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Small subdivisions of simplicial complexes

with the metric topology

By Katsuro Sakai

(Received Feb. 19, 2010)

Abstract. D. W. Henderson established the metric topology vertion of
J. H. C. Whitehead’s Theorem on small subdivisions of simplicial complexes.
However, his proof is valid only for locally finite-dimensional simplicial com-
plexes. In this note, we give a complete proof of Henderson’s Theorem for
arbitrary simplicial complexes.

1. Introduction.

For a simplicial complex K, the polyhedron |K| has two topologies, the White-
head (weak) topology and the metric topology. By |K|w and |K|m, we denote |K|
with the Whitehead (weak) topology and the metric topology, respectively. Un-
less K is locally finite, |K|w 6= |K|m as spaces. For a simplicial subdivision K ′ of
K, |K ′|w = |K|w but |K ′|m 6= |K|m as spaces. We call a simplicial subdivision
K ′ of K an admissible subdivision if |K ′|m = |K|m as spaces.1 The barycentric
subdivision SdK of K is admissible. Recall that the star St(σ,K) at σ ∈ K is
the subcomplex of K consisting of all faces of simplexes having σ as a face. Let
SK = {|St(v, K)| | v ∈ K(0)}, where K(0) is the set of all vertices of K.

The following theorem is due to J. H. C. Whitehead [3], which is very impor-
tant because one can use this theorem to prove the paracompactness of |K|w, the
simplicial approximation theorem, etc.

Theorem 1 (J. H. C. Whitehead). Let K be an arbitrary simplicial complex.
For any open cover U of |K|w, there exists a simplicial subdivision K ′ of K such
that SK′ refines U .

In [1, Lemma V.7], D. W. Henderson established the following metric topol-
ogy version of Whitehead’s Theorem above, which is a key lemma to prove basic
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1D. W. Henderson [1] called this a proper subdivision. In [2], the suitable word “admissible”
is adopted rather than “proper” because the metric defined by such a subdivision is admissible.
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theorems on non-separable infinite-dimensional manifolds.

Theorem 2 (D. W. Henderson). Let K be an arbitrary simplicial complex.
For any open cover U of |K|m, there exists an admissible subdivision K ′ of K

such that SK′ refines U .

Although his proof is valid for a locally finite-dimensional simplicial complex,
it is not valid in general. The problem is the existence of the integer n(s) for a
simplex s in the proof. The n-th barycentric subdivision Sdn K of K is inductively
defined by Sdn K = Sd(Sdn−1 K), where Sd0 K = K. As well known, when
dimK < ∞,

meshρK
Sdn K = 2

(
dimK

dimK + 1

)n

for each n ∈ N ,

where ρK is the barycentric metric (the definition is given in Preliminaries). Hence,
if the star at a simplex s in the complex is finite-dimensional then such an n(s)
exists. However, when the star at s is infinite-dimensional, such an n(s) does not
exist even locally, that is, no matter how large n is, the size of simplexes of Nn(s)
is not small anywhere in s. This follows from the proposition below:

Proposition 3. Let K be a simplicial complex and x ∈ |K|. Suppose that
the star of the carrier σ ∈ K of x contains an infinite full complex.2 For each
n ∈ N and ε > 0, there are infinitely many vertices ui ∈ (Sdn K)(0), i ∈ N , such
that ρK(x, ui) > 2− ε and every finite set of ui’s, togather with the vertices of the
carrier of x in Sdn K, spans a simplex of Sdn K.

In this note, we shall show Proposition 3 and give a complete proof of Theorem
2 without local finite-dimensionality.

2. Preliminaries.

Our notations are different from the paper [1]. Here are notations fixed. For
a collection A of subsets of X and B ⊂ X, we use the following notations:

A | B = {A ∩B | A ∈ A }, A [B] = {A ∈ A | A ∩B 6= ∅}

and st(B,A ) =
⋃

A [B].

2We call σ ∈ K the carrier of x ∈ |K| if x is an interior point of σ, that is, σ ∈ K is the

smallest simplex of K containing x. A full complex is a simplicial complex such that any finite
subset of the vertices spans a simplex.
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Given a collection B of subsets of X, A [
⋃

B] is simply denoted by A [B]. When
B refines A , that is, each B ∈ B is contained in some A ∈ A , we write B ≺ A .

