Small subdivisions of simplicial complexes with the metric topology

By Katsuro Sakai

(Received Feb. 19, 2010)

Abstract

D. W. Henderson established the metric topology vertion of J. H. C. Whitehead's Theorem on small subdivisions of simplicial complexes. However, his proof is valid only for locally finite-dimensional simplicial complexes. In this note, we give a complete proof of Henderson's Theorem for arbitrary simplicial complexes.

1. Introduction.

For a simplicial complex K, the polyhedron $|K|$ has two topologies, the Whitehead (weak) topology and the metric topology. By $|K|_{\mathrm{w}}$ and $|K|_{\mathrm{m}}$, we denote $|K|$ with the Whitehead (weak) topology and the metric topology, respectively. Unless K is locally finite, $|K|_{\mathrm{w}} \neq|K|_{\mathrm{m}}$ as spaces. For a simplicial subdivision K^{\prime} of $K,\left|K^{\prime}\right|_{\mathrm{w}}=|K|_{\mathrm{w}}$ but $\left|K^{\prime}\right|_{\mathrm{m}} \neq|K|_{\mathrm{m}}$ as spaces. We call a simplicial subdivision K^{\prime} of K an admissible subdivision if $\left|K^{\prime}\right|_{\mathrm{m}}=|K|_{\mathrm{m}}$ as spaces. ${ }^{1}$ The barycentric subdivision $\operatorname{Sd} K$ of K is admissible. Recall that the star $\operatorname{St}(\sigma, K)$ at $\sigma \in K$ is the subcomplex of K consisting of all faces of simplexes having σ as a face. Let $\mathscr{S}_{K}=\left\{|\operatorname{St}(v, K)| \mid v \in K^{(0)}\right\}$, where $K^{(0)}$ is the set of all vertices of K.

The following theorem is due to J. H. C. Whitehead [3], which is very important because one can use this theorem to prove the paracompactness of $|K|_{\mathrm{w}}$, the simplicial approximation theorem, etc.

Theorem 1 (J. H. C. Whitehead). Let K be an arbitrary simplicial complex. For any open cover \mathscr{U} of $|K|_{\mathrm{w}}$, there exists a simplicial subdivision K^{\prime} of K such that $\mathscr{S}_{K^{\prime}}$ refines \mathscr{U}.

In [1, Lemma V.7], D. W. Henderson established the following metric topology version of Whitehead's Theorem above, which is a key lemma to prove basic

[^0]theorems on non-separable infinite-dimensional manifolds.
Theorem 2 (D. W. Henderson). Let K be an arbitrary simplicial complex. For any open cover \mathscr{U} of $|K|_{\mathrm{m}}$, there exists an admissible subdivision K^{\prime} of K such that $\mathscr{S}_{K^{\prime}}$ refines \mathscr{U}.

Although his proof is valid for a locally finite-dimensional simplicial complex, it is not valid in general. The problem is the existence of the integer $n(s)$ for a simplex s in the proof. The n-th barycentric subdivision $\mathrm{Sd}^{n} K$ of K is inductively defined by $\mathrm{Sd}^{n} K=\operatorname{Sd}\left(\mathrm{Sd}^{n-1} K\right)$, where $\mathrm{Sd}^{0} K=K$. As well known, when $\operatorname{dim} K<\infty$,

$$
\operatorname{mesh}_{\rho_{K}} \operatorname{Sd}^{n} K=2\left(\frac{\operatorname{dim} K}{\operatorname{dim} K+1}\right)^{n} \text { for each } n \in \boldsymbol{N}
$$

where ρ_{K} is the barycentric metric (the definition is given in Preliminaries). Hence, if the star at a simplex s in the complex is finite-dimensional then such an $n(s)$ exists. However, when the star at s is infinite-dimensional, such an $n(s)$ does not exist even locally, that is, no matter how large n is, the size of simplexes of $N_{n}(s)$ is not small anywhere in s. This follows from the proposition below:

Proposition 3. Let K be a simplicial complex and $x \in|K|$. Suppose that the star of the carrier $\sigma \in K$ of x contains an infinite full complex. ${ }^{2}$ For each $n \in \boldsymbol{N}$ and $\varepsilon>0$, there are infinitely many vertices $u_{i} \in\left(\operatorname{Sd}^{n} K\right)^{(0)}, i \in \boldsymbol{N}$, such that $\rho_{K}\left(x, u_{i}\right)>2-\varepsilon$ and every finite set of u_{i} 's, togather with the vertices of the carrier of x in $\mathrm{Sd}^{n} K$, spans a simplex of $\mathrm{Sd}^{n} K$.

In this note, we shall show Proposition 3 and give a complete proof of Theorem 2 without local finite-dimensionality.

2. Preliminaries.

Our notations are different from the paper [1]. Here are notations fixed. For a collection \mathscr{A} of subsets of X and $B \subset X$, we use the following notations:

$$
\begin{gathered}
\mathscr{A} \mid B=\{A \cap B \mid A \in \mathscr{A}\}, \mathscr{A}[B]=\{A \in \mathscr{A} \mid A \cap B \neq \emptyset\} \\
\text { and } \operatorname{st}(B, \mathscr{A})=\bigcup \mathscr{A}[B] .
\end{gathered}
$$

[^1]Given a collection \mathscr{B} of subsets of $X, \mathscr{A}[\bigcup \mathscr{B}]$ is simply denoted by $\mathscr{A}[\mathscr{B}]$. When \mathscr{B} refines \mathscr{A}, that is, each $B \in \mathscr{B}$ is contained in some $A \in \mathscr{A}$, we write $\mathscr{B} \prec \mathscr{A}$.

