
x,

c2

2i

) ∣∣∣∣ x ∈ X

})
.

Proof. We prove the case that {Ui}∞i=1 is a normal star-sequence. We use
the notations as in the proof of Proposition 3.4. First, we shall show that (1)
implies (2). Suppose that d(= d?) is Lipschitz equivalent to ρ. Then there are
positive numbers a and b such that for x, y ∈ X,

a · d(x, y) ≤ ρ(x, y) ≤ b · d(x, y).

Put c1 = a/2 and c2 = 9b. We will show that

{
Uρ

(
x,

c1

3i

) ∣∣∣∣ x ∈ X

}
≤ Ui ≤

{
Uρ

(
x,

c2

3i

) ∣∣∣∣ x ∈ X

}
.

Let x ∈ X. We choose U ∈ Ui+1 with x ∈ U . If y ∈ X with ρ(x, y) < c1/3i,
then 6d(x, y) ≤ (6/a) · ρ(x, y) < 6c1/(a · 3i) = 1/3i−1. Since D?(x, y) ≤ 6d(x, y) <

1/3i−1, there is Uy ∈ Ui+1 such that x, y ∈ Uy. Hence there is U ′ ∈ Ui such
that if y ∈ X with ρ(x, y) < c1/3i, then y ∈ Uy ⊂ St(U,Ui+1) ⊂ U ′. Then
Uρ(x, c1/3i) ⊂ U ′. This implies that

{
Uρ

(
x,

c1

3i

) ∣∣∣∣ x ∈ X

}
≤ Ui.

Let V ∈ Ui. Choose x ∈ V . If y ∈ V , d(x, y) ≤ D?(x, y) ≤ 1/3i−2. Then
ρ(x, y) ≤ b · d(x, y) ≤ b/3i−2 = c2/3i. Hence V ⊂ Uρ(x, c2/3i). This implies that

Ui ≤
{

Uρ

(
x,

c2

3i

) ∣∣∣∣ x ∈ X

}
.

Next, we show that (2) implies (1). Put a = c1/33. Also, choose i0 such that
c2/3i0 < c1/32. Put b = 2·3i0−2c1. Let x, y ∈ X. Suppose that 0 < ρ(x, y) < c1/3.
Choose i such that c1/3i+1 ≤ ρ(x, y) < c1/3i. Then there is U ∈ Ui such that
y ∈ Uρ(x, c1/3i) ⊂ U ∈ Ui. Since x, y ∈ U ∈ Ui, we have
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d(x, y) ≤ D?(x, y) ≤ 1
3i−2

.

Then

a · d(x, y) ≤
(

c1

33

)(
1

3i−2

)
=

c1

3i+1
≤ ρ(x, y).

Now we show that for any U ∈ Ui+i0 , U does not contain both x and y. Suppose,
on the contrary, that there is U ∈ Ui+i0 with x, y ∈ U . By the assumption,
there is z ∈ X such that x, y ∈ U ⊂ Uρ(z, c2/3i+i0). This implies that ρ(x, y) ≤
2c2/3i+i0 < 2c1/3i+2 < c1/3i+1. This is a contradiction. Hence D?(x, y) ≥
1/3i+i0−3. Then

b · d(x, y) ≥ b

(
1
6

)
D?(x, y) ≥ b

(
1
6

)(
1

3i+i0−3

)
=

c1

3i
> ρ(x, y).

Then we see that if ρ(x, y) < c1/3,

a · d(x, y) ≤ ρ(x, y) ≤ b · d(x, y).

Since Ui ≤ {Uρ(x, c2/3i) | x ∈ X} for each i, we can choose a positive number
c > 0 such that if ρ(x, y) ≥ c1/3, then d(x, y) ≥ (1/6)D?(x, y) ≥ c. Since Ui is a
finite open cover of X and Ui ≤ {Uρ(x, c2/3i) | x ∈ X} for each i, we see that ρ is
totally bounded. Since d and ρ are bounded, we see that there exist a sufficiently
small positive number a′ and a sufficiently large positive number b′ such that for
any x, y ∈ X with ρ(x, y) ≥ c1/3,

a′ · d(x, y) ≤ ρ(x, y) ≤ b′ · d(x, y).

Hence we see that (2) implies (1).

The next proposition implies that for any separable metric space X there is
a natural bijection from the set of all totally bounded metrics on X to the set
of Alexandroff-Urysohn metrics on X induced by normal sequences of finite open
covers which are developments of X, up to Lipschitz equivalence.

Proposition 4.4. Let X be a separable metric space and let ρ be a totally
bounded metric on X. Then there is a normal star (resp. delta)-sequence {Ui}∞i=1

of finite open covers of X such that {Ui}∞i=1 is a development of X and ρ is
Lipschitz equivalent to d, where d is the Alexandroff-Urysohn metric induced by



Characterizations of topological dimension 939

{Ui}∞i=1. In particular, dimB(X, ρ) = dimB(X, d).

Proof. Let {εi}∞i=1 be a sequence of positive numbers such that εi/4 > εi+1

and 1/3i > εi for each i. Since ρ is a totally bounded metric on X, for each
i = 1, 2, . . . we can choose a finite subset Ai of X such that if x ∈ X, then there
is a point a ∈ Ai such that ρ(x, a) < εi+1. Put

Ui =
{

U

(
a,

1
3i

+ εi

) ∣∣∣∣ a ∈ Ai

}
,

where U(a, ε) denotes the open ε-neighborhood of a in (X, ρ). Clearly, Ui is a finite
open cover of X. We shall show that U ?

i+1 ≤ Ui. Let U = U(a, 1/3i+1 + εi+1) ∈
Ui+1. Note that St(U,Ui+1) ⊂ U(a, 1/3i + 3εi+1). Then we choose a′ ∈ Ai such
that ρ(a, a′) < εi+1. This implies that U(a, 1/3i + 3εi+1) ⊂ U(a′, 1/3i + 4εi+1) ⊂
U(a′, 1/3i + εi) ∈ Ui and hence St(U,Ui+1) ⊂ U(a′, 1/3i + εi) ∈ Ui. Then

U ?
i+1 ≤ Ui.

Note that {Ui}∞i=1 is a development of X. Let d(= d?) be the Alexandroff-Urysohn
metric induced by {Ui}∞i=1. If we put c1 = 1, c2 = 2, the normal sequence {Ui}∞i=1

satisfies the condition (2) of Proposition 4.3. By Proposition 4.3, ρ is Lipschitz
equivalent to d(= d?). Also, we see that dimB(X, ρ) = dimB(X, d). The proof of
the case of normal delta-sequence is similar.

Theorem 4.5 (Pontrjagin-Schnirelmann and Bruijning theorem). Let X be
a separable metric space. Then

dimX = min{dimB(X, ρ) | ρ is a totally bounded metric for X}.

Proof. By Proposition 4.4, we see that if ρ is any totally bounded metric
on X, then there is a normal star-sequence {Ui}∞i=1 of finite open covers of X

such that {Ui}∞i=1 is a development of X and dimB(X, ρ) = dimB(X, d), where d

is the Alexandroff-Urysohn metric induced by {Ui}∞i=1. By use of this fact and
Proposition 4.1, we complete the proof of Theorem 4.5.

An open cover U of a space X is essential if for any U ∈ U ,
⋃{V ∈ U | V 6=

U} 6= X.

Corollary 4.6. Let X be a separable metric space and let ρ be a totally
bounded metric on X. Suppose that {Ui}∞i=1 is a normal star (resp. delta)-sequence
of finite open covers of X and a development of X and d is the Alexandroff-Urysohn
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metric induced by {Ui}∞i=1. If {Ui}∞i=1 satisfies the condition (2) of Proposition
4.3 (see also Proposition 4.4), then

dimB(X, ρ) = dimB(X, d) ≤ lim inf
i→∞

log3 |Ui|
i

(
resp. dimB(X, ρ) = dimB(X, d) ≤ lim inf

i→∞
log2 |Ui|

i

)
.

Moreover, if Ui is essential for each i, then

dimB(X, ρ) = dimB(X, d) = lim inf
i→∞

log3 |Ui|
i

(
resp. dimB(X, ρ) = dimB(X, d) = lim inf

i→∞
log2 |Ui|

i

)
.

Proof. We assume that {Ui}∞i=1 is a normal star-sequence. Let d (= d?) be
the Alexandroff-Urysohn metric induced by {Ui}∞i=1. By the proof of Proposition
4.1, we see that

dimB(X, ρ) = dimB(X, d) ≤ lim inf
i→∞

log3 |Ui|
i

.

From now we suppose that Ui is essential for each i. Suppose, on the contrary,
that

dimB(X, d) < lim inf
i→∞

log3 |Ui|
i

(= α).

We assume that α < ∞. Put dimB(X, d) = β and δ = α − β > 0. Then we
can choose a sequence 1/3 > ε1 > ε2 > ε3 > · · · of positive numbers such that
limk→∞ εk = 0 and for each k,

log3 N(εk, d)

log3

1
εk

≤ β +
δ

2
.

For each k, we choose the natural number n(k) such that 1/3n(k)+1 ≤ εk < 1/3n(k).
Let W be a finite open cover of X such that |W | = N(εk, d) with meshd(W ) ≤ εk.
For any W ∈ W and any x, y ∈ W ,
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D?(x, y) ≤ 6 · d(x, y) <
1

3n(k)−2
.

By the proof of Proposition 4.1, we see that W ≤ Un(k)−1. Since Un(k)−1 is
essential, we can easily see that |W | ≥ |Un(k)−1|. Then

log3 N(εk, d)

log3

1
εk

=
log3 |W |
log3

1
εk

≥ log3 |Un(k)−1|
log3 3n(k)+1

=
log3 |Un(k)−1|

n(k)− 1
· n(k)− 1
n(k) + 1

.

