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Exponential attractors

for non-autonomous dissipative system
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Abstract. In this paper we will introduce a version of exponential at-
tractor for non-autonomous equations as a time dependent set with uniformly
bounded finite fractal dimension which is positively invariant and attracts
every bounded set at an exponential rate. This is a natural generalization of
the existent notion for autonomous equations. A generation theorem will be
proved under the assumption that the evolution operator is a compact pertur-
bation of a contraction. In the second half of the paper, these results will be
applied to some non-autonomous chemotaxis system.

1. Introduction.

Our aim in this paper is to discuss the behavior as time goes to infinity of
ordinary differential equations of the form

dU

dt
= F (t, U) (1.1)

in a Banach space X.
When the system is autonomous, i.e., when the time does not appear explicitly

in (1.1) (F (t, U) ≡ F (U)), then, very often, the long time behavior of the system
can be described in terms of the global attractor A . More precisely, assuming
that the system is well-posed, we can define the family of solving operators

S(t) : U0 7→ U(t), t ≥ 0,

acting on X, which maps the initial datum U0 onto the solution at time t. This
family of operators satisfies
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S(0) = I,

S(t + s) = S(t) ◦ S(s), ∀t, s ≥ 0,

I denoting the identity operator on X, and we say that it forms a semigroup on
the phase space X.

Definition 1.1. We then say that a set A is the global attractor for S(t)
in X if:

( i ) It is a compact set of X.
( ii ) It is an invariant set, i.e., S(t)A = A , ∀t ≥ 0.
(iii) It attracts (uniformly) the bounded sets of initial data in the following sense:

∀B ⊂ X bounded, lim
t→+∞

h(S(t)B,A ) = 0,

where h(·, ·) denotes the Hausdorff semidistance between sets, defined by

h(A,B) = sup
a∈A

inf
b∈B

‖a− b‖X .

This is equivalent to the following : ∀B ⊂ X bounded, ∀ε > 0, ∃t0 = t0(B, ε) such
that t ≥ t0 implies S(t)B ⊂ Uε, where Uε denotes the ε-neighborhood of A .

We note that it follows from (ii) and (iii) that the global attractor, if it exists,
is unique. Furthermore, it follows from (i) that it is essentially thinner than
the original phase space X; indeed, here, in general, X is an infinite-dimensional
function space and, in infinite dimensions, a compact set cannot contain a ball and
is nowhere dense. It is not difficult to prove that the global attractor is the smallest
(for the inclusion) closed set enjoying the attraction property (iii); it is also the
largest bounded invariant set. Finally, in most (if not all) cases, one can prove that
the global attractor has finite dimension (in the sense of covering dimensions, such
as the Hausdorff and the fractal dimensions; the global attractor is not a smooth
manifold in general, but it can have a very complicated geometric structure), so
that, even though the initial phase space is infinite-dimensional, the dynamics,
reduced to the global attractor, is, in some proper sense, finite-dimensional and
can be described by a finite number of parameters. It thus follows that the global
attractor appears as a suitable object in view of the study of the long time behavior
of the system. We refer the reader to [5], [12], [20], [25], [27], [29] for extensive
reviews on this subject.

Now, the global attractor may present some defaults. Indeed, it may attract
the trajectories slowly (see, e.g., [23]). Furthermore, in general, it is very difficult,
if not impossible, to express the convergence rate in terms of the physical parame-
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ters of the problem. A second drawback, which can also be seen as a consequence
of the first one, is that the global attractor may be sensitive to perturbations; a
given system is only an approximation of reality and it is thus essential that the
objects that we study must be robust under small perturbations. Actually, in gen-
eral, the global attractor is outer semicontinuous with respect to perturbations,
i.e.,

h(Aε,A0) → 0 as ε → 0,

where A0 is the global attractor associated with the nonperturbed system and Aε

that associated with the perturbed one, ε > 0 being the perturbation parameter.
Now, the inner semicontinuity, i.e.,

h(A0,Aε) → 0 as ε → 0,

is much more difficult to prove (see, e.g., [27]). Furthermore, this property may
not hold. This is in particular the case when the perturbed and nonperturbed
problems do not have the same equilibria (stationary solutions). Furthermore, in
many situations, the global attractor may not be observable in experiments or in
numerical simulations. This can be due to the fact that it has a very complicated
geometric structure, but not necessarily. Indeed, we can consider for instance the
following Chafee-Infante equation in one space dimension:

∂u

∂t
− ν

∂2u

∂x2
+ u3 − u = 0, x ∈ [0, 1], ν > 0,

u(0, t) = u(1, t) = −1, t ≥ 0.

Then, due to the boundary conditions, A = {−1}. Now, this problem possesses
many metastable “almost stationary” equilibria which live up to a time t? ∼ eν−1/2

.
Thus, for ν small, one will not see the global attractor in numerical simulations.
Finally, in some situations, the global attractor may fail to capture important tran-
sient behaviors. This can be observed, e.g., on some models of one-dimensional
Burgers equations with a weak dissipation term (see [6]). In that case, the global
attractor is trivial, it is reduced to one exponentially attracting point, but the sys-
tem presents very rich and important transient behaviors, which resemble some
modified version of the Kolmogorov law. We can also mention models of pattern
formation equations in autonomous chemotaxis model for which one observes im-
portant transient behaviors which are not contained in the global attractor (see
[2], [3], [19], [28]).
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So, it follows from the above considerations that it should be useful to have a
(possibly) larger object which contains the global attractor, attracts the trajecto-
ries at a fast rate, is still finite-dimensional and is more robust under perturbations.

The first attempt to study such an object, i.e., an exponential attractor for an
autonomous system, was made by A. Eden, C. Foias, B. Nicolaenko and R. Temam
in [14]. Indeed, let S(t), t ≥ 0, be the semigroup associated with the problem





dU

dt
= F (U), 0 < t < ∞,

U(0) = U0,

(1.2)

in a Banach space X (in particular, we assume that (1.2) is well-posed for U0 ∈ X).
We have the following definition.

Definition 1.2. A set M is an exponential attractor for S(t) in X if:

( i ) It is a compact set of X with finite fractal dimension.
( ii ) It is a positively invariant set, i.e., S(t)M ⊂ M , ∀t ≥ 0.
(iii) It attracts exponentially fast the bounded sets of initial data in the following

sense: There exist a constant α > 0 and a monotonic function Q such that

∀B ⊂ X bounded, h(S(t)B,M ) ≤ Q(‖B‖X)e−αt, t ≥ 0.

