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Abstract. We strengthen previous results on the fundamental groups
of the Hawaiian earring and wild Peano continua. Let X be a path-connected,
locally path-connected, first countable space which is not locally semi-simply
connected at any point. If the fundamental group π1(X) is a subgroup of a
free product ∗j∈JHj , then it is contained in a conjugate subgroup to some
Hj .

1. Introduction.

Until recently the Hawaiian earring had been only a typical example of a non-
locally simply connected space [14], [19, p. 59], but now the fundamental group of
the Hawaiian earring has called attentions of several authors [2], [10], [11], [20].
The Hawaiian earring H is the plane compactum

{
(x, y) :

(
x +

1
n + 1

)2

+ y2 =
1

(n + 1)2
, n < ω

}
.

We call the fundamental group of the Hawaiian earring as the Hawaiian earring
group for short, following [2]. Particularly the Hawaiian earring group played a
central role in [10], where it is shown that homomorphic images of the Hawai-
ian earring group in the fundamental group of a one-dimensional metric space
determine points of the space.

We call a group G quasi-atomic, if for each homomorphism h from G to the
free product A ∗ B of arbitrary groups A and B there exists a finitely generated
subgroup A′ of A or B′ of B such that Im(h) is contained in A′ ∗B or A ∗B′.

By definition, finitely generated groups and abelian groups are quasi-atomic,
but free products of infinitely generated groups are not quasi-atomic. Every ho-
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momorphic image of a quasi-atomic group is also quasi-atomic. In the following
theorem××σ

i∈IGi is the free σ-product of groups Gi, the definition of which will be
given in the next section.

Theorem 1.1 ([3, Theorem 4.1]. (See also [4].)). Let Gi be a finitely gen-
erated group for each i ∈ I. Then ××σ

i∈IGi is quasi-atomic. Consequently the
Hawaiian earring group is quasi-atomic.

A topological counterpart to the above is given in the following theorem,
where A and B denote arbitrary groups.

Theorem 1.2 ([12, Theorem 1.5]). Let X be a Peano continuum which is
not semi-locally simply connected at any point. For every injective homomorphism
h : π1(X, x0) → A ∗B, there exists a finitely generated subgroup A0 of A such that
Im(h) ≤ A0 ∗ B or there exists a finitely generated subgroup B0 of B such that
Im(h) ≤ A ∗B0.

In the present paper we strengthen the above results as follows:

Theorem 1.3. Let Gi (i ∈ I) and Hj (j ∈ J) be groups and h :××σ
i∈IGi →

∗j∈JHj be a homomorphism from the free σ-product of groups Gi to the free prod-
uct of groups Hj. Then there exist a finite subset F of I and j ∈ J such that
h(××σ

i∈I\F Gi) is contained in a subgroup which is conjugate to Hj.

Theorem 1.4. Let X be a path-connected, locally path-connected, first
countable space which is not semi-locally simply connected at any point and
h : π1(X, x0) → ∗j∈JHj be an injective homomorphism. Then the image of h

is contained in a conjugate subgroup to some Hj.

Corollary 1.5. Let X be a Peano continuum which is not semi-locally
simply connected at any point. For every injective homomorphism h : π1(X, x0) →
∗j∈JHj, the image of h is contained in a conjugate subgroup to some Hj.

“The atomic property” in the title refers to this type of general property.
It may not be adequate to single out a specific property for the name “atomic
property”, since many similar, but slightly different variants could be observed
in various situations. Theorems 1.1 and 1.2 play important role in [10] and [3],
where the information of a wild point of a space is recovered from the fundamental
group by these properties. Using key lemmas in [10], the author has proved that
the fundamental groups of the one-dimensional Peano continua determine their
homotopy types [13]. There, the quasi-atomness of the Hawaiian earring group,
i.e. Theorem 1.1, underlies the proofs.

Since Theorem 1.4 does not presume compactness, the result can be applied
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to asymptotic cones of word-metric spaces. The asymptotic cone of a word-metric
space is a path-connected, geodesic metric space, and in particular locally path-
connected. M. Bridson [1] constructed a finitely presented group Γ which satisfies
a polynomial isoperimetric inequality such that the asymptotic cone ConU Γ is
not simply connected for each non-principal ultrafilter U , answering a question of
M. Gromov. According to [1, p. 544] the space ConU Γ satisfies the assumptions of
Theorem 1.4 and hence its fundamental group cannot be decomposed to nontrivial
free products. This contrasts with the following result due to Drutu and Sapir [5,
Corollary 7.32]: there exists a finitely generated group such that the fundamental
group of whose asymptotic cone is isomorphic to an uncountable free group.

A modified form of Theorem 1.3 (see also Theorem 3.1) will be applied in our
forthcoming paper [6]. There we construct a space from a manifold by attaching
copies of the Hawaiian earring and then recover the manifold from the fundamental
group of the constructed space in the way of defining spaces from abstract groups
in [3].

2. Word theoretic arguments.

Since our argument requires results of [8] in detail, we review and reprove
some results of [8] and [4] for the reader’s convenience.

Let Gi (i ∈ I) be groups such that Gi∩Gj = {e} for distinct i and j. A letter
is a non-identity element of

⋃
i∈I Gi. Two letters are of the same kind, if they

belong to the same Gi. A word W is a function W : W → ⋃
i∈I Gi such that W is

a linearly ordered set, W (α) is a letter for each α ∈ W and {α ∈ W : W (α) ∈ Gi}
is finite for each i ∈ I. A word W is called a σ-word, if W is countable. We denote
the set of all words by W (Gi : i ∈ I) and the set of all σ-words by W σ(Gi : i ∈ I).

For a word W ∈ W (Gi : i ∈ I) let W− be the word defined by the following:
for α ∈ W there associates a formal symbol α− with the order such that α− ≤ β−

if and only if β ≤ α. Let W− = {α− : α ∈ W} and define W−(α−) = W (α)−1 for
each α ∈ W .