Hence we see that

lim inf
k→∞

log3 N(εk, d)

log3

1
εk

≥ α · 1 = α.

This is a contradiction. Hence

dimB(X, ρ) = dimB(X, d) = lim inf
i→∞

log3 |Ui|
i

.

The case α = ∞ can be proved similarly.

The next example implies that some normal sequences can be used to calculate
dimB(X, ρ) of given separable metric spaces (X, ρ).

Example 1. Let F be the von Koch curve [6, p. xv] in the plane and let ρ

be the usual Euclidean metric. By considering vertices of each stage E1, E2, . . .

of the construction of F (see [6, p. xv]), we have a natural normal star-sequence
{Ui}∞i=1 of finite open covers of F such that

(1) {Ui}∞i=1 is a development of F ,
(2) |U1| = 4 + 1 = 5, |U2| = 42 + 1 = 17, . . . and in general |Ui| = 4i + 1 for each

i,
(3) {Ui}∞i=1 satisfies the condition (2) of Proposition 4.3,
(4) Ui is essential for each i.

By Corollary 4.6, we see that

dimB(F, ρ) = lim inf
i→∞

log3 |Ui|
i

= log3 4.

Example 2. Let F be the Sierpiński gasket [6, p. xvi] in the plane and let
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ρ be the usual Euclidean metric. By considering vertices of each stage E1, E2, . . .

of the construction of F (see [6, p. xvi]), we have a natural normal delta-sequence
{Ui}∞i=1 of finite open covers of F such that

(1) {Ui}∞i=1 is a development of F ,
(2) |U1| = 6, |U2| = 15, . . . and in general |Ui| = 3 + (3/2)(3i − 1) for each i,
(3) {Ui}∞i=1 satisfies the condition (2) of Proposition 4.3,
(4) Ui is essential for each i.

By Corollary 4.6, we see that

dimB(F, ρ) = lim inf
i→∞

log2 |Ui|
i

= log2 3.

Remark 1. If {Ui}∞i=1 is a normal star-sequence of finite open covers of
X and a development of X such that lim infi→∞(log3 |Ui|)/i = dim X (= m)
and d is the Alexandroff-Urysohn metric induced by the sequence {Ui}∞i=1, then
dim X̃ = m, where (X̃, d̃) is the compactification of (X, d) defined in Lemma 3.5.
In fact, m = dim X ≤ dim X̃ ≤ dimB(X̃, d̃) = dimB(X, d) = m.

5. Chaotic metrics with respect to the determination of the box-
counting dimensions.

In this section, we construct chaotic metrics with respect to the determination
of the box-counting dimensions. By Theorem 3.1, we know that for any separable
metric space X, there is a normal star (resp. delta)-sequence {Ui}∞i=1 of finite open
covers of X which is a development of X such that

lim inf
i→∞

log3 |Ui|
i

= dim X

(
resp. lim inf

i→∞
log2 |Ui|

i
= dim X

)
.

We call such a normal sequence {Ui}∞i=1 a fundamental normal sequence of X. In
this section, we consider the case dim X ≥ 1. In the next section, we also consider
the case dim X = 0 (see Theorem 6.4).

Theorem 5.1. Let X be a separable metric space with dimX = m ≥
1. Suppose that {Ui}∞i=1 is a fundamental normal star-sequence of X (i.e.,
lim infi→∞(log3 |Ui|)/i = dimX). Let α be any real number with α ≥ m

(= dimX) or α = ∞. Then there is a subsequence {Uij}∞j=1 of {Ui}∞i=1 such
that
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[α,∞] =
{

lim inf
k→∞

log3 |Uink
|

nk

∣∣∣∣ {nk}∞k=1 is an increasing subsequence

of natural numbers
}

.

Also, if dα (= d?) is the Alexandroff-Urysohn metric on X induced by the subse-
quence {Uij

}∞j=1, then

[α,∞] =
{

lim inf
k→∞

log N(εk, dα)
| log εk|

∣∣∣∣ {εk}∞k=1 is a decreasing sequence

of positive numbers with limk→∞ εk = 0
}

,

where N(ε, dα) = min{|U | | U is a finite open cover of X with meshdα
(U ) ≤ ε}.

In particular, dimB(X, dα) = α.

Proof. We assume that α is a real number. The case α = ∞ can be
proved similarly. Let {δk}∞k=1 be a decreasing sequence of positive numbers with
limk→∞ δk = 0. Take a countable subset T = {αk | k = 1, 2, . . . } of [α,∞) such
that T = [α,∞). Note that αk/m ≥ 1. Since

lim inf
i→∞

log3 |Ui|
i

= m,

for δ1 and α1 we choose a finite sequence {ij}j1
j=1 of natural numbers such that

α1

m
· j ≤ ij <

α1

m
· (j + 1)

and

∣∣∣∣
log3 |Uij1

|
j1

− α1

∣∣∣∣ =
∣∣∣∣
log3 |Uij1

|
ij1

· ij1
j1
− α1

∣∣∣∣ ≤ δ1.

For δ2 and α2, we choose a finite sequence {ij}j2
j=j1+1 of natural numbers such

that

α2

m
· (j − j1) + ij1 ≤ ij <

α2

m
· (j − j1 + 1) + ij1

and
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∣∣∣∣
log3 |Uij2

|
j2

− α2

∣∣∣∣ =
∣∣∣∣
log3 |Uij2

|
ij2

· ij2
j2
− α2

∣∣∣∣ ≤ δ2.

We continue this procedure. For each δk and αk, we choose a finite sequence
{ij}jk

j=jk−1+1 of natural numbers such that

αk

m
· (j − jk−1) + ijk−1 ≤ ij <

αk

m
· (j − jk−1 + 1) + ijk−1

and

∣∣∣∣
log3 |Uijk

|
jk

− αk

∣∣∣∣ =
∣∣∣∣
log3 |Uijk

|
ijk

· ijk

jk
− αk

∣∣∣∣ ≤ δk.

In this procedure we choose the sequence {jk}∞k=1 such that

lim
k→∞

log3 |Uijk
|

ijk

= m(= dim X) and lim
k→∞

(jk+1 − jk) = ∞.

Consequently, we obtain a sequence {jk}∞k=1 of natural numbers and a subsequence
{Uij}∞j=1 of {Ui}∞i=1. Note that ij/j ≥ α/m for each j. In fact, ij/j ≥ α/m for
each 1 ≤ j ≤ j1. If we assume that ijk−1/jk−1 ≥ α/m, then for jk−1 + 1 ≤ j ≤ jk

α

m
· j =

α

m
· (j − jk−1) +

α

m
· jk−1 ≤ αk

m
· (j − jk−1) + ijk−1 ≤ ij .

Hence ij/j ≥ α/m for each j. Then

lim inf
j→∞

log3 |Uij
|

j
= lim inf

j→∞
log3 |Uij

|
ij

· ij
j
≥ m · α

m
= α.

By the construction, we see that

[α,∞] =
{

lim inf
k→∞

log3 |Uink
|

nk

∣∣∣∣ {nk}∞k=1 is an increasing subsequence

of natural numbers
}

.

Let dα (= d?) be the Alexandroff-Urysohn metric on X induced by the subsequence
{Uij

}∞j=1. First, we show that
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dimB(X, d?) ≥ α.

Suppose that 1/3 > ε1 > ε2 > ε3 > · · · is a sequence of positive numbers such
that limk→∞ εk = 0. For each k, we choose the natural number n(k) such that
1/3n(k)+1 ≤ εk < 1/3n(k). Let W be a finite open cover of X such that |W | =
N(εk, d?) with meshd?

(W ) ≤ εk. Let W ∈ W and x ∈ W . Choose V ∈ Uin(k)

with x ∈ V . If y ∈ W ∈ W , then 1/3n(k) > d?(x, y) ≥ (1/6) ·D?(x, y) and hence
1/3n(k)−2 ≥ D?(x, y). This implies that there is U ∈ Uin(k) such that U contains
x and y. Then

W ⊂ St(x,Uin(k)) ⊂ St(V, Uin(k)) ∈ U ?
in(k)

≤ Uin(k)−1

and hence W ≤ Uin(k)−1 . Since {Ui}∞i=1 is a normal star-sequence of open covers,
there is i0 as in Lemma 3.5. Similarly to the proof of Proposition 4.1, we see that

N(εk, d?) = |W | ≥ ?
in(k)−1−i0
m+1 (X).

Then

log3 N(εk, d?)
| log3 εk| =

log3 |W |
| log3 εk| ≥

log3 ?
in(k)−1−i0
m+1 (X)

| log3 3n(k)+1| =
log3 ?

in(k)−1−i0
m+1 (X)
n(k) + 1

=
log3 ?

in(k)−1−i0
m+1 (X)

in(k)−1 − i0
· in(k)−1 − i0

n(k)− 1
· n(k)− 1
n(k) + 1

.

We have

lim inf
k→∞

log3 N(εk, d?)
| log3 εk| ≥ m · α

m
= α.

Hence

dimB(X, d?) ≥ α.

Let β ≥ α be any positive number. The case β = ∞ can be proved similarly.
By the construction of the subsequence {Uij

}∞j=1, we can choose a subsequence
{nk}∞k=1 of natural numbers such that

lim
k→∞

log3 |Uink
|

ink

= m and lim
k→∞

ink

nk
=

β

m
.
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Since limk→∞(jk+1 − jk) = ∞, we may assume that

lim
k→∞

ink−3

nk − 3
=

β

m
.

Put εk = 1/3nk−2 for each k ≥ 1. We shall show that

lim
k→∞

log N(εk, d?)
| log εk| = β.

