©2011 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 63, No. 3 (2011) pp. 789–800 doi: 10.2969/jmsj/06330789

Small subdivisions of simplicial complexes with the metric topology

By Katsuro Sakai

(Received Feb. 19, 2010)

Abstract. D. W. Henderson established the metric topology vertion of J. H. C. Whitehead's Theorem on small subdivisions of simplicial complexes. However, his proof is valid only for locally finite-dimensional simplicial complexes. In this note, we give a complete proof of Henderson's Theorem for arbitrary simplicial complexes.

1. Introduction.

For a simplicial complex K, the polyhedron |K| has two topologies, the Whitehead (weak) topology and the metric topology. By $|K|_{\rm w}$ and $|K|_{\rm m}$, we denote |K|with the Whitehead (weak) topology and the metric topology, respectively. Unless K is locally finite, $|K|_{\rm w} \neq |K|_{\rm m}$ as spaces. For a simplicial subdivision K' of K, $|K'|_{\rm w} = |K|_{\rm w}$ but $|K'|_{\rm m} \neq |K|_{\rm m}$ as spaces. We call a simplicial subdivision K' of K an *admissible subdivision* if $|K'|_{\rm m} = |K|_{\rm m}$ as spaces.¹ The barycentric subdivision Sd K of K is admissible. Recall that the star St(σ, K) at $\sigma \in K$ is the subcomplex of K consisting of all faces of simplexes having σ as a face. Let $\mathscr{S}_K = \{|\operatorname{St}(v,K)| \mid v \in K^{(0)}\}$, where $K^{(0)}$ is the set of all vertices of K.

The following theorem is due to J. H. C. Whitehead [3], which is very important because one can use this theorem to prove the paracompactness of $|K|_{w}$, the simplicial approximation theorem, etc.

THEOREM 1 (J. H. C. Whitehead). Let K be an arbitrary simplicial complex. For any open cover \mathscr{U} of $|K|_{w}$, there exists a simplicial subdivision K' of K such that $\mathscr{S}_{K'}$ refines \mathscr{U} .

In [1, Lemma V.7], D. W. Henderson established the following metric topology version of Whitehead's Theorem above, which is a key lemma to prove basic

²⁰⁰⁰ Mathematics Subject Classification. Primary 57Q05; Secondary 54E35, 55U10.

Key Words and Phrases. the metric topology, simplicial complex, admissible subdivision. This research was supported by Grant-in-Aid for Scientific Reserch (No. 22540063), Japan Society for the Promotion of Science

¹D. W. Henderson [1] called this a *proper subdivision*. In [2], the suitable word "admissible" is adopted rather than "proper" because the metric defined by such a subdivision is admissible.

theorems on non-separable infinite-dimensional manifolds.

THEOREM 2 (D. W. Henderson). Let K be an arbitrary simplicial complex. For any open cover \mathscr{U} of $|K|_{\mathrm{m}}$, there exists an admissible subdivision K' of K such that $\mathscr{S}_{K'}$ refines \mathscr{U} .

Although his proof is valid for a locally finite-dimensional simplicial complex, it is not valid in general. The problem is the existence of the integer n(s) for a simplex s in the proof. The n-th barycentric subdivision $\operatorname{Sd}^n K$ of K is inductively defined by $\operatorname{Sd}^n K = \operatorname{Sd}(\operatorname{Sd}^{n-1} K)$, where $\operatorname{Sd}^0 K = K$. As well known, when $\dim K < \infty$,

$$\operatorname{mesh}_{\rho_K} \operatorname{Sd}^n K = 2 \left(\frac{\dim K}{\dim K + 1} \right)^n \text{ for each } n \in \mathbb{N},$$

where ρ_K is the barycentric metric (the definition is given in Preliminaries). Hence, if the star at a simplex s in the complex is finite-dimensional then such an n(s)exists. However, when the star at s is infinite-dimensional, such an n(s) does not exist even locally, that is, no matter how large n is, the size of simplexes of $N_n(s)$ is not small anywhere in s. This follows from the proposition below:

PROPOSITION 3. Let K be a simplicial complex and $x \in |K|$. Suppose that the star of the carrier $\sigma \in K$ of x contains an infinite full complex.² For each $n \in \mathbf{N}$ and $\varepsilon > 0$, there are infinitely many vertices $u_i \in (\mathrm{Sd}^n K)^{(0)}$, $i \in \mathbf{N}$, such that $\rho_K(x, u_i) > 2 - \varepsilon$ and every finite set of u_i 's, togather with the vertices of the carrier of x in $\mathrm{Sd}^n K$, spans a simplex of $\mathrm{Sd}^n K$.