The simplex spanned by vertices v0, v1, . . . , vn is denoted by 〈v0, v1, . . . , vn〉.
For simplexes σ and τ , σ ≤ τ (or σ < τ) means that σ is a face (or a proper face)
of τ . The boundary, the interior, the barycenter and the set of vertices of σ are
denoted by ∂σ,

◦
σ, σ̂ and σ(0), respectively.

Let K be a simplicial complex. The n-skeleton of K is denoted by K(n), that
is, K(n) = {σ ∈ K | dimσ ≤ n}. By K(n), we denote the set of all n-simplexes in
K, that is, K(n) = K(n) \K(n−1). For A ⊂ |K|, let

N(A,K) =
{
σ ∈ K | ∃τ ∈ K[A] such that σ ≤ τ

}
,

C(A,K) = K \K[A] =
{
σ ∈ K | σ ∩A = ∅} and

B(A,K) = N(A,K) ∩ C(A,K).

In case A = |L| for a subcomplex L ⊂ K, we simply write N(L,K), C(L,K)
and B(L,K) instead of N(|L|,K), C(|L|,K) and B(|L|,K), respectively. Note
that N({v},K) = St(v, K) for each v ∈ K(0) but N(σ,K) % St(σ,K) for each
σ ∈ K \ K(0) in general. For each simplex σ ∈ K, |N(σ,K)| = st(σ,K) and
|St(σ,K)| = st(

◦
σ, K) = st(σ̂, K).

There exist functions βK
v : |K| → I, v ∈ K(0), such that

∑
v∈K(0) βK

v (x) = 1
and x =

∑
v∈K(0) βK

v (x)v for each x ∈ |K|, where (βK
v (x))v∈K(0) is the barycentric

coordinate of x ∈ |K|. It should be noticed that every βK
v is affine (linear) on each

σ ∈ K and βK
v (σ) = 0 if v 6∈ σ(0). The barycentric metric ρK is defined as follows:

ρK(x, y) =
∑

v∈K(0)

∣∣βK
v (x)− βK

v (x′)
∣∣.

The metric topology for |K| is induced by this metric.
The open star OK(v) at v ∈ K(0) is defined by

OK(v) =
(
βK

v

)−1((0, 1]) = |St(v, K)| \ |Lk(v, K)|.

For each point x ∈ |K|, we denote by cK(x) the carrier of x in K, that is, cK(x) ∈
K is the smallest simplex containing x. Then, cK(x)(0) = {v ∈ K(0) | βK

v (x) > 0}.
The open star at x ∈ |K| can be defined as follows:

OK(x) =
⋃

σ∈K[x]

◦
σ =

⋂

v∈cK(x)(0)

OK(v).
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For each 0 < r ≤ 1, we define

OK(x, r) = (1− r)x + rOK(x) =
{
(1− r)x + ry | y ∈ OK(x)

}
,

which is an open neighborhood of x in |K|m contained in the open ball BρK
(x, 2r)

with center x and radius 2r. Indeed, for each y ∈ OK(x),

ρK((1− r)x + ry, x) =
∑

v∈K(0)

∣∣βK
v ((1− r)x + ry)− βK

v (x)
∣∣

=
∑

v∈K(0)

r
∣∣βK

v (y)− βK
v (x)

∣∣ = rρK(y, x) < 2r.

For a vertex v ∈ K(0), we have OK(v, r) = (βK
v )−1((1 − r, 1]) = BρK

(v, 2r). The
following fact is used in the proof of [1, Lemma V.5]:

Lemma 4. {OK(x, r) | 0 < r ≤ 1} is an open neighborhood basis at x in
|K|m.

For A ⊂ |K|, let βK
A =

∑
v∈K(0)∩A βK

v : |K| → I. In case A is a simplex
σ ∈ K, σ = (βK

σ )−1(1) and (βK
σ )−1((0, 1]) =

⋃
v∈σ(0) OK(v). The following will be

used in the proof of Theorem 2:

Lemma 5. (βK
σ )−1((1 − r, 1]) ⊂ {

y ∈ |K| | distρK
(y, σ) < 2r

}
for each

σ ∈ K.