Since d?(x, y) ≤ D?(x, y) for x, y ∈ X, we see that meshd?
(Uink

) ≤ 1/3nk−2.
Hence we have

lim sup
k→∞

log N(εk, d?)
| log εk| ≤ lim

k→∞
log3 |Uink

|
nk − 2

= lim
k→∞

log3 |Uink
|

ink

· ink

nk − 2
= β.

Let W be a finite open cover of X such that |W | = N(εk, d?) with meshd?
(W ) ≤ εk.

Suppose that W ∈ W and x ∈ W . Choose V ∈ Uink−2 containing x. Since
D?(x, y) ≤ 6d?(x, y) for x, y ∈ X, we see that if y ∈ W , then

D?(x, y) ≤ 6d?(x, y) ≤ 6
3nk−2

<
1

3nk−4
.

Then we have U ∈ Uink−2 which contains x and y. Then

W ⊂ St(x,Uink−2) ⊂ St(V, Uink−2) ∈ U ?
ink−2

≤ Uink−3

and hence

W ≤ Uink−3 .

Now we will recall Lemma 3.5. Let i0 be a natural number as in Lemma 3.5. Then
we have

|W | ≥ ?
ink−3−i0
m+1 (X).

This implies that

N(εk, d?) = |W | ≥ ?
ink−3−i0
m+1 (X).
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Then

log3 N(εk, d?)
| log3 εk| =

log3 |W |
| log3 εk| ≥

log3 ?
ink−3−i0
m+1 (X)

log3 3nk−2
=

log3 ?
ink−3−i0
m+1 (X)
nk − 2

=
log3 ?

ink−3−i0
m+1 (X)

ink−3 − i0
· ink−3 − i0

nk − 3
· nk − 3
nk − 2

.

Then

lim inf
k→∞

log3 N(εk, dα)
| log3 εk| ≥ m · β

m
= β.

Hence

lim
k→∞

log3 N(εk, d?)
| log3 εk| = β.

Consequently we can conclude that

[α,∞] =
{

lim inf
k→∞

log N(εk, d?)
| log εk|

∣∣∣∣ {εk}∞k=1 is a decreasing sequence

of positive numbers with limk→∞ εk = 0
}

.

Remark 2. Let X be a separable metric space with dim X = m ≥ 1.
Suppose that {Ui}∞i=1 is a fundamental normal star-sequence of X. Then

[dimX,∞] =
{

lim inf
j→∞

log3 |Uij |
j

∣∣∣∣ {Uij
}∞j=1 is a subsequence of {Ui}∞i=1

}

=
{

dimB(X, d?) | d? is the Alexandroff-Urysohn metric on X

induced by a subsequence {Uij}∞j=1 of {Ui}∞i=1

}
.

In other words, all box-counting dimensions of X are generated by fundamental
normal star-sequences of X.

In case of normal delta-sequence of finite open covers of X, we also obtain the
following theorem. The proof is similar to the one of Theorem 5.1.

Theorem 5.2. Let X be a separable metric space with dimX = m ≥
1. Suppose that {Ui}∞i=1 is a fundamental normal delta-sequence of X (i.e.,
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lim infi→∞(log2 |Ui|)/i = dim X). Let α be any real number with α ≥ m

(= dimX) or α = ∞. Then there is a subsequence {Uij
}∞j=1 of {Ui}∞i=1 such

that

[α,∞] =
{

lim inf
k→∞

log2 |Uink
|

nk

∣∣∣∣ {nk}∞k=1 is an increasing subsequence

of natural numbers
}

.

Also, if dα(= d∆) is the Alexandroff-Urysohn metric on X induced by the subse-
quence {Uij}∞j=1, then

[α,∞] =
{

lim inf
k→∞

log N(εk, dα)
| log εk|

∣∣∣∣ {εk}∞k=1 is a decreasing sequence

of positive numbers with limk→∞ εk = 0
}

.

In particular, dimB(X, dα) = α.

Proposition 5.3. Suppose that X is a separable metric space. Let {Ui}∞i=1

be a normal star (resp. delta)-sequence of finite open covers and a development
of X, and let {Uij

}∞j=1 be a subsequence of {Ui}∞i=1. If d1 (resp. ρ1) is the
Alexandroff-Urysohn metric on X induced by {Ui}∞i=1 and d2 (resp. ρ2) is the
Alexandroff-Urysohn metric on X induced by the subsequence {Uij

}∞j=1, then
dimB(X, d1) ≤ dimB(X, d2) (resp. dimB(X, ρ1) ≤ dimB(X, ρ2)).

Proof. We will prove dimB(X, d1) ≤ dimB(X, d2). Choose a sequence
1/3 > ε1 > ε2 > ε3 > · · · of positive numbers such that limk→∞ εk = 0 and

lim
k→∞

log3 N(εk, d2)
| log3 εk| = dimB(X, d2).

For each k, we choose the natural number n(k) such that 1/3n(k)+1 ≤ εk < 1/3n(k).
Let W be a finite open cover of X such that |W | = N(εk, d2) with meshd2(W ) ≤ εk.
Similarly to the proof of Theorem 5.1, we see that W ≤ Uin(k)−1 . Then we see
that meshd1(W ) ≤ 1/3in(k)−1−2. Hence

N

(
1

3in(k)−1−2
, d1

)
≤ |W | = N(εk, d2).
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Since 1/εk < 3n(k)+1 and n(k) + 1 = (n(k)− 1) + 2 ≤ in(k)−1 + 2, we have

dimB(X, d1)

≤ lim inf
k→∞

log3 N

(
1

3in(k)−1−2
, d1

)

∣∣∣∣ log3

1
3in(k)−1−2

∣∣∣∣
= lim inf

k→∞

log3 N

(
1

3in(k)−1−2
, d1

)

in(k)−1 − 2

= lim inf
k→∞

log3 N

(
1

3in(k)−1−2
, d1

)

in(k)−1 + 2
≤ lim inf

k→∞
log3 N(εk, d2)

log3

1
εk

= dimB(X, d2).

Hence

dimB(X, ρ1) ≤ dimB(X, ρ2).

The rest of proof is similar. We omit the proof.

6. Upper box-counting dimension dimB(X, d) and normal se-
quences of finite open covers.

In this sectin, we study some relations between upper box-counting dimension
and normal sequence of finite open covers. For a separable metric space (X, ρ),
we consider the upper box-counting dimension of (X, d) (e.g., see [6] and [14]):

dimB(X, d) = lim sup
ε→0

log N(ε, ρ)
| log ε| .

Proposition 6.1. Let X be a separable metric space and let {Ui}∞i=1 be
a normal star (resp. delta)-sequence of finite open covers and a development
of X. If d (resp. ρ) is the Alexandroff-Urysohn metric on X induced by
{Ui}∞i=1 and lim supi→∞(log3 |Ui|)/i = β (resp. lim supi→∞(log2 |Ui|)/i = β),
then dimB(X, d) ≤ β (resp. dimB(X, ρ) ≤ β).

Proof. We give the proof of the case of normal star-sequence. Choose a
sequence 1/3 > ε1 > ε2 > · · · of positive numbers such that limk→∞ εk = 0 and

lim
k→∞

log N(εk, d)
| log εk| = dimB(X, d).



950 H. Kato and M. Matsumoto

For each k, let n(k) be the natural number such that 1/3n(k)+1 ≤ εk < 1/3n(k).
Then n(k) ≤ n(k + 1). Since meshd(Un(k)+3) ≤ 1/3n(k)+1 ≤ εk, we see that

lim sup
k→∞

log3 N(εk, d)

log3

1
εk

≤ lim sup
k→∞

log3 |Un(k)+3|
log3 3n(k)

= lim sup
k→∞

log3 |Un(k)+3|
n(k) + 3

· n(k) + 3
n(k)

≤ β.

Hence we have

dimB(X, d) ≤ β.

By modifying the proof of Theorem 5.1, we can prove the following.

Theorem 6.2. Let X be a separable metric space with dimX = m ≥ 1.
Suppose that there is a sequence {Ui}∞i=1 which is a normal star (resp. delta)-
sequence of finite open covers of X and a development of X such that

lim
i→∞

log3 |Ui|
i

= m

(
resp. lim

i→∞
log2 |Ui|

i
= m

)
.

Then for any α, β with m ≤ α ≤ β ≤ ∞, there is a totally bounded metric dα,β on
X such that

[α, β] =
{

lim inf
k→∞

log N(εk, dα,β)
| log εk|

∣∣∣∣ {εk} is a decreasing sequence of positive

numbers with lim
k→∞

εk = 0
}

.

In particular, dimB(X, dα,β) = α ≤ β = dimB(X, dα,β).

Corollary 6.3. Let I = [0, 1] be the unit interval and let X = Im be
the m-cube (m ≥ 1). Then there is a sequence {Ui}∞i=1 which is a normal star
(resp. delta)-sequence of finite open covers and a development of X such that

lim
i→∞

log3 |Ui|
i

= m

(
resp. lim

i→∞
log2 |Ui|

i
= m

)
.

Moreover, for any α, β with m ≤ α ≤ β ≤ ∞, there is a metric dα,β on X such
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that

[α, β] =
{

lim inf
k→∞

log N(εk, dα,β)
| log εk|

∣∣∣∣ {εk} is a decreasing sequence of positive

numbers with lim
k→∞

εk = 0
}

.

In particular, dimB(X, dα,β) = α ≤ β = dimB(X, dα,β).

Proof. For each i = 1, 2, . . . , consider the family

A =
{[

k

3i
,
k + 1

3i

] ∣∣∣∣ k = 0, 1, 2, . . . , 3i − 1
}

of closed subintervals of I. Put

W (i) =
{

IntI

(
St

({
k

3i

}
,A

)) ∣∣∣∣ k = 0, 1, 2, . . . , 3i

}
.