In this note, we shall show Proposition 3 and give a complete proof of Theorem 2 without local finite-dimensionality.

2. Preliminaries.

Our notations are different from the paper [1]. Here are notations fixed. For a collection \mathscr{A} of subsets of X and $B \subset X$, we use the following notations:

$$\mathcal{A} \mid B = \{A \cap B \mid A \in \mathcal{A}\}, \quad \mathcal{A}[B] = \{A \in \mathcal{A} \mid A \cap B \neq \emptyset\}$$

and $\operatorname{st}(B, \mathcal{A}) = \bigcup \mathcal{A}[B].$

²We call $\sigma \in K$ the *carrier* of $x \in |K|$ if x is an interior point of σ , that is, $\sigma \in K$ is the smallest simplex of K containing x. A *full complex* is a simplicial complex such that any finite subset of the vertices spans a simplex.

Given a collection \mathscr{B} of subsets of X, $\mathscr{A}[\bigcup \mathscr{B}]$ is simply denoted by $\mathscr{A}[\mathscr{B}]$. When \mathscr{B} refines \mathscr{A} , that is, each $B \in \mathscr{B}$ is contained in some $A \in \mathscr{A}$, we write $\mathscr{B} \prec \mathscr{A}$.

The simplex spanned by vertices v_0, v_1, \ldots, v_n is denoted by $\langle v_0, v_1, \ldots, v_n \rangle$. For simplexes σ and τ , $\sigma \leq \tau$ (or $\sigma < \tau$) means that σ is a face (or a proper face) of τ . The boundary, the interior, the barycenter and the set of vertices of σ are denoted by $\partial \sigma$, $\overset{\circ}{\sigma}$, $\hat{\sigma}$ and $\sigma^{(0)}$, respectively.

Let K be a simplicial complex. The n-skeleton of K is denoted by $K^{(n)}$, that is, $K^{(n)} = \{\sigma \in K \mid \dim \sigma \leq n\}$. By K(n), we denote the set of all n-simplexes in K, that is, $K(n) = K^{(n)} \setminus K^{(n-1)}$. For $A \subset |K|$, let

$$\begin{split} N(A,K) &= \left\{ \sigma \in K \mid \exists \tau \in K[A] \text{ such that } \sigma \leq \tau \right\},\\ C(A,K) &= K \setminus K[A] = \left\{ \sigma \in K \mid \sigma \cap A = \emptyset \right\} \text{ and }\\ B(A,K) &= N(A,K) \cap C(A,K). \end{split}$$

In case A = |L| for a subcomplex $L \subset K$, we simply write N(L, K), C(L, K)and B(L, K) instead of N(|L|, K), C(|L|, K) and B(|L|, K), respectively. Note that $N(\{v\}, K) = \operatorname{St}(v, K)$ for each $v \in K^{(0)}$ but $N(\sigma, K) \supseteq \operatorname{St}(\sigma, K)$ for each $\sigma \in K \setminus K^{(0)}$ in general. For each simplex $\sigma \in K$, $|N(\sigma, K)| = \operatorname{st}(\sigma, K)$ and $|\operatorname{St}(\sigma, K)| = \operatorname{st}(\overset{\circ}{\sigma}, K) = \operatorname{st}(\overset{\circ}{\sigma}, K)$.

There exist functions $\beta_v^K : |K| \to \mathbf{I}, v \in K^{(0)}$, such that $\sum_{v \in K^{(0)}} \beta_v^K(x) = 1$ and $x = \sum_{v \in K^{(0)}} \beta_v^K(x)v$ for each $x \in |K|$, where $(\beta_v^K(x))_{v \in K^{(0)}}$ is the barycentric coordinate of $x \in |K|$. It should be noticed that every β_v^K is affine (linear) on each $\sigma \in K$ and $\beta_v^K(\sigma) = 0$ if $v \notin \sigma^{(0)}$. The barycentric metric ρ_K is defined as follows:

$$\rho_K(x,y) = \sum_{v \in K^{(0)}} \left| \beta_v^K(x) - \beta_v^K(x') \right|.$$

The metric topology for |K| is induced by this metric.