Proof. For each y ∈ (βK
σ )−1((1− r, 1]), we have x ∈ σ defined by

x =
∑

v∈σ(0)

βK
v (y)

βK
σ (y)

v

(
i.e., βK

v (x) =
βK

v (y)
βK

σ (y)
for each v ∈ σ(0)

)
.

Then, it follows that

ρK(x, y) =
∑

v∈K(0)

∣∣βK
v (x)− βK

v (y)
∣∣

=
∑

v∈σ(0)

(
βK

v (x)− βK
v (y)

)
+

∑

v∈K(0)\σ(0)

βK
v (y)

= 2
(
1− βK

σ (y)
)

< 2r.

Thus, we have distρK
(y, σ) < 2r. ¤
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For a simplicial subdivision K ′ of K, ρK ≤ ρK′ but the topology induced by
ρK′ is different from the one induced by ρK in general. A simplicial subdivision K ′

of K is admissible if and only if ρK′ is admissible for the space |K|m. Admissible
subdivisions are characterized in [1, Lemma V.5] and [2, Theorem 2] as follows:

Theorem 6. For a simplicial subdivision K ′ of a simplicial complex K, the
following are equivalent :

(a) K ′ is admissible;
(b) OK′(v) is open in |K|m for each v ∈ K ′(0);
(c) K ′(0) is discrete in |K|m.

Let K be a simplicial complex and L a subcomplex of K. For each subdivision
K ′ of K, L is subdivided by the subcomplex K ′||L| = {τ ∈ K ′ | τ ⊂ |L|}
of K ′. In particular, every simplex σ ∈ K is triangulated by the subcomplex
K ′|σ = {τ ∈ K ′ | τ ⊂ σ} of K ′. The barycentric subdivision SdL K of K relative
to L is defined as follows:

SdL K = L ∪ {〈σ̂1, . . . , σ̂n〉 | σ1 < · · · < σn ∈ K \ L
}

∪ {〈v1, . . . , vm, σ̂1, . . . , σ̂n〉 | 〈v1, . . . , vm〉 ∈ L,

σ1 < · · · < σn ∈ K \ L, 〈v1, . . . , vm〉 < σ1

}
.

Then, L is a subcomplex of SdL K and (SdL K)||C(L,K)| = (SdK)||C(L,K)|.
The n-th barycentric subdivision Sdn

L K of K relative to L is inductively defined
by Sdn

L K = SdL(Sdn−1
L K), where Sd0

L K = K. Since (SdL K)(0) ⊂ (SdK)(0),
the subdivision SdL K is also admissible by Theorem 6 above, hence so is every
Sdn

L K.

3. Proofs of Proposition 3 and Theorem 2.

Proof of Proposition 3. Let σ(0) = {v0, v1, . . . , vk}, that is, σ =
〈v0, v1, . . . , vk〉. By induction on n ∈ N , we shall show the following:

(?)n for each ε > 0, there are infinitely many vertices ui ∈ (Sdn K)(0), i ∈ N ,
such that

∑k
j=0 βK

vj
(ui) < ε and every finite set of ui’s, togather with the

vertices of the carrier of x in Sdn K, spans a simplex of Sdn K.

Then, the result follows because
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ρK(x, ui) =
∑

v∈K(0)

∣∣βK
v (x)− βK

v (ui)
∣∣

≥
k∑

j=0

(
βK

vj
(x)− βK

vj
(ui)

)
+

∑

v∈K(0)\σ(0)

βK
v (ui)

= 2
(

1−
k∑

j=0

βK
vj

(ui)
)

> 2− 2ε.

To see (?)1, for each ε > 0, choose m ∈ N so that (k+1)/(k+m+2) < ε. By
the assumption, there are simplexes σ < σ1 < σ2 < · · · with dimσi = k + m + i.
Choose τ0 < τ1 < · · · < τk0 = σ so that 〈τ̂0, τ̂1, . . . , τ̂k0〉 ∈ SdK is the carrier of x.
Then, τ̂0, τ̂1, . . . , τ̂k0 , σ̂1, . . . , σ̂l span a simplex of SdK for each l ∈ N and

k∑

j=0

βK
vj

(σ̂i) =
k∑

j=0

1
k + m + i + 1

≤ k + 1
k + m + 2

< ε.