It follows from this definition that an exponential attractor always contains
the global attractor (actually, it follows from the definition that, if S(t) possesses
an exponential attractor M , then it also possesses the global attractor A ⊂ M ;
indeed, M is a compact attracting set (see, e.g., [5]; the continuity of S(t), ∀t ≥ 0,
generally holds)).

Remark 1.1.

( i ) Actually, proving the existence of an exponential attractor is also one way
of proving the finite (fractal) dimensionality of the global attractor.

( ii ) The choice of the fractal dimension over other dimensions, e.g., the Haus-
dorff dimension, in Definition 1.2 is related, with the Mané theorem which
gives some indications on the existence of a reduced finite-dimensional sys-
tem which is Hölder continuous (but, unfortunately, not Lipschitz continu-
ous) with respect to the initial data, see [14].

The main drawback of exponential attractors is however that an exponential
attractor, if it exists, is not unique. Therefore, the question of the best choice, if
it makes sense, of an exponential attractor is a crucial one.
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The first construction of exponential attractors was due to A. Eden, C. Foias,
B. Nicolaenko and R. Temam [14]. This construction is based on the so-called
squeezing property which, roughly speaking, says that either the higher modes
are dominated by the lower ones or that the flow is contracted exponentially.
It is non-constructible (indeed, Zorn’s lemma is used in order to construct the
appropriate exponential attractor) and is only valid in Hilbert spaces (since it
makes an essential use of orthogonal projectors with finite rank). Furthermore,
based on this construction, it is possible to prove the inner semicontinuity of proper
exponential attractors under perturbations, but only up to some time shift, so that,
essentially, one only proves that

h(A0,Mε) → 0 as ε → 0,

where A0 is the global attractor associated with the nonperturbed system and Mε

an exponential attractor associated with the perturbed one, which is not satisfac-
tory.

In [16], was proposed a second construction, valid in Banach spaces also
(see also [13] for another construction of exponential attractors valid in Banach
spaces; this second construction consists in adapting that of [14] to a Banach
setting and has thus some of the drawbacks mentioned above). The key point in
this construction is a smoothing property on the difference of two solutions which
generalizes in some sense (and, in particular, to a Banach setting) techniques
proposed by O. A. Ladyzhenskaya in order to prove the finite dimensionality of
the global attractor, see, e.g., [24] of the form

‖S(τ∗)U0 − S(τ∗)V0‖Z ≤ c‖U0 − V0‖X , (1.3)

where Z is a second Banach space which is compactly embedded into X, which
has to hold for some τ∗ > 0 and on some bounded positively invariant subset of
X (see [16] for generalizations and other forms of the smoothing property (1.3)).
We can note that, in a Hilbert setting, i.e., when X and Z are Hilbert spaces,
then (1.3) implies the squeezing property, see [15]. Furthermore, based on this
construction, it is possible to construct robust (i.e., inner and outer semicontinuous
with respect to perturbations) families of exponential attractors (see [17]) which
satisfy in particular an estimate of the form

d(Mε,M0) ≤ cεκ, c > 0, κ ∈ (0, 1), (1.4)

where the constants c and κ are independent of ε and can be computed explicitly
in terms of the physical parameters of the problem and where d(·, ·) denotes the
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symmetric Hausdorff distance between (closed) sets

d(A,B) = max{h(A,B), h(B,A)}.

Of course, such constructions are obtained having in mind the nonuniqueness
problem.

Remark 1.2.

( i ) It is in general very difficult, if not impossible, to prove an estimate of the
form (1.4) for global attractors. This is possible, for instance, when the
stationary solutions enjoy some hyperbolicity assumption. In that case, the
global attractor is regular (see [5]) and exponential and one has an estimate
of the form (1.4). However, even in that case, one cannot compute in general
the constants c and κ in terms of the physical parameters of the problem.

( ii ) We also refer to [4] for results on the stability of exponential attractors
under numerical approximations.

Now, let us consider the non-autonomous problem





dU

dt
= F (t, U), s < t < ∞,

U(s) = Us, −∞ < s < ∞,

(1.5)

in a Banach space X. Assuming that (1.5) is well-posed for Us ∈ X, we have the
family of solving operators

U(t, s) : Us 7→ U(t), −∞ < s ≤ t < ∞.

The family of operators has the properties

U(s, s) = I, −∞ < s < ∞, (1.6)

U(t, r) ◦ U(r, s) = U(t, s), −∞ < s ≤ r ≤ t < ∞. (1.7)

It is then said that U(t, s) forms an evolution operator or a process on the
phase space X. We especially emphasize that the theory of attractors for non-
autonomous systems is less understood than that for autonomous systems. We
have essentially two approaches.

The first one, initiated by A. Haraux (see [21]) and further studied and de-
veloped by V. V. Chepyzhov and M. I. Vishik (see, e.g., [11], [12]), is based on
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the notion of a uniform attractor. The major drawback of this approach is that it
leads, for general (translation-compact, see [11]) time dependences, to an artificial
infinite dimensionality of the uniform attractor. This can already be seen for the
following simple linear equation:

∂u

∂t
−∆u = h(t), u

∣∣
∂Ω

= 0,

in a bounded smooth domain Ω, whose dynamics is simple, namely, one has one
exponentially attracting trajectory. However, the uniform attractor has infinite
dimension and infinite topological entropy (see [12]). However, for periodic and
quasiperiodic time dependences, one has in general finite-dimensional uniform at-
tractors (i.e., if the same is true for the corresponding autonomous system, see
[10], [18]). Furthermore, one can derive sharp upper and lower bounds on the
dimension of the uniform attractor, so that this approach is quite relevant in that
case. We can note that, as in the autonomous case, an exponential attractor in
this setting always contains the uniform attractor and, again, one has, for general
time dependences, an artificial infinite dimensionality.

The second approach is based on the notion of a pullback attractor (see,
e.g. [8], [22] and the references therein). In that case, one has a time dependent
attractor {A (t)}t∈R, contrary to the uniform attractor which is time independent.

Definition 1.3. A family {A (t)}t∈R is a pullback attractor for the evolu-
tion operator U(t, s) on X if:

( i ) Each A (t) is a compact set of X.
( ii ) It is invariant, i.e., U(t, s)A (s) = A (t) for all −∞ < s ≤ t < ∞.
(iii) It satisfies the following pullback attraction property:

∀B ⊂ X bounded, lim
s→+∞

h(U(t, t− s)B,A (t)) = 0.