Two words U and V are the same word, denoted by U ≡ V , if there exists an
order preserving bijection ϕ : U → V such that U(α) = V (ϕ(α)) for all α ∈ U .
The notation U = V means that the words U and V represent the same element
in the inverse limit lim←−(∗i∈F Gi, pFF ′ : F ⊆ F ′ b I). Here F ′ b I means that F ′

is a finite subset of I and pFF ′ : ∗i∈F ′Gi → ∗i∈F Gi is the projection. The free
σ-product ××σ

i∈IGi is the subgroup of lim←−(∗i∈F Gi, pFF ′ : F ⊆ F ′ b I) consisting of
all elements which are presented by σ-words. When the index set I is countable,
we simply write ××i∈IGi instead of××σ

i∈IGi.
A word V is a subword of a word W , if there exist words X and Y such that

XV Y ≡ W . A word W is a reduced word [8], if
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(1) for contiguous elements α, β ∈ W W (α) and W (β) never belong to the same
group Gi;

(2) V 6= e for any non-empty subword V of W .

The notion of reduced words is also defined in [2] and [9, Definition 4.3] in
terms of generators. These all generalize the standard notion of reduced words of
finite length [16], [18]. In particular every word has the unique reduced word [8,
Theorem 1.4].

A word W is quasi-reduced if the reduced word of W is obtained by multiplying
contiguous elements which are of the same kind so that the multiplication does
not cause cancellation. A word W is cyclically reduced, if W is either empty, a
single letter, or WW is reduced.

For a word W and a non-negative integer n, we define W 0 to be an empty
word, Wn+1 ≡ WnW and W−(n+1) ≡ W−nW−.

For a word W and a letter g, let aW (g) be the cardinality of the set {α ∈
W : W (α) = g}, that is, the number of appearances of g in W . For a ∈ ∗j∈JHj ,
l(a) denotes the length of the reduced word for a. We remark that the reduced
word for a is a word of finite length. Under this convention, for a word W of finite
length, l(W ) is the length of the reduced word of W , but not the length of W

itself.
Let W be words and g be a letter. The appearance of g in the word gW is

called the head of gW . Similarly, the appearance of g in the word Wg is called
the tail of Wg.

We say that an appearance of a letter g is stable in XgY , if the reduced word
of XgY is of the form X ′gY ′ where X ′ and Y ′ are the reduced words of X and Y

respectively. We simply say that the head of W is stable when it is stable in W ,
and say similarly for the tail. The head of a word W is quasi-stable, if the head
of the reduced word of W is of the same kind as that of W . The quasi-stability of
the tail of a word is defined similarly.

In the present paper the notions “heads” and “tails” are considered only for
non-empty words of finite length.

The following lemmas are those for infinitary words, but will be applied for
words of finite length.

Lemma 2.1 ([8, Corollary 1.6]). Let U be a non-empty reduced word such
that U ≡ U−. Then there exist a letter u and a word W such that u2 = e and
U ≡ W−uW .

Lemma 2.2. Let U be a non-empty word such that UU ≡ XU−Y for some
words X and Y . Then there exist U0 and U1 such that U ≡ U0U1, U0 ≡ U−

0 and
U1 ≡ U−

1 .
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Proof. We have U0 and U1 such that U1U0 ≡ U−, U ≡ XU1 ≡ U0Y by
assumption. Then U ≡ U−

0 U−
1 , which implies U0 ≡ U−

0 and U1 ≡ U−
1 . ¤

Lemma 2.3 ([8, Lemma 2.2]). Let Hj(j ∈ J) be groups, and U and X

be reduced words. If the head g or the tail g−1 in XUX− is not stable, then
l(XUX−) ≤ l(U) + 1.

Proof. It suffices to deal with the case that the tail g−1 is not stable. Let
V be the reduced word of XU . Then, l(V ) ≤ l(X) + l(U). Since the tail g−1 in
V X− is not stable, l(V X−) ≤ l(V )− l(X−)+1. Therefore, l(XUX−) ≤ l(U)+1.

¤

The following lemma holds and is stated in [8, Lemma 2.3] under the weaker
assumption “m+n+2 ≤ k.” However the proof in [8] contains some inaccuracies.
Here we re-prove the lemma under the assumption “m + n + 3 ≤ k.” This weaker
form, whose proof is less involved, is enough for the present paper and also the
other papers [8], [3], [12] in which we used this lemma. But, in Appendix we will
give a correct and full proof under the original assumption “m + n + 2 ≤ k.”

Lemma 2.4 ([8, Lemma 2.3]). Let Hj (j ∈ J) be groups and m,n, k ∈ N

such that m + n + 3 ≤ k. Also let yi, z ∈ ∗j∈JHj (1 ≤ i ≤ M) be elements of
the free product of Hj. If the element u = y1z

k · · · yMzk satisfies l(u) ≤ m and
l(yi) ≤ n for all 1 ≤ i ≤ M , then one of the following holds:

(1) z is a conjugate to an element of some Hj ;
(2) there exist j, j′ ∈ J , i ∈ {2, . . . , M}, f ∈ Hj, g ∈ Hj′ , x, y ∈ ∗j∈JHj and

a non-negative integer r such that f2 = g2 = e, z = x−1fxy−1gy, and yi =
zrx−1fx or yi = y−1gyzr.

Proof. It is easy to see that for z 6= e there exist reduced words U and W

such that

(a) z = W−UW ;
(b) UU is reduced or l(U) = 1;
(c) W−UW is quasi-reduced.

If l(U) = 1, then the proof is done. Hence, we assume l(U) ≥ 2 and that UU is
reduced. Let Yi be the reduced word for yi for each 1 ≤ i ≤ M . Then,

u = Y1W
−UkWY2W

− · · ·WYMW−UkW.

If M = 1, then u = y1z
k and hence 2k ≤ l(zk) ≤ l(u) + l(y1) ≤ m + n, which is a

contradiction. Hence M ≥ 2. Let p be the least number so that 2p ≥ n + 1. Then
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2p ≤ n + 2. Since W−Uk is reduced and l(Y1) ≤ n, the reduced word of Y1W
−Uk

is of the form Z1U
p+2 whether the tail of Y1W

− is stable or not. Let Zi be the
reduced word of WYiW

− for each 2 ≤ i ≤ M . Now we have

(∗) u = Z1U
p+2Z2U

k · · · UkZMUkW.

We are concerned with the reduced word of Up+1ZiU
p+1. Suppose that the head

and the tail of Up+1ZiU
p+1 are quasi-stable for every i ≥ 2. Since 2p+2 ≤ n+4 ≤

m + n + 3 ≤ k and U is cyclically reduced, by considering the rightmost Uk we
conclude

(∗∗) 2m + n ≤ 2k − (n + 2)− 2 ≤ 2(k − (p + 1)) ≤ l(u) ≤ m,

which is a contradiction. Therefore the head or the tail of Up+1ZiU
p+1 is not

quasi-stable for some i ≥ 2. We fix such an i.