The open star $O_K(v)$ at $v \in K^{(0)}$ is defined by

$$O_K(v) = (\beta_v^K)^{-1}((0,1]) = |\operatorname{St}(v,K)| \setminus |\operatorname{Lk}(v,K)|.$$

For each point $x \in |K|$, we denote by $c_K(x)$ the carrier of x in K, that is, $c_K(x) \in K$ is the smallest simplex containing x. Then, $c_K(x)^{(0)} = \{v \in K^{(0)} \mid \beta_v^K(x) > 0\}$. The open star at $x \in |K|$ can be defined as follows:

$$O_K(x) = \bigcup_{\sigma \in K[x]} \overset{\circ}{\sigma} = \bigcap_{v \in c_K(x)^{(0)}} O_K(v).$$

For each $0 < r \leq 1$, we define

$$O_K(x,r) = (1-r)x + rO_K(x) = \{(1-r)x + ry \mid y \in O_K(x)\},\$$

which is an open neighborhood of x in $|K|_{\mathrm{m}}$ contained in the open ball $B_{\rho_K}(x, 2r)$ with center x and radius 2r. Indeed, for each $y \in O_K(x)$,

$$\rho_K((1-r)x + ry, x) = \sum_{v \in K^{(0)}} \left| \beta_v^K((1-r)x + ry) - \beta_v^K(x) \right|$$
$$= \sum_{v \in K^{(0)}} r \left| \beta_v^K(y) - \beta_v^K(x) \right| = r\rho_K(y, x) < 2r.$$

For a vertex $v \in K^{(0)}$, we have $O_K(v,r) = (\beta_v^K)^{-1}((1-r,1]) = B_{\rho_K}(v,2r)$. The following fact is used in the proof of [1, Lemma V.5]:

LEMMA 4. $\{O_K(x,r) \mid 0 < r \leq 1\}$ is an open neighborhood basis at x in $|K|_m$.

For $A \subset |K|$, let $\beta_A^K = \sum_{v \in K^{(0)} \cap A} \beta_v^K : |K| \to I$. In case A is a simplex $\sigma \in K$, $\sigma = (\beta_{\sigma}^K)^{-1}(1)$ and $(\beta_{\sigma}^K)^{-1}((0,1]) = \bigcup_{v \in \sigma^{(0)}} O_K(v)$. The following will be used in the proof of Theorem 2:

LEMMA 5. $(\beta_{\sigma}^{K})^{-1}((1-r,1]) \subset \{y \in |K| \mid \operatorname{dist}_{\rho_{K}}(y,\sigma) < 2r\}$ for each $\sigma \in K$.

PROOF. For each $y \in (\beta_{\sigma}^{K})^{-1}((1-r,1])$, we have $x \in \sigma$ defined by

$$x = \sum_{v \in \sigma^{(0)}} \frac{\beta_v^K(y)}{\beta_\sigma^K(y)} v \quad \left(\text{i.e., } \beta_v^K(x) = \frac{\beta_v^K(y)}{\beta_\sigma^K(y)} \text{ for each } v \in \sigma^{(0)}\right).$$

Then, it follows that

$$\rho_K(x,y) = \sum_{v \in K^{(0)}} \left| \beta_v^K(x) - \beta_v^K(y) \right|$$

=
$$\sum_{v \in \sigma^{(0)}} \left(\beta_v^K(x) - \beta_v^K(y) \right) + \sum_{v \in K^{(0)} \setminus \sigma^{(0)}} \beta_v^K(y)$$

=
$$2 \left(1 - \beta_\sigma^K(y) \right) < 2r.$$

Thus, we have $\operatorname{dist}_{\rho_K}(y,\sigma) < 2r$.

For a simplicial subdivision K' of K, $\rho_K \leq \rho_{K'}$ but the topology induced by $\rho_{K'}$ is different from the one induced by ρ_K in general. A simplicial subdivision K' of K is admissible if and only if $\rho_{K'}$ is admissible for the space $|K|_{\rm m}$. Admissible subdivisions are characterized in [1, Lemma V.5] and [2, Theorem 2] as follows:

THEOREM 6. For a simplicial subdivision K' of a simplicial complex K, the following are equivalent:

- (a) K' is admissible;
- (b) $O_{K'}(v)$ is open in $|K|_{\mathrm{m}}$ for each $v \in K'^{(0)}$;
- (c) $K'^{(0)}$ is discrete in $|K|_{\rm m}$.