The simplex spanned by vertices $v_{0}, v_{1}, \ldots, v_{n}$ is denoted by $\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle$. For simplexes σ and $\tau, \sigma \leq \tau$ (or $\sigma<\tau$) means that σ is a face (or a proper face) of τ. The boundary, the interior, the barycenter and the set of vertices of σ are denoted by $\partial \sigma, \stackrel{\circ}{\sigma}, \hat{\sigma}$ and $\sigma^{(0)}$, respectively.

Let K be a simplicial complex. The n-skeleton of K is denoted by $K^{(n)}$, that is, $K^{(n)}=\{\sigma \in K \mid \operatorname{dim} \sigma \leq n\}$. By $K(n)$, we denote the set of all n-simplexes in K, that is, $K(n)=K^{(n)} \backslash K^{(n-1)}$. For $A \subset|K|$, let

$$
\begin{aligned}
& N(A, K)=\{\sigma \in K \mid \exists \tau \in K[A] \text { such that } \sigma \leq \tau\}, \\
& C(A, K)=K \backslash K[A]=\{\sigma \in K \mid \sigma \cap A=\emptyset\} \quad \text { and } \\
& B(A, K)=N(A, K) \cap C(A, K) .
\end{aligned}
$$

In case $A=|L|$ for a subcomplex $L \subset K$, we simply write $N(L, K), C(L, K)$ and $B(L, K)$ instead of $N(|L|, K), C(|L|, K)$ and $B(|L|, K)$, respectively. Note that $N(\{v\}, K)=\operatorname{St}(v, K)$ for each $v \in K^{(0)}$ but $N(\sigma, K) \supsetneqq \operatorname{St}(\sigma, K)$ for each $\sigma \in K \backslash K^{(0)}$ in general. For each simplex $\sigma \in K,|N(\sigma, K)|=\operatorname{st}(\sigma, K)$ and $|\operatorname{St}(\sigma, K)|=\operatorname{st}(\stackrel{\circ}{\sigma}, K)=\operatorname{st}(\hat{\sigma}, K)$.

There exist functions $\beta_{v}^{K}:|K| \rightarrow \boldsymbol{I}, v \in K^{(0)}$, such that $\sum_{v \in K^{(0)}} \beta_{v}^{K}(x)=1$ and $x=\sum_{v \in K^{(0)}} \beta_{v}^{K}(x) v$ for each $x \in|K|$, where $\left(\beta_{v}^{K}(x)\right)_{v \in K^{(0)}}$ is the barycentric coordinate of $x \in|K|$. It should be noticed that every β_{v}^{K} is affine (linear) on each $\sigma \in K$ and $\beta_{v}^{K}(\sigma)=0$ if $v \notin \sigma^{(0)}$. The barycentric metric ρ_{K} is defined as follows:

$$
\rho_{K}(x, y)=\sum_{v \in K^{(0)}}\left|\beta_{v}^{K}(x)-\beta_{v}^{K}\left(x^{\prime}\right)\right| .
$$

The metric topology for $|K|$ is induced by this metric.
The open star $O_{K}(v)$ at $v \in K^{(0)}$ is defined by

$$
O_{K}(v)=\left(\beta_{v}^{K}\right)^{-1}((0,1])=|\operatorname{St}(v, K)| \backslash|\operatorname{Lk}(v, K)|
$$

For each point $x \in|K|$, we denote by $c_{K}(x)$ the carrier of x in K, that is, $c_{K}(x) \in$ K is the smallest simplex containing x. Then, $c_{K}(x)^{(0)}=\left\{v \in K^{(0)} \mid \beta_{v}^{K}(x)>0\right\}$. The open star at $x \in|K|$ can be defined as follows:

$$
O_{K}(x)=\bigcup_{\sigma \in K[x]} \stackrel{\circ}{\sigma}=\bigcap_{v \in c_{K}(x)^{(0)}} O_{K}(v) .
$$

For each $0<r \leq 1$, we define

$$
O_{K}(x, r)=(1-r) x+r O_{K}(x)=\left\{(1-r) x+r y \mid y \in O_{K}(x)\right\},
$$

which is an open neighborhood of x in $|K|_{\mathrm{m}}$ contained in the open ball $B_{\rho_{K}}(x, 2 r)$ with center x and radius $2 r$. Indeed, for each $y \in O_{K}(x)$,

$$
\begin{aligned}
\rho_{K}((1-r) x+r y, x) & =\sum_{v \in K^{(0)}}\left|\beta_{v}^{K}((1-r) x+r y)-\beta_{v}^{K}(x)\right| \\
& =\sum_{v \in K^{(0)}} r\left|\beta_{v}^{K}(y)-\beta_{v}^{K}(x)\right|=r \rho_{K}(y, x)<2 r .
\end{aligned}
$$

For a vertex $v \in K^{(0)}$, we have $O_{K}(v, r)=\left(\beta_{v}^{K}\right)^{-1}((1-r, 1])=B_{\rho_{K}}(v, 2 r)$. The following fact is used in the proof of [1, Lemma V.5]:

Lemma 4. $\left\{O_{K}(x, r) \mid 0<r \leq 1\right\}$ is an open neighborhood basis at x in $|K|_{\mathrm{m}}$.