Case 1: The tail of Up+1ZiU
p+1 is not quasi-stable.

The head or the tail of WYiW
− is not stable, because otherwise Up+1ZiU

p+1

is a quasi-reduced word. Hence we have l(Zi) = l(WYiW
−) ≤ l(Yi) + 1 ≤ n + 1

by Lemma 2.3. The reduced word of ZiU
p+1 is of the form Z ′iX

′
iU

q+1 for some
0 ≤ q ≤ p such that XiX

′
i ≡ U for some word Xi and l(Z ′i) ≤ l(Zi). We examine

the cancellation that occurs in the rightmost U . Then we have S, T such that
ST ≡ U and S ≡ S− and T ≡ T−. Since UU is reduced, neither S nor T is
empty. By Lemma 2.1, S = x−1

0 fx0 and T = y−1
0 gy0 for some f ∈ Hj and g ∈ Hj′

with f2 = g2 = e and x0, y0 ∈ ∗j∈JHj . Let x = x0W and y = y0W . Then
z = x−1fxy−1gy. Moreover WYiW

−Up−q = Z ′iX
′
i = U−lT for some l. Hence

yi = Yi = W−U−lTU−(p−q)W = W−(TS)lT (TS)p−qW.

If p − q > l, then we have yi = zp−q−l−1x−1fx and if p − q ≤ l, then we have
yi = y−1gyzl−p+q.

Case 2: The head of Up+1ZiU
p+1 is not quasi-stable.

Since the reduced word of Up+1Zi is of the form Uq+1XiZ
′
i for some 0 ≤ q ≤ p

such that XiX
′
i ≡ U for some word X ′

i and l(Z ′i) ≤ l(Zi). We observe the
cancellation of the left most U and have the same conclusion as in Case 1. ¤

Let A and B be groups, and let C1 and C2 be subsets of A ∗ B defined by:
C1 = {x−1ux : u ∈ A ∪B, x ∈ A ∗B} and C2 = {xy : x, y ∈ C1}.

Note C2 is closed under conjugacy, that is, u−1xu ∈ C2 if and only if x ∈ C2.
We consider cyclically reduced words for elements in C2. A word U is cyclically
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equivalent to a word V , if U = X−V X for some X, i.e. U represents an element
conjugate to the element represented by V . Now we easily have:

Lemma 2.5. Every word W for an element of C2(⊆ A ∗ B) is cyclically
equivalent to a word which has one of the following forms:

(1) empty ;
(2) u0 where u0 ∈ A ∪B;
(3) V −

0 u0V0v0 where u0, v0 ∈ A ∪B and V0 is a reduced word.

We remark the following: if W ∈ C2 \ C1 for a cyclically reduced word W ,
then W is of the form W−

0 w0W0W
−
1 w1W1.

In the remaining part of this section A and B denote groups. We prove word
theoretic lemmas that will be used in the proof of Theorem 3.1.

Lemma 2.6. Suppose that every element of A has order 2. Let a1, a2 ∈ A

(a1 6= a2) and b ∈ B be non-trivial elements. Then

u−1a1uv−1bvu−1a2uv−1bvu−1(a1a2)uv−1bv

does not belong to C2 for any u, v ∈ A ∗B.

Proof. Let a3 = a1a2. Since

vu−1a1uv−1bvu−1a2uv−1bvu−1(a1a2)uv−1bvv−1

= w−1a1wbw−1a2wbw−1a3wb

where w = uv−1, we may assume v = e and moreover that
U−a1UbU−a2UbU−(a1a2)Ub is cyclically reduced for the reduced word U for u.
Let V ≡ U−a1UbU−a2UbU−a3Ub. We remark a3 6= a1 and a3 6= a2. Then
aV (a1), aV (a2) and aV (a3) are odd, because each of a1, a2 and a3 appearing in U

also appears in U−. Hence we have three distinct letters g for which aV (g) is odd
and g2 = e.

Since V is cyclically reduced, V does not belong to C1. If V ∈ C2, then by the
remark preceding Lemma V must be of the form W−

0 w0W0W
−
1 w1W1. But then

we have at most two distinct letters g for which aV (g) is odd and g2 = e. Hence
we conclude V /∈ C2. ¤

Lemma 2.7. Let a ∈ A be an element satisfying a2 6= e and b ∈ B be a
non-trivial element. Then u−1auv−1bvu−1auv−1bvu−1auv−1bv does not belong to
C2 for every u, v ∈ A ∗B.
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Proof. Let U be the reduced word for u. As in the proof of Lemma 2.6,
we may assume that v = e and W ≡ U−aUbU−aUbU−aUb is cyclically reduced.
Since the length of W is even, W does not belong to C1. We see aW (a)−aW (a−1) =
3. If W is of the form W−

0 w0W0W
−
1 w1W1, then we have aW (a) − aW (a−1) ≤ 2.

Hence we conclude W /∈ C2 again by the remark preceding Lemma 2.6. ¤

Lemma 2.8. Let H be a subgroup of A∗B containing 〈W−aW 〉∗〈V 〉, where
a ∈ A ∪ B, W−aW is a reduced word and V is a cyclically reduced word with
l(V ) ≥ 2. There exists u ∈ H such that u /∈ C2.

Proof. Since V is cyclically reduced and l(V ) ≥ 2, either W−aWV or
V W−aW is reduced. Since the argument proceeds symmetrically, we assume that
V W−aW is reduced. Choose k so that k · l(V ) > l(W−aW ). Then the tail of
V W−aW is stable in V W−aWV k+1. We claim that the head of V W−aW is also
stable in V W−aWV k+1. To show this by contradiction, suppose that it is unsta-
ble. We consider a reduction process of the word V W−aWV k+1. Since V W−aW

and V k+1 are reduced words, a reduction process of the word V W−aWV k+1 is a
straight road. Let c be the head of V . The head c of V W−aW is affected under
the reduction between V W−aW and V k+1, i.e. there is a letter c′ in V k+1 such
that the multiplication cc′ occurs in the reduction process. Then, we have V0 and
V1 such that cV0V1 ≡ V ≡ V −

0 c′V −
1 , which implies cV0 ≡ V −

0 c′ and hence c′ = c−1.
Now we have V −

0 c−1 ≡ cV0, V −
1 ≡ V1 and W−aW ≡ V −

0 c−1(V −)l for some l ≥ 0.
This implies (W−aWV l+1)2 = (V −

0 c−1V )2 = (V1)2 = e, which contradicts that
〈W−aW 〉 and 〈V 〉 have no relation.