Let K be a simplicial complex and L a subcomplex of K. For each subdivision K' of K, L is subdivided by the subcomplex $K'||L| = \{\tau \in K' \mid \tau \subset |L|\}$ of K'. In particular, every simplex $\sigma \in K$ is triangulated by the subcomplex $K'|\sigma = \{\tau \in K' \mid \tau \subset \sigma\}$ of K'. The barycentric subdivision $\operatorname{Sd}_L K$ of K relative to L is defined as follows:

$$\begin{aligned} \operatorname{Sd}_{L} K &= L \cup \left\{ \langle \hat{\sigma}_{1}, \dots, \hat{\sigma}_{n} \rangle \mid \sigma_{1} < \dots < \sigma_{n} \in K \setminus L \right\} \\ & \cup \left\{ \langle v_{1}, \dots, v_{m}, \hat{\sigma}_{1}, \dots, \hat{\sigma}_{n} \rangle \mid \langle v_{1}, \dots, v_{m} \rangle \in L, \\ & \sigma_{1} < \dots < \sigma_{n} \in K \setminus L, \ \langle v_{1}, \dots, v_{m} \rangle < \sigma_{1} \right\}. \end{aligned}$$

Then, L is a subcomplex of $\operatorname{Sd}_L K$ and $(\operatorname{Sd}_L K)||C(L, K)| = (\operatorname{Sd} K)||C(L, K)|$. The *n*-th barycentric subdivision $\operatorname{Sd}_L^n K$ of K relative to L is inductively defined by $\operatorname{Sd}_L^n K = \operatorname{Sd}_L(\operatorname{Sd}_L^{n-1} K)$, where $\operatorname{Sd}_L^0 K = K$. Since $(\operatorname{Sd}_L K)^{(0)} \subset (\operatorname{Sd} K)^{(0)}$, the subdivision $\operatorname{Sd}_L K$ is also admissible by Theorem 6 above, hence so is every $\operatorname{Sd}_L^n K$.

3. Proofs of Proposition 3 and Theorem 2.

PROOF OF PROPOSITION 3. Let $\sigma^{(0)} = \{v_0, v_1, \ldots, v_k\}$, that is, $\sigma = \langle v_0, v_1, \ldots, v_k \rangle$. By induction on $n \in \mathbf{N}$, we shall show the following:

 $(\star)_n$ for each $\varepsilon > 0$, there are infinitely many vertices $u_i \in (\mathrm{Sd}^n K)^{(0)}$, $i \in \mathbb{N}$, such that $\sum_{j=0}^k \beta_{v_j}^K(u_i) < \varepsilon$ and every finite set of u_i 's, togather with the vertices of the carrier of x in $\mathrm{Sd}^n K$, spans a simplex of $\mathrm{Sd}^n K$.

Then, the result follows because

$$\rho_K(x, u_i) = \sum_{v \in K^{(0)}} \left| \beta_v^K(x) - \beta_v^K(u_i) \right|$$

$$\geq \sum_{j=0}^k \left(\beta_{v_j}^K(x) - \beta_{v_j}^K(u_i) \right) + \sum_{v \in K^{(0)} \setminus \sigma^{(0)}} \beta_v^K(u_i)$$

$$= 2 \left(1 - \sum_{j=0}^k \beta_{v_j}^K(u_i) \right) > 2 - 2\varepsilon.$$

To see $(\star)_1$, for each $\varepsilon > 0$, choose $m \in \mathbb{N}$ so that $(k+1)/(k+m+2) < \varepsilon$. By the assumption, there are simplexes $\sigma < \sigma_1 < \sigma_2 < \cdots$ with dim $\sigma_i = k + m + i$. Choose $\tau_0 < \tau_1 < \cdots < \tau_{k_0} = \sigma$ so that $\langle \hat{\tau}_0, \hat{\tau}_1, \dots, \hat{\tau}_{k_0} \rangle \in \mathrm{Sd}\,K$ is the carrier of x. Then, $\hat{\tau}_0, \hat{\tau}_1, \dots, \hat{\tau}_{k_0}, \hat{\sigma}_1, \dots, \hat{\sigma}_l$ span a simplex of Sd K for each $l \in \mathbb{N}$ and

$$\sum_{j=0}^{k} \beta_{v_j}^K(\hat{\sigma}_i) = \sum_{j=0}^{k} \frac{1}{k+m+i+1} \le \frac{k+1}{k+m+2} < \varepsilon.$$