Then W (i) is an open cover of I. For an open cover of Im, we consider the following
set:

Ui = W (i)×W (i)× · · · ×W (i)

= {U1 × · · · × Um | Uk ∈ W (i) for k = 1, 2, . . . , m}.

Then {Ui}∞i=1 is a normal star-sequence of finite open covers and a development
of X such that |Ui| = (3i + 1)m for each i, in particular limi→∞(log3 |Ui|)/i = m.
Also, note that each Ui is essential for each i and if ρ1 is the usual Euclidean metric
on Im, {Ui}∞i=1 satisfies the condition (2) of Proposition 4.3 (see also Corollary
4.6). For the case of normal delta-sequence, we consider the family

B =
{[

k

2i
,
k + 1

2i

] ∣∣∣∣ k = 0, 1, 2, . . . , 2i − 1)
}

.

The proof is similar. We omit the proof.

For the case of dim X = 0, we have the following theorem.

Theorem 6.4. Let X be an infinite 0-dimensional separable metric space.
Then



952 H. Kato and M. Matsumoto

(1) there is a sequence {Ui}∞i=1 of disjoint finite clopen covers of X such that
{Ui}∞i=1 is a development of X, Ui+1 ≤ Ui and |Ui| = i for each i,

(2) for any α, β with 0 ≤ α ≤ β ≤ ∞, there is a totally bounded metric dα,β on
X such that

[α, β] =
{

lim inf
k→∞

log N(εk, dα,β)
| log εk|

∣∣∣∣ {εk} is a decreasing sequence of positive

numbers with lim
k→∞

εk = 0
}

.

In particular, dimB(X, dα,β) = α ≤ β = dimB(X, dα,β).

Proof. Since X is an infinite 0-dimensional separable metric space, we
can easily construct a sequence {Ui}∞i=1 of disjoint clopen covers of X such that
|Ui| = i, Ui+1 ≤ Ui for each i and {Ui}∞i=1 is a development of X. Note that
U ?

i = Ui. Hence {Ui}∞i=1 is a normal star-sequence of finite open covers of X and

lim
i→∞

log |Ui|
i

= lim
i→∞

log i

i
= 0.

We will prove that for any 0 ≤ α ≤ β ≤ ∞, there exist a subsequence {Uij
}∞j=1 of

{Ui}∞i=1 such that

[α, β] =
{

lim inf
k→∞

log3 |Uink
|

nk

∣∣∣∣ {nk}∞k=1 is an increasing subsequence

of natural numbers
}

.

First, we prove the case 0 < α = β < ∞. We choose a natural number p such that
(3α)p+1 − (3α)p > 1 and (3α)p > p. Put ij = j for j = 1, 2, . . . , p− 1. For j ≥ p,
we can choose a natural number ij such that (3α)j ≤ ij < (3α)j+1. Then

α ≤ log3 ij
j

< α · j + 1
j

.

Consider the subsequence {Uij
}∞j=1 of {Ui}∞i=1. Then

lim
j→∞

log3 |Uij |
j

= α.
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Next, we prove the case 0 < α < β < ∞. We choose a sufficiently large natural
number j1 such that

(3α)j1+1 − (3α)j1 > 1, (3α)j1 > j1 and (3α)j1+1 < (3β)j1 .

Put ij = j for j = 1, 2, . . . , j1 − 1 and choose the natural number ij1 such that

(3β)j1 ≤ ij1 < (3β)j1 + 1 < (3β)j1+1.

Then

β ≤ log3 ij1
j1

< β · j1 + 1
j1

.

Put

j2 = min{x ∈ {j1, j1 + 1, . . . } | x− j1 + ij1 < (3α)x}.

Note that j2 > j1. Then ij1 + (j2 − 1)− j1 ≥ (3α)j2−1 and ij1 + j2 − j1 < (3α)j2 .
Put ij = ij1 + (j − j1) for j1 ≤ j ≤ j2 − 1 and choose the natural number ij2 such
that

(3β)j2 ≤ ij2 < (3β)j2 + 1 < (3β)j2+1.

Then

β ≤ log3 ij2
j2

< β · j2 + 1
j2

.

Put

j3 = min{x ∈ {j2, j2 + 1, . . . } | x− j2 + ij2 < (3α)x}.

Then j3 > j2, ij2 + (j3 − 1) − j2 ≥ (3α)j3−1 and ij2 + j3 − j2 < (3α)j3 . Put
ij = ij2 + (j − j2) for j2 ≤ j ≤ j3− 1 and choose the natural number ij3 such that

(3β)j3 ≤ ij3 < (3β)j3 + 1 < (3β)j3+1.

If we continue this procedure, we have increasing sequences {jk}∞k=1 and {ij}∞j=1

of natural numbers. Now we will show the following claim (*):
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(*) If j ≥ j1 and (log3 M)/j ≥ α for some M > 0,
then (log3 M)/j > (log3(M + 1))/(j + 1).

Put γ = (log3 M)/j. Then M = (3γ)j . Since γ ≥ α and j ≥ j1, we see that
(3γ)j+1 > (3γ)j + 1. Hence

log3 M

j
= γ =

log3(3γ)j+1

j + 1
>

log3((3γ)j + 1)
j + 1

=
log3(M + 1)

j + 1
.

Hence the claim (*) is true.
By the construction, we see that

lim
k→∞

log3 ijk

jk
= β.

Let jk ≤ j ≤ jk+1 − 2. Then

log3 ij
j

>
log3 ij+1

j + 1
.

In fact, (log3 ij)/j ≥ α and by the claim (*),

log3 ij
j

− log3 ij+1

j + 1
=

log3(ijk
+ j − jk)
j

− log3(ijk
+ (j + 1)− jk)
j + 1

> 0.

Also, note that for jk ≤ j ≤ jk+1 − 1,

∣∣∣∣
log3(ijk

+ j − jk)
j

− log3(ijk
+ (j + 1)− jk)
j + 1

∣∣∣∣

≤
∣∣∣∣
log3(ijk

+ j − jk)
j

− log3(ijk
+ j − jk)

j + 1

∣∣∣∣

≤ log3(ijk
+ j − jk)

j(j + 1)
=

log3 ij
j

· 1
j + 1

≤ 2β · 1
j + 1

.

Hence we know that for jk ≤ j ≤ jk+1 − 2, |(log3 ij)/j − (log3 ij+1)/(j + 1)| is
sufficiently small if k is sufficiently large. Also, since (log3 ijk+1−1)/(jk+1− 1) ≥ α

and (log3(ijk
+ jk+1 − jk))/(jk+1) < α, we see that

∣∣∣∣
log3 ijk+1−1

jk+1 − 1
− α

∣∣∣∣ ≤ 2β · 1
jk+1

.
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Hence

lim
k→∞

log3 ijk+1−1

jk+1 − 1
= α.

Consider the subsequence {Uij}∞j=1 of {Ui}∞i=1. By use of the above facts, we see
that

[α, β] =
{

lim inf
k→∞

log3 |Uink
|

nk

∣∣∣∣ {nk}∞k=1 is an increasing subsequence

of natural numbers
}

.

The case α = 0 or β = ∞ can be proved similarly.
Let dα,β (= d?) be the Alexandroff-Urysohn metric on X induced by the

normal star-sequence {Uij
}∞j=1. Then we show that for each x, y ∈ X,

d?(x, y) = D?(x, y).

Recall

d?(x, y) = inf{D?(x, x1) + D?(x1, x2) + · · ·+ D?(xn, y)|
n = 1, 2, . . . , and xk ∈ X}.

Note that Ui1 = U1 = {X}. Suppose that x 6= y. Put D?(x, y) = 1/3j−2.
Then we have U ∈ Uij such that x, y ∈ U . Also we have Vx, Vy ∈ Uij+1 such
that Vx ∩ Vy = φ and x ∈ Vx, y ∈ Vy. Let xk ∈ X (k = 1, 2, . . . , n). Put
x0 = x, xn+1 = y. Since Uij+1 is a disjoint cover of X, we can choose two
points xk, xk+1 such that there exists no element V of Uij+1 that contains xk and
xk+1. Then D?(xk, xk+1) ≥ 1/3j−2, which implies that d?(x, y) ≥ D?(x, y). Since
d?(x, y) ≤ D?(x, y), we see that

d?(x, y) = D?(x, y).

Then

N

(
1

3j−2
, d?

)
= |Uij | = ij .
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Note that for any 1/3j−2 ≤ ε < 1/3j−3, d?(x, y) ≤ ε if and only if d?(x, y) ≤
1/3j−2, and hence

N(ε, d?) = N

(
1

3j−2
, d?

)
= |Uij

| = ij .

By use of these facts, we see that d? = dα,β is a desired metric on X.

Remark 3. The metric d? in the proof of Theorem 6.4 is an ultrametric on
X, i.e., for any x, y, z ∈ X

d?(x, y) ≤ max{d?(x, z), d?(z, y)}.

7. Appendix.

In this appendix, we will give the complete proof of Theorem 2.2 and we will
give other characterizations of dimension by use of ∆p(X, U ) and ?p(X, U ).

7.1. Delta-indices and star-indices.
Recall the following indices:

(1) The index ∆̃p
k(X) is defined as the least natural number m such that for every

open covering U of X with |U | = k, there is an open covering V of X such
that |V | ≤ m and {Stp(x,V ) | x ∈ X} ≤ U .

(2) The index ?̃p
k(X) is defined as the least natural number m such that for every

open covering U of X with |U | = k, there is an open covering V of X such
that |V | ≤ m and {Stp(V, V ) | V ∈ V } ≤ U .