One can prove that, in general, A (t) has finite dimension for every t ∈ R. We
also note that it follows from the above definition that the pullback attractor, if
it exists, is unique. Furthermore, if the system is autonomous, then one recovers
the global attractor. Now, the attraction property essentially means that, at time
t, the attractor A (t) attracts the bounded sets of initial data coming from the
past (i.e., from −∞). However, in (iii), the rate of attraction is not uniform in t,
so that the forward convergence is not true in general (see nevertheless [7], [9] for
cases where the forward convergence can be proven).

In this paper, we want to introduce a version of exponential attractor for
non-autonomous equations as a time dependent set satisfying certain natural as-
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sumptions. Our definition is stated as follows.

Definition 1.4. A family {M (t)}t∈R is an exponential attractor for the
evolution operator U(t, s) on X if:

( i ) Each M (t) is a compact set of X and its fractal dimension is finite and
uniformly bounded, i.e., supt∈R dimM (t) < ∞.

( ii ) It is positively invariant, i.e., U(t, s)M (s) ⊂ M (t) for all −∞ < s ≤ t < ∞.
(iii) There exist an exponent α > 0 and two monotonic functions Q and τ such

that

∀B ⊂ X bounded, h(U(t, s)B,M (t)) ≤ Q(‖B‖X)e−α(t−s),

s ∈ R, s + τ(‖B‖X) ≤ t < ∞.

The first purpose of this paper is then to show construction of exponential
attractors for non-autonomous systems. To this end, we will assume existence of
a family of bounded sets X (t), t ∈ R, which is positively invariant and absorbs
all bounded sets, and will generalize (1.3) into the form

‖U(τ∗ + s, s)U0 − U(τ∗ + s, s)V0‖Z ≤ c‖U0 − V0‖X ,

U0, V0 ∈ X (s), for all s ∈ R,
(1.8)

where τ∗ > 0 is some fixed constant. (Actually our assumption will be of the
more general form, see (2.1) and (2.2).) This condition together with some minor
ones in fact enables us to generalize the method of construction for autonomous
systems (due to [16]) to that for non-autonomous ones. Our exponential attractor
M (t) then depends on t continuously if t 6= nτ∗, n ∈ Z, and is right continuous
at t = nτ∗, n ∈ Z. Left discontinuity of M (t) at time nτ∗ comes completely from
a technical reason. We notice in applications that (1.8) is actually verified for any
τ∗ contained in some interval (τ0, τ1), where 0 < τ0 < τ1, which means that, even
if M (t) is left discontinuous at nτ∗, it is possible to choose another τ∗ in order
to construct another exponential attractor M (t) which is now continuous at the
nτ∗.

The second purpose is to apply this construction to some non-autonomous
chemotaxis system. For autonomous chemotaxis systems, we have already con-
structed exponential attractors in the papers [1], [26] (cf. also [30, Chapter 12]).
In [2] we estimated their fractal dimensions from below and showed that, if the
chemotaxis parameter becomes large, then the fractal dimensions also increase and
finally tend to infinity. Meanwhile, in [17] we proved that the exponential attrac-
tor can depend continuously with respect to the chemotaxis parameter. In this
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paper, we will consider a time dependent sensitivity function. Under reasonable
assumptions on the function, our general result will be applied for constructing
exponential attractors as before. Our result seems to be in good agreement with
the former ones in the sense that the dimension of M (t) is uniformly bounded and
is continuous with respect to the variable t.

2. Construction of exponential attractors.

Let X be a Banach space with norm ‖ · ‖X . Let K be a subset of X which
is a metric space equipped with the distance d(U, V ) = ‖U − V ‖X . We consider a
family of nonlinear operators U(t, s) acting on K defined for

(t, s) ∈ ∆ = {(t, s);−∞ < s ≤ t < ∞}.

We assume that U(t, s) has the properties (1.6) and (1.7) on K . A family of
U(t, s) having these properties is called an evolution operator or a process on the
space K . We assume also that U(t, s) is continuous in the sense that

the mapping G : ∆×K → K , ((t, s), U0) 7→ U(t, s)U0 is continuous.

Such an evolution operator is said simply to be continuous on K . When U(t, s)
is a continuous evolution operator on K , the triplet (U(t, s),K , X) is called a
non-autonomous dynamical system, and K and X are called the phase space and
the universal space, respectively. The trace of a function U(·, s)U0 for t ∈ [s,∞) in
the space K is called the trajectory starting from U0 ∈ K at initial time s ∈ R.

We now restate the definition of exponential attractors. (Note that in Defini-
tion 1.4, K coincides with X).

Definition 2.1. A family {M (t)}t∈R of subsets of K is called an expo-
nential attractor for (U(t, s),K , X) if:

( i ) Each M (t) is a compact set of X and its fractal dimension is finite and
uniformly bounded, i.e., supt∈R dimM (t) < ∞.

( ii ) It is positively invariant, i.e., U(t, s)M (s) ⊂ M (t) for all (t, s) ∈ ∆.
(iii) There exist an exponent α > 0 and two monotonic functions Q and τ such

that

∀B ⊂ K bounded, h(U(t, s)B,M (t)) ≤ Q(‖B‖X)e−α(t−s),

s ∈ R, s + τ(‖B‖X) ≤ t < ∞.

In order to construct exponential attractors, we have to assume existence of a
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family {X (t)}t∈R of bounded closed subsets of K with the following properties:

(1) The diameter ‖X (t)‖X of X (t) is uniformly bounded, i.e., supt∈R ‖X (t)‖X =
R < ∞.

(2) It is positively invariant, i.e., U(t, s)X (s) ⊂ X (t) for all (t, s) ∈ ∆.
(3) It is absorbing in the sense that there is a monotonic function σ such that

∀B ⊂ K bounded, U(t, s)B ⊂ X (t), s ∈ R, s + σ(‖B‖X) ≤ t < ∞.

(4) There is τ∗ > 0 such that, for every s ∈ R, U(τ∗ + s, s) is a compact pertur-
bation of contraction on X (s) in the sense that

‖U(τ∗ + s, s)U0 − U(τ∗ + s, s)V0‖X

≤ δ‖U0 − V0‖X + ‖K(s)U0 −K(s)V0‖X , U0, V0 ∈ X (s), (2.1)

where δ is a constant such that 0 ≤ δ < 1/2 and where K(s) is an operator
from X (s) into another Banach space Z which is embedded compactly in X

and satisfies a Lipschitz condition

‖K(s)U0 −K(s)V0‖Z ≤ L1‖U0 − V0‖X , U0, V0 ∈ X (s), (2.2)

with some constant L1 > 0 independent of s.
(5) It holds for any s ∈ R and any τ ∈ [0, τ∗] that

‖U(τ + s, s)U0 − U(τ + s, s)V0‖X ≤ L2‖U0 − V0‖X , U0, V0 ∈ X (s), (2.3)

with some constant L2 > 0 independent of s and τ .