Now, we prove the implication $(\star)_n \Rightarrow (\star)_{n+1}$. Let $\sigma_0 = c_{\operatorname{Sd}^n K}(x)$ be the carrier of x in $\operatorname{Sd}^n K$. We have $\tau_0 < \tau_1 < \cdots < \tau_{k_0} = \sigma_0$ such that $\langle \hat{\tau}_0, \hat{\tau}_1, \ldots, \hat{\tau}_{k_0} \rangle$ is the carrier of x in $\operatorname{Sd}^{n+1} K$. Then, $k_0 \leq \dim \sigma_0 \leq \dim \sigma = k$. For each $\varepsilon > 0$, choose $m \in \mathbb{N}$ so that

$$\frac{\dim \sigma_0 + 1}{\dim \sigma_0 + m + 2} < \frac{\varepsilon}{2}.$$

By $(\star)_n$, we have infinitely many vertices $u_i \in (\mathrm{Sd}^n K)^{(0)}$, $i \in \mathbb{N}$, such that $\sum_{j=0}^k \beta_{v_j}^K(u_i) < \varepsilon/2$ and every finite set of u_i 's, togather with the vertices of σ_0 , spans a simplex of $\mathrm{Sd}^n K$. For each $i \in \mathbb{N}$, let $\sigma_i \in \mathrm{Sd}^n K$ be the simplex spanned by the vertices of σ_0 and u_1, \ldots, u_{m+i} . Then, dim $\sigma_i = \dim \sigma_0 + m + i$. Thus, we have infinitely many vertices $\hat{\sigma}_i \in (\mathrm{Sd}^{n+1} K)^{(0)}$, $i \in \mathbb{N}$, such that $\hat{\tau}_0, \hat{\tau}_1, \ldots, \hat{\tau}_{k_0}, \hat{\sigma}_1, \ldots, \hat{\sigma}_l$ span a simplex of $\mathrm{Sd}^{n+1} K$ for each $l \in \mathbb{N}$. Since $\sigma_0^{(0)} \subset \sigma$ and

$$\hat{\sigma}_{l} = \sum_{w \in \sigma_{0}^{(0)}} \frac{1}{\dim \sigma_{0} + m + l + 1} w + \sum_{i=1}^{l} \frac{1}{\dim \sigma_{0} + m + l + 1} u_{i},$$

it follows that

Small subdivisions of simplicial complexes with the metric topology

$$\sum_{j=0}^{k} \beta_{v_{j}}^{K}(\hat{\sigma}_{l}) = \sum_{j=0}^{k} \frac{1}{\dim \sigma_{0} + m + l + 1} \left(\sum_{w \in \sigma_{0}^{(0)}} \beta_{v_{j}}^{K}(w) + \sum_{i=1}^{l} \beta_{v_{j}}^{K}(u_{i}) \right)$$
$$= \frac{1}{\dim \sigma_{0} + m + l + 1} \left(\sum_{w \in \sigma_{0}^{(0)}} \sum_{j=0}^{k} \beta_{v_{j}}^{K}(w) + \sum_{i=1}^{l} \sum_{j=0}^{k} \beta_{v_{j}}^{K}(u_{i}) \right)$$
$$< \frac{1}{\dim \sigma_{0} + m + l + 1} \left(\dim \sigma_{0} + 1 + \frac{l\varepsilon}{2} \right) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This completes the proof.

For simplexes $\sigma, \tau \in K$, when $\sigma^{(0)} \cup \tau^{(0)}$ spans a simplex, such a simplex is denoted by $\sigma\tau$. Recall that a subcomplex L of a simplicial complex K is full (in K) if each simplex $\sigma \in K[L]$ meets |L| at a face, that is, $\sigma \cap |L|$ is a face of σ . For any subcomplex L of K, Sd L is a full subcomplex of Sd K.

LEMMA 7. Let K be a simplicial complex and L a finite-dimensional full subcomplex of K. Every simplicial subdivision B' of B(L, K) extends to a simplicial subdivision N' of N(L, K) such that $L \cup B' \subset N'$ and $N'^{(0)} = L^{(0)} \cup B'^{(0)}$.

PROOF. For each $\tau \in B'$, $c_K(\hat{\tau}) \in B(L, K)$ and $\operatorname{Lk}(c_K(\hat{\tau}), K) \cap L \neq \emptyset$, where $c_K(\hat{\tau})$ is the carrier of the barycenter of τ in K. For each $\sigma \in \operatorname{Lk}(c_K(\hat{\tau}), K) \cap L$, we have $\sigma \tau \subset \sigma c_K(\hat{\tau}) \in K$. Then, we define

$$N' = L \cup B' \cup \{ \sigma\tau \mid \sigma \in \operatorname{Lk}(c_K(\hat{\tau}), K) \cap L, \ \tau \in B' \}.$$

Obviously, $N'^{(0)} = L^{(0)} \cup B'^{(0)}$. For each $x \in |N(L, K)| \setminus |L \cup B'|$, since L is full in K, we have $\sigma = c_K(x) \cap |L| \in L$. Let σ' be the opposite face of $c_K(x)$ from σ . Then, $\sigma' \in B(L, K)$. Since B' is a subdivision of B(L, K), we have $\tau \in B'$ such that $c_K(\hat{\tau}) = \sigma'$ and $x \in \sigma\tau$. Thus, N' is a subdivision of N(L, K).