For $A \subset|K|$, let $\beta_{A}^{K}=\sum_{v \in K^{(0)} \cap A} \beta_{v}^{K}:|K| \rightarrow \boldsymbol{I}$. In case A is a simplex $\sigma \in K, \sigma=\left(\beta_{\sigma}^{K}\right)^{-1}(1)$ and $\left(\beta_{\sigma}^{K}\right)^{-1}((0,1])=\bigcup_{v \in \sigma^{(0)}} O_{K}(v)$. The following will be used in the proof of Theorem 2:

Lemma 5. $\quad\left(\beta_{\sigma}^{K}\right)^{-1}((1-r, 1]) \subset\left\{y \in|K| \mid \operatorname{dist}_{\rho_{K}}(y, \sigma)<2 r\right\}$ for each $\sigma \in K$.

Proof. For each $y \in\left(\beta_{\sigma}^{K}\right)^{-1}((1-r, 1])$, we have $x \in \sigma$ defined by

$$
x=\sum_{v \in \sigma^{(0)}} \frac{\beta_{v}^{K}(y)}{\beta_{\sigma}^{K}(y)} v \quad\left(\text { i.e., } \beta_{v}^{K}(x)=\frac{\beta_{v}^{K}(y)}{\beta_{\sigma}^{K}(y)} \text { for each } v \in \sigma^{(0)}\right) .
$$

Then, it follows that

$$
\begin{aligned}
\rho_{K}(x, y) & =\sum_{v \in K^{(0)}}\left|\beta_{v}^{K}(x)-\beta_{v}^{K}(y)\right| \\
& =\sum_{v \in \sigma^{(0)}}\left(\beta_{v}^{K}(x)-\beta_{v}^{K}(y)\right)+\sum_{v \in K^{(0)} \backslash \sigma^{(0)}} \beta_{v}^{K}(y) \\
& =2\left(1-\beta_{\sigma}^{K}(y)\right)<2 r .
\end{aligned}
$$

Thus, we have $\operatorname{dist}_{\rho_{K}}(y, \sigma)<2 r$.

For a simplicial subdivision K^{\prime} of $K, \rho_{K} \leq \rho_{K^{\prime}}$ but the topology induced by $\rho_{K^{\prime}}$ is different from the one induced by ρ_{K} in general. A simplicial subdivision K^{\prime} of K is admissible if and only if $\rho_{K^{\prime}}$ is admissible for the space $|K|_{\mathrm{m}}$. Admissible subdivisions are characterized in $[\mathbf{1}$, Lemma V.5] and $[\mathbf{2}$, Theorem 2] as follows:

Theorem 6. For a simplicial subdivision K^{\prime} of a simplicial complex K, the following are equivalent:
(a) K^{\prime} is admissible;
(b) $O_{K^{\prime}}(v)$ is open in $|K|_{\mathrm{m}}$ for each $v \in K^{\prime(0)}$;
(c) $K^{\prime(0)}$ is discrete in $|K|_{\mathrm{m}}$.

Let K be a simplicial complex and L a subcomplex of K. For each subdivision K^{\prime} of K, L is subdivided by the subcomplex $K^{\prime}| | L \mid=\left\{\tau \in K^{\prime}|\tau \subset| L \mid\right\}$ of K^{\prime}. In particular, every simplex $\sigma \in K$ is triangulated by the subcomplex $K^{\prime} \mid \sigma=\left\{\tau \in K^{\prime} \mid \tau \subset \sigma\right\}$ of K^{\prime}. The barycentric subdivision $\operatorname{Sd}_{L} K$ of K relative to L is defined as follows:

$$
\begin{aligned}
\operatorname{Sd}_{L} K=L & \cup\left\{\left\langle\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{n}\right\rangle \mid \sigma_{1}<\cdots<\sigma_{n} \in K \backslash L\right\} \\
& \cup\left\{\left\langle v_{1}, \ldots, v_{m}, \hat{\sigma}_{1}, \ldots, \hat{\sigma}_{n}\right\rangle \mid\left\langle v_{1}, \ldots, v_{m}\right\rangle \in L,\right. \\
& \left.\sigma_{1}<\cdots<\sigma_{n} \in K \backslash L,\left\langle v_{1}, \ldots, v_{m}\right\rangle<\sigma_{1}\right\} .
\end{aligned}
$$

Then, L is a subcomplex of $\operatorname{Sd}_{L} K$ and $\left(\operatorname{Sd}_{L} K\right)\|C(L, K)|=(\operatorname{Sd} K) \| C(L, K)|$. The n-th barycentric subdivision $\operatorname{Sd}_{L}^{n} K$ of K relative to L is inductively defined by $\operatorname{Sd}_{L}^{n} K=\operatorname{Sd}_{L}\left(\operatorname{Sd}_{L}^{n-1} K\right)$, where $\operatorname{Sd}_{L}^{0} K=K$. Since $\left(\operatorname{Sd}_{L} K\right)^{(0)} \subset(\operatorname{Sd} K)^{(0)}$, the subdivision $\operatorname{Sd}_{L} K$ is also admissible by Theorem 6 above, hence so is every $\operatorname{Sd}_{L}^{n} K$.