(3) The index ∆p
k(X) is defined as the least natural number m such that for every

open covering U of X with |U | = k, there is an open covering V of X such
that |V | ≤ m and V ∆p ≤ U .

(4) The index ?p
k(X) is defined as the least natural number m such that for every

open covering U of X with |U | = k, there is an open covering V of X such
that |V | ≤ m and V ?p ≤ U .

For an open cover U of X, we define the following indices.

(5) ∆̃p(X, U ) = min{|V | | V is a finite open covering of X such that {Stp(x,V ) |
x ∈ X} ≤ U }.

(6) ?̃p(X, U ) = min{|V | | V is a finite open covering of X such that {Stp(V, V ) |
V ∈ V } ≤ U }.

(7) ∆p(X, U ) = min{|V | | V is a finite open covering of X such that V ∆p ≤ U }.
(8) ?p(X, U ) = min{|V | | V is a finite open covering of X such that V ?p ≤ U }.
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For natural numbers k, m and p with k ≥ m, we define the following indices;

∆̃(k;m; p) = Σm≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)

and

?̃(k;m; p) = Σm≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp.

Proposition 7.1. Let k and p be natural numbers. Then

(1) ∆̃(k; k; p) = (p + 1)k − pk,
(2) ?̃(k; k; p) = k(p + 1)k−1,
(3) Σk≥j1≥j2≥···≥jp≥11 = |kHp| =

(
k+p−1

p

)
.

Proof. By induction on p, we shall prove (1). If p = 1, then (1) is true.
We assume that (1) is true for p− 1 (p ≥ 2). Then

∆̃(k; k; p) = Σk≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)

= Σk
j1=1

[(
k
j1

)
Σj1≥j2≥···≥jp≥1

(
j1
j2

)(
j2
j3

)
· · ·

(
jp−1

jp

)]

= Σk
j1=1

[(
k
j1

)
∆̃(j1; j1; p− 1)

]

= Σk
j1=1

[(
k
j1

)
(pj1 − (p− 1)j1)

]

= Σk
j1=1

(
k
j1

)
pj1 − Σk

j1=1

(
k
j1

)
(p− 1)j1

= (p + 1)k − pk.

Next, we shall prove (2) by induction on p. The fact of the case p = 1 has
been given in [7]. For completeness, we give the proof.

Σk≥j≥1

(
k
j

)
j = k

[
Σk≥j≥1

(
k − 1
j − 1

)]
= k

[
Σk−1

i=0

(
k − 1

i

)]
= k · 2k−1.
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We assume that (2) is true for p− 1 (p ≥ 2).

?̃(k; k; p) = Σk≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp

= Σk
j1=1

(
k
j1

)[
Σj1≥j2≥···≥jp≥1

(
j1
j2

)(
j2
j3

)
· · ·

(
jp−1

jp

)
jp

]

= Σk
j1=1

[(
k
j1

)
?̃(j1; j1; p− 1)

]
= Σk

j1=1

(
k
j1

)
(j1pj1−1)

= k

[
Σk

j1=1

(
k − 1
j1 − 1

)
pj1−1

]
= k

[
Σk−1

i=0

(
k − 1

i

)
pi

]
= k(p + 1)k−1.

7.2. The indices ∆̃p
k(X) and ?̃p

k(X).
Let X be a topological space. By a swelling of the family {As}s∈S of subsets

of X, we mean any family {Bs}s∈S of subsets of X such that As ⊂ Bs (s ∈ S)
and for every finite set of indices s1, s2, . . . , sm ∈ S,

m⋂

i=1

Asi 6= φ if and only if
m⋂

i=1

Bsi 6= φ.

Theorem 7.2. Let X be an infinite normal space with dimX = n and let
k and p be natural numbers. Then

∆̃p
k(X) =

{
∆̃(k; k; p) = (p + 1)k − pk, if k ≤ n + 1

∆̃(k;n + 1; p), if k ≥ n + 1.

To prove Theorem 7.2, we need the following lemmata.

Lemma 7.3. Every finite family {Fi | i = 1, 2, . . . , k} of closed subsets of a
normal space X has an open swelling {Ui | i = 1, 2, . . . , k}.

Proof. See Engelking [5, Theorem (3.1.1)].

Lemma 7.4. Suppose that X is an infinite normal space. Let U = {Uj | j ∈
α} be an open covering of X such that |α| < ∞ and every open shrinking V of U
has a non-empty intersection. If P = {Pj | j ∈ α} is a closed shrinking of U and
F = {Fj | j ∈ α} is a closed covering of X such that Fj ⊂ Int(Pj) (j ∈ α), then
for any nonempty subset β of α,
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φ 6=
⋂
{(X − Fj) | j ∈ α− β} ∩

⋂
{Fj | j ∈ β} ∩

⋂
{Pj | j ∈ α}

(
=

⋂
{(Pj − Fj) | j ∈ α− β} ∩

⋂
{Fj | j ∈ β}

)

Proof. For each i ∈ α, choose an open set Qi such that

Fi ⊂ Qi ⊂ Qi ⊂ Int(Pi).

We shall show that the family

T = {Pj | j ∈ α− β} ∪
{[

Fj ∩
⋂

i∈α−β

(X −Qi)
] ∣∣∣∣ j ∈ β

}

is a closed covering of X. Let x ∈ X −⋃{Pj | j ∈ α − β}. Since F is a covering
of X, there is j0 ∈ α such that x ∈ Fj0 ∈ F . If j0 /∈ β, we see that

x /∈ X − Fj0 ⊃ X −Qj0 ⊃ X −
⋃

j∈α−β

Pj .

This is a contradiction. Hence j0 ∈ β. Also we see that x ∈ ⋂
i∈α−β(X − Qi)

and hence x ∈ Fj0 ∩
⋂

i∈α−β(X − Qi). Then T is a closed covering of X and a
shrinking of U . If T has an empty intersection, by Lemma 7.3 we have an open
swelling V such that V is a shrinking of U and V has an empty intersection.
Hence we see that T has a non-empty intersection:

⋂
{(X −Qj) | j ∈ α− β} ∩

⋂
{Fj | j ∈ β} ∩

⋂
{Pj | j ∈ α} 6= φ.

Consequently we see that

⋂
{(X − Fj) | j ∈ α− β} ∩

⋂
{Fj | j ∈ β} ∩

⋂
{Pj | j ∈ α}

⊃
⋂
{(X −Qj) | j ∈ α− β} ∩

⋂
{Fj | j ∈ β} ∩

⋂
{Pj | j ∈ α} 6= φ.

Proof of Theorem 7.2. Let k, p be any natural numbers. We give the
proof only for the case of k ≥ n+1. The case of k < n+1 can be proved similarly
to the case of k ≥ n + 1. Suppose that U = {U1, U2, . . . , Uk} is an open covering
of X with |U | = k. Since dimX = n, for each i = 1, 2, . . . , p, we can choose
a finite open shrinking V i = {V i

1 , V i
2 , . . . , V i

k} of U and a finite closed shrinking
F i = {F i

1, F
i
2, . . . , F

i
k} of U such that ord(V 1) ≤ n + 1 and
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Uj ⊃ V 1
j ⊃ F 1

j ⊃ V 2
j ⊃ F 2

j ⊃ · · · ⊃ V p
j ⊃ F p

j (j = 1, 2, . . . , k).

For a finite sequence {1, 2, . . . , k} ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ap 6= φ of nonempty subsets
of {1, 2, . . . , k}, we define the following open set:

W (A1, A2, . . . , Ap) =
⋂ {

V 1
j | j ∈ A1

} ∩
⋂ {

X − F 1
j | j /∈ A1

}

∩
⋂ {

V 2
j | j ∈ A2

} ∩
⋂ {

X − F 2
j | j /∈ A2

}

∩
⋂ {

V 3
j | j ∈ A3

} ∩
⋂ {

X − F 3
j | j /∈ A3

}

. . . . . .

∩
⋂ {

V p
j | j ∈ Ap

} ∩
⋂ {

X − F p
j | j /∈ Ap

}
.

Put

W =
{
W (A1, A2, . . . , Ap) | {1, 2, . . . , k} ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ap 6= φ

and W (A1, A2, . . . , Ap) 6= φ
}
.

Since ord(V 1) ≤ n + 1, we see that W (A1, A2, . . . , Ap) = φ if |A1| > n + 1. Then
we see

|W | ≤ Σn+1≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
= ∆̃(k;n + 1; p).

We shall show that W is a finite open covering of X. Let x ∈ X. Put

Ai =
{
j ∈ {1, 2, . . . , k} | x ∈ F i

j

}
(i = 1, 2, . . . , p).

Then we see that

{1, 2, . . . , k} ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ap 6= φ

and x ∈ W (A1, A2, . . . , Ap). This implies that W is a finite open covering of X.
Since F p is a covering of X, for x ∈ X we can choose j0 ∈ {1, 2, . . . , k} with

x ∈ F p
j0

. Then we shall show that

Stp(x,W ) ⊂ V 1
j0 ⊂ Uj0 .
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Let W1,W2, . . . , Wp ∈ W such that

x ∈ W1,Wi ∩Wi+1 6= φ (i = 1, 2, . . . , p− 1).

Put Wi = W (Ai
1, A

i
2, . . . , A

i
p) (i = 1, 2, . . . , p). Since

x ∈ W1 = W
(
A1

1, A
1
2, . . . , A

1
p

) ⊂
⋂ {

V p
j | j ∈ A1

p

} ∩
⋂ {

X − F p
j | j /∈ A1

p

}
,

we see that j0 ∈ A1
p. Since

φ 6= W1 ∩W2 ⊂
⋂ {

V p
j | j ∈ A1

p

} ∩
⋂ {

X − F p−1
j | j /∈ A2

p−1

}
,

we see that A1
p ⊂ A2

p−1. If not, there is some j′ ∈ A1
p −A2

p−1. Then

φ = V p
j′ ∩

(
X−F p−1

j′
) ⊃

⋂ {
V p

j | j ∈ A1
p

}∩
⋂ {

X−F p−1
j | j /∈ A2

p−1

} ⊃ W1∩W2.