PROOF OF THEOREM 2. First of all, note that if a subdivision K' of K refines \mathscr{U} then $\mathscr{S}_{K'}$ refines st $\mathscr{U} = \{ \operatorname{st}(U, \mathscr{U}) \mid U \in \mathscr{U} \}$. Since every open cover of $|K|_{\mathrm{m}}$ has the open star-refinement, it suffices to construct an admissible subdivision K' of K which refines \mathscr{U} . We shall inductively construct admissible subdivisions K_n of K, $n \ge 0$, so as to satisfy the following conditions:

- (1) K_n is a subdivision of K_{n-1} ;
- (2) $K_n ||K^{(n-1)}| = K_{n-1} ||K^{(n-1)}|;$
- (3) $K_n[K^{(n)}]$ refines \mathscr{U} ;
- (4) $|C(K^{(n-1)}, K_n)| = |C(K^{(n-1)}, K_{n-1})|,$

 \Box

equivalently
$$|N(K^{(n-1)}, K_n)| = |N(K^{(n-1)}, K_{n-1})|,$$

where $K_{-1} = \operatorname{Sd} K$ and $K^{(-1)} = \emptyset$. Then, (2) guarantees that $K' = \bigcup_{n \in \mathbb{N}} K_n ||K^{(n)}|$ is a simplicial subdivision of K, where one should note that $K_0 ||K^{(0)}| = K^{(0)} \subset K_1 ||K^{(1)}|$. By (3), K' refines \mathscr{U} . Since each K_n is admissible, $K'^{(0)} ||K^{(n)}| = K_n^{(0)} ||K^{(n)}|$ is discrete in $|K|_m$ by (2). Since $|C(K^{(n)}, K')| \subset |C(K^{(n)}, K_n)|$ by (2) and (4), $C(K^{(n)}, K')^{(0)}$ has no accumulation points in $|K^{(n)}|$. Then, it follows that $K'^{(0)}$ is discrete in $|K|_m$, which means that K' is an admissible subdivision of K by Theorem 6.

For each vertex $v \in K^{(0)}$, choose $1/2 < t_v < 1$ so that $(\beta_v^{\operatorname{Sd}^2 K})^{-1}([t_v, 1])$ is contained in some $U_v \in \mathscr{U}$ (Lemma 5 or 4). Dividing each $\sigma \in (\operatorname{Sd}^2 K)[v] \setminus \{v\}$ into two cells by $(\beta_v^{\operatorname{Sd}^2 K})^{-1}(t_v)$, we have a cell complex L subdividing $\operatorname{Sd}^2 K$, that is,

$$L = K^{(0)} \cup C(K^{(0)}, \operatorname{Sd}^{2} K)$$
$$\cup \{ \sigma \cap (\beta_{v}^{\operatorname{Sd}^{2} K})^{-1}(t_{v}), \ \sigma \cap (\beta_{v}^{\operatorname{Sd}^{2} K})^{-1}([0, t_{v}]),$$
$$\sigma \cap (\beta_{v}^{\operatorname{Sd}^{2} K})^{-1}([t_{v}, 1]) \mid \sigma \in (\operatorname{Sd}^{2} K)[v] \setminus \{v\}, \ v \in K^{(0)} \}.$$

Then, $L^{(0)}$ is discrete in $|K|_{\rm m}$. Indeed, $L^{(0)}$ consists of the vertices $(\operatorname{Sd}^2 K)^{(0)}$ and the points

$$v_w = (1 - t_v)w + t_v v, \quad v \in K^{(0)}, \quad w \in Lk(v, \mathrm{Sd}^2 K)^{(0)}.$$

Since $\operatorname{Sd}^2 K$ is an admissible subdivision of K, $(\operatorname{Sd}^2 K)^{(0)}$ is discrete in $|K|_{\mathrm{m}}$. On the other hand, $\{(\beta_v^{\operatorname{Sd}^2 K})^{-1}(t_v) \mid v \in K^{(0)}\}$ is discrete in $|K|_{\mathrm{m}}$. Then, it suffices to see that $\{v_w \mid w \in \operatorname{Lk}(v, \operatorname{Sd}^2 K)^{(0)}\}$ is discrete in $(\beta_v^{\operatorname{Sd}^2 K})^{-1}(t_v)$ for each $v \in K^{(0)}$. Note that the metric $\rho_{\operatorname{Sd}^2 K}$ is admissible for $|K|_{\mathrm{m}}$. For each $w, w' \in \operatorname{Lk}(v, \operatorname{Sd}^2 K)^{(0)}$,

$$\rho_{\mathrm{Sd}^2 K}(v_w, v_{w'}) = \beta_w^{\mathrm{Sd}^2 K}(v_w) + \beta_{w'}^{\mathrm{Sd}^2 K}(v_{w'}) = 2(1 - t_v).$$