3. Proofs of Proposition 3 and Theorem 2.

Proof of Proposition 3. Let $\sigma^{(0)}=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$, that is, $\sigma=$ $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$. By induction on $n \in \boldsymbol{N}$, we shall show the following:
$(\star)_{n}$ for each $\varepsilon>0$, there are infinitely many vertices $u_{i} \in\left(\operatorname{Sd}^{n} K\right)^{(0)}, i \in \boldsymbol{N}$, such that $\sum_{j=0}^{k} \beta_{v_{j}}^{K}\left(u_{i}\right)<\varepsilon$ and every finite set of u_{i} 's, togather with the vertices of the carrier of x in $\mathrm{Sd}^{n} K$, spans a simplex of $\mathrm{Sd}^{n} K$.

Then, the result follows because

$$
\begin{aligned}
\rho_{K}\left(x, u_{i}\right) & =\sum_{v \in K^{(0)}}\left|\beta_{v}^{K}(x)-\beta_{v}^{K}\left(u_{i}\right)\right| \\
& \geq \sum_{j=0}^{k}\left(\beta_{v_{j}}^{K}(x)-\beta_{v_{j}}^{K}\left(u_{i}\right)\right)+\sum_{v \in K^{(0)} \backslash \sigma^{(0)}} \beta_{v}^{K}\left(u_{i}\right) \\
& =2\left(1-\sum_{j=0}^{k} \beta_{v_{j}}^{K}\left(u_{i}\right)\right)>2-2 \varepsilon .
\end{aligned}
$$

To see $(\star)_{1}$, for each $\varepsilon>0$, choose $m \in \boldsymbol{N}$ so that $(k+1) /(k+m+2)<\varepsilon$. By the assumption, there are simplexes $\sigma<\sigma_{1}<\sigma_{2}<\cdots$ with $\operatorname{dim} \sigma_{i}=k+m+i$. Choose $\tau_{0}<\tau_{1}<\cdots<\tau_{k_{0}}=\sigma$ so that $\left\langle\hat{\tau}_{0}, \hat{\tau}_{1}, \ldots, \hat{\tau}_{k_{0}}\right\rangle \in \operatorname{Sd} K$ is the carrier of x. Then, $\hat{\tau}_{0}, \hat{\tau}_{1}, \ldots, \hat{\tau}_{k_{0}}, \hat{\sigma}_{1}, \ldots, \hat{\sigma}_{l}$ span a simplex of $\operatorname{Sd} K$ for each $l \in N$ and

$$
\sum_{j=0}^{k} \beta_{v_{j}}^{K}\left(\hat{\sigma}_{i}\right)=\sum_{j=0}^{k} \frac{1}{k+m+i+1} \leq \frac{k+1}{k+m+2}<\varepsilon .
$$

Now, we prove the implication $(\star)_{n} \Rightarrow(\star)_{n+1}$. Let $\sigma_{0}=c_{\operatorname{Sd}^{n} K}(x)$ be the carrier of x in $\mathrm{Sd}^{n} K$. We have $\tau_{0}<\tau_{1}<\cdots<\tau_{k_{0}}=\sigma_{0}$ such that $\left\langle\hat{\tau}_{0}, \hat{\tau}_{1}, \ldots, \hat{\tau}_{k_{0}}\right\rangle$ is the carrier of x in $\mathrm{Sd}^{n+1} K$. Then, $k_{0} \leq \operatorname{dim} \sigma_{0} \leq \operatorname{dim} \sigma=k$. For each $\varepsilon>0$, choose $m \in \boldsymbol{N}$ so that

$$
\frac{\operatorname{dim} \sigma_{0}+1}{\operatorname{dim} \sigma_{0}+m+2}<\frac{\varepsilon}{2}
$$

By $(\star)_{n}$, we have infinitely many vertices $u_{i} \in\left(\operatorname{Sd}^{n} K\right)^{(0)}, i \in \boldsymbol{N}$, such that $\sum_{j=0}^{k} \beta_{v_{j}}^{K}\left(u_{i}\right)<\varepsilon / 2$ and every finite set of u_{i} 's, togather with the vertices of σ_{0}, spans a simplex of $\mathrm{Sd}^{n} K$. For each $i \in \boldsymbol{N}$, let $\sigma_{i} \in \mathrm{Sd}^{n} K$ be the simplex spanned by the vertices of σ_{0} and u_{1}, \ldots, u_{m+i}. Then, $\operatorname{dim} \sigma_{i}=\operatorname{dim} \sigma_{0}+m+$ i. Thus, we have infinitely many vertices $\hat{\sigma}_{i} \in\left(\mathrm{Sd}^{n+1} K\right)^{(0)}, i \in \boldsymbol{N}$, such that $\hat{\tau}_{0}, \hat{\tau}_{1}, \ldots, \hat{\tau}_{k_{0}}, \hat{\sigma}_{1}, \ldots, \hat{\sigma}_{l}$ span a simplex of $\operatorname{Sd}^{n+1} K$ for each $l \in \boldsymbol{N}$. Since $\sigma_{0}^{(0)} \subset \sigma$ and