This is a contradiction. Also, by use of W2 ∩W3 6= φ, we see that A2
p−1 ⊂ A3

p−2.
By induction on i = 1, 2, . . . , p, we see that

j0 ∈ A1
p ⊂ A2

p−1 ⊂ A3
p−2 ⊂ · · · ⊂ Ap

1.

This implies that

Wp = W
(
Ap

1, A
p
2, . . . , A

p
p

) ⊂
⋂ {

V 1
j | j ∈ Ap

1

} ⊂ V 1
j0 .

Hence

Stp(x,W ) ⊂ V 1
j0 ⊂ Uj0 .

This implies that {Stp(x,W ) | x ∈ X} ≤ U . Hence we conclude that

∆̃p
k(X) ≤ ∆̃(k;n + 1; p).

Next, we shall show the converse of the inequality. Let {C(α) | α ∈ Ck
n+1}

be a family of pairwise disjoint closed subsets of X such that dimC(α) = n for
each α ∈ Ck

n+1 (see [4, Lemma 2]). For each α ∈ Ck
n+1, choose an open covering

G (α) = {Gα
i | i ∈ α} of C(α) such that every open shrinking of G (α) has a

non-empty intersection. We choose an open shrinking U (α) = {Uα
i | i ∈ α} of
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G (α) such that U (α) = {Uα
i | i ∈ α} is also a shrinking of G (α). For each

i ∈ {1, 2, . . . , k}, let

Ui =
[
X −

⋃ {
C(α) | α ∈ Ck

n+1

}]
∪

⋃ {
Uα

i | i ∈ α
}
.

Then U = {U1, U2, . . . , Uk} is an open covering of X. Let V ′ be a finite open
covering of X such that {Stp(x,V ′) | x ∈ X} ≤ U . We shall show that

|V ′| ≥ ∆̃(k;n + 1; p).

Since X is a normal space, there is a closed shrinking K of V ′. By Lemma 7.3,
there is an open swelling V of K such that V ≤ V ′. Moreover, we may assume
that V = {V | V ∈ V } is also a swelling of K . Then V satisfies the following
property; if V, W ∈ V , then

(]) V ∩W = φ if and only if V ∩W = φ.

Note that |V ′| = |V | and {Stp(x,V ) | x ∈ X} ≤ U .
We shall show the above fact in the following way: For each sequence

{1, 2, . . . , k} ⊃ β1 ⊃ β2 ⊃ · · · ⊃ βp of subsets of {1, 2, . . . , k} with 1 ≤ |βp| ≤
|β1| ≤ n + 1, we choose an element V (β1, β2, . . . , βp) ∈ V such that

β1 = {j ∈ {1, 2, . . . , k} | V (β1, β2, . . . , βp) ⊂ Uj},
β2 = {j ∈ {1, 2, . . . , k} | St(V (β1, β2, . . . , βp),V ) ⊂ Uj},
β3 = {j ∈ {1, 2, . . . , k} | St2(V (β1, β2, . . . , βp),V ) ⊂ Uj},

. . . . . .

βp = {j ∈ {1, 2, . . . , k} | Stp−1(V (β1, β2, . . . , βp),V ) ⊂ Uj}.

In this way we can assign in a one-to-one manner an element V (β1, β2, . . . , βp) ∈ V
to each sequence {1, 2, . . . , k} ⊃ β1 ⊃ β2 ⊃ · · · ⊃ βp with 1 ≤ |βp| ≤ |β1| ≤ n + 1
and hence we see that

∆̃p
k(X) ≥ Σn+1≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
= ∆̃(k;n + 1; p).

To prove this, let {1, 2, . . . , k} ⊃ β1 ⊃ β2 ⊃ · · · ⊃ βp be a sequence of subsets of
{1, 2, . . . , k} such that 1 ≤ |βp| ≤ |β1| ≤ n + 1. Choose γ ⊂ {1, 2, . . . , k} such that
β1 ∩ γ = φ and β1 ∪ γ ∈ Ck

n+1. Let α = β1 ∪ γ.
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For i ∈ α, we choose a closed set Hi ⊂ Gα
i such that Uα

i ⊂ IntC(α)(Hi)
(i ∈ α). For each i ∈ α, consider the following subsets of C(α):

P 0
i = Hi,

F 0
i = Uα

i ,

P 1
i = C(α)− St1((C(α)− Ui),V ),

F 1
i = C(α) ∩

⋃
{V ∈ V | V ∩ St1((C(α)− Ui),V ) = φ},

P 2
i = C(α)− St2((C(α)− Ui),V ),

F 2
i = C(α) ∩

⋃
{V ∈ V | V ∩ St2((C(α)− Ui),V ) = φ},

. . . . . .

P p−1
i = C(α)− Stp−1((C(α)− Ui),V ),

F p−1
i = C(α) ∩

⋃
{V ∈ V | V ∩ Stp−1((C(α)− Ui),V ) = φ},

P p
i = C(α)− Stp((C(α)− Ui),V ).

By (]), we see that

P p
i ⊂ IntC(α)F

p−1
i ⊂ F p−1

i ⊂ IntC(α)P
p−1
i ⊂ · · · ⊂ F 0

i ⊂ IntC(α)P
0
i

Since {Stp(x,V ) | x ∈ X} ≤ U , we see that the family {P p
i | i ∈ α} is a closed

covering of C(α) and also it is a shrinking of U (α). In general, we can not conclude
that the family {IntC(α)P

p
i | i ∈ α} is a covering of C(α). Put

W (α, β1, β2, . . . , βp)

=
⋂ {

P 0
j | j ∈ α

} ∩
[ ⋂ {

P 1
j | j ∈ β1

}−
⋃ {

F 0
j | j ∈ α− β1

}]

∩
[ ⋂ {

P 2
j | j ∈ β2

}−
⋃ {

F 1
j | j ∈ α− β2

}]

∩
[ ⋂ {

P 3
j | j ∈ β3

}−
⋃ {

F 2
j | j ∈ α− β3

}]

. . . . . .

∩
[ ⋂ {

P p−1
j | j ∈ βp−1

}−
⋃ {

F p
j | j ∈ α− βp

}]

∩
⋂ {

P p
j | j ∈ βp

}
.
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Note that

W (α, β1, β2, . . . , βp)

=
⋂ {

P 0
j | j ∈ α

} ∩
[ ⋂ {

P 1
j | j ∈ β1

})−
⋃ {

F 0
j | j ∈ α− β1

}]

∩
[ ⋂ {

P 2
j | j ∈ β2

}−
⋃ {

F 1
j | j ∈ β1 − β2

}]

∩
[ ⋂ {

P 3
j | j ∈ β3

}−
⋃ {

F 2
j | j ∈ β2 − β3

}]

. . . . . .

∩
[ ⋂ {

P p−1
j | j ∈ βp−1

}−
⋃ {

F p
j | j ∈ βp−1 − βp

}]

∩
⋂ {

P p
j | j ∈ βp

}

=
⋂ {(

P 0
j − F 0

j

) | j ∈ α− β1

}

∩
⋂ {(

P 1
j − F 1

j

) | j ∈ β1 − β2

}

∩
⋂ {(

P 2
j − F 2

j

) | j ∈ β2 − β3

}

. . . . . .

∩
⋂ {(

P p−1
j − F p−1

j

) | j ∈ βp−1 − βp

}

∩
⋂ {

P p
j | j ∈ βp

}
.

To apply Lemma 7.4 to our proof, we put β = βp and consider two families of
closed subsets of C(α):

P =
{
P 0

j | j ∈ α− β1

} ∪ {
P 1

j | j ∈ β1 − β2

}

∪ · · · ∪ {
P p−2

j | j ∈ βp−2 − βp−1

} ∪ {
P p−1

j | j ∈ βp−1

}
= {Pj | j ∈ α},

and

F =
{
F 0

j | j ∈ α− β1

} ∪ {
F 1

j | j ∈ β1 − β2

}

∪ · · · ∪ {
F p−2

j | j ∈ βp−2 − βp−1

} ∪ {
F p−1

j | j ∈ βp−1 − βp

}

∪ {
F p

j | j ∈ βp

}
= {Fj | j ∈ α}.

By Lemma 7.4, we see that
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W (α, β1, β2, . . . , βp) 6= φ.

Hence we can choose x ∈ W (α, β1, β2, . . . , βp) and V = V (β1, β2, . . . , βp) ∈ V with
x ∈ V . We shall show that for each i = 1, . . . , p,

βi = {j ∈ {1, 2, . . . , k} | Sti−1(V (β1, β2, . . . , βp),V ) ⊂ Uj}.

Let j ∈ βi. We choose i′ ≥ i such that j ∈ βi′−βi′+1, where we put βp+1 = φ.
Then

x ∈ W (α, β1, β2, . . . , βp) ⊂ P i′
j − F i′

j ⊂ P i′
j = C(α)− Sti

′
((C(α)− Uj),V ).

Since x /∈ Sti
′
((C(α) − Uj),V ), we see that Sti

′
(x,V ) ⊂ Uj . Since i′ ≥ i and

x ∈ V (β1, β2, . . . , βp),

Sti−1(V (β1, β2, . . . , βp),V ) ⊂ Sti
′−1(V (β1, β2, . . . , βp),V ) ⊂ Sti

′
(x,V ) ⊂ Uj .