Now, let K_0 be a simplicial subdivision of L with $K_0^{(0)} = L^{(0)}$. Since $K_0^{(0)} = L^{(0)}$ is discrete in $|K|_m$, K_0 is an admissible subdivision of K by Theorem 6. Observe that

$$|\operatorname{St}(v, K_0)| = (\beta_v^{\operatorname{Sd} K})^{-1}([t_v, 1]) \subset U_v \text{ for } v \in K_0^{(0)}$$

Then, K_0 satisfies (3).

Figure 1. The subdivision K_0 of $\operatorname{Sd}^2 K$.

Assume that K_{n-1} has been obtained. For each *n*-simplex $\tau \in K$, we define

$$\tau^* = \tau \cap |C(K^{(n-1)}, K_{n-1})|.$$

Note that $K_{n-1}|\tau^*$ is a triangulation of τ^* . We can choose $n(\tau) \in \mathbf{N}$ so that $\mathrm{Sd}^{n(\tau)}(K_{n-1}|\tau^*) \prec \mathscr{U}.^3$ Let

$$B_{\tau} = B(\tau^*, C(K^{(n-1)}, K_{n-1})) \text{ and }$$
$$N_{\tau} = \operatorname{Sd}_{B_{\tau}}^{n(\tau)} N(\tau^*, C(K^{(n-1)}, K_{n-1})).$$

Then, N_{τ} is an admissible subdivision of $N(\tau^*, C(K^{(n-1)}, K_{n-1}))$, hence $|N_{\tau}|_{\mathrm{m}}$ is a subspace of $|K_{n-1}|_{\mathrm{m}} = |K|_{\mathrm{m}}$. Moreover,

$$N_{\tau} \mid \tau^* = \mathrm{Sd}^{n(\tau)}(K_{n-1} \mid \tau^*) \prec \mathscr{U},$$

hence each $\sigma \in N_{\tau} | \tau^*$ is contained in some $U_{\sigma} \in \mathscr{U}$. By Lemma 5, $(\beta_{\sigma}^{N_{\tau}})^{-1}([t,1]) \subset U_{\sigma}$ for some 1/2 < t < 1. Since $N_{\tau} | \tau^*$ is finite, we can find $1/2 < t_{\tau} < 1$ such that

$$\left\{ (\beta_{\sigma}^{N_{\tau}})^{-1}([t_{\tau},1]) \mid \sigma \in N_{\tau} \mid \tau^* \right\} \prec \mathscr{U}.$$

³In general, $n(\tau)$ cannot be chosen so that $\operatorname{Sd}^{n(\tau)}(N(\tau, K_{n-1}) \cap C(\partial \tau, K_{n-1})) \prec \mathscr{U}$ (Proposition 3).

For each $\sigma \in N_{\tau}[\tau^*] \setminus N_{\tau}|\tau^*$, we have $\sigma \cap \tau^* \in N_{\tau}|\tau^*$ and $\beta_{\sigma\cap\tau^*}^{N_{\tau}}|\sigma = \beta_{\tau^*}^{N_{\tau}}|\sigma$. Dividing each $\sigma \in N_{\tau}[\tau^*] \setminus N_{\tau}|\tau^*$ into two cells by $(\beta_{\tau^*}^{N_{\tau}})^{-1}(t_{\tau})$, we have a cell complex L_{τ} subdividing N_{τ} , that is,

$$L_{\tau} = N_{\tau} | \tau^* \cup C(\tau^*, N_{\tau}) \cup \left\{ \sigma \cap (\beta_{\tau^*}^{N_{\tau}})^{-1}(t_{\tau}), \ \sigma \cap (\beta_{\tau^*}^{N_{\tau}})^{-1}([0, t_{\tau}]), \\ \sigma \cap (\beta_{\tau^*}^{N_{\tau}})^{-1}([t_{\tau}, 1]) \mid \sigma \in N_{\tau}[\tau^*] \setminus N_{\tau} \mid \tau^* \right\}.$$