$$
\hat{\sigma}_{l}=\sum_{w \in \sigma_{0}^{(0)}} \frac{1}{\operatorname{dim} \sigma_{0}+m+l+1} w+\sum_{i=1}^{l} \frac{1}{\operatorname{dim} \sigma_{0}+m+l+1} u_{i}
$$

it follows that

$$
\begin{aligned}
\sum_{j=0}^{k} \beta_{v_{j}}^{K}\left(\hat{\sigma}_{l}\right) & =\sum_{j=0}^{k} \frac{1}{\operatorname{dim} \sigma_{0}+m+l+1}\left(\sum_{w \in \sigma_{0}^{(0)}} \beta_{v_{j}}^{K}(w)+\sum_{i=1}^{l} \beta_{v_{j}}^{K}\left(u_{i}\right)\right) \\
& =\frac{1}{\operatorname{dim} \sigma_{0}+m+l+1}\left(\sum_{w \in \sigma_{0}^{(0)}} \sum_{j=0}^{k} \beta_{v_{j}}^{K}(w)+\sum_{i=1}^{l} \sum_{j=0}^{k} \beta_{v_{j}}^{K}\left(u_{i}\right)\right) \\
& <\frac{1}{\operatorname{dim} \sigma_{0}+m+l+1}\left(\operatorname{dim} \sigma_{0}+1+\frac{l \varepsilon}{2}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

This completes the proof.
For simplexes $\sigma, \tau \in K$, when $\sigma^{(0)} \cup \tau^{(0)}$ spans a simplex, such a simplex is denoted by $\sigma \tau$. Recall that a subcomplex L of a simplicial complex K is full (in K) if each simplex $\sigma \in K[L]$ meets $|L|$ at a face, that is, $\sigma \cap|L|$ is a face of σ. For any subcomplex L of $K, \operatorname{Sd} L$ is a full subcomplex of $\operatorname{Sd} K$.

Lemma 7. Let K be a simplicial complex and L a finite-dimensional full subcomplex of K. Every simplicial subdivision B^{\prime} of $B(L, K)$ extends to a simplicial subdivision N^{\prime} of $N(L, K)$ such that $L \cup B^{\prime} \subset N^{\prime}$ and $N^{\prime(0)}=L^{(0)} \cup B^{\prime(0)}$.

Proof. For each $\tau \in B^{\prime}, c_{K}(\hat{\tau}) \in B(L, K)$ and $\operatorname{Lk}\left(c_{K}(\hat{\tau}), K\right) \cap L \neq \emptyset$, where $c_{K}(\hat{\tau})$ is the carrier of the barycenter of τ in K. For each $\sigma \in \operatorname{Lk}\left(c_{K}(\hat{\tau}), K\right) \cap L$, we have $\sigma \tau \subset \sigma c_{K}(\hat{\tau}) \in K$. Then, we define

$$
N^{\prime}=L \cup B^{\prime} \cup\left\{\sigma \tau \mid \sigma \in \operatorname{Lk}\left(c_{K}(\hat{\tau}), K\right) \cap L, \tau \in B^{\prime}\right\}
$$

Obviously, $N^{\prime(0)}=L^{(0)} \cup B^{\prime(0)}$. For each $x \in|N(L, K)| \backslash\left|L \cup B^{\prime}\right|$, since L is full in K, we have $\sigma=c_{K}(x) \cap|L| \in L$. Let σ^{\prime} be the opposite face of $c_{K}(x)$ from σ. Then, $\sigma^{\prime} \in B(L, K)$. Since B^{\prime} is a subdivision of $B(L, K)$, we have $\tau \in B^{\prime}$ such that $c_{K}(\hat{\tau})=\sigma^{\prime}$ and $x \in \sigma \tau$. Thus, N^{\prime} is a subdivision of $N(L, K)$.

Proof of Theorem 2. First of all, note that if a subdivision K^{\prime} of K refines \mathscr{U} then $\mathscr{S}_{K^{\prime}}$ refines st $\mathscr{U}=\{\operatorname{st}(U, \mathscr{U}) \mid U \in \mathscr{U}\}$. Since every open cover of $|K|_{\mathrm{m}}$ has the open star-refinement, it suffices to construct an admissible subdivision K^{\prime} of K which refines \mathscr{U}. We shall inductively construct admissible subdivisions K_{n} of $K, n \geqslant 0$, so as to satisfy the following conditions:
(1) K_{n} is a subdivision of K_{n-1};
(2) $K_{n}| | K^{(n-1)}\left|=K_{n-1}\right|\left|K^{(n-1)}\right|$;
(3) $K_{n}\left[K^{(n)}\right]$ refines \mathscr{U};
(4) $\left|C\left(K^{(n-1)}, K_{n}\right)\right|=\left|C\left(K^{(n-1)}, K_{n-1}\right)\right|$,
equivalently $\left|N\left(K^{(n-1)}, K_{n}\right)\right|=\left|N\left(K^{(n-1)}, K_{n-1}\right)\right|$,
where $K_{-1}=\operatorname{Sd} K$ and $K^{(-1)}=\emptyset$. Then, (2) guarantees that $K^{\prime}=$ $\bigcup_{n \in N} K_{n}| | K^{(n)} \mid$ is a simplicial subdivision of K, where one should note that $K_{0}| | K^{(0)}\left|=K^{(0)} \subset K_{1}\right|\left|K^{(1)}\right|$. By (3), K^{\prime} refines \mathscr{U}. Since each K_{n} is admissible, $K^{\prime(0)}| | K^{(n)}\left|=K_{n}^{(0)}\right|\left|K^{(n)}\right|$ is discrete in $|K|_{\mathrm{m}}$ by (2). Since $\left|C\left(K^{(n)}, K^{\prime}\right)\right| \subset$ $\left|C\left(K^{(n)}, K_{n}\right)\right|$ by (2) and (4), $C\left(K^{(n)}, K^{\prime}\right)^{(0)}$ has no accumulation points in $\left|K^{(n)}\right|$. Then, it follows that $K^{\prime(0)}$ is discrete in $|K|_{\mathrm{m}}$, which means that K^{\prime} is an admissible subdivision of K by Theorem 6 .