Let W0 be the reduced word of V W−aWV k+1. Since the head and tail of
V W−aWV k+1 are stable, the word V W0V is reduced. The reduction process of
V W−aWV k+1 stops when the multiplication in A or B produces a non-identity
element. By looking at this final step, we have a non-negative integer l, letters
u0, u of the same kind and words U0, U1, X such that U0u0U1 ≡ V , W0 ≡ XuU1V

l,
and u 6= u0.

Let U ≡ W0V
2k+2W0V

6k+8W0V
14k+18 which is the reduced word of

V W−aWV k+1V 2k+2V W−aWV k+1V 6k+8V W−aWV k+1V 14k+18.

To show U /∈ C2 by contradiction, suppose U ∈ C2. Since U is cyclically reduced,
U does not belong to C1 and hence is of the form X−

0 x0X0X
−
1 x1X1. Remark the

inequality l(W0) < (2k + 2)l(V ). From this we see that the indicated appearance
of x1 is located in V 14k+18.

Case 1: The rightmost W0V is located in X−
1 x1X1. Then it is located in X−

1

because l(V 14k+17) > l(W0V
2k+2W0V

6k+8W0V ). Since X1 is a subword of
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V 14k+18, we have V0 and V1 such that V0V1 ≡ V , V −
0 ≡ V0, V −

1 ≡ V1 and W0V ≡
XuU1V

lV ≡ Y V0V1V0V
−lV1 for some word Y . This implies XuU1 ≡ Y V0V1 ≡

Y V ≡ Y U0u0U1, which contradicts u 6= u0.

Case 2: The rightmost W0V is not located in X−
1 x1X1. In this case we examine the

leftmost W0V and the middle W0V . They are located in X−
0 , because l(V 6k+7) >

l(W0V
2k+2W0V ). Since l(V 2k+2) > l(W0), we see the length of the word between

the leftmost W0 and the middle W0 is greater than the length of the rightmost
W0. Thus for the leftmost or the middle W0V , a similar argument to Case 1 is
used to deduce a contradiction. ¤

Lemma 2.9. Let H be a subgroup of A ∗B such that

(1) H contains a non-trivial element which is conjugate to an element of A or B;
(2) H is not contained in any conjugate subgroup to A nor B; and
(3) H is not contained in any subgroup of the form 〈u0〉 ∗ 〈u1〉 with u2

0 = u2
1 = e.

Then, H contains an element u /∈ C2.

Proof. By the Kurosh subgroup theorem [17], H is of the form
∗i∈Iu

−1
i Hiui ∗ ∗j∈Jv−1

j 〈Vj〉vj , where Hi’s are subgroups of A or B and Vj ’s are
cyclically reduced words and l(Vj) ≥ 2. Under the condition (1)–(3) H contains

(a) a subgroup u−1〈a〉u ∗ v−1〈b〉v for some non-trivial elements a, b ∈ A∪B with
a2 6= e; or

(b) a subgroup 〈w−1aw〉 ∗ 〈v−1V v〉, where a ∈ A ∪ B and V is a non-empty
cyclically reduced word with l(V ) ≥ 2.

When H contains a subgroup of type (a), Lemma 2.7 implies the conclusion. When
H contains a subgroup of type (b), vHv−1 contains a subgroup 〈(wv−1)−1awv−1〉∗
〈V 〉. Let W be the reduced word for wv−1. If W−1aW is a reduced word, we can
apply Lemma 2.8 to vHv−1. Otherwise, W ≡ a0W0 with a0 being of the same kind
as a. Let a1 = a−1

0 aa0. Then, a1
2 = e and W−

0 a1W0 is a reduced word. Hence
we can apply Lemma 2.8 to vHv−1. In any case we have an element u ∈ vHv−1

satisfying u /∈ C2. We have v−1uv ∈ H and v−1uv /∈ C2. ¤

Lemma 2.10. Let x ∈ (A ∗B) \C2. Then xm /∈ C2 for every integer m ≥ 4.
For given x1, . . . , xn, there exists a positive integer m ≥ 4 such that xix

m /∈ C1

for every 1 ≤ i ≤ n.

Proof. Let V be the reduced word for x. Obviously l(V ) ≥ 2.
First we assume that V is cyclically reduced and prove the lemma. To show

the first statement by contradiction, suppose that V m ∈ C2. Then we have letters
w0, w1 and words W0,W1 such that V m ≡ W−

0 w0W0W
−
1 w1W1. Since l(V ) ≤
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l(W0) or l(V ) ≤ l(W1), V is a subword of W−
0 or W1. By Lemma 2.2 we have

V0, V1 such that V0V1 ≡ V , V0 ≡ V −
0 and V1 ≡ V −

1 and consequently V ∈ C2,
which is a contradiction. Next we show the second statement. Let m0 be a natural
number such that l(xi) < m0l(V ) for every 1 ≤ i ≤ n and let m = m0+3. To show
xiV

m /∈ C1 by contradiction, suppose that xiV
m ∈ C1. Then the reduced word

for xiV
m is of the form XV k+3 where l(X) < l(V k+1). Examining the leftmost V ,

by a similar argument to the above we conclude V ∈ C2, which is a contradiction.
In a general case we have u such that the reduced word for u−1xu is cyclically

reduced. Since C2 is closed under conjugacy, we have the first statement on x from
the one on u−1xu. To see the second statement, we choose m for u−1xu and u−1xiu

(1 ≤ i ≤ n) so that, for every 1 ≤ i ≤ n, u−1xix
mu = u−1xiu(u−1xu)m /∈ C1.

Since C1 is closed under conjugacy, we have xix
m /∈ C1. ¤

The following lemma seems to be a folklore-result. We prove it for complete-
ness.