Now, we prove the implication (?)n ⇒ (?)n+1. Let σ0 = cSdn K(x) be the
carrier of x in Sdn K. We have τ0 < τ1 < · · · < τk0 = σ0 such that 〈τ̂0, τ̂1, . . . , τ̂k0〉
is the carrier of x in Sdn+1 K. Then, k0 ≤ dimσ0 ≤ dimσ = k. For each ε > 0,
choose m ∈ N so that

dimσ0 + 1
dimσ0 + m + 2

<
ε

2
.

By (?)n, we have infinitely many vertices ui ∈ (Sdn K)(0), i ∈ N , such that∑k
j=0 βK

vj
(ui) < ε/2 and every finite set of ui’s, togather with the vertices of

σ0, spans a simplex of Sdn K. For each i ∈ N , let σi ∈ Sdn K be the simplex
spanned by the vertices of σ0 and u1, . . . , um+i. Then, dimσi = dimσ0 + m +
i. Thus, we have infinitely many vertices σ̂i ∈ (Sdn+1 K)(0), i ∈ N , such that
τ̂0, τ̂1, . . . , τ̂k0 , σ̂1, . . . , σ̂l span a simplex of Sdn+1 K for each l ∈ N . Since σ

(0)
0 ⊂ σ

and

σ̂l =
∑

w∈σ
(0)
0

1
dimσ0 + m + l + 1

w +
l∑

i=1

1
dimσ0 + m + l + 1

ui,

it follows that



Small subdivisions of simplicial complexes with the metric topology 795

k∑

j=0

βK
vj

(σ̂l) =
k∑

j=0

1
dimσ0 + m + l + 1

( ∑

w∈σ
(0)
0

βK
vj

(w) +
l∑

i=1

βK
vj

(ui)
)

=
1

dimσ0 + m + l + 1

( ∑

w∈σ
(0)
0

k∑

j=0

βK
vj

(w) +
l∑

i=1

k∑

j=0

βK
vj

(ui)
)

<
1

dimσ0 + m + l + 1

(
dimσ0 + 1 +

lε

2

)
<

ε

2
+

ε

2
= ε.

This completes the proof. ¤

For simplexes σ, τ ∈ K, when σ(0) ∪ τ (0) spans a simplex, such a simplex is
denoted by στ . Recall that a subcomplex L of a simplicial complex K is full (in
K) if each simplex σ ∈ K[L] meets |L| at a face, that is, σ ∩ |L| is a face of σ. For
any subcomplex L of K, SdL is a full subcomplex of SdK.

Lemma 7. Let K be a simplicial complex and L a finite-dimensional full sub-
complex of K. Every simplicial subdivision B′ of B(L,K) extends to a simplicial
subdivision N ′ of N(L,K) such that L ∪B′ ⊂ N ′ and N ′(0) = L(0) ∪B′(0).

Proof. For each τ ∈ B′, cK(τ̂) ∈ B(L,K) and Lk(cK(τ̂),K)∩L 6= ∅, where
cK(τ̂) is the carrier of the barycenter of τ in K. For each σ ∈ Lk(cK(τ̂),K) ∩ L,
we have στ ⊂ σcK(τ̂) ∈ K. Then, we define

N ′ = L ∪B′ ∪ {στ | σ ∈ Lk(cK(τ̂),K) ∩ L, τ ∈ B′}.

Obviously, N ′(0) = L(0) ∪ B′(0). For each x ∈ |N(L,K)| \ |L ∪ B′|, since L is full
in K, we have σ = cK(x) ∩ |L| ∈ L. Let σ′ be the opposite face of cK(x) from σ.
Then, σ′ ∈ B(L,K). Since B′ is a subdivision of B(L,K), we have τ ∈ B′ such
that cK(τ̂) = σ′ and x ∈ στ . Thus, N ′ is a subdivision of N(L,K). ¤

Proof of Theorem 2. First of all, note that if a subdivision K ′ of K re-
fines U then SK′ refines st U = {st(U,U ) | U ∈ U }. Since every open cover
of |K|m has the open star-refinement, it suffices to construct an admissible sub-
division K ′ of K which refines U . We shall inductively construct admissible
subdivisions Kn of K, n > 0, so as to satisfy the following conditions:

(1) Kn is a subdivision of Kn−1;
(2) Kn||K(n−1)| = Kn−1||K(n−1)|;
(3) Kn[K(n)] refines U ;
(4) |C(K(n−1),Kn)| = |C(K(n−1),Kn−1)|,
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equivalently |N(K(n−1),Kn)| = |N(K(n−1),Kn−1)|,
where K−1 = SdK and K(−1) = ∅. Then, (2) guarantees that K ′ =⋃

n∈N Kn||K(n)| is a simplicial subdivision of K, where one should note that
K0||K(0)| = K(0) ⊂ K1||K(1)|. By (3), K ′ refines U . Since each Kn is admissi-
ble, K ′(0)||K(n)| = K

(0)
n ||K(n)| is discrete in |K|m by (2). Since |C(K(n),K ′)| ⊂

|C(K(n),Kn)| by (2) and (4), C(K(n),K ′)(0) has no accumulation points in |K(n)|.
Then, it follows that K ′(0) is discrete in |K|m, which means that K ′ is an admis-
sible subdivision of K by Theorem 6.

For each vertex v ∈ K(0), choose 1/2 < tv < 1 so that (βSd2 K
v )−1([tv, 1]) is

contained in some Uv ∈ U (Lemma 5 or 4). Dividing each σ ∈ (Sd2 K)[v] \ {v}
into two cells by (βSd2 K

v )−1(tv), we have a cell complex L subdividing Sd2 K, that
is,

L = K(0) ∪ C(K(0),Sd2 K)

∪ {
σ ∩ (βSd2 K

v )−1(tv), σ ∩ (βSd2 K
v )−1([0, tv]),

σ ∩ (βSd2 K
v )−1([tv, 1]) | σ ∈ (Sd2 K)[v] \ {v}, v ∈ K(0)

}
.

Then, L(0) is discrete in |K|m. Indeed, L(0) consists of the vertices (Sd2 K)(0) and
the points

vw = (1− tv)w + tvv, v ∈ K(0), w ∈ Lk(v, Sd2 K)(0).

Since Sd2 K is an admissible subdivision of K, (Sd2 K)(0) is discrete in |K|m.
On the other hand, {(βSd2 K

v )−1(tv) | v ∈ K(0)} is discrete in |K|m. Then, it
suffices to see that {vw | w ∈ Lk(v, Sd2 K)(0)} is discrete in (βSd2 K

v )−1(tv) for
each v ∈ K(0). Note that the metric ρSd2 K is admissible for |K|m. For each
w, w′ ∈ Lk(v, Sd2 K)(0),

ρSd2 K(vw, vw′) = βSd2 K
w (vw) + βSd2 K

w′ (vw′) = 2(1− tv).

Now, let K0 be a simplicial subdivision of L with K
(0)
0 = L(0). Since K

(0)
0 =

L(0) is discrete in |K|m, K0 is an admissible subdivision of K by Theorem 6.
Observe that

|St(v, K0)| =
(
βSd K

v

)−1([tv, 1]) ⊂ Uv for v ∈ K
(0)
0 .

Then, K0 satisfies (3).
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Figure 1. The subdivision K0 of Sd2 K.

Assume that Kn−1 has been obtained. For each n-simplex τ ∈ K, we define

τ∗ = τ ∩ ∣∣C(K(n−1),Kn−1)
∣∣.

Note that Kn−1|τ∗ is a triangulation of τ∗. We can choose n(τ) ∈ N so that
Sdn(τ)(Kn−1|τ∗) ≺ U .3 Let

Bτ = B(τ∗, C(K(n−1),Kn−1)) and

Nτ = Sdn(τ)
Bτ

N
(
τ∗, C(K(n−1),Kn−1)

)
.

Then, Nτ is an admissible subdivision of N(τ∗, C(K(n−1),Kn−1)), hence |Nτ |m is
a subspace of |Kn−1|m = |K|m. Moreover,

Nτ | τ∗ = Sdn(τ)(Kn−1 | τ∗) ≺ U ,

hence each σ ∈ Nτ |τ∗ is contained in some Uσ ∈ U . By Lemma 5,
(βNτ

σ )−1([t, 1]) ⊂ Uσ for some 1/2 < t < 1. Since Nτ |τ∗ is finite, we can find
1/2 < tτ < 1 such that

{
(βNτ

σ )−1([tτ , 1]) | σ ∈ Nτ | τ∗
} ≺ U .