For each vertex $v \in K^{(0)}$, choose $1 / 2<t_{v}<1$ so that $\left(\beta_{v}^{\mathrm{Sd}^{2} K}\right)^{-1}\left(\left[t_{v}, 1\right]\right)$ is contained in some $U_{v} \in \mathscr{U}$ (Lemma 5 or 4). Dividing each $\sigma \in\left(\operatorname{Sd}^{2} K\right)[v] \backslash\{v\}$ into two cells by $\left(\beta_{v}^{\text {Sd }^{2} K}\right)^{-1}\left(t_{v}\right)$, we have a cell complex L subdividing $\operatorname{Sd}^{2} K$, that is,

$$
\begin{aligned}
L=K^{(0)} & \cup C\left(K^{(0)}, \mathrm{Sd}^{2} K\right) \\
& \cup\left\{\sigma \cap\left(\beta_{v}^{\mathrm{Sd}^{2} K}\right)^{-1}\left(t_{v}\right), \sigma \cap\left(\beta_{v}^{\mathrm{Sd}^{2} K}\right)^{-1}\left(\left[0, t_{v}\right]\right),\right. \\
& \left.\sigma \cap\left(\beta_{v}^{\mathrm{Sd}^{2} K}\right)^{-1}\left(\left[t_{v}, 1\right]\right) \mid \sigma \in\left(\operatorname{Sd}^{2} K\right)[v] \backslash\{v\}, v \in K^{(0)}\right\} .
\end{aligned}
$$

Then, $L^{(0)}$ is discrete in $|K|_{\mathrm{m}}$. Indeed, $L^{(0)}$ consists of the vertices $\left(\mathrm{Sd}^{2} K\right)^{(0)}$ and the points

$$
v_{w}=\left(1-t_{v}\right) w+t_{v} v, \quad v \in K^{(0)}, \quad w \in \operatorname{Lk}\left(v, \operatorname{Sd}^{2} K\right)^{(0)} .
$$

Since $\mathrm{Sd}^{2} K$ is an admissible subdivision of $K,\left(\mathrm{Sd}^{2} K\right)^{(0)}$ is discrete in $|K|_{\mathrm{m}}$. On the other hand, $\left\{\left(\beta_{v}^{\mathrm{Sd}^{2} K}\right)^{-1}\left(t_{v}\right) \mid v \in K^{(0)}\right\}$ is discrete in $|K|_{\mathrm{m}}$. Then, it suffices to see that $\left\{v_{w} \mid w \in \operatorname{Lk}\left(v, \operatorname{Sd}^{2} K\right)^{(0)}\right\}$ is discrete in $\left(\beta_{v}^{\mathrm{Sd}^{2} K}\right)^{-1}\left(t_{v}\right)$ for each $v \in K^{(0)}$. Note that the metric $\rho_{\mathrm{Sd}^{2} K}$ is admissible for $|K|_{\mathrm{m}}$. For each $w, w^{\prime} \in \operatorname{Lk}\left(v, \mathrm{Sd}^{2} K\right)^{(0)}$,

$$
\rho_{\mathrm{Sd}^{2} K}\left(v_{w}, v_{w^{\prime}}\right)=\beta_{w}^{\mathrm{S}^{2} K}\left(v_{w}\right)+\beta_{w^{\prime}}^{\mathrm{Sd}^{2} K}\left(v_{w^{\prime}}\right)=2\left(1-t_{v}\right) .
$$

Now, let K_{0} be a simplicial subdivision of L with $K_{0}^{(0)}=L^{(0)}$. Since $K_{0}^{(0)}=$ $L^{(0)}$ is discrete in $|K|_{\mathrm{m}}, K_{0}$ is an admissible subdivision of K by Theorem 6. Observe that

$$
\left|\operatorname{St}\left(v, K_{0}\right)\right|=\left(\beta_{v}^{\operatorname{Sd} K}\right)^{-1}\left(\left[t_{v}, 1\right]\right) \subset U_{v} \text { for } v \in K_{0}^{(0)}
$$

Then, K_{0} satisfies (3).

Figure 1. The subdivision K_{0} of $\mathrm{Sd}^{2} K$.