Lemma 2.11. Let H be a non-trivial subgroup of 〈a〉∗〈b〉 where a2 = b2 = e.
If H is not conjugate to 〈a〉 nor 〈b〉, then H contains an element of the form

(ab)k for an arbitrarily large even k > 0.

Proof. Every non-empty reduced word of even length is of the form (ab)k

or (ba)k for some k > 0 and every reduced word of odd length is of the form
W−aW or W−bW for some word W . The reduced word of the concatenation of
two words of odd length is of even length and (ba)k is the inverse of (ab)k. Hence,
if (ab)k does not belong to H for any even k > 0 and H is not trivial, then H is
a conjugate to 〈a〉 or 〈b〉. In case H contains an element (ab)k for some k > 0, it
contains an element (ab)k for arbitrary large even k. ¤

Lemma 2.12. Let u,w0 ∈ ∗j∈JHj and e 6= h ∈ Hj0 . If u−1w−1
0 hw0u ∈

w−1
0 Hj0w0, then u ∈ w−1

0 Hj0w0.

Proof. Under the assumption we obtain (w0uw−1
0 )−1hw0uw−1

0 ∈ Hj0 .
Since Hj0 is a free factor of the free product, w0uw−1

0 ∈ Hj0 , that is, u ∈
w−1

0 Hj0w0. ¤

3. Proofs of Theorems 1.3 and 1.4.

The following theorem strengthens a part of [3, Theorem 4.1] (see also [4])
and is a special case of Theorem 1.3. In what follows, Zn denotes a copy of Z

indexed by n < ω and a generator of Zn is denoted by δn.

Theorem 3.1. Let A,B be arbitrary groups and h :××n<ωZn → A ∗B be a
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homomorphism. Then there exist m < ω and u ∈ A ∗ B such that h(××n≥mZn) ≤
u−1Au or h(××n≥mZn) ≤ u−1Bu.

The first lemma is a very special case of the theorem.

Lemma 3.2. Theorem 3.1 holds, if A = B = Z/2Z.

Proof. Let a ∈ A and b ∈ B be the non-identity elements. To show
the conclusion by contradiction we suppose h(××n≥mZn) is not a subgroup of any
conjugate of A or B for any natural number m. We construct xm ∈××n≥mZn and
positive integers km by induction. The subgroup h(××n≥0Zn) contains an element
of the form h(x0) = (ab)k0 with k0 > 0 by Lemma 2.11. For m, we choose xm and
even km so that h(xm) = (ab)km and km > Σm−1

i=0 ki.
The following construction of an element of××n<ωZn is a modification of that

in the proofs of [8, Theorem 2.1 and etc.], [7, Theorem 1.1], [3, Theorem 4.1] and
[12, Theorem 1.5]. A similar construction will appear in the proof of Theorem 3.1.
We start with recalling some notions.

Let Seq be the set of all finite sequences of natural numbers and denote the
length of s ∈ Seq by lh(s). An element s ∈ Seq of the length n = lh(s) is written
as 〈s0, . . . , sn−1〉 where sk ∈ N (0 ≤ k < n). The lexicographical ordering ≺ on
Seq is defined as follows: for s, t ∈ Seq, s ≺ t, if si < ti for the minimal i with
si 6= ti or t is an extension of s.

Let Wm ∈ W (Zn : n ≥ m) be the reduced word for xm, so Wm = xm. Let

V =
{
(s, p) : s ∈ Seq, 0 ≤ si < ki for 0 ≤ i < lh(s), p ∈ Wlh(s)

}

be endowed with the lexicographical ordering and define a word V ∈ W (Zn : n <

ω) by V (s, p) = Wlh(s)(p). We remark h(Wlh(s)) = h(xlh(s)) = (ab)klh(s) . Then V

is a word in W (Zn : n < ω). Let

Vm = V ∩ {
(s, p) : lh(s) ≥ m, si = 0 for 0 ≤ i < m, p ∈ Wlh(s)

}

and Vm be the restriction of V to Vm. We remark V ≡ V0 ≡ (W0V1)k0 and
Vm ≡ (WmVm+1)km .

We consider h(V ) ∈ 〈a〉 ∗ 〈b〉 and take m > 0 so that m > l(h(V )). First we
assume l(h(Wm+1Vm+2)) is odd, then h(Wm+1Vm+2)2 = e and hence h(Vm+1) =
h((Wm+1Vm+2)km+1) = e. Therefore h(V ) = (ab)k, where

k = Σm
i=0kiΠi

j=0kj ≥ km ≥ m > l(h(V )) = 2k,

which is a contradiction.
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Next we assume l(h(Wm+1Vm+2)) is even. Then, h(Wm+1Vm+2) = (ab)p for
some p ≥ 0 or (ba)p for some p > 0. Since h(Wlh(s)) = (ab)klh(s) , in the former
case we deduce a contradiction similarly to the odd case. In the latter case, we
have h(V ) = (ba)k, where

k = pkm+1Πm
j=0kj − Σm

i=0kiΠi
j=0kj

≥ (
pkm+1 − Σm

i=0ki

)
Πm

j=0kj > m > l(h(V )) = 2k,

which is a contradiction. Now we have shown the lemma. ¤

Proof of Theorem 3.1. Let h :××n<ωZn → A ∗ B be a homomorphism.
We consider the subgroups h(××n≥mZn) for m < ω. By the Kurosh subgroup
theorem a subgroup of A ∗ B is of the form ∗i∈Iu

−1
i Hiui ∗ ∗j∈Jv−1

j 〈Vj〉vj , where
Hi’s are subgroups of A or B and Vj ’s are cyclically reduced and l(Vj) ≥ 2. We
remark that v−1

j 〈Vj〉vj ’s are free subgroups.
If there exists m < ω such that h(××n≥mZn) is contained in a free subgroup,

we have m0 ≥ m such that h(××n≥m0Zn) is trivial by the Higman theorem [15]
(see also [8, Corollary 3.7]) and we are done. So, we may assume that, for each
m, h(××n≥mZn) has a free factor u−1Hu for some non-trivial subgroup H of A

or B. If, further, there exists m0 < ω, u0, u1 ∈ A ∪ B and w0, w1 ∈ A ∗ B such
that u2