This implies that

βi ⊂
{
j ∈ {1, 2, . . . , k} | Sti−1(V (β1, β2, . . . , βp),V ) ⊂ Uj

}
.

Next, suppose that j /∈ βi. If j /∈ α, we see that C(α) ∩ Uj = φ and x ∈
V (β1, β2, . . . , βp)∩C(α). Then Sti−1(V (β1, β2, . . . , βp),V ) is not contained in Uj .
If j ∈ α, we choose i′ < i such that j ∈ βi′ − βi′+1 and we put β0 = α. Then

x ∈ W (α, β1, β2, . . . , βp) ⊂ P i′
j − F i′

j .

Hence

x /∈ F i′
j = C(α) ∩

⋃
{V ∈ V | V ∩ Sti′((C(α)− Uj),V ) = φ}.

This implies that V (β1, β2, . . . , βp) ∩ Sti
′
((C(α)− Uj),V ) 6= φ. Hence

Sti
′
(V (β1, β2, . . . , βp),V ) ∩ (C(α)− Uj) 6= φ.

Since

Sti−1(V (β1, β2, . . . , βp),V ) ⊃ Sti
′
(V (β1, β2, . . . , βp),V ),
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we see that Sti−1(V (β1, β2, . . . , βp),V ) is not contained in Uj . This implies that

βi ⊃ {j ∈ {1, 2, . . . , k} | Sti−1(V (β1, β2, . . . , βp),V ) ⊂ Uj}.

Hence

βi = {j ∈ {1, 2, . . . , k} | Sti−1(V (β1, β2, . . . , βp),V ) ⊂ Uj}.

Finally, we can conclude that

∆̃p
k(X) = ∆̃(k;n + 1; p).

This completes the proof.

Theorem 7.5. Let X be an infinite normal space with dimX = n and let
k and p be natural numbers. Then

?̃p
k(X) =

{
?̃(k; k; p) = k(p + 1)k−1, if k ≤ n + 1

?̃(k;n + 1; p), if k ≥ n + 1.

Proof. The proof is similar to that of Theorem 7.2. For completeness,
we give the proof. Let k, p be any natural numbers. We give the proof only for
the case of k ≥ n + 1. The case of k < n + 1 can be proved similarly to the
case of k ≥ n + 1. Suppose that U = {U1, U2, . . . , Uk} is an open covering of
X with |U | = k. Since dimX = n, for each i = 1, 2, . . . , p, we can choose a
finite open shrinking V i = {V i

1 , V i
2 , . . . , V i

k} of U and a finite closed shrinking
F i = {F i

1, F
i
2, . . . , F

i
k} of U such that ord(V 1) ≤ n + 1 and

Uj ⊃ V 1
j ⊃ F 1

j ⊃ V 2
j ⊃ F 2

j ⊃ · · · ⊃ V p
j ⊃ F p

j (j = 1, 2, . . . , k).

We may assume that {Int(F p
i ) | i = 1, 2, . . . , k} is an open covering of X. Let

G = {G1, G2, . . . , Gk} be an open covering of X with Gj ⊂ F p
j (j = 1, 2, . . . , k).

For a finite sequence {1, 2, . . . , k} ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ap 6= φ of nonempty subsets
of {1, 2, . . . , k} and t ∈ Ap, we define the following open set:

W (A1, A2, . . . , Ap : t) =
⋂ {

V 1
j | j ∈ A1

} ∩
⋂ {

X − F 1
j | j /∈ A1

}

∩
⋂ {

V 2
j | j ∈ A2

} ∩
⋂ {

X − F 2
j | j /∈ A2

}
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∩
⋂ {

V 3
j | j ∈ A2

} ∩
⋂ {

X − F 3
j | j /∈ A3

}

. . . . . .

∩
⋂ {

V p
j | j ∈ Ap

} ∩
⋂ {

X − F p
j | j /∈ Ap

}

∩Gt.

Put

W = {W (A1, A2, . . . , Ap : t) | {1, 2, . . . , k} ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ap 3 t

and W (A1, A2, . . . , Ap : t) 6= φ}.

Since ord(V 1) ≤ n + 1, we see that W (A1, A2, . . . , Ap : t) = φ if |A1| > n + 1.
Then we see that

|W | ≤ Σn+1≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp = ?̃(k;n + 1; p).

Let x ∈ X. Put

Ai =
{
j ∈ {1, 2, . . . , k} | x ∈ F i

j

}
(i = 1, 2, . . . , p).

Also, we choose t ∈ Ap with x ∈ Gt. Then we see that

{1, 2, . . . , k} ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ap 3 t

and x ∈ W (A1, A2, . . . , Ap : t). This implies that W is a finite open covering of
X. Also, by the similar argument to the proof of Theorem 7.2, we see that

Stp(W (A1, A2, . . . , Ap : t),W ) ⊂ Ut.

Hence

?̃p
k(X) ≤ ?̃(k;n + 1; p).

Next, we shall show the converse of the inequality. Let {C(α) | α ∈ Ck
n+1}

be a family of pairwise disjoint closed subsets of X such that dimC(α) = n for
each α ∈ Ck

n+1. For each α ∈ Ck
n+1, we also choose an open covering G (α) =

{Gα
i | i ∈ α} of C(α) such that every open shrinking of G (α) has a non-empty

intersection. We choose an open shrinking U (α) = {Uα
i | i ∈ α} of G (α) such
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that U (α) = {Uα
i | i ∈ α} is also a shrinking of G (α). For each i ∈ {1, 2, . . . , k},

let

Ui =
[
X −

⋃ {
C(α) | α ∈ Ck

n+1

}]
∪

⋃ {
Uα

i | i ∈ α
}
.

Then U = {U1, U2, . . . , Uk} is an open covering of X. Let V be a finite open
covering of X such that {Stp(V, V ) | V ∈ V } ≤ U . As in the proof of Theorem
7.2, we may assume that if V, W ∈ V , then

(]) V ∩W = φ if and only if V ∩W = φ.

We shall show that

|V | ≥ ?̃(k;n + 1; p).

We show this fact in the following way: For each sequence β1 ⊃ β2 ⊃ · · · ⊃ βp

of subsets of {1, 2, . . . , k} with 1 ≤ |βp| ≤ |β1| ≤ n + 1 and t ∈ βp, we choose an
element V (β1, β2, . . . , βp : t) ∈ V such that if t, t′ ∈ βp and t 6= t′, then

V (β1, β2, . . . , βp : t) 6= V (β1, β2, . . . , βp : t′),

and

β1 = {j ∈ {1, 2, . . . , k} | V (β1, β2, . . . , βp : t) ⊂ Uj},
β2 = {j ∈ {1, 2, . . . , k} | St(V (β1, β2, . . . , βp : t),V ) ⊂ Uj},
β3 = {j ∈ {1, 2, . . . , k} | St2(V (β1, β2, . . . , βp : t),V ) ⊂ Uj},

. . . . . .

βp = {j ∈ {1, 2, . . . , k} | Stp−1(V (β1, β2, . . . , βp : t),V ) ⊂ Uj},
Stp(V (β1, β2, . . . , βp : t),V ) ⊂ Ut.

In this way we can assign in a one-to-one manner an element V (β1, β2, . . . , βp : t) ∈
V to each sequence {1, 2, . . . , k} ⊃ β1 ⊃ β2 ⊃ · · · ⊃ βp with 1 ≤ |βp| ≤ |β1| ≤ n+1
and t ∈ βp and hence we see that

?̃p
k(X) ≥ Σn+1≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp = ?̃(k;n + 1; p).
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To prove this fact, let {1, 2, . . . , k} ⊃ β1 ⊃ β2 ⊃ · · · ⊃ βp be a sequence of subsets
of {1, 2, . . . , k} such that 1 ≤ |βp| ≤ |β1| ≤ n + 1. Choose γ ⊂ {1, 2, . . . , k} such
that β1 ∩ γ = φ and β1 ∪ γ ∈ Ck

n+1. Let α = β1 ∪ γ. For i ∈ α, we choose a closed
set Hi ⊂ Gα

i such that Uα
i ⊂ IntC(α)(Hi) (i ∈ α). As in the proof of Theorem

7.2, for each i ∈ α, consider the following subsets of C(α):

P 0
i = Hi,

F 0
i = Uα

i ,

P 1
i = C(α)− St1((C(α)− Ui),V ),

F 1
i = C(α) ∩

⋃
{V ∈ V | V ∩ St1((C(α)− Ui),V ) = φ},

P 2
i = C(α)− St2((C(α)− Ui),V ),

F 2
i = C(α) ∩

⋃
{V ∈ V | V ∩ St2((C(α)− Ui),V ) = φ},

. . . . . .

P p−1
i = C(α)− Stp−1((C(α)− Ui),V ),

F p−1
i = C(α) ∩

⋃
{V ∈ V | V ∩ Stp−1((C(α)− Ui),V ) = φ},

P p
i = C(α)− Stp((C(α)− Ui),V ).

Since {Stp(V, V ) | x ∈ X} ≤ U , we see that the family {IntC(α)P
p
i | i ∈ α} is a

covering of C(α). Also, put

W (α, β1, β2, . . . , βp) =
⋂ {(

P 0
j − F 0

j

) | j ∈ α− β1

}

∩
⋂ {(

P 1
j − F 1

j

) | j ∈ β1 − β2

}

∩
⋂ {(

P 2
j − F 2

j

) | j ∈ β2 − β3

}

. . . . . .

∩
⋂ {(

P p−1
j − F p−1

j

) | j ∈ βp−1 − βp

}

∩
⋂ {

P p
j | j ∈ βp

}
.