Theorem 2.1. Let (U(t, s),K , X) be a non-autonomous dynamical system
in X. Assume that the conditions (1)∼(5) be satisfied. Then, one can construct
an exponential attractor {M (t)}t∈R for (U(t, s),K , X).

Proof. For m, n ∈ Z with m ≤ n, put U∗(n,m) = U(nτ∗,mτ∗). Let us
first consider a discrete non-autonomous dynamical system (U∗(n,m),K , X). In
the first three steps of proof, we will construct an exponential attractor for the
discrete system (U∗(n,m),K , X).

For n ∈ Z, put X ∗(n) = X (nτ∗). A family M ∗(n), n ∈ Z, of compact sets
of X is called an exponential attractor for (U∗(n,m),K , X) if M ∗(n) satisfies:

(1) The fractal dimension of M ∗(n) is uniformly bounded for n, i.e.,
supn∈Z dimM ∗(n) ≤ c∗1.
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(2) U∗(n,m)M ∗(m) ⊂ M ∗(n) for all −∞ < m ≤ n < ∞.
(3) For some 0 < a < 1, it holds true that

h(U∗(n,m)X ∗(m),M ∗(n)) ≤ Ran−m, −∞ < m ≤ n < ∞.

The last step will be devoted to handling the continuous case.

Step 1: Let θ be any number such that 0 < θ < (1 − 2δ)/(2L1) and let
aθ = 2(δ + θL1). Clearly, 0 < aθ < 1. The purpose of this step is to construct, for
any −∞ < m ≤ n < ∞, a covering of U∗(n,m)X ∗(m) by Nn−m

θ -closed balls of
X with uniform radius Ran−m

θ centered at points in U∗(n,m)X ∗(m), where Nθ

is the minimal number of closed balls of X with radius θ which cover the closed
unit ball B

Z
(0; 1) of Z centered at 0. That is, for −∞ < m ≤ n < ∞,

U∗(n,m)X ∗(m) ⊂
Nn−m

θ⋃

i=1

B(Wn,m,i;Ran−m), where a = aθ, (2.4)

with Wn,m,i ∈ U∗(n,m)X ∗(m), 1 ≤ i ≤ Nn−m
θ .

Let us construct the covering (2.4) by induction on n (m being fixed). If
n = m, then we can take Wm,m,1 ∈ X ∗(m) arbitrarily. (Remember the condition
(1) for X (t).) Assume that we have the covering (2.4) for n ≥ m. Then,

U∗(n + 1,m)X ∗(m)

= U∗(n + 1, n)U∗(n,m)X ∗(m)

⊂
Nn−m

θ⋃

i=1

U∗(n + 1, n)
(
B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m)

)
.

So, it suffices to cover each set

U∗(n + 1, n)
(
B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m)

)

by Nθ-closed balls with the radius Ran+1−m centered in U∗(n + 1,m)X ∗(m).
Using (2.2) with s = nτ∗, we see that

K(nτ∗)
(
B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m)

)

⊂ B
Z(

K(nτ∗)Wn,m,i;L1Ran−m
)
.
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Then, by the compactness of closed bounded balls of Z in X, the last ball can be
covered by Nθ-closed balls of X in such a way that

B
Z(

K(nτ∗)Wn,m,i;L1Ran−m
) ⊂

Nθ⋃

j=1

B
(
Ṽn,m,i,j ; θL1Ran−m

)

with centers Ṽn,m,i,j ∈ X, 1 ≤ j ≤ Nθ, and radius θL1Ran−m. Therefore,

K(nτ∗)
(
B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m)

)

⊂
Nθ⋃

j=1

B
(
Ṽn,m,i,j ; θL1Ran−m

)
. (2.5)

We are here allowed to assume that

K(nτ∗)
(
B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m)

) ∩B
(
Ṽn,m,i,j ; θL1Ran−m

) 6= ∅

for every j, since, if not for some j’s, we can exclude these balls from the covering.
So, we can choose for each j, a point Vn,m,i,j such that

Vn,m,i,j ∈ B
(
Wn,m,i;Ran−m

) ∩ U∗(n,m)X ∗(m),

K(nτ∗)Vn,m,i,j ∈ B
(
Ṽn,m,i,j ; θL1Ran−m

)
.

(2.6)

Therefore, from (2.5) it is deduced that

K(nτ∗)
(
B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m)

)

⊂
Nθ⋃

j=1

B
(
K(nτ∗)Vn,m,i,j ; 2θL1Ran−m

)
.

Let now U ∈ B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m). Then, there is some
j such that K(nτ∗)U ∈ B(K(nτ∗)Vn,m,i,j ; 2θL1Ran−m). As a consequence, it
follows from (2.1) that

∥∥U∗(n + 1, n)U − U∗(n + 1, n)Vn,m,i,j

∥∥
X

≤ δ‖U − Vn,m,i,j‖X +
∥∥K(nτ∗)U −K(nτ∗)Vn,m,i,j

∥∥
X

≤ δ‖U − Vn,m,i,j‖X + 2θL1Ran−m.
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In addition, by (2.6),

‖U − Vn,m,i,j‖X ≤ ‖U −Wn,m,i‖X + ‖Wn,m,i − Vn,m,i,j‖X ≤ 2Ran−m.

So that, ‖U∗(n+1, n)U−U∗(n+1, n)Vn,m,i,j‖X ≤ 2(δ+θL1)Ran−m = Ran+1−m.
Hence, it holds that

U∗(n + 1, n)
(
B(Wn,m,i;Ran−m) ∩ U∗(n,m)X ∗(m)

)

⊂
Nθ⋃

j=1

B
(
U∗(n + 1, n)Vn,m,i,j ;Ran+1−m

)
. (2.7)

We observe from (2.6) that U∗(n + 1, n)Vn,m,i,j ∈ U∗(n + 1,m)X ∗(m).
Covering of the form (2.7) can of course be constructed for all other balls.

Therefore, the desired covering (2.4) for n + 1 is obtained by locating central
points as

{
Wn+1,m,i; 1 ≤ i ≤ Nn+1−m

θ

}

=
{
U∗(n + 1, n)Vn,m,i,j ; 1 ≤ i ≤ Nn−m

θ , 1 ≤ j ≤ Nθ

} ⊂ U∗(n + 1,m)X ∗(m).

Step 2: For −∞ < m ≤ n < ∞, we put

Em(n) =
{
U∗(n,m + k)Wm+k,m,ik

; 0 ≤ k ≤ n−m, 1 ≤ ik ≤ Nk
θ

}
.