0 = u2
1 = e, h(××n≥mZn) ≤ w−1

0 〈u0〉w0 ∗w−1
1 〈u1〉w1, then the conclusion for

w−1
0 〈u0〉w0 ∗ w−1

1 〈u1〉w1 follows from Lemma 3.2 and so does for A ∗B.
Therefore, in the following argument we assume that h(××n≥mZn) has a free

factor u−1Hu for some non-trivial subgroup H of A or B and is not a subgroup
of w−1

0 〈u0〉w0 ∗ w−1
1 〈u1〉w1 for any m < ω, u0, u1 ∈ A ∪ B with u2

0 = u2
1 = e and

w0, w1 ∈ A ∗B.
As in the proof of Lemma 3.2 we suppose the negation of the conclusion. Then

by Lemma 2.9 we have an element xm ∈××n≥mZn such that h(xm) /∈ C2. Then we
choose natural numbers km by induction. Let k0 = 1 and km be a natural number
which meets the following requirements:

(1) km ≥ 4 and

max
{
l(h(xki

i · · ·xkm−1
m−1 )) : 0 ≤ i ≤ m− 1

}
+ m + 2 ≤ km;

(2) h(xki
i · · ·xkm−1

m−1 )h(xkm
m ) /∈ C1 for every 0 ≤ i ≤ m− 1.

The existence of km and also h(xkm
m ) /∈ C2 are assured by Lemma 2.10. Now we

modify the proof of Lemma 3.2. Let Wm ∈ W (Zn : n ≥ m) be a reduced word for
xkm

m . Let
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V =
{
(s, p) : s ∈ Seq, 0 ≤ si < ki for 0 ≤ i < lh(s), p ∈ Wlh(s)

}

be endowed with the lexicographical ordering and define a word V ∈ W (Zn : n ≥
m) by V (s, p) = Wlh(s)(p). We remark h(Wlh(s)) = h(xklh(s)

lh(s) ). A subword Vm of
V is defined by a restriction as before with a slightly different domain. Let

Vm =
{
(s, p) : s ∈ Seq, lh(s) ≥ m, si = 0 for 0 ≤ i < m,

0 ≤ si < ki for m ≤ i < lh(s), p ∈ Wlh(s)

}
(1)

and Vm be the restriction of V to Vm. We remark Vm = xkm
m V

km+1
m+1 .

Finally choose m such that l(h(V )) ≤ m. We apply Lemma 2.4 to h(V ). Here,
n = max{l(h(xkj

j · · ·xkm−1
m−1 )) : 0 ≤ j ≤ m − 1}, z = Vm, k = km, M = Πm−1

j=0 kj .

Each yi is h(xkj

j · · ·xkm−1
m−1 ) for some 0 ≤ j < m. To be precise, let

y1 = h
(
xk0

0 · · ·xkm−1
m−1

)
,

y2 = h
(
x

km−1
m−1

)
, . . . , ykm−1 = h

(
x

km−1
m−1

)
,

ykm−1+1 = h
(
x

km−2
m−2 x

km−1
m−1

)
, . . . ,

yΠm−1
j=2 kj+1 = h

(
xk1

1 · · ·xkm−1
m−1

)
, . . . , yΠm−1

j=1 kj
= h

(
x

km−1
m−1

)

and so on.
We claim that Vm ∈ C1. To show this, suppose that Lemma 2.4 (2) holds.

Then there exist j, j′ ∈ J , i ∈ {2, . . . , M}, f ∈ Hj , g ∈ Hj′ , x, y ∈ ∗j∈JHj and a
non-negative integer r such that f2 = g2 = e, z = x−1fxy−1gy, and yi = zrx−1fx

or yi = y−1gyzr. Then yi is conjugate to g or f , which implies yi ∈ C1 for some
2 ≤ i ≤ M . But, according to our construction h(xkj

j · · ·xkm−1
m−1 ) does not belong

to C1 for any 0 ≤ j < m. Therefore, Lemma 2.4 (1) holds, i.e. Vm ∈ C1.
We apply the above argument also to m + 1, then we have Vm+1 ∈ C1 and

consequently h(xkm
m ) = h(VmV

−km+1
m+1 ) ∈ C2, which contradicts our construction.

¤

The following is a part of [8, Proposition 1.9].

Lemma 3.3. Let gn (n < ω) be elements of ××σ
i∈IGi such that

{n < ω : the reduced word of gn contains a letter of Gi}

is finite for each i ∈ I.
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Then, there exists a homomorphism ϕ :××n<ωZn →××σ
i∈IGi such that ϕ(δn) =

gn for n < ω.

Lemma 3.4 ([8, Theorem 2.1]). Let Gi (i ∈ I) and Hj (j ∈ J) be groups
and h :××σ

i∈IGi → ∗j∈JHj be a homomorphism to the free product of groups Hj’s.
Then there exist finite subsets F of I and E of J such that h(××σ

i∈I\F Gi) is contained
in ∗j∈EHj.

This lemma is strengthened in Theorem 1.3.

Proof of Theorem 1.3. The proof is an application of Theorem 3.1.
First we show Theorem 1.3 when J = {0, 1}. Let H0 = A and H1 = B. To
show by contradiction as before, suppose that

(∗) for any finite subsets F of I neither h(××σ
i∈I\F Gi) is contained in any conju-

gate of A nor B.

We claim that for each finite subset F of I there exists x ∈ ××σ
i∈I\F Gi such that

h(x) = w−1aw or w−1bw for some a ∈ A, b ∈ B and w ∈ A ∗ B. This follows
by a similar argument to the first half of the proof of Theorem 3.1. That is, by
the Kurosh subgroup Theorem h(××σ

i∈I\F Gi) is a free product of a free group and
conjugates of subgroups of A or B. If h(××σ

i∈I\F Gi) is a free group, then by [8,
Proposition 3.5] we reach a contradiction. Hence, we suppose that h(××σ

i∈I\F Gi)
contains a conjugate to a non-trivial subgroup of A or B.

Now we construct xm ∈××σ
i∈IGi, wm ∈ A ∗B, um ∈ A∪B, a finite subset Fm

of I and an at most countable subset Km of I by induction so that the following
conditions hold:

(1) xm ∈ ××σ
i∈Km

Gi where Km ∩ Fm = ∅, I∗ =
⋃

m<ω Km =
⋃

m<ω Fm and
Fm ⊆ Fm+1;

(2) h(xm) = w−1
m umwm with um 6= e;

(3) if wm = wm+1, then um ∈ A if and only if um+1 ∈ B.