Assume that K_{n-1} has been obtained. For each n-simplex $\tau \in K$, we define

$$
\tau^{*}=\tau \cap\left|C\left(K^{(n-1)}, K_{n-1}\right)\right| .
$$

Note that $K_{n-1} \mid \tau^{*}$ is a triangulation of τ^{*}. We can choose $n(\tau) \in \boldsymbol{N}$ so that $\operatorname{Sd}^{n(\tau)}\left(K_{n-1} \mid \tau^{*}\right) \prec \mathscr{U} .{ }^{3}$ Let

$$
\begin{aligned}
& B_{\tau}=B\left(\tau^{*}, C\left(K^{(n-1)}, K_{n-1}\right)\right) \quad \text { and } \\
& N_{\tau}=\operatorname{Sd}_{B_{\tau}}^{n(\tau)} N\left(\tau^{*}, C\left(K^{(n-1)}, K_{n-1}\right)\right)
\end{aligned}
$$

Then, N_{τ} is an admissible subdivision of $N\left(\tau^{*}, C\left(K^{(n-1)}, K_{n-1}\right)\right)$, hence $\left|N_{\tau}\right|_{\mathrm{m}}$ is a subspace of $\left|K_{n-1}\right|_{\mathrm{m}}=|K|_{\mathrm{m}}$. Moreover,

$$
N_{\tau} \mid \tau^{*}=\operatorname{Sd}^{n(\tau)}\left(K_{n-1} \mid \tau^{*}\right) \prec \mathscr{U},
$$

hence each $\sigma \in N_{\tau} \mid \tau^{*}$ is contained in some $U_{\sigma} \in \mathscr{U}$. By Lemma 5, $\left(\beta_{\sigma}^{N_{\tau}}\right)^{-1}([t, 1]) \subset U_{\sigma}$ for some $1 / 2<t<1$. Since $N_{\tau} \mid \tau^{*}$ is finite, we can find $1 / 2<t_{\tau}<1$ such that

$$
\left\{\left(\beta_{\sigma}^{N_{\tau}}\right)^{-1}\left(\left[t_{\tau}, 1\right]\right)\left|\sigma \in N_{\tau}\right| \tau^{*}\right\} \prec \mathscr{U} .
$$

[^2]For each $\sigma \in N_{\tau}\left[\tau^{*}\right] \backslash N_{\tau} \mid \tau^{*}$, we have $\sigma \cap \tau^{*} \in N_{\tau} \mid \tau^{*}$ and $\beta_{\sigma \cap \tau^{*}}^{N_{\tau}}\left|\sigma=\beta_{\tau^{*}}^{N_{\tau}}\right| \sigma$. Dividing each $\sigma \in N_{\tau}\left[\tau^{*}\right] \backslash N_{\tau} \mid \tau^{*}$ into two cells by $\left(\beta_{\tau^{*}}^{N_{\tau}}\right)^{-1}\left(t_{\tau}\right)$, we have a cell complex L_{τ} subdividing N_{τ}, that is,

$$
\begin{aligned}
& L_{\tau}=N_{\tau} \mid \tau^{*} \cup C\left(\tau^{*}, N_{\tau}\right) \cup\left\{\sigma \cap\left(\beta_{\tau^{*}}^{N_{\tau}}\right)^{-1}\left(t_{\tau}\right), \sigma \cap\left(\beta_{\tau^{*}}^{N_{\tau}}\right)^{-1}\left(\left[0, t_{\tau}\right]\right),\right. \\
&\left.\sigma \cap\left(\beta_{\tau^{*}}^{N_{\tau}}\right)^{-1}\left(\left[t_{\tau}, 1\right]\right)\left|\sigma \in N_{\tau}\left[\tau^{*}\right] \backslash N_{\tau}\right| \tau^{*}\right\} .
\end{aligned}
$$

Then, $L_{\tau}^{(0)}$ is discrete in $\left|N_{\tau}\right|_{\mathrm{m}}$, so in $|K|_{\mathrm{m}}$. Indeed, $L_{\tau}^{(0)}$ consists of $N_{\tau}^{(0)}$ and the points

$$
\left(1-t_{\tau}\right) w+t_{\tau} v, \quad v \in N_{\tau}^{(0)} \mid \tau^{*}, \quad w \in \operatorname{Lk}\left(v, N_{\tau}\right)^{(0)} \backslash \tau^{*},
$$

where $N_{\tau}^{(0)}$ is discrete in $\left|N_{\tau}\right|_{\mathrm{m}}$. As is easily observed, we have

$$
\operatorname{dist}_{\rho_{N_{\tau}}}\left(N_{\tau}^{(0)},\left(\beta_{\tau^{*}}^{N_{\tau}}\right)^{-1}\left(t_{\tau}\right)\right) \geq \min \left\{2 t_{\tau}, 2\left(1-t_{\tau}\right)\right\}
$$