It is clear by definition that

Em(n) ⊂ U∗(n,m)X ∗(m) ⊂ X ∗(n).

In addition, for n ≤ p < ∞,

U∗(p, n)Em(n) ⊂ Em(p). (2.8)

We then set, for each −∞ < n < ∞,

M ∗(n) =
n⋃

m=−∞
Em(n). (2.9)

This family M ∗(n), −∞ < n < ∞, will indeed give an exponential attractor for
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(U∗(n,m),K , X).
Let us estimate in this step the fractal dimension of M ∗(n). Let n be fixed

and let 0 < ε < 1 be any number. Let mε (≤ n) be the largest integer such
that Ran−m ≤ ε, i.e., mε ≤ (log(R−1a−nε))/(− log a). For all m’s such that
−∞ < m ≤ mε, we have

Em(n) ⊂ U∗(n,m)X ∗(m) ⊂ U∗(n,mε)U∗(mε,m)X ∗(m) ⊂ U∗(n,mε)X ∗(mε).

Therefore, by (2.4), we deduce that the set
⋃mε

m=−∞Em(n) is covered by Nn−mε

θ -
closed balls with radius ε. Meanwhile, for each mε < m ≤ n, Em(n) is a finite
set. Hence, M ∗(n) is a precompact set of X and actually is a compact set of
X. Denote by N(ε) the minimal number of balls with radius ε which can cover
M ∗(n). Then,

N(ε) ≤ Nn−mε

θ +
n∑

m=mε+1

#Em(n)

= Nn−mε

θ +
n∑

m=mε+1

n−m∑

k=0

Nk
θ ≤ {(n−mε)2 + 1}Nn−mε

θ .

Since ε < Ran−mε−1, it follows that

log N(ε)
− log ε

≤ (n−mε) log Nθ + log{(n−mε)2 + 1}
−(n−mε − 1) log a− log R

.

Letting ε → 0, we conclude that dimM ∗(n) ≤ log Nθ/(− log a).

Step 3: It is seen by (2.8) that

U∗(p, n)M ∗(n) = U∗(p, n)
n⋃

m=−∞
Em(n)

⊂ U∗(p, n)
n⋃

m=−∞
Em(n) ⊂

n⋃
m=−∞

Em(p) ⊂ M ∗(p). (2.10)

Meanwhile, it is seen by (2.4) that h(U∗(n,m)X ∗(m),M ∗(n)) ≤ Ran−m since
Wn,m,i ∈ M ∗(n) for 1 ≤ i ≤ Nn−m

θ .
We have thus verified that M ∗(n) is an exponential attractor for

(U∗(n,m),K , X).
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Step 4: Let us now consider the continuous dynamical system (U(t, s),K ,

X). For −∞ < t < ∞, let n be the integer such that nτ∗ ≤ t < (n + 1)τ∗. We
then set

M (t) = U(t, nτ∗)M ∗(n), nτ∗ ≤ t < (n + 1)τ∗.

Since U(t, nτ∗) is a continuous mapping from K into X, the image M (t) of a
compact set M ∗(n) by U(t, nτ∗) is also a compact set of X. Similarly, since
U(t, nτ∗) is Lipschitz continuous due to (2.3), the fractal dimension of M (t) is
finite and does not exceed dimM ∗(n), namely, dimM (t) ≤ log Nθ/(− log a) for
any t.

For −∞ < s < t < ∞, let mτ∗ ≤ s < (m + 1)τ∗ and nτ∗ ≤ t < (n + 1)τ∗

with integers m ≤ n. Then, by (2.10),

U(t, s)M (s) = U(t, nτ∗)U(nτ∗, s)U(s,mτ∗)M ∗(m)

= U(t, nτ∗)U∗(n,m)M ∗(m) ⊂ U(t, nτ∗)M ∗(n) = M (t).

Let Us ∈ X (s). We write

d(U(t, s)Us,M (t))

= d
(
U(t, nτ∗)U(nτ∗, (m + 1)τ∗)U((m + 1)τ∗, s)Us, U(t, nτ∗)M ∗(n)

)
.

Noting that Um+1 = U((m + 1)τ∗, s)Us ∈ X ∗(m + 1), we obtain that

d(U(t, s)Us,M (t)) ≤ L2d(U∗(n,m + 1)Um+1,M
∗(n)) ≤ L2Ran−m−1.

Hence it holds true that

h(U(t, s)X (s),M (t)) ≤ L2Ra−2e−α(t−s), −∞ < s ≤ t < ∞,

with α = − log a/τ∗.
We have thus verified that the family of sets M (t), −∞ < t < ∞, enjoys the

desired properties. ¤

3. Continuous dependence of M (t) in t.

We are concerned with continuity of M (t) with respect to the variable t. We
make the following assumptions. For each fixed −∞ < t < ∞,
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lim
t′↘t

sup
Ut∈X (t)

∥∥[U(t′, t)− 1]Ut

∥∥
X

= 0. (3.1)

For each fixed −∞ < t < ∞,

lim
t′↗t

sup
Ut′∈X (t′)

∥∥[U(t, t′)− 1]Ut′
∥∥

X
= 0. (3.2)

Theorem 3.1. Let {M (t)}t∈R be the exponential attractor constructed in
Theorem 2.1. Let U(t, s) satisfy (3.1) and (3.2), too. Then, M (t) is right con-
tinuous at any t ∈ R, i.e., limt′↘t d(M (t′),M (t)) = 0. If t 6= nτ∗ for any
n ∈ Z, then M (t) is left continuous, too, i.e., limt′↗t d(M (t′),M (t)) = 0. If
t = nτ∗ with some n ∈ Z, then M (t) is at least left outer continuous, i.e.,
limt′↗t h(M (t′),M (t)) = 0.

Proof. Let nτ∗ ≤ t < t′ < (n + 1)τ∗. Then, M (t′) = U(t′, t)M (t). For
any Ut′ ∈ M (t′), there is a point Ut ∈ M (t) such that Ut′ = U(t′, t)Ut. Therefore,

d(Ut′ ,M (t)) ≤ d(U(t′, t)Ut, Ut) ≤ sup
Ut∈M (t)

∥∥[U(t′, t)− 1]Ut

∥∥
X

.

Consequently,

h(M (t′),M (t)) ≤ sup
Ut∈X (t)

∥∥[U(t′, t)− 1]Ut

∥∥
X

.

In the meantime, let Ut ∈ M (t). Then,

d(Ut,M (t′)) ≤ d(Ut, U(t′, t)Ut) ≤ sup
Ut∈M (t)

∥∥[U(t′, t)− 1]Ut

∥∥
X

.