Then, $L_{\tau}^{(0)}$ is discrete in $|N_{\tau}|_{\rm m}$, so in $|K|_{\rm m}$. Indeed, $L_{\tau}^{(0)}$ consists of $N_{\tau}^{(0)}$ and the points

$$(1 - t_{\tau})w + t_{\tau}v, \quad v \in N_{\tau}^{(0)} | \tau^*, \quad w \in \operatorname{Lk}(v, N_{\tau})^{(0)} \setminus \tau^*,$$

where $N_{\tau}^{(0)}$ is discrete in $|N_{\tau}|_{\rm m}$. As is easily observed, we have

$$\operatorname{dist}_{\rho_{N_{\tau}}} \left(N_{\tau}^{(0)}, (\beta_{\tau^*}^{N_{\tau}})^{-1}(t_{\tau}) \right) \ge \min\{2t_{\tau}, \ 2(1-t_{\tau})\}.$$

For each $v, v' \in N_{\tau}^{(0)} | \tau^*, w \in \operatorname{Lk}(v, N_{\tau})^{(0)} \setminus \tau^*$ and $w' \in \operatorname{Lk}(v', N_{\tau})^{(0)} \setminus \tau^*$, if $v \neq v'$ or $w \neq w'$ then

$$\rho_{N_{\tau}}((1-t_{\tau})w+t_{\tau}v,(1-t_{\tau})w'+t_{\tau}v') \geq \min\{2t_{\tau},\ 2(1-t_{\tau})\}.$$

Figure 2. The subdivision N_{τ} of $N(\tau, K_0)$.

Now, for each $\tau \in K(n)$, let K_{τ} be a simplicial subdivision of L_{τ} with $K_{\tau}^{(0)} = L_{\tau}^{(0)}$. Observe

Small subdivisions of simplicial complexes with the metric topology

$$B_{\tau} = K_{\tau} \cap C(K^{(n)}, K_{n-1})$$
 and $|B_{\tau}| = |K_{\tau}| \cap |C(K^{(n)}, K_{n-1})|.$

Then, the following is a simplicial complex subdividing $C(K^{(n-1)}, K_{n-1})$:

$$C' = C(K^{(n)}, K_{n-1}) \cup \bigcup_{\tau \in K(n)} K_{\tau}.$$

By Lemma 7, we have a simplicial subsdivision N' of $N(K^{(n-1)}, K_{n-1})$ such that

$$N'||B(K^{(n-1)}, K_{n-1})| = C'||B(K^{(n-1)}, K_{n-1})|$$
 and
 $N'^{(0)} = N(K^{(n-1)}, K_{n-1})^{(0)} \cup B'^{(0)}.$

Then, $K_n = C' \cup B'$ is a simplicial subdivision of K_{n-1} such that

$$|N(K^{(n-1)}, K_{n-1})| = |N(K^{(n-1)}, K_n)|$$

that is, K_n satisfies the conditions (1) and (4). Note that

$$K_n^{(0)} = N(K^{(n-1)}, K_{n-1})^{(0)} \cup C(K^{(n)}, K_{n-1})^{(0)} \cup \bigcup_{\tau \in K(n)} K_{\tau}^{(0)}$$
$$= K_{n-1}^{(0)} \cup \bigcup_{\tau \in K(n)} N_{\tau}^{(0)},$$

which is discrete in $|K|_{\rm m}$. This means that K_n is an admissible subdivision of K by Theorem 6. By our construction, we have $K_n||K^{(n-1)}| = K_{n-1}||K^{(n-1)}|$, that is, K_n satisfies (2). Moreover, $K_n[K^{(n)}] \prec \mathscr{U}$ because

$$K_n[K^{(n-1)}] \prec K_{n-1}[K^{(n-1)}] \prec \mathscr{U}$$
 and
 $K_n[K^{(n)}] \setminus K_n[K^{(n-1)}] \subset \bigcup_{\tau \in K(n)} N_\tau \prec \mathscr{U}.$

Thus, K_n satisfies (3). The proof is completed.

ACKNOWLEDGMENTS. The author would like to express his sincere thanks to Katsuhisa Koshino for finding out a gap in Henderson's proof of Theorem 2 and he also appreciates the referee's correction of the assumption in Proposition 3.

799

References

- [1] D. W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc., 213 (1975), 205–216.
- [2] K. Mine and K. Sakai, Subdivisions of simplicial complexes preserving the metric topology, to appear in Canad. Math. Bull.
- [3] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc.
 (2), 45 (1939), 243–327.

Katsuro Sakai

Institute of Mathematics University of Tsukuba Tsukuba 305-8571, Japan E-mail: sakaiktr@sakura.cc.tsukuba.ac.jp