By Lemma 7.4, we see that W (α, β1, β2, . . . , βp) 6= φ. For each V ∈ V , we choose
f(V ) ∈ {1, 2, . . . , k} such that Stp(V, V ) ⊂ Uf(V ). Note that f : V → {1, 2, . . . , k}
is a function. Let Vα = {V ∈ V | Stp(V, V ) ⊂ Ui for some i ∈ α}. Then for
each i ∈ α, we put Vi = {V ∈ V | f(V ) = i}. Note that {Vi | i ∈ α} is a
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decomposition of Vα. Let W ′
i =

⋃{V ∈ Vi} ∩ C(α) (i ∈ α). Since {W ′
i | i ∈ α}

is an open covering of C(α) such that W ′
i ⊂ IntC(α)P

p
i (i ∈ α), we can choose

a closed shrinking {Wi | i ∈ α} of {W ′
i | i ∈ α}. Applying Lemma 7.4 as in the

proof of Theorem 7.2, we can conclude that

W (α, β1, β2, . . . , βp) ∩
⋂
{Wt | t ∈ βp} 6= φ.

Choose a point x ∈ W (α, β1, β2, . . . , βp) ∩
⋂{W ′

t | t ∈ βp}. For each t ∈ βp, we
can choose V (β1, β2, . . . , βp : t) ∈ Vt containing the point x. Then we see that
V (β1, β2, . . . , βp : t) satisfies the desired conditions. Finally, we can conclude that

?̃p
k(X) = ?̃(k;n + 1; p).

7.3. Characterizations of dimension by use of ∆p(X, U ) and
?p(X, U ).

In Theorem 7.11, we give other characterizations of dimension by use of
∆p(X, U ) and ?p(X, U ).

Theorem 7.6. Let X be a normal space with dimX = n.

(1) If U is any finite open covering of X with |U | = k, then

∆̃p(X, U ) ≤ ∆̃(k;n + 1; p).

(2) For any k ≥ n + 1, there is a finite open covering U of X such that |U | = k

and

∆̃p(X, U ) = ∆̃(k;n + 1; p).

Hence

lim
p→∞

log ∆̃p(X, U )
log p

= n.

Proof. Note that

∆̃(k;n + 1; p) = Σn+1≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)

and
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?̃(k;n + 1; p) = Σn+1≥j1≥j2≥···≥jp≥1

(
k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp.

Since k and n + 1 are fixed, we can choose a real number 0 < b such that for
any p = 1, 2, . . . , and ji (i = 1, 2, . . . , p) with n + 1 ≥ j1 ≥ j2 ≥ · · · ≥ jp ≥ 1,

1 ≤
(

k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
< b

and

1 ≤
(

k
j1

)(
j1
j2

)
· · ·

(
jp−1

jp

)
jp < b.

Hence

|n+1Hp| ≤ ∆̃(k;n + 1; p) < |n+1Hp| · b

and

|n+1Hp| ≤ ?̃(k;n + 1; p) < |n+1Hp| · b.

Then we see that

lim
p→∞

log ∆̃(k;n + 1; p)
log p

= lim
p→∞

log |n+1Hp|
log p

= lim
p→∞

log[(n + p)!/p!n!]
log p

= lim
p→∞

log(n + p) + log(n− 1 + p) + · · ·+ log(1 + p)
log p

= n.

Similarly, we have

lim
p→∞

log ?̃(k;n + 1; p)
log p

= n.

By use of the proof of Theorem 7.6, we can also prove the following theorem.

Theorem 7.7. Let X be a normal space. Then

dimX = sup
{

lim sup
p→∞

log ∆̃p(X, U )
log p

∣∣∣∣ U is a finite open covering of X

}
.
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Similarly, we have

Theorem 7.8. Let X be a normal space with dimX = n.

(1) If U is any finite open covering of X with |U | = k, then

?̃p(X, U ) ≤ ?̃(k;n + 1; p).

(2) For any k ≥ n + 1, there is a finite open covering U of X such that |U | = k

and

?̃p(X, U ) = ?̃(k;n + 1; p).

Hence

lim
p→∞

log ?̃p(X, U )
log p

= n.

Consequently, if X is a normal space with ∞ ≥ dimX ≥ 0,

dimX = sup
{

lim sup
p→∞

log ?̃p(X, U )
log p

∣∣∣∣ U is a finite open covering of X

}
.

Proposition 7.9. For any natural number p and any finite open covering
U of an infinite normal space X, we have

∆p(X, U ) = ∆̃2p−1
(X, U ),

?p(X, U ) = ?̃(1/2)(3p−1)(X, U ),

∆p
k(X) = ∆̃2p−1

k (X) and

?p
k(X) = ?̃

(1/2)(3p−1)
k (X).

Proof. First, we shall prove that for any open covering V of X and a
natural number p ≥ 1,

(1) V ∆p

(= {St(x,V ∆p−1
) | x ∈ X}) = {St2

p−1
(x,V ) | x ∈ X}.

In fact, we prove that for each p = 1, 2, . . . and x ∈ X,

(1)’ St(x,V ∆p−1
) = St2

p−1
(x,V ).
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If p = 1, by definitions we can easily see that (1)’ is true. By induction on p, we
shall prove (1)’. We assume that (1)’ is true for p. Since (1) is true for p, for each
x ∈ X, we have

St(x,V ∆p

) = ∪{T ∈ V ∆p | x ∈ T}

= ∪{
St2

p−1
(y, V ) | y ∈ X and x ∈ St2

p−1
(y, V )

}
= St2

p

(x,V ).

This implies that (1)’ is true for p + 1 and hence (1) is also true for p + 1.
Next, we shall prove that for any open covering V of X and a natural number

p ≥ 1,

(2) V ?p

=
{
St(1/2)(3p−1)(V, V ) | V ∈ V }.

By induction on p, we shall prove that (2) is true. If p = 1, by definitions (2) is
true. We assume that (2) is true for p. If W ∈ V ?p+1

, there is U ∈ V ?p

such
that W = St(U,V ?p

). By the assumption, we see that there is V ∈ V such that
U = St(1/2)(3p−1)(V, V ). Hence

W =
⋃
{U ′ ∈ V ?p | U ∩ U ′ 6= φ}

=
⋃ {

St(1/2)(3p−1)(V ′,V ) |
St(1/2)(3p−1)(V, V ) ∩ St(1/2)(3p−1)(V ′,V ) 6= φ for V ′ ∈ V

}

= St3×(1/2)(3p−1)+1(V, V ) = St(1/2)(3p+1−1)(V, V ).

This implies that V ?p+1 ⊂ {St(1/2)(3p+1−1)(V, V ) | V ∈ V }. To prove the converse
inclusion, for each V ∈ V we put U = St(1/2)(3p−1)(V, V ). By induction, we see
that U ∈ V ?p

and

St(1/2)(3p+1−1)(V, V ) = St(U,V ?p

) ∈ V ?p+1
.

This implies that (2) is true. By use of the facts (1) and (2), we can easily complete
the proof.

We have the following corollary which is Theorem 2.2 in Section 2.

Corollary 7.10. Let X be a normal space and dimX = n and let k and p

be natural numbers. Then
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∆p
k(X) =

{
∆̃(k; k; 2p−1) = (2p−1 + 1)k − (2p−1)k, if k ≤ n + 1

∆̃(k;n + 1; 2p−1), if k ≥ n + 1

and

?p
k(X) =





?̃

(
k; k;

1
2
(3p − 1)

)
= k

[
1
2
(3p − 1) + 1)

]k−1

, if k ≤ n + 1

?̃

(
k;n + 1;

1
2
(3p − 1)

)
, if k ≥ n + 1.

Now we give other characterizations of topological dimension by use of the
indices ∆p

k(X, U ) and ?p
k(X, U ) as follows.

Theorem 7.11. Let X be a normal space. Then

dimX = sup
{

lim sup
p→∞

log2 ∆p(X, U )
p

∣∣∣∣ U is a finite open covering of X

}

and

dimX = sup
{

lim sup
p→∞

log3 ?p(X, U )
p

∣∣∣∣ U is a finite open covering of X

}
.

Proof. By Theorem 7.7 and Theorem 7.8, we have

dimX = sup
{

lim sup
p→∞

log2 ∆̃2p−1
(X, U )

log2 2p−1

∣∣∣∣ U is a finite open covering of X

}

= sup
{

lim sup
p→∞

log2 ∆p(X, U )
p− 1

∣∣∣∣ U is a finite open covering of X

}

= sup
{

lim sup
p→∞

log2 ∆p(X, U )
p

∣∣∣∣ U is a finite open covering of X

}
.

Similarly, we have

dimX = sup

{
lim sup

p→∞
log3 ?̃(1/2)(3p−1)(X, U )

log3

1
2
(3p − 1)

∣∣∣∣ U is a finite open covering of X

}

= sup
{

lim sup
p→∞

log3 ?p(X, U )
p

∣∣∣∣ U is a finite open covering of X

}
.
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Corollary 7.12. Let X be an infinite normal space with dimX = n.

(1) If U1 and U2 are finite open coverings of X with U1 ≤ U2, then

∆̃p(X, U1) ≥ ∆̃p(X, U2), ?̃p(X, U1) ≥ ?̃p(X, U2),

∆p(X, U1) ≥ ∆p(X, U2), ?p(X, U1) ≥ ?p(X, U2).

(2) There is a finite open covering U of X such that if U ′ is any finite open
covering of X with U ′ ≤ U , then

lim
p→∞

log ∆̃p(X, U ′)
log p

= n, lim
p→∞

log ?̃p(X, U ′)
log p

= n,

lim
p→∞

log2 ∆p(X, U ′)
p

= n, lim
p→∞

log3 ?p(X, U ′)
p

= n.
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