Consequently,

h(M (t),M (t′)) ≤ sup
Ut∈X (t)

∥∥[U(t′, t)− 1]Ut

∥∥
X

.

Therefore, (3.1) implies limt′↘t d(M (t′),M (t)) = 0.
Let t 6= nτ∗ for any n ∈ Z. Let indeed nτ∗ < t′ < t < (n + 1)τ∗. Then, we

have M (t) = U(t, t′)M (t′). By the same arguments as above, we can conclude
from (3.2) that limt′↗t d(M (t′),M (t)) = 0.

Let t = nτ∗ with n ∈ Z. Let (n− 1)τ∗ < t′ < t = nτ∗. Since U(t, t′)M (t′) ⊂
M (t), we deduce from (3.2) that limt′↗t h(M (t′),M (t)) = 0. ¤
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4. Non-autonomous chemotaxis system.

We consider the initial-boundary value problem for non-autonomous chemo-
taxis growth equations





∂u

∂t
= a∆u−∇ · [u∇χ(t, ρ)] + f(t, u) in Ω× (s,∞),

∂ρ

∂t
= b∆ρ− cρ + νu in Ω× (s,∞),

∂u

∂n
=

∂ρ

∂n
= 0 on ∂Ω× (s,∞),

u(x, s) = us(x), ρ(x, s) = ρs(x) in Ω,

(4.1)

in a bounded domain Ω ⊂ R2 with initial time s ∈ R.
We assume that Ω is a two-dimensional bounded domain with sufficiently

smooth boundary ∂Ω, say of C 4 class. For each t, the sensitivity function χ(t, ρ)
is a C 3 function for 0 ≤ ρ < ∞ satisfying

∣∣∣∣
∂iχ

∂ρi
(t, ρ)

∣∣∣∣ ≤ C1, −∞ < t < ∞, 0 ≤ ρ < ∞, i = 1, 2, 3, (4.2)

with some constant C1 > 0. The partial derivatives also satisfy uniform Lipschitz
conditions

∣∣∣∣
∂iχ

∂ρi
(s, ρ)− ∂iχ

∂ρi
(t, ρ)

∣∣∣∣ ≤ C2|t− s|,

−∞ < s, t < ∞, 0 ≤ ρ < ∞, i = 1, 2, 3, (4.3)

with some constant C2 > 0. The growth function f(t, u) is a continuous function
for (t, u) ∈ R×R+ satisfying

c1u− c2u
2 ≤ f(t, u) ≤ c3u− c4u

2 (4.4)

with some positive constants ci > 0 (i = 1, 2, 3, 4). We assume also a Lipschitz
condition of the form

|f(s, u)− f(t, v)| ≤ C3(u + v + 1)[(u + v + 1)|t− s|+ |u− v|],
−∞ < s, t < ∞, 0 ≤ u, v < ∞, (4.5)
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with some constant C3 > 0.
We will treat this problem in the product space

X =
{

U =
(

u
ρ

)
;u ∈ L2(Ω) and ρ ∈ H2

N (Ω)
}

. (4.6)

As for the space of initial functions, we set

K =
{

Us =
(

us

ρs

)
; 0 ≤ us ∈ L2(Ω) and 0 ≤ ρs ∈ H2

N (Ω)
}

. (4.7)

4.1. Local solutions.
We want to appeal to the theory of nonlinear abstract parabolic evolution

equations (see [30]). Problem (4.1) is formulated as the Cauchy problem for a
non-autonomous semilinear evolution equation





dU

dt
+ AU = F (t, U), s < t < ∞,

U(s) = Us,

(4.8)

in the product space X given by (4.6). Here, A is a matrix linear operator of X

given by

A =
(

A1 0
−ν A2

)
,

where A1 (resp. A2) is a realization of the elliptic operator −a∆+1 (resp. −b∆+c)
in L2(Ω) under the Neumann boundary conditions on ∂Ω and is a positive definite
self-adjoint operator of L2(Ω) with domain D(A1) = D(A2) = H2

N (Ω). But, since
the underlying space for the equation of ρ is the space H2

N (Ω) (see (4.6)), A2 is
actually an operator from D(A2

2) into D(A2). The nonlinear operator F (t, U) is
given by

F (t, U) =
(−∇ · [u∇χ(t, Re ρ)] + f(t,Re u) + u

0

)
, U =

(
u
ρ

)
.

The initial value is given Us = t(us, ρs) ∈ K .
We shall use the standard techniques of reducing the non-autonomous prob-

lems to autonomous ones by introducing a new unknown function τ = τ(t).
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Namely, we rewrite (4.8) into the form





d

dt

(
τ
U

)
+

(
1 0
0 A

)(
τ
U

)
=

(
τ + 1

F (Re τ, U)

)
, s < t < ∞,

(
τ
U

)
(s) =

(
s
Us

)
,

in the product space X of C and X. Then, we have the Cauchy problem of the
form





dŨ

dt
+ ÃŨ = F̃ (Ũ), s < t < ∞,

Ũ(s) = Ũs.

(4.9)

Here, Ũ = t(τ, U) ∈ X and Ã = diag {1, A} is a matrix operator of X. The
nonlinear operator F̃ is defined by

F̃ (Ũ) =
(

τ + 1
F (Re τ, U)

)
, Ũ =

(
τ
U

)
. (4.10)

Finally, the initial value is given by Ũs = t(s, Us) ∈ R×K .
Let us now apply the general results for semilinear abstract parabolic evolution

equations, say [30, Theorem 4.4], in order to construct local solutions to (4.9). In
fact, we can verify that F̃ (U) defined by (4.10) fulfills the condition [30, (4.21)]
with 1/2 < η < 1 by the analogous arguments as in [1, Section 6] or [30, Section
12.1.2]. As a result, we conclude that, for any initial value Ũs ∈ R×K , (4.9) has
a unique local solution in the function space:

Ũ ∈ C
(
(s, s + TUs ];D(Ã)

) ∩ C ([s, s + TUs ];X) ∩ C 1((s, s + TUs ];X),

here TUs
> 0 is determined by the norm ‖Us‖X alone. In addition,

(t− s)
∥∥ÃŨ(t)

∥∥
X

+
∥∥Ũ(t)

∥∥
X
≤ CUs

, s < t ≤ s + TUs
. (4.11)

By definition, the local solution to (4.9) and hence to the original problem (4.8)
(equally, (4.1)) is given by

U(t) = pr2Ũ(t), s < t ≤ s + TUs
, (4.12)
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where pr2 : X → X is the projection from X onto X. (4.11) then yields that

(t− s)‖AU(t)‖X + ‖U(t)‖X ≤ CUs , s < t ≤ s + TUs . (4.13)

It is easy to verify that us ≥ 0 and ρs ≥ 0 imply that the local solution to
(4.8) also satisfies u(t) ≥ 0 and ρ(t) ≥ 0 for every s < t ≤ s + TUs , see [26,
Theorem 3.5] or [30, Section 12.1.3].