Assuming that xm, um and wm are constructed, we choose a countable subset Km

of I such that xm ∈××σ
i∈Km

Gi and enumerate Km so that {p(m,n) : n < ω} = Km.
Then we let Fm+1 = {p(k, n) : n ≤ m, k ≤ m}. This is the standard book-keeping
method. By our assumption (∗) we can continue the construction of xm, um, wm,
Km and Fm satisfying (1)–(3).

Let δn be a generator of Zn. By Lemma 3.3 we have a homomorphism
ϕ : ××n<ωZn → ××σ

i∈IGi such that h(δm) = xm for m < ω. The above book-
keeping method assures that the sequence (xm : m < ω) satisfies the condition
of Lemma 3.3. By Theorem 3.1 we have n0 < ω such that h ◦ ϕ(××n≥n0Zn) is
contained in a conjugate subgroup to A or B. But, it never occurs that the both
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h(xn0) and h(xn0+1) belong to the same conjugate subgroup to A or B by (3),
which is a contradiction. Now we have shown the case that J = {0, 1}.

For a general case let h : ××σ
i∈IGi → ∗j∈JHj be a homomorphism. By

Lemma 3.4 there exist finite subsets F of I and E of J such that h(××σ
i∈I\F Gi) is

contained in ∗j∈EHj . Now the restriction of h to ××σ
i∈I\F Gi maps into ∗j∈EHj .

Since u−1(∗j∈E′Hj)u = ∗j∈E′〈u−1Hju〉 for E′ ⊆ I, by successive use of the case
of J = {0, 1} we have the conclusion. ¤

Next we prove Theorem 1.4. We recall some notions about loops. For a path
f : [0, 1] → X, f− denotes the path defined by: f−(s) = f(1 − s) for 0 ≤ s ≤ 1.
For paths f : [0, 1] → X and g : [0, 1] → X with f(1) = g(0) we denote the
concatenation of the paths f and g by fg.

For the Hawaiian earring H (see Introduction), let en(t) = ((cos 2πt−1)/(n+
1), sin 2πt/(n + 1)) for n < ω, 0 ≤ t ≤ 1. Here, en refers to the n-th earring.
Since π1(H, (0, 0)) is isomorphic to ××n<ωZn [8, Theorem A.1] and the loop en

corresponds to δn under this isomorphism, we identify δn and the homotopy class
of en. For a path p : [0, 1] → X, we denote the base-point-change isomorphism
from π1(X, p(0)) to π1(X, p(1)) by ϕp.

Lemma 3.5. Let X be a path-connected, locally path-connected, first count-
able space which is not semi-locally simply connected at any point and h :
π1(X, x0) → ∗j∈JHj be an injective homomorphism. For each point x ∈ X and a
path p from x to x0 there exists a path-connected open neighborhood U of x satis-
fying: there exist wx ∈ ∗j∈JHj and j(x) ∈ I such that for every loop l in U with
base point x, h ◦ ϕp([l]) ∈ w−1

x Hj(x)wx.

Proof. Let {Un : n < ω} be a neighborhood base of x consisting of path-
connected open sets such that Un+1 ⊆ Un. To show this by contradiction, suppose
that the desired neighborhood does not exist for a point x and a path p. We
inductively construct loops ln in Un with base point x as follows.

Let l0 be an essential loop in U0 with base point x. Suppose that we have
constructed a loop ln−1 in Un−1 with base point x. If h ◦ ϕp([ln−1]) is conjugate
to an element of some Hj , then we have wn−1 ∈ ∗j∈JHj such that h ◦ϕp([ln−1]) ∈
w−1

n−1Hjwn−1. By the assumption we have an essential loop ln in Un with base
point x such that h ◦ ϕp([ln−1]) /∈ w−1

n−1Hjwn−1. If h ◦ ϕp([ln−1]) is not conjugate
to any element of any Hj , we choose an arbitrary essential loop ln in Un with base
point x.

Since the images ln([0, 1]) converge to x, we can define a continuous map
f : H → X so that f((0, 0)) = x and f ◦ en = ln. By Theorem 1.3 there exists m

such that h ◦ ϕp ◦ f∗(××n≥mZn) is contained in a subgroup conjugate to some Hj .
Then, h◦ϕp◦f∗(δm) belongs to the subgroup conjugate to Hj , but h◦ϕp◦f∗(δm+1)
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does not belong to the subgroup by our construction, which is a contradiction. ¤

Proof of Theorem 1.4. Let p be an arbitrary path from x to x0. For
each s ∈ [0, 1] let ps be the path defined by: ps(t) = p((1− s)t). Then ps is a path
from p(s) to x0. By Lemma 3.5 we have a path-connected open neighborhood Us

of p(s), ws ∈ ∗j∈JHj and js ∈ J such that, for any loop l in Us with base point
p(s), h ◦ ϕps

([l]) ∈ w−1
s Hjs

ws. Since p1 is a constant path, for any loop l in U1

with base point x0 = p(1), h([l]) is contained in w−1
1 Hj1w1.

Considering an open interval which contains s and is contained in p−1(Us)
for each s, we have 0 = sn ≤ tn ≤ sn−1 ≤ · · · ≤ s1 ≤ t1 ≤ s0 = 1 such that
p([0, tn]) ⊆ Usn

= U0, p([t1, 1]) ⊆ Us0 = U1 and p([ti+1, ti]) ⊆ Usi
for 1 ≤ i ≤ n−1.

Define paths qi : [0, 1] → X for 1 ≤ i ≤ n and ri : [0, 1] → X for 0 ≤ i ≤ n− 1
by: qi(t) = p(si(1 − t) + tit) and ri(t) = p(ti+1(1 − t) + sit) respectively. Then
qi is a path from p(si) to p(ti) and ri is a path from p(ti+1) to p(si), which are
restrictions of p. We have an essential loop li in Usi

∩ Usi−1 with base point p(ti)
for 1 ≤ i ≤ n. Now

ϕpsi

(
[q−i liqi]

)
=

[
(qipsi

)−li(qipsi
)
]

=
[
p−ti

lipti

]

= ϕpsi−1

(
[r−i−1liri−1]

)
.

We remark that q−i liqi is a loop in Usi with base points p(si) and r−i−1liri−1 is a
loop in Usi−1 with base point p(si−1).