3In general, n(τ) cannot be chosen so that Sdn(τ)(N(τ, Kn−1) ∩ C(∂τ, Kn−1)) ≺ U (Propo-

sition 3).
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For each σ ∈ Nτ [τ∗] \ Nτ |τ∗, we have σ ∩ τ∗ ∈ Nτ |τ∗ and βNτ
σ∩τ∗ |σ = βNτ

τ∗ |σ.
Dividing each σ ∈ Nτ [τ∗] \ Nτ |τ∗ into two cells by (βNτ

τ∗ )−1(tτ ), we have a cell
complex Lτ subdividing Nτ , that is,

Lτ = Nτ |τ∗ ∪ C(τ∗, Nτ ) ∪ {
σ ∩ (βNτ

τ∗ )−1(tτ ), σ ∩ (βNτ
τ∗ )−1([0, tτ ]),

σ ∩ (βNτ
τ∗ )−1([tτ , 1]) | σ ∈ Nτ [τ∗] \Nτ | τ∗

}
.

Then, L
(0)
τ is discrete in |Nτ |m, so in |K|m. Indeed, L

(0)
τ consists of N

(0)
τ and the

points

(1− tτ )w + tτv, v ∈ N (0)
τ |τ∗, w ∈ Lk(v, Nτ )(0) \ τ∗,

where N
(0)
τ is discrete in |Nτ |m. As is easily observed, we have

distρNτ

(
N (0)

τ , (βNτ
τ∗ )−1(tτ )

) ≥ min{2tτ , 2(1− tτ )}.

For each v, v′ ∈ N
(0)
τ |τ∗, w ∈ Lk(v, Nτ )(0) \τ∗ and w′ ∈ Lk(v′, Nτ )(0) \τ∗, if v 6= v′

or w 6= w′ then

ρNτ

(
(1− tτ )w + tτv, (1− tτ )w′ + tτv′

) ≥ min{2tτ , 2(1− tτ )}.

Figure 2. The subdivision Nτ of N(τ, K0).

Now, for each τ ∈ K(n), let Kτ be a simplicial subdivision of Lτ with K
(0)
τ =

L
(0)
τ . Observe
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Bτ = Kτ ∩ C(K(n),Kn−1) and |Bτ | = |Kτ | ∩
∣∣C(K(n),Kn−1)

∣∣.

Then, the following is a simplicial complex subdividing C(K(n−1),Kn−1):

C ′ = C(K(n),Kn−1) ∪
⋃

τ∈K(n)

Kτ .

By Lemma 7, we have a simplicial subsdivision N ′ of N(K(n−1),Kn−1) such that

N ′||B(K(n−1),Kn−1)| = C ′||B(K(n−1),Kn−1)| and

N ′(0) = N
(
K(n−1),Kn−1

)(0) ∪B′(0).

Then, Kn = C ′ ∪B′ is a simplicial subdivision of Kn−1 such that

∣∣N(K(n−1),Kn−1)
∣∣ =

∣∣N(K(n−1),Kn)
∣∣,

that is, Kn satisfies the conditions (1) and (4). Note that

K(0)
n = N

(
K(n−1),Kn−1

)(0) ∪ C
(
K(n),Kn−1

)(0) ∪
⋃

τ∈K(n)

K(0)
τ

= K
(0)
n−1 ∪

⋃

τ∈K(n)

N (0)
τ ,

which is discrete in |K|m. This means that Kn is an admissible subdivision of K

by Theorem 6. By our construction, we have Kn||K(n−1)| = Kn−1||K(n−1)|, that
is, Kn satisfies (2). Moreover, Kn[K(n)] ≺ U because

Kn[K(n−1)] ≺ Kn−1[K(n−1)] ≺ U and

Kn[K(n)] \Kn[K(n−1)] ⊂
⋃

τ∈K(n)

Nτ ≺ U .

Thus, Kn satisfies (3). The proof is completed. ¤
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