Let 0 < R < ∞. Let KR = K ∩ B
X

(0;R), where B
X

(0;R) denotes the
closed ball of X centred at 0 with radius R. For each Us ∈ KR, (4.8) has a unique
local solution on an interval [s, s + TR], where TR > 0 is determined by R alone.
We can then verify the Lipschitz continuity of the local solutions with respect to
the initial data. Thanks to [30, Theorem 4.5], we have

(t− s)η
∥∥Aη[U1(t)− U2(t)]

∥∥
X

+ ‖U1(t)− U2(t)‖X ≤ CR

∥∥U1
s − U2

s

∥∥
X

,

s < t ≤ s + TR, (4.14)

where U1(t) (resp. U2(t)) is a local solution to (4.8) for initial function U1
s ∈ KR

(resp. U2
s ∈ KR).

4.2. Global solutions.
We consider Problem (4.8). For any Us ∈ K , we have already constructed a

local solution on an interval [s, TUs ]. Let U = t(u, ρ) be any extension of this local
solution in the function space:

0 ≤ u ∈ C
(
(s, s + TU ];H2

N (Ω)
)

∩ C ([s, s + TU ];L2(Ω)) ∩ C 1((s, s + TU ];L2(Ω)),

0 ≤ ρ ∈ C
(
(s, s + TU ];H4

N2(Ω)
)

∩ C
(
[s, s + TU ];H2

N (Ω)
) ∩ C 1

(
(s, s + TU ];H2

N (Ω)
)
,

U being defined on [s, s + TU ]. Then, repeating the similar arguments as in [26,
Section 4] or [30, Section 12.3.2], we can establish a priori estimates

‖U(t)‖X ≤ p(‖Us‖X), s ≤ t ≤ s + TU , (4.15)

here p(·) denotes some specific continuous increasing function which is independent
of U(·).

This a priori estimate shows that the local solution on [s, s + TUs ] mentioned
above can be extended on an interval [s, s + TUs + τ ], τ > 0 being dependent only
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on p(‖Us‖X) and independent of s + TUs
. We will repeat such a procedure. Each

step the time τ > 0 is determined by p(‖Us‖X) alone. Hence, we can construct a
unique global solution of (4.8) in the function space:

0 ≤ u ∈ C
(
(s,∞);H2

N (Ω)
) ∩ C ([s,∞);L2(Ω)) ∩ C 1((s,∞);L2(Ω)),

0 ≤ ρ ∈ C
(
(s,∞);H4

N2(Ω)
) ∩ C

(
[s,∞);H2

N (Ω)
) ∩ C 1

(
(s,∞);H2

N (Ω)
)
.

Moreover, as shown by [26, Proposition 5.1] or [30, (12.38)], the global solution
satisfies a dissipative estimate

‖U(t)‖X ≤ p
(
(t− s + 1)−1‖Us‖X + 1

)
, s < t < ∞.

This jointed with the local estimate (4.13) provides a stronger dissipative estimate
of the form

‖AU(t)‖X ≤ p
(
(t− s)−1‖Us‖X + 1

)
, s < t < ∞. (4.16)

4.3. Non-autonomous dynamical system.
Let s ∈ R. For Us ∈ K , let U(·, s;Us) be the global solution of (4.8). We

then set

U(t, s)Us = U(t, s;Us) for (t, s) ∈ ∆.

This U(t, s) defines an evolution operator acting on K . It is indeed clear that
U(s, s) = I for s ∈ R and U(t, s) = U(t, r) ◦ U(r, s) for (t, r), (r, s) ∈ ∆.

Let us prove that U(t, s) is a continuous evolution operator on K .

Proposition 4.1. Let 0 < R < ∞ and 0 < T < ∞ be arbitrarily fixed. For
any (t, s) ∈ ∆ such that 0 ≤ t− s ≤ T , U(t, s) satisfies

∥∥U(t, s)U0 − U(t, s)V0

∥∥
X
≤ LR,T ‖U0 − V0‖X , U0, V0 ∈ KR, (4.17)

LR,T > 0 being determined by R and T alone.

Proof. We notice from (4.15) that ‖U(t, s)U0‖X ≤ p(R) for any 0 ≤ t−s <

∞ provided U0 ∈ KR.
In the meantime, by applying (4.14) with radius p(R), we see that

∥∥U(t, s)U1 − U(t, s)V1

∥∥
X
≤ Cp(R)‖U1 − V1‖X , U1, V1 ∈ Kp(R),
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provided that 0 ≤ t − s ≤ Tp(R). Since R ≤ p(R), i.e., KR ⊂ Kp(R), this means
that the desired estimate (4.17) holds for 0 ≤ t− s ≤ Tp(R).

Let next Tp(R) ≤ t− s ≤ 2Tp(R). Then,

∥∥U(t, s)U0 − U(t, s)V0

∥∥
X

=
∥∥U(t, t− Tp(R))U(t− Tp(R), s)U0 − U(t, t− Tp(R))U(t− Tp(R), s)V0

∥∥
X

=
∥∥U(t, t− Tp(R))U1 − U(t, t− Tp(R))V1

∥∥
X

≤ Cp(R)‖U1 − V1‖X ≤ C2
p(R)‖U0 − V0‖X .

That is, the desired estimate holds for Tp(R) ≤ t − s ≤ 2Tp(R). Repeating these
arguments, we see that

∥∥U(t, s)U0 − U(t, s)V0

∥∥
X
≤ Cn

p(R)‖U0 − V0‖X

for (n− 1)Tp(R) ≤ t− s ≤ nTp(R), where n = 1, 2, 3, . . . .
Hence, the proposition is proved. ¤

Proposition 4.2. Let U0 ∈ K be arbitrarily fixed. Then, U(t, s)U0 is a
continuous function for (t, s) ∈ ∆ with values in X.

Proof. Let Ũs = t(s, U0). Let Ũ(·) be the global solution of (4.9) with the
initial value Ũs. Then, Ũ(t) is given by

Ũ(t) = e−(t−s) eAŨs +
∫ t

s

e−(t−τ) eAF̃ (Ũ(τ))dτ, s < t < ∞.