We have h([p−t1 l1pt1 ]) ∈ w−1
1 Hj1w1 and also

h
(
[p−t1 l1pt1 ]

)
= h

(
ϕps1

([q−1 l1q1])
) ∈ w−s1

Hjs1
ws1 .

Since h is injective and l1 is essential, h([p−t1 l1pt1 ]) is a non-trivial element and
hence ws1 = w1 and js1 = j1. Generally we have

h
(
ϕpsi−1

([r−i−1liri−1])
) ∈ w−si−1

Hjsi−1
wsi

= h
(
ϕpsi

([q−i liqi])
) ∈ w−si

Hjsi
wsi

and by the same reasoning as above wsi = wsi−1 and jsi = jsi−1 . Hence w0 =
wsn = w1 and j0 = j1. Since p1 is the degenerate path on x0, w1 and j1 are
determined only by x0 and so a choice of a path p does not effect to this equality.

We apply this to the case for x = x0 and an arbitrary loop p with base point
x0. We have an open neighborhood U0 of p(0) = x = x0. Choose an essential loop
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l in U0 ∩ U1 with base point x0. Then we have

e 6= h([p])−1h([l])h([p]) = h([p−lp]) = h(ϕp([l])) ∈ w−1 Hj1w1

and also h([l]) ∈ w−1
1 Hj1w1 by the choice of U1. Now Lemma 2.12 implies h([p]) ∈

w−1
1 Hj1w1. ¤

Remark.

(1) As is shown in [12, Remark 4.6], the injectivity hypothesis of Theorem 1.4
cannot be dropped, yet can be weakened as follows. For a non-empty open set U

and a path from a point p(0) in U to x0, let Hp
U = {[p−lp] | l is a loop in U} ⊆

π1(X, x0). Then the injectivity can be replaced with: h(Hp
U ) is non-trivial for each

non-empty open set U and for each path from a point p(0) in U to x0.
(2) The free σ-product ××σ

i∈IGi is realized as the fundamental group of the
one point union of spaces. To be more precise, let Xi be a space locally strongly
contractible at xi with π1(Xi, xi) = Gi and identify all xi’s with one point x∗. We
assume that Xi ∩ Xj = ∅ for i 6= j. Let

∨̃
i∈I(Xi, xi) be the space with its base

set {x∗} ∪ ⋃
i∈I Xi \ {xi}. The topology of each Xi \ {xi} is the same as in Xi.

A neighborhood base of x∗ is of the form {x∗} ∪⋃
i∈I Oi \ {xi} where each Oi is

a neighborhood of xi and all but finite many Oi’s are the whole spaces Xi. Then
π1(

∨̃
i∈I(Xi, xi)) is isomorphic to ××σ

i∈IGi [8, Theorem A.1].

Appendix.

We remark that the condition m+n+2 ≤ k is sufficient in Lemma 2.4 instead
of m + n + 3 ≤ k. We have stated the lemma of the form of m + n + 2 ≤ k in
some published papers [8], [3] and [12]. Their uses are similar to the use in the
proof of Theorem 3.1 and so the condition m + n + 3 ≤ k is sufficient for their
proofs. Actually the condition m+n+100 ≤ k is also sufficient. Since the original
statement is still true, we present an additional proof which assures the statement
with m + n + 2 ≤ k.

We follow the proof of Lemma 2.4. The fact that M ≥ 2 is proved precisely
the same. Then, instead of (∗), we have

u = Z1U
p+1Z2U

k · · ·UkZMUkW

such that Z1U
p+1 is reduced. After the 17-th line of the proof we considered

Up+1ZiU
p+1. Now we consider UpZiU

p+1 instead. In case the head and the tail
of UpZiU

p+1 is quasi-stable for every 2 ≤ i ≤ M , we have the conclusion by the
same reasoning as that in the proof of Lemma 2.4. We remark that the inequality
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(∗∗) holds even in this case.
If there exists 2 ≤ i ≤ M such that the tail of UpZiU

p+1 is not quasi-stable,
then we have the conclusion as in the proof again. Hence, we consider the case
that for every 2 ≤ i ≤ M the tail of UpZiU

p+1 is quasi-stable but, for some
2 ≤ i0 ≤ M ,

(†) the head of UpZi0U
p+1 is not quasi-stable.

In addition if the reduced word of UpZi0 is of the form UX, then we get the
conclusion as in the case when the tail of UpZiU

p+1 is not quasi-stable for some
i. Otherwise, since 2p = n + 1 or n + 2, we have l(Zi0) > 2(p − 1) and l(U) = 2.
Moreover, if 2p = n + 1, then 2p + 2 ≤ k and hence this case is reduced to the
proof of Lemma 2.4. Now, to get the conclusion, we may assume 2p = n + 2 and
hence 2p − 1 = l(Zi0). Let U ≡ ab. We show a2 = b2 = e, which completes our
proof. Since the reduced word of UpZi0 is not of the form UX, Zi0 is of the form
(b−a−)p−1c and moreover we have c = b− by (†). Then UpZi0U

p+1 = a(ab)p+1

and again by (†) a2 = e and UpZi0U
p+1 = b(ab)p.

Next we consider UpZjU
p+1 for j 6= i0. By our assumption the tail is quasi-

stable. If the head is not quasi-stable, then the reduced word of UpZjU
p+1 is

b(ab)p as in the case of UpZi0U
p+1. Since 2p = n + 2, we have lh(Zj) ≤ 2p − 1

and hence the reduced word of ZjU
p is of the form Xb.

If the tail of UpZjU
p is not quasi-stable for some j 6= i0, then we have b2 = e,

since Up ≡ (ab)p. Otherwise, i.e. the tail of UpZjU
p is quasi-stable for every

j 6= i0, the reduced word of UpZjU
p+1 is of the form Xab. Hence the tail of the

reduced word of UpZiU
p+1 is b for every 2 ≤ i ≤ M , while the head of it is b, a or

of the same kind as a. Hence, unless b2 = e, the rightmost (ab)k−p−1 remains in
the reduced word for u and l(u) ≥ l((ab)k−p−1) = 2k − 2p − 2 ≥ 2m + n > l(u),
which is a contradiction. Now we conclude a2 = b2 = e.

Acknowledgments. The author thanks the referee for his careful reading,
suitable suggestions and several corrections, which clarify proofs and make the
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