For each $v, v^{\prime} \in N_{\tau}^{(0)} \mid \tau^{*}, w \in \operatorname{Lk}\left(v, N_{\tau}\right)^{(0)} \backslash \tau^{*}$ and $w^{\prime} \in \operatorname{Lk}\left(v^{\prime}, N_{\tau}\right)^{(0)} \backslash \tau^{*}$, if $v \neq v^{\prime}$ or $w \neq w^{\prime}$ then

$$
\rho_{N_{\tau}}\left(\left(1-t_{\tau}\right) w+t_{\tau} v,\left(1-t_{\tau}\right) w^{\prime}+t_{\tau} v^{\prime}\right) \geq \min \left\{2 t_{\tau}, 2\left(1-t_{\tau}\right)\right\}
$$

Figure 2. The subdivision N_{τ} of $N\left(\tau, K_{0}\right)$.
Now, for each $\tau \in K(n)$, let K_{τ} be a simplicial subdivision of L_{τ} with $K_{\tau}^{(0)}=$ $L_{\tau}^{(0)}$. Observe

$$
B_{\tau}=K_{\tau} \cap C\left(K^{(n)}, K_{n-1}\right) \text { and }\left|B_{\tau}\right|=\left|K_{\tau}\right| \cap\left|C\left(K^{(n)}, K_{n-1}\right)\right| .
$$

Then, the following is a simplicial complex subdividing $C\left(K^{(n-1)}, K_{n-1}\right)$:

$$
C^{\prime}=C\left(K^{(n)}, K_{n-1}\right) \cup \bigcup_{\tau \in K(n)} K_{\tau} .
$$

By Lemma 7, we have a simplicial subsdivision N^{\prime} of $N\left(K^{(n-1)}, K_{n-1}\right)$ such that

$$
\begin{gathered}
N^{\prime}| | B\left(K^{(n-1)}, K_{n-1}\right)\left|=C^{\prime}\right|\left|B\left(K^{(n-1)}, K_{n-1}\right)\right| \quad \text { and } \\
N^{\prime(0)}=N\left(K^{(n-1)}, K_{n-1}\right)^{(0)} \cup B^{\prime(0)} .
\end{gathered}
$$

Then, $K_{n}=C^{\prime} \cup B^{\prime}$ is a simplicial subdivision of K_{n-1} such that

$$
\left|N\left(K^{(n-1)}, K_{n-1}\right)\right|=\left|N\left(K^{(n-1)}, K_{n}\right)\right|
$$

that is, K_{n} satisfies the conditions (1) and (4). Note that

$$
\begin{aligned}
K_{n}^{(0)} & =N\left(K^{(n-1)}, K_{n-1}\right)^{(0)} \cup C\left(K^{(n)}, K_{n-1}\right)^{(0)} \cup \bigcup_{\tau \in K(n)} K_{\tau}^{(0)} \\
& =K_{n-1}^{(0)} \cup \bigcup_{\tau \in K(n)} N_{\tau}^{(0)},
\end{aligned}
$$

which is discrete in $|K|_{\mathrm{m}}$. This means that K_{n} is an admissible subdivision of K by Theorem 6. By our construction, we have $K_{n}| | K^{(n-1)}\left|=K_{n-1}\right|\left|K^{(n-1)}\right|$, that is, K_{n} satisfies (2). Moreover, $K_{n}\left[K^{(n)}\right] \prec \mathscr{U}$ because

$$
\begin{gathered}
K_{n}\left[K^{(n-1)}\right] \prec K_{n-1}\left[K^{(n-1)}\right] \prec \mathscr{U} \quad \text { and } \\
K_{n}\left[K^{(n)}\right] \backslash K_{n}\left[K^{(n-1)}\right] \subset \bigcup_{\tau \in K(n)} N_{\tau} \prec \mathscr{U} .
\end{gathered}
$$

Thus, K_{n} satisfies (3). The proof is completed.
Acknowledgments. The author would like to express his sincere thanks to Katsuhisa Koshino for finding out a gap in Henderson's proof of Theorem 2 and he also appreciates the referee's correction of the assumption in Proposition 3.

References

[1] D. W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc., 213 (1975), 205-216.
[2] K. Mine and K. Sakai, Subdivisions of simplicial complexes preserving the metric topology, to appear in Canad. Math. Bull.
[3] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. (2), 45 (1939), 243-327.

Katsuro SAKAI
Institute of Mathematics
University of Tsukuba
Tsukuba 305-8571, Japan
E-mail: sakaiktr@sakura.cc.tsukuba.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 57Q05; Secondary 54E35, 55U10.
 Key Words and Phrases. the metric topology, simplicial complex, admissible subdivision.
 This research was supported by Grant-in-Aid for Scientific Reserch (No. 22540063), Japan Society for the Promotion of Science
 ${ }^{1}$ D. W. Henderson [1] called this a proper subdivision. In [2], the suitable word "admissible" is adopted rather than "proper" because the metric defined by such a subdivision is admissible.

[^1]: ${ }^{2}$ We call $\sigma \in K$ the carrier of $x \in|K|$ if x is an interior point of σ, that is, $\sigma \in K$ is the smallest simplex of K containing x. A full complex is a simplicial complex such that any finite subset of the vertices spans a simplex.

[^2]: ${ }^{3}$ In general, $n(\tau)$ cannot be chosen so that $\operatorname{Sd}^{n(\tau)}\left(N\left(\tau, K_{n-1}\right) \cap C\left(\partial \tau, K_{n-1}\right)\right) \prec \mathscr{U}$ (Proposition 3).