In view of (4.12), we observe that U(t, s)U0 satisfies the integral equation

U(t, s)U0 = e−(t−s)AU0 +
∫ t

s

e−(t−τ)AF (τ, U(τ, s)U0)dτ, s < t < ∞. (4.18)

We can then verify without difficulty that U(t, s)U0 is continuous for (t, s) with
values in X. ¤

These two propositions yield that the mapping G : ∆ × K → X, where
G(t, s;U0) = U(t, s)U0, is continuous. Hence, (U(t, s),K , X) generates a non-
autonomous dynamical system determined from (4.8).
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5. Exponential attractors.

We now proceed to constructing an exponential attractor. It indeed suffices
to show that there exists a family of closed bounded subsets X (t) of X having
the properties (1)∼(5).

In view of the dissipative estimate (4.16), we consider a subset

B = K ∩B
D(A)

(0; p(2)),

where p(·) is the same continuous increasing function as in (4.16). This B is a
compact set of X and is a bounded subset of D(A). From (4.16) we observe that,
for any bounded set B of K , there exists a time tB > 0 such that U(t, s)B ⊂ B
for every t ≥ tB + s, here tB is independent of s.

We here set, for each t ∈ R, that

X (t) =
⋃

−∞<s≤t

U(t, s)B. (5.1)

Since B is a bounded subset of K , B itself is absorbed by B, i.e., U(t, s)B ⊂ B
for any (t, s) ∈ ∆ such that t ≥ tB + s. This means that X (t) is written by

X (t) =
⋃

t−tB≤s≤t

U(t, s)B, (5.2)

too.
Let us see that X (t), t ∈ R, fulfills all the desired conditions. It is clear

that B ⊂ X (t) ⊂ K . In addition, X (t) is considered as the image of a mapping
g : [t − tB, t] ×B → K such that g(s, U0) = U(t, s)U0. Since [t − tB, t] ×B is
compact and g is continuous, its image g([t − tB] ×B) = X (t) is also compact.
Hence, the condition (1) is fulfilled. Moreover, we have the following result.

Proposition 5.1. The union
⋃

t∈R X (t) is a bounded subset of D(A). Con-
sequently, the union is a relatively compact set of X.

Proof. To prove this we have to go back to the abstract problem (4.9). Let
the initial data Us satisfy Us ∈ D(A) such that ‖AUs‖X ≤ p(2) and consequently
Ũs ∈ D(Ã) with ‖ÃŨs‖X ≤ p(2). Let Ũ(t) be the global solution of (4.9). We
want to use the estimates obtained in [30, Theorem 4.2] with γ = η to conclude
that
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{∥∥ÃηŨ(t)
∥∥

X
≤ C, s ≤ t ≤ s + T,

∥∥Ãη[Ũ(t)− Ũ(τ)]
∥∥

X
≤ C(t− τ)1−η(τ − s)−η, s ≤ τ < t ≤ s + T,

for the solution with the initial data Us with some T > 0 and C > 0 depending
only on p(2). Therefore, by (4.12),

{∥∥AηU(t, s)Us

∥∥
X
≤ C, s ≤ t ≤ s + T,

∥∥Aη[U(t, s)Us − U(τ, s)Us]
∥∥

X
≤ C(t− τ)1−η(τ − s)−η, s ≤ τ < t ≤ s + T.

(5.3)

Let −∞ < t < ∞ and t − tB ≤ s ≤ t and let Us ∈ B. By definition,
‖AUs‖X ≤ p(2). As seen in (4.18), U(t, s)Us satisfies the integral equation

U(t, s)Us = e−(t−s)AUs +
∫ t

s

e−(t−τ)AF (τ, U(τ, s)Us)dτ.

Therefore,

AU(t, s)Us = e−(t−s)AAUs +
∫ t

s

Ae−(t−τ)A
[
F (τ, U(τ, s)Us)− F (t, U(t, s)Us)

]
dτ

+
∫ t

s

Ae−(t−τ)AF (t, U(t, s)Us)dτ.

And

∫ t

s

Ae−(t−τ)AF (t, U(t, s)Us)dτ = (1− e−(t−s)A)F (t, U(t, s)Us).

Using (5.3), we easily obtain that

‖AU(t, s)Us‖X ≤ C, s ≤ t ≤ s + T,

the constant C being determined by p(2).
We have thus verified that the union

⋃
t−T≤s≤t AU(t, s)B is uniformly

bounded in X with respect to t. Hence, the proof is complete if T ≥ tB.
Let T < tB. For (t, s) such that T ≤ t−s ≤ tB, we utilize the global estimate

(4.16) to conclude that

‖AU(t, s)Us‖X ≤ p(T−1‖Us‖X + 1), T + s ≤ t ≤ tB + s.
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This means that the union
⋃

t−tB≤s≤t−T U(t, s)B is also uniformly bounded in X

with respect to t. Hence, the proof is complete even in this case. ¤

Let us verify the condition (2). By (5.1),

X (s) =
⋃

−∞<r≤s

U(s, r)B.

For each −∞ < r ≤ s, it follows that U(t, s) ◦ U(s, r)B = U(t, r)B ⊂ X (t).
Hence, U(t, s)X (s) ⊂ X (t).

Consider any bounded subset B of K . Then, there exists a time tB such
that U(t, s)B ⊂ B for every t ≥ tB + s. Since B ⊂ X (t), this means that the
condition (3) is valid.

We set Z = D(Aη), where η > 0 is the exponent appearing in (4.14). By
Proposition 5.1, there is R > 0 such that

⋃
t∈R X (t) ⊂ KR. Then, (4.14) shows

that the Lipschitz condition of (4) is valid provided τ∗ = TR. The estimate
provides also the Lipschitz condition of (5).

We have thus verified that all the conditions (1)∼(5) are fulfilled. Hence,
Theorem 2.1 yields existence of an exponential attractor M (t), −∞ < t < ∞, for
(U(t, s),K , X).

Let us finally verify that U(t, s) satisfies (3.1) and (3.2). For (t, s) ∈ ∆, we
see from (4.8) that

U(t, s)Us − Us =
∫ t

s

[−AU(τ, s)Us + F (τ, U(τ, s)Us)]dτ, Us ∈ X (s).

Therefore,

∥∥[U(t, s)− 1]Us

∥∥
X
≤ C(t− s) sup

s≤τ≤t
‖AU(τ, s)Us‖X , Us ∈ X (s).

Then, Proposition 5.1 provides that

sup
Us∈X (s)

∥∥[U(t, s)− 1]Us

∥∥
X
≤ C(t− s), −∞ < s ≤ t < ∞.

This means that both (3.1) and (3.2) are fulfilled.
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